
The 2nd BabyLM Challenge at the 28th Conference on Computational Natural Language Learning, pages 308–323
November 15-16, 2024 ©2024 Association for Computational Linguistics

BERTtime Stories: Investigating the Role of Synthetic Story Data in
Language Pre-training

Nikitas Theodoropoulos, Giorgos Filandrianos, Vassilis Lyberatos,
Maria Lymperaiou and Giorgos Stamou

Artificial Intelligence and Learning Systems Laboratory
School of Electrical and Computer Engineering

National Technical University of Athens

nikitastheodorop@gmail.com,
{geofila, vaslyb, marialymp}@ails.ece.ntua.gr,

gstam@cs.ntua.gr

Abstract
We describe our contribution to the Strict and
Strict-Small tracks of the 2nd iteration of
the BabyLM Challenge. The shared task is cen-
tered around efficient pre-training given data
constraints motivated by human development.
In response, we study the effect of synthetic
story data in language pre-training using TinyS-
tories: a recently introduced dataset of short
stories. Initially, we train GPT-Neo models
on subsets of TinyStories, while varying the
amount of available data. We find that, even
with access to less than 100M words, the mod-
els are able to generate high-quality, original
completions to a given story, and acquire sub-
stantial linguistic knowledge. To measure the
effect of synthetic story data, we train LTG-
BERT encoder models on a combined dataset
of: a subset of TinyStories, story completions
generated by GPT-Neo, and a subset of the
BabyLM dataset. Our experimentation reveals
that synthetic data can occasionally offer mod-
est gains, but overall have a negative influence
on linguistic understanding. Our work offers an
initial study on synthesizing story data in low
resource settings and underscores their poten-
tial for augmentation in data-constrained lan-
guage modeling. We publicly release our mod-
els and implementation on our GitHub 1.

1 Introduction

As the performance of modern Language Models
(LMs) increases, enabling remarkable feats of lan-
guage understanding and reasoning, so do their
demands in computational resources and training
data (Hoffmann et al., 2022). For example, the
recently released Llama 3 (Dubey et al., 2024) has
405B parameters and was pre-trained on 15.6T to-
kens, on 6K H100 GPUs. In contrast, children are

1https://github.com/nikitas-theo/BERTtimeStories

only exposed to no more than 100 million words
by age 13 (Gilkerson et al., 2017), demonstrating
exceptional learning efficiency compared to state-
of-the-art LMs. This need for ever-increasing data
and compute casts doubts on the cognitive plausi-
bility of the current LM training regimes, and raises
ecological and ethical concerns, such as democratic
access to research for industry and research groups
with modest resources.

To address these issues, the BabyLM challenge
(Warstadt et al., 2023a; Choshen et al., 2024) in-
vites participants to work on cognitive modeling
and efficient LM pre-training, given data limita-
tions inspired by human development. This year’s
iteration of the challenge features three experimen-
tal tracks: a Strict track with a budget of 100M
words, a Strict-Small track with a budget of
10M words, and a Multimodal track with a word
budget of 100M words and unlimited visual input.
A major change compared to last year’s challenge is
allowing participants to construct their own training
data. In the following sections, we present our con-
tributions to the Strict and Strict-Small tracks.

Our research draws inspiration from recent ad-
vancements in Small Language Models (SLMs) for
text generation, as explored in TinyStories (Eldan
and Li, 2023). In this influential work, the authors
demonstrate that training on a synthetic dataset of
simple stories can enable SLMs to produce cre-
ative, high-quality generations, which are novel
with respect to the original training dataset. We
hypothesize that for the small data regimes of the
BabyLM challenge, augmenting the initial training
corpus with synthetic data of high quality can pro-
vide models with unseen linguistic contexts, and as
a result improve language understanding. To test
our hypothesis, we first extend previous work by

308

mailto:nikitastheodorop@gmail.com
mailto:geofila@ails.ece.ntua.gr
mailto:vaslyb@ails.ece.ntua.gr
mailto:marialymp@ails.ece.ntua.gr
mailto:gstam@cs.ntua.gr
https://github.com/nikitas-theo/BERTtimeStories

Decoder

Encoder

One day, a little boy named Tim went to
the park. He saw a big tiger. The tiger
was not mean, but very easy to play
with. Tim and the tiger played all day.
They had lots of fun. Then, something
unexpected happened. The tiger
started to shake. Tim was scared. He
did not know what was going on. But
then, the tiger turned into a nice ...

*CHI: Eve hand pocket.
*MOT: oh your hand's in your pocket.
*CHI: Eve puzzle.
*MOT: that's your puzzle.
*CHI: Mommy find Eve puzzle.
*MOT: want me to find the rest of it.
*CHI: yeah.
*MOT: alright.
*MOT: is it in the toy box?

was very nice. Tim wanted to play with
the tiger. He said, "Hi, tiger! Let's play!"
The tiger did not say anything. Tim was
sad. He wanted to find a way to make
the tiger happy. Tim had an idea. He
found a ball and threw it. The tiger saw
the ball and started to play ...

One day, a little boy named Tim went to
the park. He saw a big tiger. The tiger

+

...

Figure 1: Illustration of our proposed methodology for BERTtime Stories. We use a subset of the TinyStories
dataset (Dtiny) (Eldan and Li, 2023), to train a decoder transformer for data augmentation. We prompt the decoder
with the short stories from Dtiny and create a dataset of model generations (Dgen): each story (green) is truncated
and used as a prompt (yellow), with the model generating an alternate completion (blue). We supplement the two
datasets with a subset of the BabyLM dataset (Dbaby), released by Choshen et al. (2024), and train an encoder model
on the combined data. Finally, we evaluate the linguistic proficiency of the encoder using the challenge benchmarks.

Eldan and Li (2023), investigating generative per-
formance with limited training data. We then train
encoder transformer models on a diverse dataset,
and measure the effect of synthetic data on linguis-
tic proficiency.

In technical terms, following Eldan and Li
(2023), we propose to train a GPT-Neo decoder
(Black et al., 2021) on TinyStories, and then use it
to generate data for the training of a final encoder
model. This poses some initial challenges, as the
size of the original TinyStories dataset exceeds the
challenge limits, with around 373M words. As a
result, we experiment with training GPT-Neo mod-
els while varying the amount of available data and
evaluating their generative performance, keeping
the model architecture fixed in the process. Our
investigation of generative performance is comple-
mentary to the original work, which measures the
effects of varying the depth and size of the model
architectures. Our findings demonstrate that even
in low data regimes of ≤ 100M words, GPT-Neo
models can acquire impressive grammatical under-

standing, and generate stories of high quality and
diversity, comparable to models trained on the full
dataset. For our evaluation see Section 4.1.

Next, we investigate the effect of the synthetic
story data on language pre-training. Figure 1 illus-
trates our methodology. We select a small subset
of TinyStories, train a GPT-Neo model, and use it
to generate alternate completions to the stories in
the training set. We then create a combined dataset
consisting of: 1 the subset of TinyStories used
for GPT-Neo training, 2 the generated data, 3
a sample of the BabyLM dataset (Choshen et al.,
2024). With the combined dataset, we train an
LTG-BERT (Samuel et al., 2023) model, choosing
this architecture as it demonstrated superior per-
formance in the text-only tracks of last year. We
compare the performance of our models against a
variety of baselines, trained with and without the
use of synthetic data. Our results show that a sim-
ple application of synthetic story data for language
pre-training results in marginal or even negative
gains. Nevertheless, given the high generative per-

309

formance of the GPT-Neo models, we believe that
more research is needed to fully explore and exploit
their potential.

Contribution We list our contributions below:

• We investigate the generative and linguistic
abilities of GPT-Neo models trained on TinyS-
tories while varying the amount of available
data. We show that even with limited data,
these models can produce generations of high
quality, offering new insights into the capabil-
ities of SLMs in low data regimes.

• We investigate the effect of generated data
on the pre-training of encoder LMs in a con-
strained data setting. We conduct an extensive
evaluation with different training schemes and
baselines. Our experiments demonstrate the
potential of data augmentation to enhance the
linguistic capabilities of low resource LMs.

2 Related work

Previous BabyLM Iteration Data Augmenta-
tion techniques were shown to be beneficial in the
previous year’s challenge (Warstadt et al., 2023b).
Specifically, ChapGPT (Jumelet et al., 2023) uses
regex patterns to extract common phrases from
GLUE tasks, and then harnesses these patterns to
generate follow-up questions that serve as addi-
tional training data. In the Contextualizer paper
(Xiao et al., 2023), extra training samples are cre-
ated by dynamically combining chunks of texts
from different contexts during training. Another
approach named Baby’s CoThought (Zhang et al.,
2023) utilizes a Large Language Model (LLM)
to reformat unrelated sentences from the corpus
into coherent paragraphs, thereby improving per-
formance, albeit in defiance of data constraints.

Language Models for Data Augmentation In
recent years, LLMs have been increasingly lever-
aged for data augmentation in various domains
(Ding et al., 2024). Notably, Dai et al. (2023)
introduced ChatGPT as a tool for generating re-
alistic text samples from a combination of real and
artificial data, enhancing training datasets. Simi-
larly, transformer architectures, including decoder
(GPT-2, Radford et al., 2019), encoder (BERT,
Devlin et al., 2019), and seq2seq (BART, Lewis
et al., 2020) models have been explored for aug-
mentation (Kumar et al., 2020). In the work of
Yoo et al. (2021), GPT-3 (Brown et al., 2020) was

used to mix real and synthetic text samples for ro-
bust data augmentation. Moreover, decoder models
have been successfully employed to generate train-
ing data for encoders, yielding significant improve-
ments in zero-shot learning (Meng et al., 2022).

Small Language Models The recent study by
Eldan and Li (2023) highlighted that Small Lan-
guage Models (SLMs), can outperform larger ones
by leveraging high-quality synthetic training data,
demonstrating fluency, coherence, and creativity
despite having fewer parameters. This trend is fur-
ther supported by work in sequential recommenda-
tion, where small models are effectively employed
for task-specific purposes (Xu et al., 2024). Addi-
tionally, Bergner et al. (2024) utilize a pre-trained
LLM to encode prompt tokens, using these repre-
sentations to guide a smaller LM for more efficient
response generation.

3 Methods

We describe our data augmentation method using
synthetic story data, as illustrated in Figure 1.

3.1 Datasets
Our work is built on two datasets: 1 TinyStories –
denoted as Dtiny, a collection of synthetic short sto-
ries with simple language, 2 the BabyLM dataset
– denoted as Dbaby, created to be a developmentally
plausible pre-training corpus. For any dataset Ddata,
we also denote a version of the data with m million
words as Ddata-m. We describe the datasets below:

BabyLM dataset The BabyLM dataset (Dbaby),
released by Warstadt et al. (2023a); Choshen et al.
(2024), consists of a diverse set of texts and is con-
structed with the goal of simulating the linguistic in-
put that a child receives throughout its development.
It contains a high proportion of spoken language
and includes, among others, excerpts from chil-
dren’s books, dialogue, child-directed speech, and
Wikipedia articles. Both 100M and 10M versions
of the dataset were released, for the Strict and
Strict-Small tracks respectively. Details about
the dataset structure are provided in Appendix A.

TinyStories dataset Introduced by Eldan and Li
(2023), TinyStories (Dtiny) is a synthetic dataset,
featuring a collection of short stories constructed
by prompting GPT-3.5 and GPT-4 (OpenAI et al.,
2024). The dataset was created to preserve all the
core elements of natural language, such as grammar
and reasoning, while exhibiting limited diversity

310

and size. More specifically, the stories are 2-3 para-
graphs long and follow simple plots and themes. In
addition, the dataset contains a restricted vocabu-
lary and in general is intended to be on the level
of understanding of 3-4 year old children. The
initial version of the dataset (V1), generated by
both GPT-3.5 and GPT-4, contains approximately
373M words. A second version (V2) was later re-
leased, with stories generated only by GPT-4 and
around 440M words. We use this version in all our
experiments.

3.2 Data Generation
We describe the creation of the synthetic story
dataset Dgen. To generate the data, we first train a
decoder model (GPT-Neo) on a subset of TinySto-
ries denoted as Dtiny-m. We truncate the stories in
Dtiny-m to construct prompts and generate alternate
completions using our model.

We start by restricting the size m of the subset,
taking into account two factors: the need for ade-
quate diversity in the final corpus, and the need to
ensure high-quality generations. Given the assump-
tion that generation quality scales with dataset size,
we want to select a big enough size m for Dtiny-m
to enable high-quality generations from our trained
models. At the same time, we want to leave the
necessary room in our word budget for including a
sufficiently large portion of the BabyLM dataset in
the final training. This will ensure that our models
are exposed to both a large vocabulary and a variety
of word contexts. Intuitively, we aim to ensure that
our pre-training data is diverse, as children learn
from multiple sources of input.

To address this trade-off, we sample from TinyS-
tories, creating a collection of subsets of vary-
ing sizes, Dtiny-m : m ∈ {5, 10, 25, 50, 75, 100}M
(millions of words). For each subset, we train a
GPT-Neo model and evaluate its generative and
linguistic abilities. In our evaluation, we lever-
age metrics for grammatical understanding, diver-
sity, and generation quality; our metrics are intro-
duced in Section 3.4. For each of the Strict and
Strict-Small tracks, we select a subset Dtiny-m
and a corresponding GPT-Neo model trained on it,
based on our evaluation metrics and the above crite-
ria. To construct Dgen, for each story in Dtiny-m, we
truncate the story to 15%-30% of its size and use
it to prompt the model for generation. We opt for
using a smaller proportion of the original story to
avoid duplication, given that stories in Dtiny-m will
already be in the combined corpus for the training

of the encoder transformer.
Regarding the generation process, we experi-

ment with two methods: greedy decoding and
nucleus sampling (Holtzman et al., 2020). Dur-
ing sampling, we generate k completions from
our models for each prompt. To limit repetition
between the k generations (and avoid wasting
FLOPs), we calculate Self-BLEU (Section 3.4) for
a set of values of k, and select the ones that best
balance diversity and the total amount of additional
training data.

3.3 Final Corpus Creation

For each of the Strict and Strict-Small tracks,
we have created Dtiny-m, and Dgen as previously
described. We now create the combined dataset
Dcomb, used to train the encoder transformer. We
allocate our remaining word budget to a subset
of the BabyLM dataset (Dbaby-b), created by sam-
pling randomly from BabyLM on the document
level. We leave sampling methods that account
for the content of the documents for future work.
For the Strict / Strict-Small tracks, the size b
of Dbaby-b is chosen such that: b + m ≤ 100M /
10M. We now construct Dcomb by combining all
the datasets Dcomb = (Dtiny-m,Dbaby-b,Dgen). We
employ a masked language modeling objective to
train an encoder transformer on Dcomb, with the
LTG-BERT architecture (Samuel et al., 2023).

3.4 Evaluation

For evaluating the encoder transformers we use the
evaluation suite of the challenge, consisting of three
evaluation benchmarks: BLiMP, (Super)GLUE,
and EWoK, each broadly evaluating language profi-
ciency, general language understanding, and world
knowledge. We note that the challenge benchmarks
constitute filtered versions (Warstadt et al., 2023b),
rendering our results incomparable with full data
evaluations. For the decoder models, we use EWoK
and BLiMP, and also introduce some additional
evaluation procedures: specifically, Self-BLEU
evaluates diversity, and an LLM-assisted evalua-
tion measures generation quality. We explain each
of the evaluation benchmarks below.

BLiMP The Benchmark of Linguistic Minimal
Pairs (BLiMP), introduced by Warstadt et al.
(2019), is a set of tasks designed to evaluate the
linguistic knowledge of LMs. It consists of pairs
of minimally different sentences covering various
grammatical phenomena in syntax, morphology,

311

and semantics. The model under evaluation has to
assign a higher probability to the correct sentence
in each pair. We also evaluate on BLiMP Supple-
ment (Supp.), released by Warstadt et al. (2023a),
which includes additional grammatical phenom-
ena. For both BLiMP and BLiMP Supplement, we
measure performance by calculating the average
accuracy across all of their evaluation tasks.

(Super)GLUE The General Language Under-
standing Evaluation (GLUE) benchmark (Wang,
2018), assesses model performance across a wide
range of natural language understanding (NLU)
tasks. SuperGLUE (Wang et al., 2019), was later
introduced to offer a more challenging set of tasks.
We employ a total of 10 text classification tasks
from both benchmarks, which include: question
answering (BoolQ, MultiRC), sentiment classi-
fication (SST-2), paraphrase detection (MRPC,
QQP), linguistic acceptability (CoLA), common-
sense reasoning (WSC), and natural language in-
ference (MNLI, QNLI, RTE). Performance on (Su-
per)GLUE is calculated by averaging accuracies
across all tasks except for QQP and MRPC, where
we use the F1-score, and CoLA, where we use the
Matthews Correlation Coefficient – MCC.

EWoK Elements of World Knowledge (EWoK)
(Ivanova et al., 2024) assesses an LM’s ability to
understand and model world knowledge. It evalu-
ates how well a model can connect a target text to
either an appropriate or mismatched context, em-
phasizing key concepts such as social dynamics
and spatial relationships. Both the contexts and
targets are framed as minimally contrasting pairs,
with customizable elements like objects, agents,
and locations. During evaluation, the model needs
to assign a higher probability to the correct context
and target text pair. We report average accuracy
across all the benchmark’s tasks.

Self-BLEU To measure the diversity of gener-
ated stories, we utilize the Self-BLEU score (Zhu
et al., 2018). Given a generated collection, we cal-
culate the BLEU score with one generation as the
hypothesis and the others as reference, evaluating
how similar it is to the rest. We define Self-BLEU
as the average of all the BLEU scores in the corpus.
The metric is defined on a continuous scale within
[0, 1], where higher scores indicate less diversity.

LLM Evaluation To provide a comprehensive
evaluation of our decoder models’ generative abili-
ties, we follow the approach of Eldan and Li (2023)

and employ a LLM, prompting it with the story
completions, and asking it to assess them in terms
of Grammar, Creativity, and Consistency with the
story’s beginning, on a scale from 1 to 10. The orig-
inal evaluation by Eldan and Li (2023) used GPT-4,
we instead leverage Claude-3.5 Sonnet (Anthropic,
2024)2, which better aligned with our available re-
sources. Evaluation details are presented in Section
4.1, while the prompt is included in Appendix E.

4 Experiments

Experimental Setup We conduct our experi-
ments on a shared GPU cluster of 8 Nvidia V100
16 GB GPUs, and additionally evaluate our models
on an Nvidia RTX-3090 24 GB GPU. All our mod-
els are trained using the PyTorch (Paszke et al.,
2019) and HuggingFace (Wolf et al., 2019) li-
braries. For our evaluations of BLiMP, EWoK, and
(Super)GLUE we build upon the official evaluation
pipeline released by the challenge organizers (Gao
et al., 2023; Choshen et al., 2024).

4.1 TinyStories & GPT-Neo Evaluation

Regarding the decoder used for the generation, we
select one of the best-performing GPT-Neo archi-
tectures from Eldan and Li (2023) 3. All our trained
GPT-Neo models share the same hyperparameters,
except for weight decay, dropout, and vocabulary
size, which are tuned to the specific data size. We
built upon a similar training scheme as the authors,
with added regularization for our low data regime.
Hyperparameters and details about the architecture
are included in Appendix C. We opt to train on the
latest version of the TinyStories data (V2), gen-
erated by prompting GPT-4; the full unsampled
dataset contains ∼ 440M words. Throughout our
evaluation, we also report results for the original
model released by the authors, trained on the first
version of the dataset (V1) with ∼ 373M words.

In the following paragraphs, we conduct a thor-
ough analysis of the relationship between the lin-
guistic competency of GPT-Neo models trained
on subsets of TinyStories, and the size of their
training dataset |Dtiny-m|. We experiment with var-
ious sizes for the TinyStories subsets Dtiny-m :
m ∈ {5, 10, 25, 50, 75, 100}M (millions of words).
From our experiments we draw insights about the
abilities of generative LMs on low data regimes.
This evaluation will also motivate our selection of

2Model version: claude-3-5-sonnet-20240620.
3https://huggingface.co/roneneldan/TinyStories-33M

312

https://huggingface.co/roneneldan/TinyStories-33M

the TinyStories subset Dtiny used for generating the
dataset Dgen and for training the final encoder.

As an initial proxy of the language competency
of the GPT-Neo decoders, we measure perfor-
mance on BLiMP, its supplement (Supp.), and
EWoK. Results are presented in Table 1. We
notice that 50M words appear to be a cutoff
point, with notable drops in performance for data
sizes less than that. Based on this, we select
Dtiny-50M for the Strict track, and Dtiny-5M for the
Strict-Small track. Importantly, we do not in-
clude the LLM evaluation (presented below) in
this decision process, as it would invalidate our
imposed data constraints. We leave further ex-
perimentation on the subset data sizes for the
Strict-Small track for future work. A second ob-
servation concerns the 100M words model, which
achieves the top score on BLiMP, shared by the
373M model by Eldan and Li (2023). This result
agrees with the findings of Zhang et al. (2021),
demonstrating that 100M words are enough to at-
tain substantial grammatical knowledge.

Train Data BLiMP ↑ Supp. ↑ EWoK ↑
5M 55.5 53.8 51.1
10M 58.4 51.6 51.9
25M 59.9 55.1 52.4
50M 62.8 52.8 53.0
75M 64.0 54.8 53.4
100M 64.8 50.8 53.1
440M (V2) 64.6 55.0 53.9
373M (V1) 4 64.8 60.9 54.0

Table 1: Evaluation results for GPT-Neo models trained
on TinyStories with various amounts of data. We re-
port accuracy for all benchmarks. As the amount of
data decreases, the BLiMP and EWoK scores generally
decrease as well. In contrast, the BLiMP supplement
score demonstrates more variance.

The aforementioned scores give us evidence
about the grammatical understanding (BLiMP) and
world knowledge (EWoK) of our models, but leave
out two important areas of generative performance,
mainly: 1 the diversity and 2 the quality of gen-
erations. We focus on these two metrics in the
following paragraphs. Apart from the quantitative
scores, in Appendix B we also include the genera-
tions of all the GPT-Neo models for the TinyStories
example illustrated in Figure 1.

Evaluating Generation Quality Evaluating the
quality of generations for open-ended generation

4Model released by Eldan and Li (2023).

tasks is challenging, as most common evaluation
paradigms expect structured output, and measure
fidelity towards a set of reference texts. To address
this, we adopt the evaluation method proposed by
Eldan and Li (2023), and prompt an LLM to eval-
uate the stories generated by our models. In our
experiments, we use Claude-3.5 Sonnet.

We harness a set of 44 manually constructed
prompts 5 containing the beginning of a story, and
generate 10 completions for each of our models,
sampling with a temperature of 1. We then provide
the LLM with the beginning of the story and the
model’s completion, and ask it in turn to evaluate
the model’s response along three axes: (a) Gram-
mar, (b) Creativity, and (c) Consistency with the
beginning of the story. Additionally, we ask it to
classify the story in different age groups, ranging
from 3 (or under) to 16 years old. Scores are given
on a scale of 1 to 10, and are averaged across stories
and completions. The final results are presented in
Table 2: we notice that limiting the training data,
up to even 25M words, results in a minor decrease
of performance across all three metrics. This indi-
cates that the quality of the model generations is
retained in the small data regime. Additionally, the
100M words decoder achieves impressive scores in
all categories, and outperforms all other models in
the Consistency metric – demonstrating that 100M
words is enough for robust generative performance.

Evaluating Generation Diversity To measure
diversity, we utilize Self-BLEU (Zhu et al., 2018),
which has been used before as a measure of the
diversity of generated data (Holtzman et al., 2020).
For each model, we sample 100 stories from the
training set and truncate them to 15%-30%, prompt-
ing the model to generate an alternate completion
to the story’s beginning. When sampling from the
model, a greedy decoding strategy is employed.
We report Self-BLEU scores, scaled to [0, 100], for
the set of 100 completions in Table 2 (higher scores
correspond to less diverse generations). Our results
indicate that models with limited training data can
achieve high diversity, while at the same time main-
taining generation quality, as demonstrated by the
scores of models trained on 25M and 50M words.

4.2 Data Generation
We now describe the creation of the com-
bined dataset Dcomb = (Dtiny-m,Dbaby-b,Dgen),
leveraged for training an encoder LM. For

5https://huggingface.co/datasets/roneneldan/TinyStories

313

https://huggingface.co/datasets/roneneldan/TinyStories

Train Data Gr. ↑ Cr. ↑ Cons. ↑ SB ↓
5M 4.56 4.99 3.37 38.6
10M 5.31 5.34 3.98 38.3
25M 6.00 5.65 4.55 34.6
50M 6.01 5.53 4.54 33.0
75M 6.08 5.50 4.49 37.1
100M 6.17 5.57 4.78 39.8
440M (V2) 5.88 5.53 4.49 37.3
373M (V1) 6.24 5.73 4.70 29.6

Table 2: Results on the evaluation of our models by
Claude-3.5 Sonnet. We instruct the LLM to access gen-
erative performance along three categories: Grammar
(Gr.), Creativity (Cr.), Consistency (Cons.). We also in-
clude Self-BLEU (SB), measuring generation diversity.

brevity, details are given below only for the
Strict-Small track; the same process is followed
for the Strict track. As discussed in Section 4.1,
we choose a subset of 5M words from Tinys-
tories (Dtiny-5M), and use it to train a GPT-Neo
model. This model is then employed to generate
the dataset Dgen. We adapt the beginning of each
story (15%-30%) in the training set Dtiny-5M as a
prompt, and task the decoder to generate alterna-
tive completions. We experiment with different
generation techniques, including greedy generation
– Dgen-greedy, and nucleus sampling – Dgen-nucleus-k,
where k is the number of generations per prompt.
Finally, the two datasets are combined with a sub-
set of the BabyLM dataset (Dbaby-5M), ensuring
a total size within the 10M word limit, to form
D10M

comb = (Dtiny-5M,Dbaby-5M,Dgen).

In order to select k for nucleus sampling, we
leverage the Self-BLEU score. We sample 100 sto-
ries from Dtiny-5M and use their beginning (15%-
30%) to generate 50 completions for each prompt
with p = 0.95. For each value of k ∈ {2, 3, ..., 50}
we calculate Self-BLEU among the group of gener-
ations Sk. Our goal is to examine how diverse the
different generations are for the same prompt, as
the number of generations (k) increases. Figure 2
depicts the average Self-BLEU across all prompts.
Based on the presented results, we choose to ex-
periment with k = 5 and k = 10, as a satisfactory
balance between diversity and added dataset size.

4.3 Training LTG-BERT

Following the creation of the combined corpus
Dcomb, we employ it to train an LTG-BERT
(Samuel et al., 2023) encoder module. Our training
procedure is based on the source code released by

2 3 4 5 6 7 8 9 10 15 20 25 30 40 50
Number of generations (k)

0.0

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e

Se
lf-

BL
EU

 sc
or

e 50M
5M

Figure 2: We generate 50 completions for 100 prompts
with the GPT-Neo models trained on Dtiny-5M, Dtiny-50M.
We plot the average self-BLEU score across prompts,
as the number of generations per prompt (k) increases.

the authors6, prompting our selection of similar hy-
perparameters (Appendix C), adapted for our spe-
cific infrastructure and available compute. More-
over, our experiments are conducted with minimal
hyperparameter optimization. In order to assess the
effect of data augmentation on final performance,
we train a variety of baselines, ablating over the
pre-training dataset of our models and keeping all
other training conditions constant. Specifically, for
a given track, all the models share the same hyper-
parameters and amount of FLOPs, ensuring a fair
comparison. Our baselines are described below.

Baselines For the Strict-Small track, we es-
tablish baselines by training LTG-BERT models
using 10M words from the BabyLM – Dbaby-10M
and Tinystories – Dtiny-10M datasets respectively.
Additionally, we train an encoder using a combina-
tion of 5M words from each one of the two datasets
– Dbaby-5M+Dtiny-5M. These models serve as bench-
marks against which we assess the performance of
models trained with various configurations of gen-
erated data, aiming to evaluate the effectiveness
of data augmentation. The same methodology is
applied consistently to the Strict track as well.
Here, we train encoders with 100M words from
each dataset separately, as well as in a combined
setting, utilizing 50M words from each dataset. We
also include results for the challenge baselines –
LTG-BERT (Samuel et al., 2023) and BabyLlama
(Timiryasov and Tastet, 2023). We emphasize that
these models are trained with different hyperparam-
eters than those in our controlled setting. Notably,
the LTG-BERT model released by the organizers
was trained for ∼ 20 epochs on the Strict track,

6https://github.com/ltgoslo/ltg-bert

314

https://github.com/ltgoslo/ltg-bert

Model Training Data Total BLiMP Supp. EWoK GLUE Avg.

LTG-BERT Dbaby-10M 10M 60.6 60.8 47.6 60.3 57.3

BabyLlama Dbaby-10M 10M 69.8 59.5 50.7 63.3 60.8

LTG-BERT
(ours)

Dbaby-10M 10M 62.8 63.7 51.2 71.0 62.2
Dtiny-10M 10M 59.8 54.2 52.2 67.0 58.3
Dtiny-10M +Dgen-greedy 20M 58.7 57.8 48.9 67.1 58.1
Dbaby-5M +Dtiny-5M 10M 62.6 60.7 51.5 71.2 61.5
Dbaby-5M +Dtiny-5M +Dgen-greedy 15M 62.1 60.2 50.4 70.6 60.8
Dbaby-5M +Dtiny-5M +Dgen-nucleus-1 15M 62.5 62.3 48.8 69.5 60.8
Dbaby-5M +Dtiny-5M +Dgen-nucleus-1 † ⋆ 15M 63.2 59.3 50.4 71.1 61.0
Dbaby-5M +Dtiny-5M +Dgen-nucleus-5 33M 62.4 60.1 50.7 69.4 60.6
Dbaby-5M +Dtiny-5M +Dgen-nucleus-10 56M 61.0 58.4 50.1 69.5 59.8

Table 3: Model performance for the 10M word Strict-Small track.

compared to our setting of ∼ 27 epochs (20K steps
for both tracks).

Balanced Training While increasing the num-
ber of generated texts in the LTG-BERT train-
ing set (Dcomb), we also modify the distribution of
TinyStories and BabyLM samples that the model
encounters during training. This could affect the
model’s performance, as it becomes more finely
tuned to TinyStories. To counter this effect, we
experiment with a training variation where we bal-
ance the number of samples from both datasets.
Specifically, samples in each batch are drawn with
equal probability from both TinyStories – which
includes both original and generated texts – and
BabyLM. This method ensures that the model is
exposed to an equal number of samples from each
dataset throughout training. The dagger symbol †
in the results denotes use of this strategy.

5 Results

We present the final evaluation results for the
Strict-Small and Strict tracks at Table 3 and
Table 4, respectively. The ⋆ symbol denotes the
submitted model for this track.

Strict-Small Track In the Strict-Small track,
comparing the results of Dbaby-10M with Dtiny-10M
reveals, as expected, that the BabyLM dataset is
more beneficial for language pre-training compared
to TinyStories. The performance metrics for TinyS-
tories are consistently lower, except in the case of
EWoK. Interestingly, replacing half of the BabyLM
dataset with data from TinyStories only slightly af-
fects the model’s performance. However, as we add
more instances of the synthetic story data, the posi-
tive impact of the BabyLM dataset begins to wane,
leading performance to approach that of Dtiny-10M
where BabyLM was not used at all. This suggests

that training is over-influenced by the increased
amount of TinyStories data. To mitigate this ef-
fect, we experimented with equally distributing the
samples from the two datasets in a batch. This ap-
proach positively impacts the model’s performance.
Notably for BLiMP, this setup slightly surpasses
the performance of the model trained solely on
Dbaby-10M, resulting in the best score overall. Fur-
ther, when compared to other data augmentation
scenarios, the performance on GLUE is increased.

Moreover, an interesting observation concerns
the sampling technique used for augmenting the
data. Changing the sampling strategy from greedy
decoding to nucleus sampling positively affects the
model’s performance on the BLiMP and BLiMP
Supp. benchmarks, while negatively impacting per-
formance on EWoK and GLUE. This discrepancy
is likely due to the nature of the datasets them-
selves. BLiMP focuses on evaluating grammatical
understanding, while the increased diversity from
nucleus sampling exposes the model to a wider
range of linguistic structures and syntactic varia-
tions, thereby improving performance. Conversely,
EWoK and GLUE require semantic coherence and
factual consistency, where the increased diversity
from nucleus sampling may introduce noise and
less coherent narratives, potentially confusing the
model, and degrading performance. Therefore,
while more diverse stories benefit syntactic evalu-
ation tasks such as those in BLiMP, they may not
be as useful for semantic or knowledge-based tasks
such as those included in EWoK and GLUE.

Strict Track Interestingly, for the Strict track
we notice that data augmentation has a positive
effect on the BLiMP and EWoK benchmarks.
Specifically, adding the Dgen-greedy dataset, results
in increased performance compared to the base-

315

Model Training Data Total BLiMP Supp. Ewok GLUE Avg

LTG-BERT Dbaby-100M 100M 69.2 66.5 50.2 68.4 63.6

BabyLlama Dbaby-100M 100M 73.1 60.6 52.1 69.0 63.7

LTG-BERT
(ours)

Dbaby-100M 100M 64.0 67.6 47.3 74.0 63.2
Dtiny-100M 100M 61.2 63.2 48.0 70.6 60.8
Dtiny-100M +Dgen-greedy 200M 61.1 59.6 48.7 69.1 59.6
Dtiny-50M +Dbaby-50M 100M 65.5 65.6 47.2 71.0 62.3
Dtiny-50M +Dbaby-50M +Dgen-greedy 150M 66.6 63.3 49.7 71.8 62.8
Dtiny-50M +Dbaby-50M +Dgen-nucleus-1⋆ 150M 65.6 65.0 49.3 72.7 63.1
Dtiny-50M +Dbaby-50M +Dgen-nucleus-1† 150M 65.2 63.5 49.0 72.6 62.6
Dtiny-50M +Dbaby-50M +Dgen-nucleus-5 350M 65.4 64.4 45.9 69.8 61.4
Dtiny-50M +Dbaby-50M +Dgen-nucleus-10 600M 63.7 63.3 49.2 69.5 61.4

Table 4: Model performance for the 100M word Strict track.

lines trained on Dtiny-100M and Dbaby-100M, as well
as a mixture of the two (Dtiny-50M + Dbaby-50M).
Additionally, the Dtiny-50M + Dbaby-50M combina-
tion is outperformed by both the Dgen-greedy and
Dgen-nucleus-1 models, suggesting that synthetic data
can offer modest gains in the Strict scenario.

As with the Strict-Small track, increasing the
size of the TinyStories dataset negatively affects
the performance of the models, approaching that of
the model trained solely on Dtiny-100M. However, in
this case, balancing the datasets does not improve
the model’s performance. In the larger 100M word
dataset, even with balancing, the sheer volume of
TinyStories data may overwhelm the influence of
the BabyLM data. The model is exposed to a much
larger quantity of TinyStories content, which could
dominate learning and reduce the effectiveness of
balancing. Additionally, while the nucleus sam-
pling strategy once again improves performance on
the BLiMP Supp. dataset, it does not assist with
BLiMP as it did in the Strict-Small track.

6 Conclusion

In this work, we explore data augmentation for lan-
guage pre-training in a limited data setting. Using
the TinyStories dataset we train GPT-Neo mod-
els and probe the relationship between generative
ability and dataset size. To measure the effect of
augmentation with synthetic data, we train LTG-
BERT models on a diverse set of data configura-
tions. Our experiments indicate that while synthe-
sizing high quality data is possible in small data
regimes, effectively utilizing it for pre-training can
be challenging. Some modest gains are observed
in the Strict track, while careful balancing shows
promise for the Strict-Small track. Overall, our
evaluation highlights the intricate balance required
between data quantity, quality, and integration for

effective training. Future work suggests investi-
gation of different data domains, mixtures, and
proportions, while precise calibration of hyperpa-
rameters may prove critical in exploiting the full
benefit of synthetic data in low data pre-training.

7 Limitations

A limitation of our study is the exclusive use of a
single LM architecture for both the encoder and
decoder components. Our experiments are also
limited to specific datasets, employing only TinyS-
tories for synthetic data generation and a combi-
nation of TinyStories and BabyLM for encoder
training. While these choices are made to ensure
experimental control and draw solid conclusions,
they limit the generalizability of our results.

Another limitation concerns the creation of the
combined dataset. We investigated only a single
configuration of the two datasets – including them
in equal proportion – and the documents within a
dataset were sampled randomly. We posit that more
fine control over the mixture of datasets could fur-
ther enhance the benefits of our data augmentation
technique. Additionally, with regard to generation,
the prompting strategy and truncation ratio could
be more finely calibrated, in order to improve the
balance between data quality and redundancy.

By acknowledging these limitations, we aim to
encourage further research in this area, focusing on
the impact of data augmentation in size constrained
and cognitively plausible language pre-training.

Acknowledgments

The research work was supported by the Hellenic
Foundation for Research and Innovation (HFRI)
under the 3rd Call for HFRI PhD Fellowships (Fel-
lowship Number 5537).

316

References
Anthropic. 2024. Claude. https://www.anthropic.

com/claude. Artificial Intelligence Model.

Benjamin Bergner, Andrii Skliar, Amelie Royer, Tij-
men Blankevoort, Yuki Asano, and Babak Ehteshami
Bejnordi. 2024. Think big, generate quick: Llm-to-
slm for fast autoregressive decoding. arXiv preprint
arXiv:2402.16844.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and
Stella Biderman. 2021. Gpt-neo: Large scale autore-
gressive language modeling with mesh-tensorflow.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Leshem Choshen, Ryan Cotterell, Michael Y. Hu,
Tal Linzen, Aaron Mueller, Candace Ross, Alex
Warstadt, Ethan Wilcox, Adina Williams, and
Chengxu Zhuang. 2024. [call for papers] the
2nd babylm challenge: Sample-efficient pretraining
on a developmentally plausible corpus. Preprint,
arXiv:2404.06214.

Haixing Dai, Zhengliang Liu, Wenxiong Liao, Xiaoke
Huang, Yihan Cao, Zihao Wu, Lin Zhao, Shaochen
Xu, Wei Liu, Ninghao Liu, et al. 2023. Auggpt:
Leveraging chatgpt for text data augmentation. arXiv
preprint arXiv:2302.13007.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Bosheng Ding, Chengwei Qin, Ruochen Zhao, Tianze
Luo, Xinze Li, Guizhen Chen, Wenhan Xia, Junjie
Hu, Anh Tuan Luu, and Shafiq Joty. 2024. Data aug-
mentation using LLMs: Data perspectives, learning
paradigms and challenges. In Findings of the Associ-
ation for Computational Linguistics ACL 2024, pages
1679–1705, Bangkok, Thailand and virtual meeting.
Association for Computational Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Let-
man, Akhil Mathur, Alan Schelten, Amy Yang, An-

gela Fan, et al. 2024. The llama 3 herd of models.
Preprint, arXiv:2407.21783.

Ronen Eldan and Yuanzhi Li. 2023. Tinystories: How
small can language models be and still speak coherent
english? Preprint, arXiv:2305.07759.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Martin Gerlach and Francesc Font-Clos. 2018. A stan-
dardized project gutenberg corpus for statistical anal-
ysis of natural language and quantitative linguistics.
Preprint, arXiv:1812.08092.

Jill Gilkerson, Jeffrey A. Richards, Steven F. Warren, Ju-
dith K. Montgomery, Charles R. Greenwood, D. Kim-
brough Oller, John H. L. Hansen, and Terrance D.
Paul. 2017. Mapping the early language environ-
ment using all-day recordings and automated analy-
sis. American Journal of Speech-Language Pathol-
ogy, 26(2):248–265.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals,
and Laurent Sifre. 2022. Training compute-optimal
large language models. Preprint, arXiv:2203.15556.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text
degeneration. Preprint, arXiv:1904.09751.

Anna A Ivanova, Aalok Sathe, Benjamin Lipkin, Un-
nathi Kumar, Setayesh Radkani, Thomas H Clark,
Carina Kauf, Jennifer Hu, RT Pramod, Gabriel Grand,
et al. 2024. Elements of world knowledge (ewok):
A cognition-inspired framework for evaluating basic
world knowledge in language models. arXiv preprint
arXiv:2405.09605.

Jaap Jumelet, Michael Hanna, Marianne De Heer
Kloots, Anna Langedijk, Charlotte Pouw, and Oskar
Van Der Wal. 2023. Chapgtp, illc’s attempt at raising
a babylm: Improving data efficiency by automatic
task formation. arXiv preprint arXiv:2310.11282.

Varun Kumar, Ashutosh Choudhary, and Eunah Cho.
2020. Data augmentation using pre-trained trans-
former models. arXiv preprint arXiv:2003.02245.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training

317

https://www.anthropic.com/claude
https://www.anthropic.com/claude
https://api.semanticscholar.org/CorpusID:245758737
https://api.semanticscholar.org/CorpusID:245758737
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2404.06214
https://arxiv.org/abs/2404.06214
https://arxiv.org/abs/2404.06214
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/2024.findings-acl.97
https://aclanthology.org/2024.findings-acl.97
https://aclanthology.org/2024.findings-acl.97
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2305.07759
https://arxiv.org/abs/2305.07759
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://arxiv.org/abs/1812.08092
https://arxiv.org/abs/1812.08092
https://arxiv.org/abs/1812.08092
https://doi.org/10.1044/2016_AJSLP-15-0169
https://doi.org/10.1044/2016_AJSLP-15-0169
https://doi.org/10.1044/2016_AJSLP-15-0169
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/1904.09751
https://doi.org/10.18653/v1/2020.acl-main.703

for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Pierre Lison and Jörg Tiedemann. 2016. OpenSub-
titles2016: Extracting large parallel corpora from
movie and TV subtitles. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC’16), pages 923–929, Portorož,
Slovenia. European Language Resources Association
(ELRA).

Brian MacWhinney. 2014. The Childes Project. Psy-
chology Press.

Yu Meng, Jiaxin Huang, Yu Zhang, and Jiawei Han.
2022. Generating training data with language models:
Towards zero-shot language understanding. Preprint,
arXiv:2202.04538.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2024. Gpt-4 technical report.
Preprint, arXiv:2303.08774.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward Z.
Yang, Zach DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Jun-
jie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. CoRR, abs/1912.01703.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

David Samuel. 2023. Mean BERTs make erratic lan-
guage teachers: the effectiveness of latent bootstrap-
ping in low-resource settings. In Proceedings of
the BabyLM Challenge at the 27th Conference on
Computational Natural Language Learning, pages
221–237, Singapore. Association for Computational
Linguistics.

David Samuel, Andrey Kutuzov, Lilja Øvrelid, and Erik
Velldal. 2023. Trained on 100 million words and still
in shape: BERT meets British National Corpus. In
Findings of the Association for Computational Lin-
guistics: EACL 2023, pages 1954–1974, Dubrovnik,
Croatia. Association for Computational Linguistics.

Andreas Stolcke, Klaus Ries, Noah Coccaro, Eliza-
beth Shriberg, Rebecca Bates, Daniel Jurafsky, Paul
Taylor, Rachel Martin, Carol Van Ess-Dykema, and
Marie Meteer. 2000. Dialogue act modeling for au-
tomatic tagging and recognition of conversational
speech. Computational Linguistics, 26(3):339–374.

Inar Timiryasov and Jean-Loup Tastet. 2023. Baby
llama: knowledge distillation from an ensemble of

teachers trained on a small dataset with no perfor-
mance penalty. In Proceedings of the BabyLM Chal-
lenge at the 27th Conference on Computational Nat-
ural Language Learning, pages 279–289, Singapore.
Association for Computational Linguistics.

Alex Wang. 2018. Glue: A multi-task benchmark and
analysis platform for natural language understanding.
arXiv preprint arXiv:1804.07461.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates,
Inc.

Alex Warstadt, Leshem Choshen, Aaron Mueller, Ad-
ina Williams, Ethan Wilcox, and Chengxu Zhuang.
2023a. Call for papers – the babylm challenge:
Sample-efficient pretraining on a developmentally
plausible corpus. Preprint, arXiv:2301.11796.

Alex Warstadt, Aaron Mueller, Leshem Choshen, Ethan
Wilcox, Chengxu Zhuang, Juan Ciro, Rafael Mos-
quera, Bhargavi Paranjabe, Adina Williams, Tal
Linzen, and Ryan Cotterell, editors. 2023b. Proceed-
ings of the BabyLM Challenge at the 27th Conference
on Computational Natural Language Learning. As-
sociation for Computational Linguistics, Singapore.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2019. Blimp: A benchmark of linguistic
minimal pairs for english. CoRR, abs/1912.00582.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. CoRR,
abs/1910.03771.

Chenghao Xiao, G Thomas Hudson, and Noura
Al Moubayed. 2023. Towards more human-like lan-
guage models based on contextualizer pretraining
strategy. In Proceedings of the BabyLM Challenge
at the 27th Conference on Computational Natural
Language Learning, pages 317–326, Singapore. As-
sociation for Computational Linguistics.

Wujiang Xu, Zujie Liang, Jiaojiao Han, Xuying Ning,
Wenfang Lin, Linxun Chen, Feng Wei, and Yongfeng
Zhang. 2024. Slmrec: Empowering small lan-
guage models for sequential recommendation. arXiv
preprint arXiv:2405.17890.

Kang Min Yoo, Dongju Park, Jaewook Kang, Sang-
Woo Lee, and Woomyeong Park. 2021. Gpt3mix:
Leveraging large-scale language models for text aug-
mentation. arXiv preprint arXiv:2104.08826.

Yian Zhang, Alex Warstadt, Xiaocheng Li, and
Samuel R. Bowman. 2021. When do you need bil-
lions of words of pretraining data? In Proceedings

318

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://aclanthology.org/L16-1147
https://aclanthology.org/L16-1147
https://aclanthology.org/L16-1147
https://doi.org/10.4324/9781315805641
https://arxiv.org/abs/2202.04538
https://arxiv.org/abs/2202.04538
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://doi.org/10.18653/v1/2023.conll-babylm.19
https://doi.org/10.18653/v1/2023.conll-babylm.19
https://doi.org/10.18653/v1/2023.conll-babylm.19
https://doi.org/10.18653/v1/2023.findings-eacl.146
https://doi.org/10.18653/v1/2023.findings-eacl.146
https://aclanthology.org/J00-3003
https://aclanthology.org/J00-3003
https://aclanthology.org/J00-3003
https://doi.org/10.18653/v1/2023.conll-babylm.24
https://doi.org/10.18653/v1/2023.conll-babylm.24
https://doi.org/10.18653/v1/2023.conll-babylm.24
https://doi.org/10.18653/v1/2023.conll-babylm.24
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://arxiv.org/abs/2301.11796
https://arxiv.org/abs/2301.11796
https://arxiv.org/abs/2301.11796
https://aclanthology.org/2023.conll-babylm.0
https://aclanthology.org/2023.conll-babylm.0
https://aclanthology.org/2023.conll-babylm.0
https://arxiv.org/abs/1912.00582
https://arxiv.org/abs/1912.00582
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://doi.org/10.18653/v1/2023.conll-babylm.28
https://doi.org/10.18653/v1/2023.conll-babylm.28
https://doi.org/10.18653/v1/2023.conll-babylm.28
https://doi.org/10.18653/v1/2021.acl-long.90
https://doi.org/10.18653/v1/2021.acl-long.90

of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1112–1125, Online.
Association for Computational Linguistics.

Zheyu Zhang, Han Yang, Bolei Ma, David Rügamer,
and Ercong Nie. 2023. Baby’s CoThought: Lever-
aging large language models for enhanced reasoning
in compact models. In Proceedings of the BabyLM
Challenge at the 27th Conference on Computational
Natural Language Learning, pages 158–170, Singa-
pore. Association for Computational Linguistics.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan
Zhang, Jun Wang, and Yong Yu. 2018. Texygen: A
benchmarking platform for text generation models.
In The 41st international ACM SIGIR conference
on research & development in information retrieval,
pages 1097–1100.

319

https://doi.org/10.18653/v1/2023.conll-babylm.13
https://doi.org/10.18653/v1/2023.conll-babylm.13
https://doi.org/10.18653/v1/2023.conll-babylm.13

A BabyLM dataset

Table 5 contains a detailed overview of the BabyLM dataset. For our experiments, we preprocess the data
using the methodology from Samuel (2023). The text is normalized and cleaned up in order to ensure
a unified format. We cast direct speech in double quotes, remove arbitrary and semantically irrelevant
tokens and conserve formatting, where necessary, with a special [PAR] symbol.

Dataset Domain # Words
Strict-Small Strict

CHILDES (MacWhinney, 2014) Child-directed speech 2.84M 28.90M
British National Corpus (BNC), dialogue portion 1 Dialogue 0.93M 7.76M
Project Gutenberg (children’s stories) (Gerlach and Font-Clos, 2018) Written English 2.54M 26.37M
OpenSubtitles (Lison and Tiedemann, 2016) Movie subtitles 2.04M 19.96M
Simple Wikipedia 2 Written Simple English 1.45M 14.67M
Switchboard Dialog Act Corpus (Stolcke et al., 2000) Dialogue 0.15M 1.34M

Total 9.95M 99.01M

Table 5: Contents of the BabyLM datasets for the Strict and Strict-Small tracks, including the domain and
word counts. 1http://www.natcorp.ox.ac.uk/, 2https://dumps.wikimedia.org/simplewiki/20241001/.

B TinyStories - Detailed Evaluation

In order to demonstrate a tangible example of the augmentation process, and provide the opportunity to
directly judge the quality of the generations, we include sample generations for all our GPT-Neo models:
{5M, 10M, 25M, 50M, 75M, 100M, 440M (V2)}, as well as the model released by Eldan and Li (2023) –
373M (V1). We sample a story from the training set, truncate it to around 15% to 30% of its length, and
ask the models to generate a completion with greedy decoding. The results are shown in Table 6. The
50M words model generation is also illustrated in Figure 1. We notice that even for the smaller models,
the quality of the generation remains good in terms of grammar, coherence to the story’s beginning, and
creativity. Additionally, there is little similarity to the original completion, even though the prompt is
taken from the training set of the models.

C Training Hyperparameters

We list all the hyperparameters used to train the GPT-Neo models on subsets of TinyStories in Table
7. Where appropriate, parameters that vary per group of models are listed separately. We also list the
hyperparameters used to train the LTG-BERT transformer encoder models in Table 8. We follow the
hyperparameter and training regime of Samuel et al. (2023), with some modifications, partly to adjust to
the scale of our computational resources and infrastructure.

D GLUE Evaluation Hyperparameters

We list the hyperparameters utilized for fine-tuning the LTG-BERT models on GLUE in Table 9, largely
also based on Samuel et al. (2023). We find that it’s critical for the stability of training to initialize the
added classification head according to the original implementation released by the authors. Specifically,
we use a truncated normal distribution N (µ, σ2) in the range [a, b] where µ = 0, σ =

√
2.0

5.0·dmodel
,

a = −2σ, b = 2σ and dmodel is the hidden size. The bias of the layer is also initialized to zero. Lastly,
one notable difference affecting the downstream performance of our models is that we train with mixed
precision. We use the fp16 implementation provided by the HuggingFace Trainer module, which reduces
the numerical precision of certain variables from fp32 to fp16, increasing computational efficiency.

E LLM Evaluation

For the LLM evaluation, we employ Claude-3.5 Sonnet. Our prompt is a modified version of the one
introduced in Eldan and Li (2023). We present our prompt in Table 10.

320

http://www.natcorp.ox.ac.uk/
https://dumps.wikimedia.org/simplewiki/20241001/

Model Generated Text

Prompt One day, a little boy named Tim went to the park. He saw a big tiger. The tiger

Original was not mean, but very easy to play with. Tim and the tiger played all day. They had lots of fun. Then, something
unexpected happened. The tiger started to shake. Tim was scared. He did not know what was going on. But then,
the tiger turned into a nice dog. Tim was very surprised. Tim and the dog played together now. They were very
happy. The dog was easy to play with too. At the end of the day, Tim went home with his new friend.

5M was very big and had a long tail. Tim wanted to be friends with the tiger. Tim said, "Hi tiger, I am Tim. Do you
want to play with me?" The tiger looked at Tim and said, "Yes, I want to play with you." Tim and the tiger played
all day. They ran, jumped, and laughed. The tiger was very happy. But then, the tiger got tired. It wanted to rest.
Tim said, "I am tired. Let’s rest." The tiger yawned and said, "Okay, Tim. Let’s rest." Tim and the tiger sat under
a tree. They talked and laughed. The tiger was happy to have a new friend. They both had a fun day at the park.

10M was very big and had a long tail. Tim was scared, but he wanted to be brave. He walked up to the tiger and said,
"Hi, tiger! I am Tim. Do you want to play with me?" The tiger looked at Tim and said, "Yes, I want to play. But I
am scared of the big tiger." Tim was not scared. He thought the tiger was nice. Tim and the tiger played together.
They ran and jumped. They had a lot of fun. Then, something unexpected happened. The tiger started to change.
It became a tiger! The tiger was not a tiger anymore. It was a tiger! Tim was very surprised. The tiger was not a
tiger anymore. It was a big tiger! Tim and the tiger became best friends. They played together every day.

25M was very big and had a long tail. Tim was scared, but he wanted to be brave. Tim said, "Hi, tiger! I am Tim. Do
you want to play with me?" The tiger looked at Tim and said, "Yes, I want to play. But I am very hungry. Can
you help me find some food?" Tim thought for a moment and said, "Yes, I can help you. Let’s look for food
together." They looked and looked, but they could not find any food. Then, something unexpected happened.
The tiger started to talk! "I am not a tiger, I am a magic tiger. I can make your wishes come true," said the tiger.
Tim was very surprised. He wished for a big ice cream cone. The magic tiger made his wish come true. Tim and
the magic tiger became good friends and played in the park every day.

50M was very nice. Tim wanted to play with the tiger. He said, "Hi, tiger! Let’s play!" The tiger did not say anything.
Tim was sad. He wanted to find a way to make the tiger happy. Tim had an idea. He found a ball and threw it.
The tiger saw the ball and started to play with it. Tim was happy. He said, "Now, the tiger is happy too!" They
played together all day. The tiger was not sad anymore. Tim and the tiger became best friends.

75M was very big and had a long tail. Tim was not scared. He wanted to be friends with the tiger. Tim said, "Hi, tiger!
My name is Tim. Do you want to play with me?" The tiger looked at Tim and said, "Yes, I want to play. My
name is Sam." Tim and Sam played all day. They ran, jumped, and laughed. They had so much fun. Tim was
happy to have a new friend. At the end of the day, Tim said, "Bye, Sam! I will come back to play with you
again." Sam said, "Bye, Tim! I will wait for you here." Tim went home and told his mom about his new friend.

100M was sad. Tim asked, "Why are you sad, Mr. Tiger?" The tiger said, "I lost my toy. Can you help me find it?" Tim
wanted to help the tiger. They looked for the toy together. They looked under the trees and behind the bushes.
Then, they saw a big box. The tiger said, "I think my toy is in the box." Tim opened the box. Inside, there was a
big cake! The tiger was happy. But, the cake was not a real tiger. It was a toy tiger! Tim laughed and said, "Silly
tiger, you are not a real tiger!" They played with the toy tiger and had a fun day at the park.

440M (V2) was very hungry. Tim wanted to help the tiger. He thought, "I will feed the tiger some food." Tim went home
and got some food. He came back to the park and gave the food to the tiger. The tiger ate the food and was very
happy. Tim felt good because he helped the tiger. The tiger said, "Thank you, Tim. You are a good friend." Tim
and the tiger played in the park all day. They had lots of fun. Tim learned that it is good to help others. The tiger
learned that it is good to be kind and help others. And they both lived happily ever after.

373M (V1) was sad. Tim wanted to help the tiger. He thought the tiger needed a friend. Tim went to the tiger and said, "Hi, I
am Tim. I want to help you." The tiger looked at Tim and said, "Thank you, Tim. I am sad because I am alone. I
need a friend." Tim thought for a moment and said, "I will be your friend, tiger. We can play together." The tiger
was happy. Tim and the tiger played all day. They had lots of fun. The moral of the story is: Helping others can
make you happy too.

Table 6: Story completions for models trained on different amounts of TinyStories data. The original prompt and
the training set completion are also included.

321

Hyperparameter GPT-Neo – 5 / 10 / 25 / 50, 75, 100, 440 (M)

Number of Parameters 41M
Number of Layers 4
Attention Heads 16
Hidden size 768
Layer norm ϵ 1.0e-5
Sequence Length 512
Max position embeddings 512
Attention Dropout 0.50 / 0.40 / 0.25 / 0.20
Classifier Dropout 0.50 / 0.40 / 0.25 / 0.20
Embed. Dropout 0.50 / 0.40 / 0.25 / 0.20
Resid. Dropout 0.50 / 0.40 / 0.25 / 0.20
Summary first Dropout 0.40 / 0.30 / 0.15 / 0.10
Weight decay 0.20 / 0.20 / 0.20 / 0.10
Vocab Size 6411 / 6411 / 16384 / 16384
Context length 512
batch size 24
gradient accumulation steps 32
gradient clipping 2.0
Training steps 15 000
optimizer AdamW
Adam β1 0.9
Adam β2 0.95
Adam ϵ 1.0e-8
Initial learning rate 5.0e-4
Final learning rate 5.0e-5
Learning rate scheduler schedule cosine
Warmup ratio 1.6%

Table 7: Hyperparameters used for training GPT-Neo models on TinyStories.

Hyperparameter Strict Strict-Small

Number of parameters 98M 24M
Number of layers 12 12
Attention heads 12 6
Hidden size 768 384
FF intermediate size 2048 1024
Position Bucket size 32 32
Layer norm ϵ 1e-7 1e-7
Vocabulary size 16 384 6 144
Sequence length 128 128
Max position embeddings 512 512
Hidden dropout 0.1 0.1
Attention dropout 0.1 0.1
Training steps 20 000 20 000
Batch size 80 80
Gradient Accumulation Steps 32 32
Warmup ratio 1.6% 1.6%
Initial learning rate 6e-4 6e-4
Final learning rate 6e-5 6e-5
Learning rate scheduler cosine cosine
Weight decay 0.1 0.1
Optimizer AdamW AdamW
Adam ϵ 1e-6 1e-6
Adam β1 0.9 0.9
Adam β2 0.98 0.98
Gradient clipping 2.0 2.0

Table 8: Hyperparameters used to train all LTG-BERT models for the different tracks. With max position embedding
we refer to the architectural capacity of the model – the model was trained with sequence length = 128.

322

Hyperparameter BoolQ, MNLI, MNLI-mm, MRPC CoLA, RTE, WSC
MultiRC, QNLI, QQP, SST-2

Batch size 32 16
Number of epochs 10 10
Dropot 0.1 0.1
Warmup proportion 0.1 0.1
Learning Rate 3.0e-5 3.0e-5
Decay type linear linear
Weight decay 0.01 0.01
Optimizer AdamW AdamW
Adam ϵ 1.0e-6 1.0e-6
Adam β1 0.9 0.9
Adam β2 0.999 0.999
Max length 128 128
Gradient clip 2.0 2.0
Mixed precision True True

Table 9: Hyperparameters used for finetuning the LTG-BERT models on GLUE.

In the following exercise, the student is given a beginning of a story. The student needs to complete it into a full story. The
exercise tests the student’s language abilities and creativity. The symbol *** marks the separator between the prescribed
beginning and the student’s completion:

Once upon a time, there was tiger who liked to play the guitar. One day, a bunny heard the guitar from a distance and *** asked,
"Hello tiger, can you play the guitar for me?" The tiger said, "Yes! I can!" So the bunny plucked up the guitar and started to play.
But then, the tiger roared and kicked the guitar too hard. The guitar made a big mess. The panda was so sad that he hopped away
and never came back. The end.

Please provide your general assessment about the part written by the student (the one after the *** symbol). Is it gramatically
correct? Is it consistent with the beginning of the story? Pay special attention to whether the student manages to complete the
sentence which is split in the middle by the separator ***.

I’ll provide an assessment of the student’s completion of the story:
Grammar: The student’s portion is generally grammatically correct, with a few minor issues:
...
...
In summary, while the student completes the split sentence correctly, the overall story lacks coherence and consistency with the
given beginning.

Now, grade the student’s completion in terms of 1. Grammar, 2. Creativity, 3. Consistency with the story’s beginning and
whether the plot makes sense. Please provide grades from a scale of 1-10 for each of the requested categories, namely: 1.
Grammar, 2. Creativity, 3. Consistency. Moreover, please provide your best guess of what the age of the student might be, as
reflected from the completion. Choose from possible age groups: A: 3 or under. B: 4-5. C: 6-7. D: 8-9. E: 10-12. F: 13-16.

Here are the grades for the student’s completion on a scale of 1-10:

1. Grammar: 7/10 ... 2. Creativity: 5/10 ... Consistency: 3/10 ...

Age group estimate: B: 4-5 years old ...

Table 10: A sample interaction with Claude-3.5 Sonnet. The story is generated by the GPT-Neo model trained
on 50M words of TinyStories. We include the prompt which also contains the model’s generation. The LLM’s
responses is stylized in italic. For brevity, part of the LLM response was omitted and replaced with ‘...’.

323

