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Abstract

Causal Language Modeling (CLM) and
Masked Language Modeling (MLM) are two
mainstream learning paradigms based on Trans-
former networks, specifically the Decoder-only
and Encoder-only architectures. The strengths
of each paradigm in downstream tasks have
shown a mix of advantages and disadvantages.
In the past BabyLM Challenge 2023, although
the MLM paradigm achieved the best aver-
age performance, the CLM paradigm demon-
strated significantly faster convergence rates.
For the BabyLM Challenge 2024, we propose
a novel language modeling paradigm named
AntLM, which integrates both CLM and MLM
to leverage the advantages of these two clas-
sic paradigms. We chose the strict-small track
and conducted experiments on two foundation
models: BabyLlama, representing CLM, and
LTG-BERT, representing MLM. During the
training process for specific foundation mod-
els, we alternate between applying CLM or
MLM training objectives and causal or bidi-
rectional attention masks. Experimental re-
sults show that combining the two pretraining
objectives leverages their strengths, enhanc-
ing overall training performance. Under the
same epochs, AntLMBabyLlama improves Macro-
average by 1%, and AntLMLTG-BERT achieves a
2.2% increase over the baselines.

1 Introduction

Language Modeling (LM) is a core task in NLP
and a key technology for natural language un-
derstanding and generation, supporting a wide
range of applications including machine transla-
tion (Hendy et al., 2023), speech recognition (Prab-
havalkar et al., 2023), sentiment analysis (Tan
et al., 2023), and information extraction (Wei et al.,
2023). Over the past decades, LM has seen signif-
icant development, evolving from simple models

* Equal contribution.
† Corresponding authors.

like n-grams (Suen, 1979) to more sophisticated
models, such as recurrent neural networks (Elman,
1990), long short-term memory networks (Hochre-
iter, 1997), and more recently, Transformer-based
large language models (LLMs) like GPT (Radford
et al., 2019) and BERT (Devlin, 2018). LLMs have
demonstrated human-like or even superhuman per-
formance in language modeling.

However, the tremendous success of LLMs relies
on learning from massive corpora, which is not as
data-efficient and low-energy as human language
learning. The BabyLM Challenge 2023 (Warstadt
et al., 2023a) and 2024 (Choshen et al., 2024) is
a shared task over two consecutive years. It aims
to encourage the discovery of more effective meth-
ods for training models using limited data. Con-
sidering that a 13-year-old child has encountered
fewer than 100 million words in their lifetime, the
shared task has introduced the strict-small track1.
These tracks confine pre-training data to 10 mil-
lion and 100 million words. These datasets con-
sist of child-accessible materials, such as books,
conversations, and Wikipedia entries, to enhance
the relevance of language model pre-training to
human language learning processes. Compared
to 2023, the 2024 competition removed the Chil-
dren’s Book Test (Hill et al., 2016) and QCRI Edu-
cational Domain Corpus datasets (Abdelali et al.,
2014). The 2024 competition also reduced the pro-
portion of OpenSubtitles (Lison and Tiedemann,
2016) dataset while increasing the proportions
of CHILDES (MacWhinney, 2000) and Project
Gutenberg (Gerlach and Font-Clos, 2020) datasets.

The current investigation of LMs primarily
adopts two predominant modeling paradigms:
Causal Language Models (CLMs), represented by
GPT (Radford et al., 2019), and Masked Language
Models (MLMs), represented by BERT (Devlin,

1Due to limitations in computational resources, we have
not yet explored the strict track and the multimodal track.
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2018). CLMs employ next-token prediction as their
training objective, which is predicting the next to-
ken given the preceding context, and they perform
exceptionally well on generative tasks. On the other
hand, the training objective of MLM is the random
selection and masking of some tokens in the input
text, following which the model is trained to pre-
dict the original unmasked tokens. Due to its global
information modeling capabilities, this approach
excels in tasks necessitating the capture of bidirec-
tional contextual information, such as text classi-
fication. Considering these modeling paradigms’
strengths, this paper raises an important question:
Could the two modeling methodologies be seam-
lessly integrated?

Intuitively, performing the MLM task allows the
model to learn bidirectional contextual encoding
of text, while the CLM task enables the model to
predict and generate text based on prior content.
These two learning objectives are not in conflict
and could potentially be integrated. Analogous to
a child learning a new language via practicing both
cloze exercises and writing assignments, the train-
ing mechanism for a model can similarly employ
a multi-task strategy. Therefore, we consider en-
abling our model to learn both tasks concurrently.
To achieve this, we adopt a unified model architec-
ture and alternate the training objective between
MLM and CLM tasks. This approach attempts to
mimic the human learning process, hence helping
the model acquire deeper knowledge from a limited
amount of text data.

To examine the effect of integrating MLM
and CLM pretraining tasks on model perfor-
mance, we conducted experiments using LTG-
BERT and BabyLlama2 as base models, testing
on the BabyLM2024 10M datasets. LTG-BERT, an
Encoder-only model, and BabyLlama, a Decoder-
only model, are notable architectures from the 2023
BabyLM Challenge .The results indicate that both
LTG-BERT and BabyLlama showed improvements
in macroaverage scores. These experiments con-
firm that the integration of these two pretraining
objectives can positively impact model training.

2 Related Work

Causal Language Models have played a piv-
otal role in the development of NLP, particu-
larly in tasks involving sequence generation. The

2We only utilized the BabyLlama architecture and did not
apply the knowledge distillation method here.

foundational work by OpenAI on the Generative
Pre-trained Transformer (GPT) (Radford, 2018)
marked a significant breakthrough in the use of
CLMs for a variety of NLP applications. GPT (Rad-
ford, 2018) models the probability of each token in
a sequence based on all preceding tokens, enabling
it to perform well on tasks like text completion,
machine translation, and summarization. The sub-
sequent release of GPT-2 (Radford et al., 2019)
and GPT-3 (Brown et al., 2020) further illustrated
the power of scaling CLMs. These models, with
their increased parameter sizes and training data,
have set new performance benchmarks in tasks like
zero-shot and few-shot learning. The GPT family
firmly established the dominance of autoregressive
models in generative tasks. More recently, Meta
introduced the LLaMA (Touvron et al., 2023) se-
ries, which demonstrated that highly capable CLMs
could be trained efficiently on fewer parameters
and less compute than earlier models like GPT-3.
LLaMA, designed to be accessible for academic re-
search, retains the autoregressive framework while
achieving competitive performance across a range
of NLP tasks.

Masked Language Model is a training approach
used to develop deep bidirectional representations
of context, often referred to as a cloze task (Tay-
lor, 1953). Specifically, a special token [MASK]
is employed to randomly mask a proportion of
input tokens, and the model is trained to predict
these masked tokens. This training task was first
innovatively introduced in BERT (Devlin, 2018)
and has been adopted in subsequent models like
RoBERTa (Liu, 2019) and ALBERT (Lan, 2019).
Research has also led to improvements in MLM
tasks, such as in SpanBERT (Joshi et al., 2020),
where the model is trained to predict spans of words
instead of individual tokens, enhancing its ability
to capture long-range dependencies.

Unified modeling refers to using a single model
architecture to handle multiple training and evalua-
tion tasks. In the T5 (Raffel et al., 2020) model, var-
ious downstream tasks were reformulated as text-
to-text tasks, significantly enhancing the model’s
ability for multitask learning. Moreover, many re-
lated works (Sanh et al., 2019; Liu et al., 2020) have
also applied unified modeling for multitask train-
ing and evaluation, making it a common approach
to improve the generalization ability of models.
UniLM (Dong et al., 2019), based on the BERT ar-
chitecture, is one of the significant endeavors in uni-
fied modeling. By employing specific self-attention
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masks, UniLM controls the contextual information
used during prediction. When predicting tokens,
it not only trains like an autoencoding language
model by leveraging the context of masked tokens
but also performs left-to-right training like an au-
toregressive language model. Additionally, UniLM
can function similarly to encoder-decoder archi-
tectures by encoding the first input text and then
generating sequences from left to right. By switch-
ing the attention matrix, it seamlessly transitions
between different training tasks and downstream
application scenarios.

Existing methods have unified CLM and MLM
networks regarding model architecture and param-
eter sharing. However, research on unifying their
training objectives remains unexplored. This pa-
per is the first to bridge the two classic training
objectives.

3 Methods

3.1 Preliminaries

BabyLlama (Timiryasov and Tastet, 2023) was
proved to be effective in BabyLM2023 and is in-
cluded as one of the baselines officially provided by
BabyLM2024. BabyLlama (Timiryasov and Tastet,
2023) employed knowledge distillation, transfer-
ring the knowledge from two teacher models — a
GPT-2 model with 705 million parameters and a
LLaMA model with 360 million parameters — into
a compact BabyLlama “student” model with just 58
million parameters. Given that our own replication
of the BabyLlama model through distillation did
not achieve ideal results, we opted to use only the
BabyLlama architecture with a parameter size of 97
million. The BabyLlama model employs the classic
CLM paradigm (Radford, 2018), where given the
first n tokens in a sequence, the model predicts the
token at position n+ 1. The next-token prediction
(NTP) training objective is to minimize the nega-
tive log-likelihood loss of predicting the next token
at each timestep. To achieve this, a causal mask
is applied in the self-attention mechanism. This
mask is represented as a lower triangular matrix,
ensuring each token can only attend to its preceding
tokens. Formally, for an input sequence of length T ,
x1, x2, . . . , xT , the corresponding attention mask
M is a T × T lower triangular matrix, where Mij

indicates whether the token at position i should
attend to the token at position j This masking strat-
egy effectively prevents the model from accessing
future information during training, thereby captur-

layer norm

GEGLU

MHA

layer norm

layer norm

…

x1 x2 mask x4

x3

…

layer norm

GEGLU

MHA

layer norm

layer norm

…

x1 x2 x3 x4

x3

…

x4 x5x2

AntLMLTG-BERT

(a)MLM training (b) CLM training

training objective shared parameters

Figure 1: A diagram of AntLMLTG-BERT. Based on
the LTG-BERT architecture, we propose a joint MLM
and CLM training objective. It is worth noting that
the two objectives fully share parameters, but differ
in their attention masks. The diagram also applies to
AntLMBabyLlama, with the difference in the architecture
(e.g., positional encoding and the activation function of
GLU).

ing the sequential order and dependencies within
the data.

In BabyLM2023 (Warstadt et al., 2023b), exper-
iments with Boot-BERT (Samuel, 2023) and ELC-
BERT (Charpentier and Samuel, 2023) demon-
strated the effectiveness of the LTG-BERT (Samuel
et al., 2023) architecture. LTG-BERT is also one
of the official baselines in BabyLM2024. The
LTG-BERT model incorporates several key ar-
chitectural improvements, including NormFormer
layer normalization (Shleifer et al., 2021), dis-
entangled attention with relative position embed-
dings (He et al., 2020), and gated-linear activation
function (Shazeer, 2020). The training objective of
LTG-BERT is self-supervised Masked Language
Modeling (MLM). During training, 15% of the to-
kens in the input sequence are randomly selected
for replacement. Of these, 80% are masked, 10%
are substituted with random tokens, and the remain-
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ing 10% are unchanged. The model is then trained
to predict the original masked tokens based on the
context. LTG-BERT explores three common mask-
ing strategies: subwords, whole words, and spans.
Experimental results indicate that span-based mask-
ing yields slightly better performance compared to
the other methods.

3.2 Our Approach

Inspired by the way children learn languages
through both cloze exercises and writing assign-
ments, our work constructs a unified training frame-
work that integrates CLM and MLM. In this unified
framework, we switch between the two training
paradigms alternately. CLM uses a causal mask
to enforce sequential dependencies and MLM em-
ploys bidirectional attention, enabling the model to
predict masked tokens by leveraging both preced-
ing and succeeding context. By combining these
two training objectives, the model not only excels
at autoregressive tasks like text generation but also
achieves a deeper semantic understanding of lan-
guage by capturing broader contextual information
through bidirectional attention.

In our approach, we integrate CLM and MLM by
alternating between these training objectives during
the pre-training phase. After training the model on
one objective for a specified number of epochs, we
switch to the other objective. The switch between
training objectives is implemented by modifying
the model’s input and attention matrix. For the
MLM task, 15% of the tokens in the input are ran-
domly selected and replaced. The model utilizes
bidirectional attention to predict the original tokens
based on the surrounding context. In contrast, for
the CLM task, no token replacement is required
in the input. The model employs causal attention
to predict the next token based on the preceding
tokens.

4 Experiment

Data Preprocessing For the data preprocessing
part, we adopt the data handling procedures from
the BootBERT (Samuel, 2023) method, which per-
formed well in the previous round of BabyLM Chal-
lenge. Preprocessing includes steps like normaliz-
ing punctuation, reconstructing sentence structures,
and removing duplicate text. These preprocessing
steps help ensure cleaner and more structured input
data, contributing to better model performance.

Name BabyLlama LTG-BERT

layers 12 12
attention heads 12 12

hidden size 768 768
intermediate size 2048 2048
vocabulary size 16k 16k
position bucket – 32

Table 1: Model Hyper-parameters.

Baselines We adopt the official baseline provided
by the BabyLM Challenge as our benchmark, using
the results achieved by the best-performing models
from the previous round, namely LTG-BERT and
BabyLlama, see Table 2.

Experiment Settings In our experiments, we
used both the BabyLlama and LGT-BERT mod-
els to evaluate the performance of a hybrid train-
ing strategy combining Causal Language Modeling
(CLM) and Masked Language Modeling (MLM).
For both model architectures, we used the same
set of parameters, as shown in the table 1 and op-
timized the training process using the AdamW op-
timizer. Additionally, we employed the bfloat16
data type to enhance computational efficiency. For
the BabyLlama model, we used a batch size of 512
with an initial learning rate set to 7 × 10−4. The
learning rate scheduler followed a cosine decay
during the CLM training phase and a cosine with
restarts scheduler during the MLM phase, with the
number of cycles set to every four epochs . For the
LGT-BERT model, we employed a batch size of
1024, with an initial learning rate of 5× 10−4. In
all training phases, we used a cosine with restarts
scheduler, with the num cycles set to 4. Our
hyperparameters were determined through multi-
ple experiments, building upon the hyperparame-
ter settings from the previous works (Timiryasov
and Tastet, 2023; Samuel et al., 2023) to find the
optimal values. The training process alternated
between CLM and MLM objectives over multi-
ple epochs. We used the notation “x_CLM +
y_MLM..." to indicate that, in sequential order,
x epochs are trained in the CLM training mode,
followed by y epochs in the MLM training mode,
and so on.

4.1 Main Results

In this section, we evaluate the performance of
BabyLlama and LTG-BERT across multiple bench-
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Model Data BLiMP BLiMP Supplement EWoK GLUE Macro average

BabyLlama† 10M 69.8 59.5 50.7 63.3 60.8
BabyLlama 10M 68.1 60.4 50.4 65.5 61.1

AntLMBabyLlama 10M 69.4 60.7 51.1 67.4 62.1

BabyLlama† 100M 73.1 60.6 52.1 69.0 63.7
LTG-BERT† 100M 69.2 66.5 51.9 68.4 64.0
BabyLlama 100M 74.9 66.0 52.0 66.3 64.8

LTG-BERT† 10M 60.6 60.8 48.9 60.3 57.5
LTG-BERT 10M 62.6 65.4 62.3 64.9 63.8

AntLMLTG-BERT 10M 72.3 62.6 63.0 66.0 66.0

Table 2: Main experimental results. The † indicates results from the official report. The official BabyLlama
leverages knowledge distillation, while our AntLMBabyLlama is based solely on the architecture of BabyLlama
without knowledge distillation methods. Due to limitations in time and resources, we have not attempted AntLM on
the 100M track, this will be part of our future work.

Training Stage BLiMP BLiMP Supplement EWoK Avg.

AntLMBabyLlama

8 68.2 56.7 50.5 58.5

16 56.8 58.4 57.2 57.5

24 68.1 60.4 50.4 59.6

24 56.9 57.8 58.3 57.7

4 16 4 69.4 60.7 51.1 60.4

AntLMLTG-BERT

12 69.9 56.4 50.8 59.0

60 62.8 63.5 64.2 63.5

72 70.0 57.2 51.9 57.9

72 69.4 61.1 64.5 65.0

6 60 6 72.3 62.5 63.0 66.0

Table 3: The effect of integrating CLM and MLM training objectives on BabyLlama and LTG-BERT.

marks, including BLiMP, BLiMP Supplement,
EWoK, and GLUE. Our experiments primarily fo-
cus on assessing the impact of integrating CLM
and MLM training objectives on the overall re-
sults, comparing the baseline performance of both
BabyLlama and LTG-BERT with the configura-
tions we propose.

As shown in Table 2, our models with integrated
training objectives consistently outperform the of-
ficial baseline scores on both the LTG-BERT and
BabyLlama models. Notably, the improvements
on LTG-BERT are particularly significant, demon-
strating the effectiveness of our approach. To fur-
ther validate the effectiveness of alternating train-
ing objectives CLM and MLM, we conducted an

in-depth experiment with the BabyLlama model.
Given the lengthy training times associated with
the GLUE dataset, we opted to evaluate our results
on the BLiMP, BLiMP Supplement, and EWoK
datasets. As shown in Table 3, the model trained
with the 4_CLM+16_MLM+4_CLM strategy sig-
nificantly outperformed those trained solely with
8_CLM or 16_MLM. This finding indicates that
combining these two training objectives enables
the model to simultaneously acquire bidirectional
context understanding and sequence generation ca-
pabilities. Under the same training epochs, the
4_CLM+16_CLM+4_CLM combination demon-
strated clear advantages over the pure 24_CLM and
24_MLM models, further confirming that the inte-
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Figure 2: The phased experimental results on three datasets. The evaluation line chart for each stage of “3_ CLM
+ 8_ MLM + 2_ CLM + 8_ MLM + 3_ CLM ” on the BabyLlama model. The reason for the discontinuity in
evaluation results between training phases is that we applied the evaluation method corresponding to the specific
task categories at each stage of the training process.

gration of these two training objectives is crucial
for achieving optimal performance, highlighting
the complementary relationship between CLM and
MLM. We also conducted similar experiments on
the LTG-BERT, the results are shown on same Ta-
ble.

Additionally, we explored the performance of
these training modes across different datasets. As
shown in Figure 2, MLM performs significantly
better on the EWoK dataset, while CLM exhibits
more pronounced and sensitive results on the
BLiMP dataset. This indicates that different train-
ing approaches have varying impacts on distinct
datasets. Thus, the integrated experiments that com-
bine both training methods can better leverage their
strengths and enhance overall performance.

4.2 Ablation Study

To investigate the effects of various factors on the
evaluation task results within the integrated experi-
ments, we conducted ablation studies focusing on
two variables: alternating frequency and alternat-
ing order. In the BabyLlama model, we maintained
a constant total number of training epochs at 24 (8
epochs for the CLM phase and 16 epochs for the
MLM phase). Specifically, for the alternating order,
we adjusted the alternating sequence of training be-
tween the CLM and MLM phases while keeping
the overall epoch count unchanged. For alternat-
ing frequency, we divided the training process into
more frequent alternating stages. The experimental
results, as shown in Table 4, indicate that varia-

tions in these two factors do not lead to significant
declines in evaluation outcomes, suggesting that
our approach is stable. We hypothesize that the de-
crease in performance with an increased frequency
of alternations may be attributed to smaller epoch
sizes in each training phase, which could hinder
convergence on the respective tasks.

Furthermore, we found that the best performance
was achieved when the CLM training phase was
placed at both the beginning and the end of the
training sequence, which could be due to the greater
impact of CLM compared to MLM. Although CLM
does not inherently have a higher performance
ceiling (as last year’s winner was an MLM-based
model), but it converges more rapidly. CLM per-
forms sequential prediction training on every token,
while MLM focuses only on masked tokens. Thus,
we suggest that CLM captures more learning within
a single epoch than MLM.

5 Conclusion

In this study, we propose AntLM, a model that
applies to multiple natural language-related tasks
in the BabyLM Challenge by alternating be-
tween Causal Language Modeling (CLM) and
Masked Language Modeling (MLM) during train-
ing. Experimental results demonstrate that AntLM
achieves either superior or comparable perfor-
mance to the baseline across all evaluation tasks.

Additionally, we found that CLM and MLM
have different impacts on various evaluation tasks,
suggesting that these training tasks guide the model
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Training Stage BLiMP BLiMP Supplement EWoK Avg.

AntLMBabyLlama

8 16 68.2 56.7 50.5 58.5

16 8 68.4 61.1 50.1 59.9

4 16 4 69.4 60.7 51.1 60.4

8 8 8 67.2 59.2 50.2 58.9

4 8 4 8 68.8 60.6 50.7 60.0

8 4 8 4 68.6 59.1 51.0 59.6

3 8 2 8 3 69.3 60.1 50.8 60.1

1 3 1 3 1 2 1 2 1 2 1 2 1 2 1 67.3 55.2 50.4 57.6

Table 4: The effect of alternating frequency (low or high) and alternating order of CLM and MLM training
objectives on BabyLlama. All were trained for a total of 24 epochs.

to learn distinct aspects of human language. We
believe this difference is the key reason why inte-
grated training yields effective results, as the model
benefits from the knowledge learned from both
training approaches. This finding also raises an
intriguing question: do different training tasks al-
low models to capture only specific portions of
natural language knowledge? Due to resource limi-
tations, we were unable to explore additional ideas
and approaches in this study. In future work, we
plan to address these limitations by expanding our
resources and support, allowing us to further inves-
tigate these potential directions.

Moreover, we conducted experiments with vary-
ing numbers and sequences of alternating training,
and the results suggest that specific integrated train-
ing methods are more effective in achieving opti-
mal evaluation outcomes.
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