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Abstract

We present grapheme-llama and phoneme-
llama, character-based language models
trained for the 2024 BabyLM challenge.
Through these models, we explore an
under-researched approach to downsizing:
replacing subword-based tokenization with
character-level tokenization, drastically
reducing the vocabulary size. The grapheme
model is trained on a standard BabyLM dataset,
while the phoneme model uses a phoneme-
converted version of this dataset. Results
show that grapheme-based models perform
better overall, achieving scores comparable
to subword-based models on grammatical
benchmarks. Despite lower performance,
phoneme models also demonstrate promising
grammatical learning. We argue that our
results challenge conventional wisdom on
language modeling techniques and open up
novel research questions with character- and
phoneme-based models as objects of inquiry.

1 Introduction

While large language models continue to beat
benchmarks, their parameter numbers, amounts of
training corpora and training FLOPs are ever in-
creasing. More recently, however, a new research
focus on ecologically friendly, data-efficient and
possibly cognitively plausible language models –
so called BabyLMs – has emerged. But what makes
a language model a BabyLM? For the BabyLM chal-
lenges (Warstadt et al., 2023; Choshen et al., 2024),
BabyLMs are defined by extremely constrained data
settings. In this constrained data setting, the best
scoring models in the 2023 challenge employed
highly sophisticated and large-ish architectures:
ELC-BERT (Charpentier and Samuel, 2023) used
numerous architectural improvements over standard
encoders, while BabyLlama (Timiryasov and Tastet,
2023) was distilled from various larger teacher mod-
els. Models with architectures downsized similarly

to their training data (e.g. by Veysel Çağatan, 2023,
Bunzeck and Zarrieß, 2023 or Fields et al., 2023)
did not fare as well on standard benchmarks.

As our submission to the 2024 BabyLM chal-
lenge (Choshen et al., 2024), we present grapheme-
llama1 and phoneme-llama2. We replace the
standard subword-based tokenization algorithms
with naive character-based tokenization, leading to
a drastic decrease in vocabulary size. We show that
when such simplifications are combined with state-
of-the-art architectures like Llama (Touvron et al.,
2023b), the resulting models still achieve consid-
erable grammatical proficiency and provide useful
inductive biases for further fine-tuning. While the
grapheme model is trained on the standard 100M
BabyLM data, our phoneme model is trained on a
version of this data set converted to phonemes3.
Although it performs generally worse than its
grapheme counterpart, the phoneme model still
manages to learn the grammatical phenomena in a
matched BLiMP data set quite well. In the light of
these results, we offer some discussion points for
phoneme-based language modeling, the pitfalls it
is currently facing and its general potential. In sum,
we argue that these results open fruitful avenues
for further research on small language models and
question “common wisdom” in current language
modeling practices.

2 Related work

Small LMs/downsizing: Recently, there has
been a surge in interest in small-ish language mod-
els. The arguably first BabyLM, BabyBERTa

1https://huggingface.co/bbunzeck/
grapheme-llama

2https://huggingface.co/bbunzeck/
phoneme-llama

3In line with the G2P literature (cf. Moore and Skidmore,
2019; Ashby et al., 2021), we use (i) the term “phoneme”
loosely to refer to (symbols for) types of speech sounds and
(ii) the term “grapheme” loosely to refer to the letters of ortho-
graphic alphabets.
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(Huebner et al., 2021), followed a combined (i.e.
data and architecture) downsizing approach and
showed that dramatically less training data can
result in remarkable linguistic proficiency with a
small model architecture. On the other hand, cur-
rent “small” models often employ more complex
strategies to achieve compactness, e.g. distillation
with teacher and student models (Timiryasov and
Tastet, 2023), or reduction of number precision
(Wang et al., 2023). These models’ “smallness” is
only achieved after complex training procedures. In
contrast to these developments, the BabyLM 2023
submissions by Veysel Çağatan (2023), Bunzeck
and Zarrieß (2023) and Fields et al. (2023) used a
priori small models (in terms of parameter size) to
show the lower bounds of knowledge learnability
from small data. They all showed that very small
models (even models with a parameter size below
1M) can achieve scores equal to much larger base-
lines on standard evaluation tasks like BLiMP or
GLUE. As such, these successful experiments give
impetus for our current models: against common
wisdom, the reduction of certain models hyperpa-
rameters does not have to have a detrimental ef-
fect on performance (a fact also corroborated by
Muckatira et al., 2024). Comparable studies have
neither focused on character-level tokenization nor
on phoneme-based representations (see paragraphs
below for the most comparable studies available),
so we pioneer into this uncharted territory with our
models.

Character-level LMs: While research on LMs
with character-level tokenization is not exactly
scarce, they have yet to gain widespread adoption.
Character-based models have been inplemented for
different architectures: the Canine (Clark et al.,
2022) architecture is a character-level encoder, the
ByT5 (Xue et al., 2022) models employ a T5
encoder-decoder architecture with a Byte-level tok-
enizer and the Charformer models (Tay et al., 2022)
use a tokenization module (GBST) that learns latent
subword representations from characters. For all
three models it has been shown that their specific
pre-training regimens do provide useful inductive
biases for further fine-tuning and that such are more
robust to character-level noise than regular subword-
tokenization models. Moreover, phonological cate-
gories like consonants and vowels are retrievable
from Canine (see Agirrezabal et al., 2023) – prop-
erties of language that are by design not captured
by coarse-grained subword representations. From a

more application-driven standpoint, El Boukkouri
et al. (2020) have shown that character-level model-
ing can improve performance in the medical domain.
Finally, Edman and Bylinina (2023) showed in the
context of last year’s BabyLM challenge that first
training on a character-level vocabulary and then
expanding it to the subword-level provides mixed
effects on model performance, depending on the
context size. It should also be noted that there are
further approaches to language modeling without
complex tokenization algorithms: Rust et al. (2023)
show that LMs trained on pixel-based representa-
tions can help LMs excel at various syntactic and
semantic tasks in typologically diverse languages,
including non-Latin scripts.

Phoneme LMs: So far, phoneme-based LMs
have mostly been trained as encoders to provide
inductive biases for further fine-tuning on down-
stream tasks. PhonemeBERT (Sundararaman et al.,
2021), Mixed-Phoneme BERT (Zhang et al., 2022)
and XPhoneBERT (Nguyen et al., 2023) are exam-
ples for such models, which have been reported to
improve downstream performance on various tasks,
e.g. on text-to-speech. In contrast, the CharsiuG2P
model (Zhu et al., 2022) is an encoder-decoder ar-
chitecture explicitly pre-trained for grapheme-to-
phoneme conversion (G2P). Purely autoregressive
phoneme models have not received scientific atten-
tion, yet.

3 Methodology

3.1 Data
We train our models on the 100M BabyLM 2024
data set. This data set contains both (transcribed)
spoken and written language. It includes spoken
language from CHILDES (MacWhinney, 2000),
the BNC (Burnard, 2007), Switchboard (Stolcke
et al., 2000) and OpenSubtitles (Lison and Tiede-
mann, 2016), and written language from children’s
books in Project Gutenberg (Gerlach and Font-Clos,
2020) as well as a portion of the Simple English
Wikipedia. Because the raw data contains extensive
metadata and markup, we used an expanded version
of the cleaning script from Timiryasov and Tastet
(2023) to clean the data.

For our phoneme-based models, we then con-
vert the cleaned data from graphemes to phonemes
– a mapping from orthographic letters to sound-
symbols to represent the pronunciation of the text.
To convert our text to IPA (International Pho-
netic Association, 1999) symbols, we use the rule-
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based Gi2Pi system for G2P-conversion (Pine et al.,
2022)4, expanded by a manual replacement list that
we compiled for contractions that this tool does not
handle well. As the authors report no G2P accu-
racy for English, we conduct a manual evaluation
on three short texts. We find a word-error-rate of
5.8% (tokens=363, errors=21), which we deem as
sufficient for the sake of the current paper. For eval-
uation purposes, we also perform the same G2P
conversion on the BLiMP data. We make this data
set5 and our converted training data6 available on
the Hugging Face hub.

3.2 Training
We use the transformers library (Wolf et al.,
2020) to train four small, character-level llama mod-
els (Touvron et al., 2023b). All our models share
equivalent model internals and training hyperpa-
rameters:

• Training tokens: 100M
• Hidden layers: 8
• Attention heads: 8
• Embedding size: 512
• Context size: 64
• Number of parameters: 15M/14.9M

(grapheme-based/phoneme-based models)

We train two models on the original grapheme-
based BabyLM data and two models on our con-
verted phoneme-based data: for each data regimen,
one model with whitespaces separating lexical to-
kens and one without these whitespaces. As we ex-
periment with removing information about words
by not using sub-word tokenization, the models
without whitespaces can be seen as more extreme
variants of the same training setting – they have
(apart from beginning and end of sequences) no
access to word segmentation information at all. To
force the models to use more local information, we
restrict the context size to 64 tokens (although we
acknowledge that this might lead to detrimental
performance on tasks that require longer contexts,
especially EWoK and GLUE).

To implement character-level language model-
ing, we modify the tokenizers used for our models.

4We also tried a neural system (Zhu et al., 2022), but found
it to be much less performant and of slightly worse transcription
quality.

5https://huggingface.co/datasets/bbunzeck/
phoneme-blimp

6https://huggingface.co/datasets/bbunzeck/
phoneme-babylm-100M

Instead of the standard BPE tokenization algorithm,
we simply fill our tokenizers’ vocabularies with all
unique characters in the respective pre-training cor-
pora. For the grapheme-based models, this adds
up to a vocabulary size of approx. 360. For the
phoneme models, the vocabulary size is approx.
260. Next to the standard ASCII and IPA charac-
ters, these vocabularies are still so “large” due to a
number of emojis and other non-linguistic Unicode
characters included. Because some IPA symbols
are also ordinary letters of Latin alphabets, and also
due to the aforementioned non-alphabetic symbols,
the vocabularies of the models share 118 tokens.

As training hyperparameters, we chose a batch
size of 16, 200 warmup steps, and a learning rate set
to 3e-4 in accordance with Touvron et al. (2023a).
We train our models for five epochs, equaling
roughly 25–28 hours of per-model training time
on a single NVIDIA RTX A4000 GPU.

3.3 Model evaluation
In line with the BabyLM challenge, we evaluate our
models through the BabyLM evaluation pipeline
(Choshen et al., 2024; Gao et al., 2023). It includes
three tasks – BLiMP (Warstadt et al., 2020), EWoK
(Ivanova et al., 2024) and (Super)GLUE (Wang
et al., 2018, 2019).

BLiMP is a collection of minimal pairs (ungram-
matical vs. grammatical sentences) for English,
including mostly (morpho)syntactic phenomena,
but also semantic and (in the supplementary data)
discourse-pragmatic minimal pairs. Although it
suffers from a few shortcomings (partially nonsen-
sical sentences, cf. Vazquez Martinez et al., 2023;
a too restrictive binary notion of grammaticality
that does not allow creative language use, etc.), it
is a valuable resource and basically the linguistic
benchmark for the evaluation of language models.
If a model consistently manages to score the gram-
matical sentence as more plausible (i.e. through
lower perplexity) it is said to have mastered the cor-
responding phenomenon. We evaluate all of our
models on the regular BLiMP, and additionally on
a matched BLiMP that contains the BLiMP data
converted to match the data set the respective model
was trained on (grapheme/phoneme, whitespace/no
whitespace).

EWoK (Ivanova et al., 2024) is a benchmark that
is supposed to measure world knowledge by testing
models on their ability to match target texts with
plausible/implausible contexts. It covers domains
such as material properties, physical dynamics or
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social interactions. The sentence pairs function as
minimal pairs (of pairs) and can therefore be evalu-
ated in the same way as BLiMP examples. As both
our grapheme models and the BabyLM baselines
do not perform above chance on this benchmark,
we decided not to create a phoneme version.

The (Super)GLUE tasks (Wang et al., 2018,
2019) are focused on more fine-grained language
understanding and involve additional fine-tuning on
task examples. As such, they measure how well our
pre-training procedure supplies our models with
useful inductive biases for the acquisition of these
reasoning tasks, e.g. textual entailment or senti-
ment prediction. For reasons of time and resources,
we opted to do parameter-efficient fine-tuning with
LoRA (Hu et al., 2022) instead of full fine-tuning
runs. In contrast to the provided fine-tuning script,
we opted for only 16 epochs and a larger learning
rate of 5e-4, in hopes to help our models converge
faster. Due to a technical problem (and lack of
time), we could only run one fine-tuning epoch for
the MNLI sub-task. We also opted to not create a
phonemized (Super)GLUE data set, for the same
reasons as for EWoK.

4 Results

4.1 Zero-shot

The BLiMP results are collected in Table 1. With
regard to the standard grapheme and whitespace
BLiMP, the corresponding grapheme model also
performs best. With a score of almost 72%, our
character-based grapheme model is close to the
subtoken-based autoregressive baseline (BabyL-
lama, 73.1%), and beats the masked LM base-
line (LTG-BERT, 69.2%; not listed in Table 1).
While the model trained without whitespace per-
forms worse, the score of 59.88% is still far above
chance. The phoneme models, on the other hand,
only achieve scores that oscillate somewhat around
the chance baseline. This is not surprising, as the
overlap in vocabulary between the grapheme and
phoneme models is small – the phoneme models
can hardly retrieve any useful information from
grapheme input. On the BLiMP supplement, none
of our models achieve a score significantly higher
than the chance baseline.

When considering the matched BLiMP evalua-
tions, where we preprocess the BLiMP data in the
same way as the pre-training corpus data, we can
report much higher BLiMP scores. All four models
perform way above chance, although both the G2P

conversion and the deletion of all whitespace have
a detrimental effect on the scores. Interestingly,
the grapheme model without whitespaces achieves
the best score on the BLiMP supplement (56.28%),
although we can only speculate as to why (see Dis-
cussion for an attempt at explanation).

This picture gets even more complicated when
we consider the individual BLiMP paradigms.
The full BLiMP scores for the matched eval-
uation can be found in Appendix A. While
the grapheme whitespace model generally
performs best across the most paradigms,
each model still features some high scores.
For certain, highly-specific phenomena (e.g.
sentential_negation_npi_scope_filtered),
the non-whitespace phoneme model – our overall
weakest model – outperforms all other models.
It remains open to further inquiry whether these
scores are only training noise or caused by specific
linguistic factors only instantiated by this specific
combination of data preprocessing steps.

The evaluation results for EWoK (Table 2) dis-
play a very uniform picture. No model achieves
any considerable score above the chance baseline
for any phenomenon. This is also in line with the
results of the baseline models, which seemingly do
not learn any “world knowledge”, as measured by
EWoK.

4.2 Fine-tuning
The (Super)GLUE scores can be found in Table 3.
They follow no clear pattern. While the average
scores for the models are rather similar (and all
fairly low in comparison to the baselines, like 63.3%
for BabyLlama), the scores for the individual tasks
are highly varied. While the standard grapheme
model achieves the highest scores on six out of
eleven included tasks, all other models also get at
least one highest score. Averaged across all tasks,
the grapheme model without whitespace is even
better than its normal counterpart. The differences
between models are immense and no structured
conclusions about presumed effects of any vari-
able (grapheme/phoneme, whitespace/no whites-
pace) can be drawn. It is especially surprising
that the phoneme models, which do not contain
the full grapheme-model vocabulary and therefore
sometimes lead to somewhat corrupted/distorted
tokenized versions of the data (e.g. through miss-
ing tokens), still seem to impart quite useful induc-
tive biases for many of the included sub-tasks in
(Super)GLUE: Only for CoLA, MNLI and MNLI-

57



BLiMP version Grapheme model Grapheme model, no whitesp. Phoneme model Phoneme model, no whitesp. BabyLlama

BLiMP 71.69% 59.88% 44.05% 54.02% 73.1%
BLiMP supplement 52.30% 50.12% 55.04% 44.47% 60.6%

Matched BLiMP 71.69% 68.88% 66.90% 64.88% 73.1%
Matched BLiMP supplement 52.30% 56.28% 55.42% 54.13% 60.6%

Table 1: BLiMP accuracies for our four models and BabyLlama baseline (random baseline = 50%)

EWoK subtask Grapheme model Grapheme model, no whitesp. Phoneme model Phoneme model, no whitesp. BabyLlama

agent-properties 49.46% 49.68% 50.23% 50.05% -
material-dynamics 49.22% 49.61% 49.87% 48.87% -
material-properties 48.24% 50.00% 50.00% 50.59% -
physical-dynamics 48.33% 51.67% 50.00% 50.00% -
physical-interactions 47.84% 50.18% 50.18% 51.44% -
physical-relations 50.73% 49.14% 49.63% 51.22% -
quantitative-properties 50.96% 52.55% 49.36% 49.04% -
social-interactions 49.66% 50.34% 51.02% 51.02% -
social-properties 51.52% 48.78% 50.30% 48.17% -
social-relations 49.68% 49.29% 50.00% 50.00% -
spatial-relations 46.73% 46.33% 51.43% 50.20% -

Average 49.30% 49.80% 50.20% 50.10% 52.1%

Table 2: EWoK accuracies for our four models and BabyLlama baseline (random baseline = 50%)

mm, the scores achieved by the (in theory unfitting)
phoneme models are close or equal to the random
chance baseline. For the other tasks, especially
SST2 and MRPC, scores are well above chance.
Here, it remains questionable whether the induc-
tive biases of our phoneme models actually affect
the performance on (Super)GLUE, or if the whole
fine-tuning process equals the adoption of some
heuristic shortcuts to solve the problems tested by
(Super)GLUE (see Gururangan et al., 2018; Be-
linkov et al., 2019 for discussions of artifacts in
NLI data), to which only CoLA, MNLI and MNLI-
mm are robust enough to resist.

5 Discussion

General remarks: There are two commonly pre-
sented arguments against character-level tokeniza-
tion (e.g. presented in Clark et al., 2022): (i) such
models achieve subpar results on evaluations; and
(ii) as the computational complexity of a trans-
former grows quadratically with the input size, the
token increase yields inefficient models. To (i) we
can only reply that our results speak for themselves.
The strong performance of such a small Llama
model on BLiMP shows that character-based mod-
els are able to learn the structure of a language as
well as its subword-based sister models. The com-
paratively lower performance on fine-tuning tasks
is likely caused by the small architecture, and could
be improved with more parameters. Also, the small
context size of our models might be a limiting fac-
tor for the fine-tuning tasks (and also the zero-shot
EWoK evaluation, as it contains fairly long sen-

tences). To (ii) we can reply that this is not such a
big concern, as we use small models and small-ish
context sizes, anyway. While this approach might
not be sufficient for models with billions of param-
eters, it surely is for BabyLMs.

Graphemes vs. phonemes: The comparison be-
tween our grapheme and phoneme models undoubt-
edly concludes with a win for the grapheme mod-
els. Across all benchmarks, they outperform the
phoneme models on average. No clear tendencies
spring to mind when analyzing the detailed results
– however, all four models achieve best scores on
some sub-tasks in benchmarks. Separating noise
from signal in these results remains an open task
for future studies. As of now, we can only speculate
why the phoneme models perform this worse. An
easy explanation could be the absence of punctu-
ation in phoneme models. As dots, commas and
other punctuation marks perform important seman-
tic functions in texts (see Crystal, 2015), their ab-
sence quite possibly has a negative effect on the
acquired grammatical system of a language model.

Another problem could lie in the quality of our
G2P system. Alphabetic writing systems generally
associate letters to sounds, and vice versa. How-
ever, especially for English, the correspondences
between graphemes and phonemes are not trivial
and (can seem) arbitrary (Pulgram, 1951; Venezky,
1967; Emerson, 1997; Roca, 2016). Graphemes
are arranged according to orthographic conventions
which usually do not directly reflect a language’s
underlying phonological system. Grapheme-to-
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GLUE subtask Grapheme model Grapheme model, no whitesp. Phoneme model Phoneme model, no whitesp. BabyLlama

CoLA (MCC) 0.098 0.0668 0.0325 0 -
SST-2 74.31% 74.08% 69.27% 72.94% -
MRPC (F1) 79.75% 80.62% 81.05% 81.29% -
QQP (F1) 66.54% 71.04% 62.40% 59.57% -
MNLI 52.59% 50.15% 46.92% 45.60% -
MNLI-mm 51.32% 50.24% 47.40% 46.30% -
QNLI 59.26% 63.84% 55.01% 52.82% -
RTE 44.60% 43.17% 51.08% 58.27% -
BoolQ 64.46% 64.65% 64.89% 63.85% -
MultiRC 57.63% 56.23% 57.26% 57.59% -
WSC 61.54% 61.54% 59.62% 62.46% -

Average 56.50% 56.60% 54.40% 54.70% 69.0%

Table 3: (Super)GLUE results for our models and BabyLlama baseline

phoneme conversion, as the computational attempt
to solve this problem, cannot be considered as
solved. Relatively high error rates of G2P tools
are still an issue in speech and language processing.
For example, the SIGMORPHON shared tasks on
“multilingual grapheme‑to‑phoneme conversion”
(Gorman et al., 2020; Ashby et al., 2021; McCarthy
et al., 2023) use the metrics word error rate (WER)
and phone error rate (PER) for evaluation. Word er-
ror rates of the best submissions in 2020 range from
24.89 (for Georgian) to 0.89 (for Vietnamese) (Gor-
man et al., 2020). As such, it might be more sensible
to train on manually transcribed speech. Unfortu-
nately, such corpora are small and rare, although
it might be interesting to see whether some varia-
tion in phoneme data can influence performance on
standard benchmarks.

Additionally, it remains questionable how
phoneme data should be represented for language
modeling. Splitting a transcription into a sequence
of characters for character-level tokenization in-
troduces some issues: Unicode defines IPA base
symbols as individual characters. Some diacritics
(which add information on fine phonetic detail to
base symbols) are defined as “Spacing Modifier
Letters”, others as “Combining Diacritical Marks”.
Thus an aspirated alveolar plosive [th] or a long
vowel [a:] are treated as two characters, while, de-
pending on the treatment of composed Unicode
characters, a de-voiced alveolar fricative [z

˚
] or a

raised vowel [afi] may be treated as one. Affricates
(combined sounds), for example, may be repre-
sented as a sequence of two characters joined by a
double diacritic [dZ

<
], or as a single ligature [ʤ].

Whitespace: Finally, the detrimental effect of

whitespace removal also deserves explanation and

discussion. Whitespace encodes important lin-

guistic information about word boundaries (or ap-

proximations thereof) -- information which is not

available in spoken language (there, pauses be-

tween stretches of connected speech serve dif-

ferent purposes). Instead, prosody (e.g. word

stress or intonation), provides cues to segmen-

tation at different levels of linguistic abstraction

(like words and phrases). This is, apart from

whitespace, not reflected in orthographic texts and

also often missing from phonetic transcriptions7.

As such, data without whitespaces is a develop-

mentally/cognitively/linguistically more plausible

form of input. As this added plausibility comes

with the loss of information, it is not surprising

that scores for non-whitespace models are gener-

ally lower. A notable exception is the high score

of the non-whitespace grapheme model for the

matched BLiMP supplement. This might be a side

effect of our very small context size. The BLiMP

supplement contains inter alia dialogue phenom-

ena with long dependencies. The models with-

out whitespace can take in more (non-whitespace)

characters, and in the light of our rather small con-

text size, it might be the case that the whitespace

models cannot process enough information to ac-

tually grasp these phenomena.

6 Conclusion

This paper has shown two things: (i) character-
based tokenization is a viable alternative for small
language models and (ii) phoneme-based LMs can
also perform reasonably well on common bench-
marks, although grapheme models are superior.
With the drawbacks (e.g. the computational com-
plexity increase in large models) of character-based
tokenization, we of course do not want to replace
sub-word tokenization. However, we believe that
our models deserve a place in the toolbox of devel-
opmentally more plausible language models. They
can be used to test what kind of linguistic knowledge

7Our phoneme data does not include word stress.
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can be learned from raw input and answer questions
about the learnability of linguistic knowledge from
an even poorer stimulus (Thomas, 2002; Berwick
et al., 2011) than the “stimulus” of subword models.
In combination with phoneme representations, they
open up new avenues of inquiry, e.g. for phenom-
ena on the phonological/phonetic or lexical levels
of linguistic analysis – phenomena which are not
captured by the coarse-grained structure of sub-
word tokens. Moreover, character-based language
models open new pathways into experiments with
multilingual models. The Latin script, for exam-
ple, offers a shared vocabulary for many languages,
whereas the IPA even offers a shared vocabulary for
practically all languages.

Limitations

As previously mentioned, our results are only snap-
shots of individual training runs. Repeated training
efforts with different initialization would be needed
to filter noise from actual tendencies.

Besides, in the light of the current BabyLM
challenge, we could only test these phenomena for
English. The differences between grapheme and
phoneme models may not generalize to other lan-
guages with different writing systems, languages
with different levels of phonemic correspondences
and systematicity in their orthography (like English
or French vs Spanish or Czech), and languages with
different morpho-phonological systems.
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A Full BLiMP scores

Phenomenon Graph. model Graph. model, no whitesp. Phon. model Phon. model, no whitesp.

BLiMP 71.69% 68.88% 66.90% 64.88%
BLiMP supplement 52.30% 56.28% 55.42% 54.13%

adjunct_island_filtered 73.17% 76.72% 35.24% 36.75%
anaphor_gender_agreement_filtered 85.48% 82.29% 86.30% 69.10%
anaphor_number_agreement_filtered 97.10% 88.51% 95.17% 87.00%
animate_subject_passive_filtered 68.60% 71.62% 68.83% 62.91%
animate_subject_trans_filtered 91.01% 90.57% 82.23% 77.79%
causative_filtered 69.07% 68.09% 66.01% 64.55%
complex_NP_island_filtered 43.38% 47.28% 38.30% 43.85%
coordinate_structure_constraint_complex_left_branch_filtered 46.36% 37.75% 36.31% 30.68%
coordinate_structure_constraint_object_extraction_filtered 62.38% 65.12% 65.86% 63.22%
determiner_noun_agreement_1_filtered 97.31% 97.74% 52.85% 52.85%
determiner_noun_agreement_2_filtered 96.99% 97.10% 85.61% 82.81%
determiner_noun_agreement_irregular_1_filtered 83.85% 78.12% 72.25% 70.78%
determiner_noun_agreement_irregular_2_filtered 90.00% 87.56% 84.15% 76.59%
determiner_noun_agreement_with_adj_2_filtered 92.24% 90.75% 79.81% 76.94%
determiner_noun_agreement_with_adj_irregular_1_filtered 82.45% 77.30% 73.96% 71.17%
determiner_noun_agreement_with_adj_irregular_2_filtered 82.38% 78.93% 72.26% 69.88%
determiner_noun_agreement_with_adjective_1_filtered 94.96% 91.00% 51.77% 51.55%
distractor_agreement_relational_noun_filtered 86.29% 45.05% 68.40% 57.11%
distractor_agreement_relative_clause_filtered 58.09% 43.17% 50.98% 57.41%
drop_argument_filtered 75.76% 75.98% 60.87% 62.07%
ellipsis_n_bar_1_filtered 51.50% 56.36% 54.36% 53.87%
ellipsis_n_bar_2_filtered 58.09% 63.29% 43.36% 49.64%
existential_there_object_raising_filtered 81.65% 72.66% 79.80% 68.10%
existential_there_quantifiers_1_filtered 99.46% 97.42% 96.77% 93.76%
existential_there_quantifiers_2_filtered 28.21% 33.92% 38.42% 43.69%
existential_there_subject_raising_filtered 83.98% 82.90% 84.31% 80.84%
expletive_it_object_raising_filtered 70.09% 73.12% 72.46% 70.22%
inchoative_filtered 55.79% 52.28% 44.91% 46.67%
intransitive_filtered 68.32% 67.17% 46.31% 50.58%
irregular_past_participle_adjectives_filtered 94.80% 88.14% 72.84% 63.58%
irregular_past_participle_verbs_filtered 81.53% 81.10% 85.14% 77.39%
irregular_plural_subject_verb_agreement_1_filtered 83.33% 76.62% 82.21% 72.14%
irregular_plural_subject_verb_agreement_2_filtered 89.46% 87.33% 88.00% 83.86%
left_branch_island_echo_question_filtered 65.15% 61.67% 63.15% 70.86%
left_branch_island_simple_question_filtered 60.15% 46.79% 57.83% 50.26%
matrix_question_npi_licensor_present_filtered 15.82% 12.38% 17.98% 31.75%
npi_present_1_filtered 50.39% 40.59% 46.75% 48.51%
npi_present_2_filtered 49.89% 50.33% 45.62% 48.69%
only_npi_licensor_present_filtered 98.07% 48.64% 76.87% 92.06%
only_npi_scope_filtered 50.90% 44.92% 61.05% 80.53%
passive_1_filtered 89.17% 90.60% 87.74% 86.79%
passive_2_filtered 88.15% 89.37% 83.61% 81.28%
principle_A_c_command_filtered 55.07% 59.51% 51.48% 59.41%
principle_A_case_1_filtered 100.00% 100.00% 100.00% 99.89%
principle_A_case_2_filtered 91.58% 92.57% 88.20% 78.80%
principle_A_domain_1_filtered 96.39% 98.25% 100.00% 100.00%
principle_A_domain_2_filtered 53.55% 50.71% 63.61% 51.80%
principle_A_domain_3_filtered 50.90% 50.90% 61.00% 55.58%
principle_A_reconstruction_filtered 41.88% 34.64% 53.67% 47.67%
regular_plural_subject_verb_agreement_1_filtered 93.48% 90.45% 88.76% 80.11%
regular_plural_subject_verb_agreement_2_filtered 90.37% 85.19% 82.65% 77.67%
sentential_negation_npi_licensor_present_filtered 96.19% 96.74% 99.35% 96.52%
sentential_negation_npi_scope_filtered 21.70% 23.08% 33.30% 40.76%
sentential_subject_island_filtered 40.89% 39.33% 58.17% 57.54%
superlative_quantifiers_1_filtered 66.70% 66.80% 70.99% 54.14%
superlative_quantifiers_2_filtered 76.37% 83.77% 69.98% 61.16%
tough_vs_raising_1_filtered 36.50% 28.80% 23.73% 29.32%
tough_vs_raising_2_filtered 81.41% 82.93% 80.76% 78.37%
transitive_filtered 80.07% 74.77% 70.85% 66.94%
wh_island_filtered 61.77% 63.54% 61.04% 38.75%
wh_questions_object_gap_filtered 78.70% 75.20% 80.33% 76.37%
wh_questions_subject_gap_filtered 92.32% 92.54% 92.43% 90.31%
wh_questions_subject_gap_long_distance_filtered 91.60% 93.35% 93.58% 94.87%
wh_vs_that_no_gap_filtered 95.82% 95.93% 96.17% 94.54%
wh_vs_that_no_gap_long_distance_filtered 94.86% 97.37% 96.57% 94.74%
wh_vs_that_with_gap_filtered 27.20% 26.01% 5.55% 7.07%
wh_vs_that_with_gap_long_distance_filtered 7.03% 4.18% 3.41% 4.62%
supplement_hypernym 51.19% 51.90% 51.07% 51.19%
supplement_qa_congruence_easy 48.44% 54.69% 56.25% 57.81%
supplement_qa_congruence_tricky 26.67% 39.39% 25.45% 25.45%
supplement_subject_aux_inversion 78.54% 77.22% 86.11% 79.75%
supplement_turn_taking 56.79% 58.21% 58.21% 56.43%
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