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Abstract
For specialized domains, there is often not a
wealth of data with which to train large ma-
chine learning models. In such limited data /
compute settings, various methods exist aiming
to do more with less, such as finetuning from a
pretrained model, modulating difficulty levels
as data are presented to a model (curriculum
learning), and considering the role of model
type / size. Approaches to efficient machine
learning also take inspiration from human learn-
ing by considering use cases where machine
learning systems have access to approximately
the same number of words experienced by a 13
year old child (100M words). We investigate
the role of 3 primary variables in a limited data
regime as part of the multimodal track of the
BabyLM challenge. We contrast: (i) curricu-
lum learning, (ii), pretraining (with text-only
data), (iii) model type. We modulate these vari-
ables and assess them on two types of tasks:
(a) multimodal (text+image), and (b) unimodal
(text-only) tasks. We find that curriculum learn-
ing benefits multimodal evaluations over non-
curriclum learning models, particularly when
combining text-only pretraining. On text-only
tasks, curriculum learning appears to help mod-
els with smaller trainable parameter counts. We
suggest possible reasons based on architectural
differences and training designs as to why one
might observe such results.

1 Introduction

Recent vision-language models (VLMs) have
achieved superior performance on numerous bench-
mark datasets (such as the Llama1 and Gemini mod-
els2), and continue advancing rapidly as models are
scaled up. The number of parameters of such mod-
els is often on the order of billions. These models
require multiple days of compute, and hundreds of
GPUs (e.g., Radford et al. (2021)), resulting in mas-
sive energy consumption (Luccioni et al., 2024).

1https://llama.meta.com/
2https://deepmind.google/technologies/gemini/

Furthermore, to train such large models, we require
massive amounts of pretraining data. For example,
70M image-text pairs were used to train the Flava
foundation model (Singh et al., 2022). Pretraining
VLMs on such large scale data is often infeasible
for independent researchers and university research
labs with limited compute.

In contrast to machine learning, human learning
is much more efficient, a finding which has led
researchers to consider which methods might pro-
mote more human-like learning in artificial neural
networks. This was originally argued for in early
work on curriculum learning (Bengio et al., 2009),
citing the fact that humans do not learn from ran-
domly sampled data, but benefit from learning over
structured chunks, typically increasing in difficulty
(a curriculum).

To this end, we explore the application of cur-
riculum learning to VLMs with limited input data
as part of the BabyLM challenge (Choshen et al.,
2024). For the multimodal track, which contains a
dataset of image-caption pairs, we take inspiration
from phase-based curriculum methodology used in
Ayyubi et al. (2023). We use Part-of-Speech (PoS)
linguistic features from the captions to categorize
samples into different phases, to generate a learn-
ing curriculum. However, instead of training the
model only one phase at a time (as used in Ayyubi
et al. (2023)), we train the model on the current and
previous phases such that the pool of data which
can be sampled increases at each phase.

From our experiments, we observe that:

• In a limited data setting, curriculum learning
can improve the performance of VLMs on
certain multimodal and text-only evaluation
benchmarks.

• Pretraining VLMs on developmentally plau-
sible text-only data prior to adapting to mul-
timodal data may help improve performance
on some evaluation tasks, but not others.
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2 Background

2.1 Curriculum Learning

Curriculum Learning (CL) takes inspiration from
the learning process in humans by presenting data
to a machine learning model in an easy-to-difficulty
manner (Elman, 1993; Bengio et al., 2009). CL
consists of two parts: (1) a scoring function to rank
data samples based on difficulty, and (2) a pacing
function, which controls the distribution of data
samples presented to the model. In the standard
CL implementation, the pacing function introduces
can be samples in ascending order of difficulty (or
decreasing difficulty in the case of anti-curriculum
learning (Hacohen and Weinshall, 2019; Wu et al.,
2021)).

While extensive research has shown that in cer-
tain cases, curriculum learning can provide per-
formance gains in vision (Hacohen and Weinshall,
2019; Wang et al., 2019b; Soviany, 2020) and Nat-
ural Language Processing (NLP) tasks (Nagatsuka
et al., 2021; Maharana and Bansal, 2022; Sun et al.,
2023), in other cases, the benefit is unclear (Cam-
pos, 2021; Martinez et al., 2023; Chobey et al.,
2023; Edman and Bylinina, 2023a). Importantly,
with the prevalence of vision-language models, it
is crucial to understand how the application of CL
modulates VLMs to work in the domain of limited
data and compute.

2.2 Curriculum Learning for Vision
Language Models

Some previous work has applied CL to multimodal
models where the data modality consists of images
and texts. Srinivasan et al. (2023) showed that
CL applied to a transformer model helps improve
performance on zero-shot image and text retrieval
tasks over a baseline CLIP model (Radford et al.,
2021). CL has also shown benefit in other multi-
modal domains, such as medical report generation
(Liu et al., 2023), image-captioning (Ayyubi et al.,
2023), and visual question answering (Li et al.,
2020). However, these works either rely on non
vision-transformer based image encoders (such as
an R-CNN), or conduct evaluation on a small set
of evaluation tasks. It is also unclear whether: (i)
training VLMs on image-caption data improves
model performance on text-only benchmarks; (ii)
how CL affects downstream performance in mod-
els with additional text pretraining compared to
randomly initialized models.

In this work, we present a study where we apply

CL to VLMs trained on small data. We hope to
provide the research community with a better un-
derstanding of the effects of CL on popular VLMs
such as the Generative Image Transformer (GIT)
(Wang et al., 2022) and Flamingo (Alayrac et al.,
2022) models. Furthermore, we also explore the
effect of CL on downstream model performance
on various zero-shot multimodal and text-based
benchmarks.

3 Methods

3.1 Data

We use the dataset provided as part of the BabyLM
multimodal track (Choshen et al., 2024). The data
consist of 100M words in total: 50M words from
varied text corpora (described in Choshen et al.
(2024)) and the other 50M words are text captions
taken from the Conceptual Captions (Sharma et al.,
2018) and Localized Narratives (Pont-Tuset et al.,
2020) image-caption datasets. In total, the mul-
timodal data consists of ∼ 2.9M image-caption
pairs.

One of the key experimental variables we ex-
amine is the impact of text pretraining. For mul-
timodal models, we compare the performance of
models trained on image-caption data (consisting
of 50M words), starting either from a randomly
initialized model or from a model pretrained on the
text-only corpora mentioned above (50M words).
Model variants not pretrained on the text-only cor-
pora only use the words in the captions of the asso-
ciated training images (i.e., models are trained on
only 50M words and the corresponding images).

3.2 Models

We train two VLMs: (1) GIT Wang et al. (2022)
and (2) Flamingo (Alayrac et al., 2022). We chose
these models because they were selected as refer-
ence baselines provided by the BabyLM challenge
(Choshen et al., 2024). Both GIT and Flamingo
models consist of vision encoders to encode image
inputs, and text decoders to generate free-form text.

We use the default configurations for the GIT 3

and Flamingo4 models provided in the BabyLM
challenge to compare the performance of our mod-
els to the baselines reported by the challenge.
Following the default configurations, we use pre-
trained vision encoders5 for both the GIT and

3https://huggingface.co/babylm/git-2024
4https://huggingface.co/babylm/flamingo-2024
5https://huggingface.co/facebook/dino-vitb16
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Flamingo models. Furthermore, according to de-
fault model configurations, we update all model
parameters for the GIT model, but for Flamingo,
we keep the vision encoder frozen, and update all
other parameters. GIT has a total of 198 million
parameters (198 million trainable parameters), and
Flamingo has 255 million total parameters (169
million trainable parameters because of the frozen
vision encoder).

Tokenizer: Pretrained tokenizers are trained on
data that exceed the limit imposed by the challenge.
Thus, we train a new WordPiece tokenizer (using
a bert-base-uncased model configuration) from
scratch on the text-only and caption data (100M
words total). We use the same tokenizer for both
GIT and Flamingo to avoid confounding model
performance differences with the tokenizer choice.

3.3 Curriculum Framework
We discuss the respective implementations of the
scoring and pacing functions for the curriculum
learning framework below.

Scoring function: A scoring function assigns a
difficulty score k ∈ R to each sample in the dataset,
where a sample xi is easier than a sample xi+1, if
kxi < kxi+1 .

Previous works have used a variety of scoring
functions to measure sample difficulty, such as the
loss scoring function in image classification (Ha-
cohen and Weinshall, 2019) and text classification
settings (Xu et al., 2020; Maharana and Bansal,
2022). Relatedly, in sample-efficient pretraining of
language models, average sentence rarity (Boraz-
janizadeh, 2023), sentence length (DeBenedetto,
2023) or other combinations of individual text
statistics (Edman and Bylinina, 2023b) have been
used to rank data samples (for a comprehensive sur-
vey, see Soviany et al. (2021)). More recently, in
multimodal settings, cross-modal similarity (Zhang
et al., 2022) has been used to rank examples to
improve model performance in image-captioning
tasks. All in all, it must be noted that determining
the difficulty of image-caption pairs is non-trivial
and an active research problem.

For our experiments, we explored the applicabil-
ity of linguistic information such as Part-of-Speech
(PoS) tags to determine difficulty of samples. We
took inspiration from the scoring function used by
Ayyubi et al. (2023), where a PoS tagger was used
to count the number of nouns in the caption, as an
indirect measure of the number of concepts present

Figure 1: Cumulative distribution of scores for all the
image-caption pairs. The dashed vertical lines deter-
mine each of the four quartiles, where each quartile
contains the samples that belong to a specific curricu-
lum phase.

in the image. The number of concepts, in turn,
determined the difficulty of the image-caption pair.

As the BabyLM challenge has limits on the num-
ber of words that can be used to train systems, we
trained our own PoS tagger to tag the image cap-
tions. To train the tagger, we first created a training
dataset by annotating the provided text-only and
caption data, with POS symbols6, using an off-the-
shelf PoS tagger from NLTK 7. Then we used this
newly created annotated training dataset to train a
custom PoS tagger on the permissible limited text
words. We implemented the PoS tagger using a
token classification model using BERTBASE as
the backbone model architecture. We trained the
tagger for 5 epochs8, using a batch size of 512 and
half-precision (FP16) training.

Distribution of difficulty scores: We show the
cumulative distribution of the scores assigned by
the PoS scoring function in Figure 1. For images
having multiple captions, we consider the maxi-
mum value of the difficulty (maximum number of
nouns) amongst all the captions for that image. We
use maximum difficulty to account for the most
complex interpretation of the image and avoid un-
derestimation of the difficulty value.

Ordering: In our experiments, we order the sam-
ples in ascending order of difficulty, to explore the

6These are non-word elements such as NN for noun, or JJ
for determiner

7https://www.nltk.org/api/nltk.tag.pos_tag.
html

8We observed that 5 epochs were sufficient to achieve
∼97.42% accuracy on a 10% held out validation dataset. We
then trained the tagger on all the data (train+validation).
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performance improvement of unimodal and mul-
timodal models when they are trained in a man-
ner similar to how humans acquire novel informa-
tion. Although previous work has shown that a
descending ordering of difficulty can be beneficial
for model performance for certain tasks (e.g., Ma-
harana and Bansal (2022)), we leave this for future
research given limited compute.

Pacing function: A pacing function controls the
rate at which samples of different training curricu-
lum phases are presented to the model. Multiple
different pacing strategies exist, such as fixed expo-
nential pacing, step pacing for image classification
(Hacohen and Weinshall, 2019), competence func-
tion (Platanios et al., 2019) for machine translation,
to name a few.

For our experiments, we design a simple pacing
function inspired by the phase-level pacing func-
tion (Ayyubi et al., 2023) and competence-based
pacing function (Platanios et al., 2019). We use
the quartiles from the cumulative distribution of
the sample difficulty scores (Figure 1), giving us
four blocks of difficulty levels. For simplicity, we
also train our model in four phases, where in each
training phase p, we train the model on samples
that have difficulty levels in the pth quartile. For
example, in Figure 1, the first phase (p1) contains
samples with difficulty level k ≤ 2, the second
phase contains samples with difficulty level k ≤ 3,
the third phase contains samples with k ≤ 5, while
the fourth phase contains all the samples in the
dataset. For each training phase, we randomly sam-
ple training batches from the set of data available
up to the corresponding training quartile. It must be
noted with each new block, the number of available
data points increases, which has an effect during
training, where earlier epochs are faster (because
of fewer samples) compared to later epochs.

This approach contrasts the phase-level curricu-
lum learning introduced by Ayyubi et al. (2023),
where the model is trained only on samples from a
specific block, which may cause the model to focus
more on samples in that specific block, while not re-
taining previously learned information from earlier
phases. Furthermore, our pacing function has the
added advantage of not requiring extensive hyper-
parameter tuning, such as the exponential pacing
function used by Hacohen and Weinshall (2019),
and is thus suitable for scenarios with limited com-
putational resources.

3.4 Models Variants

For both GIT and Flamingo, we train four model
variants, two of which are baseline models and
two are trained using curriculum learning. In each
pair, we train one model only on the image-caption
data starting from random initialization (except the
vision encoder which is pretrained), while we first
pretrain the other variant on the text-only corpus,
before training on image-caption data.

Baselines: For the first baseline variant, we train
the model on the image-caption dataset (50M
words) using standard i.i.d training. We refer to
this variant with C (denoting that the model is
trained on the image-caption data only) for both
GITBaseline and FlamingoBaseline. For the sec-
ond baseline variant, we first train the model on
the text-only dataset (containing 50M words) us-
ing standard i.i.d training. We then continue the
training procedure on image-caption dataset (con-
taining another 50M words) using standard i.i.d
training. We refer to this variant as T+C, for both
GITBaseline and FlamingoBaseline.

Our choice to also train the T+C model variant
stems from previous work showing that exposing
the model to developmentally plausible data, such
as child-directed speech, before exposing it to com-
plex data, can benefit model performance (Huebner
et al., 2021). Thus, we explore the difference in
model performance, when we first train the model
on the text-only dataset, before continuing the train-
ing procedure on the image-caption data.

Curriculum models: For curriculum variants,
we use CL on the image-caption pairs because we
hypothesize that applying CL on multimodal data
will improve model performance. We refer to these
variants trained only on the image-caption pairs as
C under GITCL and FlamingoCL. We also train
T+C variants of CL models, where we first pre-
train the model on the text-only dataset using stan-
dard i.i.d training, and then use curriculum learning
to continue the training procedure on the image-
caption pairs.

To summarize, we trained four variants for each
model, two of which were trained using standard
training (no curriculum), and the other two were
trained using curriculum learning. For GIT and
Flamingo baseline variants, we train the model
on the image-caption only (C) data, and both text
+ image-caption (T+C) data. Similarly, for the
curriculum variants, we train each model on, image-
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caption data only (C) data, and both text + image
(T+C) data.

4 Training and Evaluation Details

Training Details: For the curriculum variants,
we train the model for two epochs per each diffi-
culty phase (of which there are four). We used a
learning rate of 1e−5, maximum token length of 50,
and 32 samples per batch 9, and Adam optimizer10

(Kingma and Ba, 2017).
When training the T+C variants of our baseline

and curriculum models, we first trained the model
on the text-only dataset for twenty epochs (instead
of eight epochs for image-caption data) and use the
same hyperparameter values. We used an NVIDIA
A5000 GPU with 24GB vRAM, with half-precision
(FP16) to train the models. We provide the total
time required to train each model variant in Ap-
pendix A. For all experiments, we set the random
seed to 0 to remove variation in the results due to
different random sampling and initialization. We
also hold out 5% of the full image-caption dataset
to validate the model. We show the validation loss
curves in Appendix B.

Evaluation: To evaluate the performance of our
models, we use the evaluation pipeline provided by
challenge (Gao et al., 2023; Choshen et al., 2024).
We report the performance of all the variants of the
GIT and Flamingo models on the multimodal,
and text-based evaluation tasks.

4.1 Multimodal evaluation datasets

Winoground : The Winoground dataset (Thrush
et al., 2022) evaluates a model’s ability to perform
visio-linguistic compositional reasoning. Specif-
ically, given two image-caption pairs, the goal is
to match the image to the corresponding caption,
where both captions contain an identical set of
words, but in a different order (e.g. It’s a fire truck
vs it’s a truck fire). The dataset consists of 400
examples with 800 unique images and captions. To
assess model performance, we use the unpaired
text-score metric as provided in the BabyLM eval-
uation pipeline.

9We use a batch size of 32 when training on the image-
caption data, but we use a value of 256 when pretraining
the model (T+C variant) on the text-only dataset as memory
requirements are lower.

10We use default hyperparameters for Adam: β1 = 0.9, β2

= 0.999, eps=1e−08, weight_decay=0.

VQAv2: The VQAv2 dataset (Goyal et al., 2017)
is a large-scale visual question answering dataset.
It contains open-ended questions about images, re-
quiring models to understand the visual content and
generate appropriate answers. We use accuracy as
the choice of metric as reported in the BabyLM
evaluation pipeline. For this task the model has
to select the best answer for a given image and
question, in the presence of 7 distractors.

DevBench: The DevBench dataset (Tan et al.,
2024) is a multimodal benchmark for developmen-
tal evaluation that evaluates how closely a model’s
outputs align with human responses. It includes
tasks such as object recognition, action recognition,
and visual question answering, using data from
both children and adults. The BabyLM pipeline
uses three tasks from the DevBench dataset: (1)
The (Lexical) Visual Vocabulary (lex-viz_vocab)
task involves selecting the correct image from sev-
eral image options based on a given word. (2)
The (Grammatical) Test of Reception of Grammar
(gram-trog) task involves choosing the correct im-
age based on a sentence, testing grammatical under-
standing using distractor images that correspond
to sentences with different word orderings (e.g. "a
white cat sitting on a brown couch" vs. "a brown
cat sitting on a white couch"). Finally, (3) the
(Semantic) THINGS Similarity (sem-things) task
uses Representational Similarity Analysis (RSA)
to compare the model’s image similarity judgments
with human responses.

4.2 Text-only evaluation datasets
BLIMP (and BLIMP Supplement): The BLIMP
dataset (Warstadt et al., 2020) is a benchmark for
evaluating syntactic and semantic knowledge in
language models. It consists of sentences with
systematic variations in syntax and semantics. The
BLIMP Supplement extends the original dataset
with additional challenging examples.

(Super)GLUE: The (Super)Glue benchmark
(Wang et al., 2018, 2019a) is a collection of diverse
natural language understanding tasks designed to
evaluate a model’s ability to perform well across
multiple domains and evaluates generalized lin-
guistic ability. The BabyLM challenge includes
tasks, COLA, SST2, MRPC, QQP, MNLI, MNLI-MM,
QNLI, RTE from the GLUE benchmark, and the tasks
BoolQ, RTE and WSC from SuperGLUE bench-
mark. To fine tune all our model variants, we use a
train batch size of 128, validation batch size of 16,
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Tasks
GITBaseline GITCL FlamingoBaseline FlamingoCL

C T+C C T+C C T+C C T+C
Winoground 54.02 55.50 51.34 55.23 50.00 51.21 51.21 50.80

VQAv2 41.22 41.72 42.84 43.98 41.99 43.00 35.93 40.85

Table 1: Results for baseline and curriculum models on the Winoground and VQAv2 evaluation datasets. C: Model
trained on image-caption pairs only (50M words), T+C: the model is first trained on the text-only dataset (20
epochs) and then trained on image-caption pairs (50M+50M=100M words). Green cells: winning variants over
corresponding baseline variants.

Tasks
GITBaseline GITCL FlamingoBaseline FlamingoCL

C T+C C T+C C T+C C T+C
lex-viz_vocab 72.27 75.63 78.15 73.11 66.39 52.94 58.82 54.62

gram-trog 32.89 38.16 32.29 39.47 34.21 34.21 34.21 35.53

sem-things 33.39 25.79 22.83 32.08 46.46 47.99 50.21 51.66

Avg: devbenchacc 46.18 46.52 44.63 48.22 49.02 45.05 47.75 47.27

Table 2: Accuracy results for baseline and curriculum models on the DevBench dataset. RSA scores are used
for sem-things C: Model trained on image-caption pairs only (50M words), T+C: the model is first trained on
the text-only dataset (20 epochs) and then trained on image-caption pairs (50M+50M=100M words). Green cells:
winning variants over corresponding baseline variants..

Tasks
GITBaseline GITCL FlamingoBaseline FlamingoCL

C T+C C T+C C T+C C T+C
lex-viz_vocab 68.25 68.59 70.19 70.66 64.47 57.63 63.08 57.46

gram-trog 44.46 46.51 44.77 45.79 43.59 42.77 42.54 43.29

sem-things 33.39 25.79 22.83 32.08 46.46 47.99 50.21 51.66

Avg: devbenchhs 48.70 46.96 45.93 49.51 51.51 49.46 51.94 50.80

Table 3: Human similarity scores for baseline and curriculum models on the DevBench dataset. RSA scores are
used for sem-things. C: Model trained on image-caption pairs only (50M words), T+C: the model is first trained on
the text-only dataset (20 epochs) and then trained on image-caption pairs (50M+50M=100M words). Green cells:
winning variants over corresponding baseline variants.

learning rate of 5e−5, early stopping patience of 3,
maximum sequence length of 50, and maximum
number of epochs=10. We used default values for
all other hyperparameters provided in the BabyLM
evaluation pipeline.

EWOK: The EWOK dataset (Ivanova et al., 2024)
is a zero-shot dataset for evaluating compositional
generalization in language models. It consists of
sentences with compositional structures that re-
quire models to generalize to unseen combinations
of words and syntactic patterns.

5 Results

As unimodal and multimodal tasks are qualitatively
different, we analyze the three experimental vari-

ables of interest (curriculum, pretraining & model
type) in the context of each task type. Namely,
we report the results for all variants of GIT and
Flamingo models across two main task types that
differ with respect to their data inputs: (i) multi-
modal (image+captions), and (i) unimodal (text-
only).

5.1 Multimodal (image+captions)

We show the multimodal evaluations results in Ta-
ble 1 for Winoground and VQAv2, and in Tables 2
(accuracy) and 3 (human similarity) for DevBench.

5.1.1 Curriculum Learning
The GITCL model performs better than
GITBaseline on VQAv2 and DevBench datasets,
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Tasks
GITBaseline GITCL FlamingoBaseline FlamingoCL

C T+C C T+C C T+C C T+C
BliMP Supp 44.29 52.89 48.61 51.24 44.24 52.59 45.71 53.28
BLiMP filtered 57.85 62.90 61.34 64.05 57.03 59.82 55.64 60.13

(Super)GLUEavg 59.96 61.12 59.79 61.46 59.82 62.79 60.53 64.29

EWOKavg 50.62 51.55 49.82 50.98 50.03 50.67 50.16 50.71

Table 4: Average results for the text-only evaluation datasets.C: Model trained on image-caption pairs only (50M
words), T+C: the model is first trained on the text-only dataset (20 epochs) and then trained on image-caption pairs
(50M+50M=100M words). Green cells: winning variants over corresponding baseline variants.

with and without pretraining on separate text
data. This is not the case for Winoground, which
we note has quite unique properties, such as
specifically probing model representations for
compositionality (see Section 4.1).

We find that FlamingoCL only performs better
than its associated baseline (FlamingoBaseline)
on the DevBench dataset when using accuracy,
and when evaluating using human response scores.
This result indicates that curriculum training may
benefit multimodal model performance when eval-
uated on benchmark datasets that focus on develop-
mentally plausible evaluation of language models.

5.1.2 Text Pretraining
Compared to training on just image-caption data,
pretraining with the text-only data (variant T+C)
produces higher scores across both GITBaseline

and GITCL models on Winoground and DevBench,
while the results are more mixed for Flamingo
models. However, in FlamingoCL on the VQAv2
dataset, we see the largest gain in performance due
to text pretraining (from 35.93 to 40.85, a gain of
∼ 5% in Table 1). On the DevBench evaluation
for GITCL, we also see the 2nd largest gain in
performance due to text pretraining (from 44.63 to
48.22 for accuracy, and from 45.93 to 49.51 when
using reference human similarity scores; a gain of
∼ 4%). Interestingly, the highest result of all mod-
els on the Winoground dataset are the GIT models
with text pretraining, suggesting that text-only pre-
training is a big contributor to the properties of the
Winoground evaluation benchmark (composition-
ality). However, one must be cautious about gen-
eralizing this finding as the performance increase
could simply result from the model being trained
on more data.

As we only use a single seed to report these re-
sults, we wanted to confirm that our observation
is not simply due to random chance. Thus, we

conduct more experiments where we train all GIT
variants using two more seeds, and observe a sim-
ilar pattern in our findings (text pretraining aids
model performance). We provide these results in
Appendix C.

5.1.3 Model Type

The two models differ in their application of at-
tention mechanism and model size, measured by
the number of trainable parameters (See Section
3.2). Flamingo has a frozen image encoder (un-
like GIT ) and cross-attention is applied prior to
each LM block in the Transformer stack (which in-
ternally contains the standard self-attention mecha-
nism). In contrast, GIT uses a projection module
to bring image embeddings into the same space as
the text embeddings and applies successive self-
attention on these vectors. We see multiple vari-
ants of GIT outperform Flamingo (especially
for Winoground, VQAv2, and lex-viz_vocab,
gram-trog subsets for DevBench). In the multi-
modal evaluation context, we believe this could be
due to the ability for GIT to update the parame-
ters of its vision encoder, perhaps additionally by
making use of the fact that image tokens can self-
attend to one another (unlike the cross-attention in
Flamingo, which does not have this property).

5.2 Unimodal (text-only)

We summarize the results for the unimodal (text-
only) evaluation in Table 4. This table contains
summary results for the three text-only evaluation
benchmarks (see Section 4.2). Table 9 contains de-
tailed results on the (Super)GLUE and EWOK bench-
marks. We also provide a detailed breakdown of
model performance for each text-based task in Ap-
pendix D.
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5.2.1 Curriculum Learning
Closely related to the observations for multimodal
benchmarks, we see that curriculum learning vari-
ants outperform corresponding baselines variants
on the unimodal (text-only) benchmarks. Although
both GITCL and FlamingoCL outperformed their
corresponding baselines (Tables 4 and 9), the effect
was greater in FlamingoCL.

5.2.2 Text Pretraining
We outline the averaged results in Table 4 and show
that for both Flamingo and GIT , text pretrain-
ing leads to a gain in performance. In fact, all
T+C variants (curriculum and baseline) for both
models showe better performance compared to C
variants. Coupled with curriculum learning, we ob-
serve performance benefits on all text-based evalu-
ation datasets. These results suggest that text pre-
training conveys a clear advantage for multimodal
models when they are evaluated on certain text-
based benchmarks.

5.2.3 Model Type
Unlike the multimodal results, considering the av-
erage results in Table 4, there was no consistent
pattern where one model type outperformed the
other. For example, on (Super)GLUE, both base-
line and CL T+C variants of Flamingo outper-
formed respective GIT variants. However, this
was not the case for BLIMP filtered, where we
observed the opposite pattern - all variants of GIT
outperformed all variants of Flamingo. Such a
result could result from the fact that both GIT and
Flamingo become more similar in their architec-
ture in the text-only evaluation setting. This can
stem relaxed requirement to incorporate image in-
formation, making both models resemble standard
autoregressive Transformer decoders (the trainable
parameter count changes in this context because
GIT ’s vision encoder was trainable in the multi-
modal case, while Flamingo’s was frozen). This
results in the trainable parameter count for GIT be-
ing 198M and 169M for Flamingo (Section 3.2).

5.3 Brief Summary of Results

For the multimodal evaluation, we observe that text
pretraining before image-caption training boosts
model performance compared to no text pretraing.
However, these observations must be cautiously
generalized across model types; text pretrain-
ing largely conveys a benefit in all GIT mod-
els, but this benefit is inconsistent for Flamingo.

For instance, the FlamingoCL variant benefits
from additional text-only pretraining over just
image-caption training (for VQAv2, gram-trog, and
sem-things), but this effect is unclear for the
FlamingoBaseline. For GIT model variants, cur-
riculum learning (combined with pretraining) re-
sulted in the best overall model scores on VQAv2
and DevBench (considering average scores in Ta-
bles 2 and 3).

For the text-only evaluation, removing the im-
age component from both the GIT and Flamingo
models effectively reduces them to text-only trans-
former architectures with differing number of pa-
rameters. This likely explains why the models
show similar performance across tasks despite their
original multimodal design. Nonetheless, we see
that in Table 4, the FlamingoCL T+C variant can
be more suited to learning representations leading
to better scores across the SuperGLUE benchmark,
and BLiMP supplement dataset. But on BLiMP
filtered (and less pronounced for EWOK), the T+C
variant of GITCL outperforms the T+C variant of
FlamingoCL.

Conclusion

In this study, we explore the application of a cur-
riculum learning (CL) approach to training vision-
language models (VLMs) in a limited data setting.
We use a custom trained Part-of-Speech (PoS) tag-
ger to determine the complexity of image-caption
pairs. We train two variants for each of the GIT
and Flamingo models using curriculum learn-
ing and compare their performance against vari-
ants trained using standard i.i.d training. We find
that while CL training shows potential, its benefits
are not universally applicable across all GIT and
Flamingo variants. However, for certain model
configurations, CL enhances performance on a
range of downstream, multimodal and text-based
tasks (zero-shot and finetuning). Importantly, pre-
training VLMs on developmentally plausible text
data prior to multimodal training can contribute to
performance gains. Nonetheless, generalizing this
result requires careful consideration, as factors such
as model architecture, training data composition,
and the nature of evaluation tasks can significantly
affect model performance.

Code and Data Availability

We release our code, model predictions, and model
checkpoints.
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A Comparison of Training Times

We show the comparison of the training times for
different baseline and curriculum variants in Table
5.

Model Variant Hours

GITBaseline
C ∼ 80

T+C ∼ 109

GITCL
C ∼ 50

T+C ∼ 79

FlamingoBaseline
C ∼ 79

T+C ∼ 105

FlamingoCL
C ∼ 46

T+C ∼ 72

Table 5: Comparison of training times amongst all
model variants. These training times include valida-
tion loss calculation after every epoch. The pretraining
on the text-only dataset (for the T+C variants) accounted
for about 29 hours for the GIT model and around 26
hours for the Flamingo model. Curriculum models
take fewer hours to train because of the dynamic nature
of the training data size that grows during training.

B Validation loss curves

We show the validation loss curves on a held out
5% of the image-caption data in Figure 2.

Figure 2: Validation loss curves for all the model
variants. GIT variants are shown in solid lines and
Flamingo variants are shown in dashed lines. The x-
axis denotes the epochs, and the value at the 0th epoch
denotes the validation loss of the model before being
trained on the image-caption pairs (i.e., before train-
ing on the first epoch). For the T+C variants, since the
model is pretrained on the text-only dataset before being
trained on the image-caption pairs, the loss starts at a
lower value compared to the model variants on image-
caption data only (C) that were randomly initialized.

C GIT model multimodal results across 3
seeds

We show the multimodal evaluation results for
the different GIT model variants in Tables 6 for
Winoground and VQAv2, 7 for accuracy on De-
vBench, and 8 human similarity scores on De-
vBench.

Tasks
GITBaseline GITCL

C T+C C T+C
Winoground 54.02 53.71 51.52 54.65

VQAv2 38.80 41.90 42.28 42.60

Table 6: Results for GIT baseline and GIT curriculum
models on the multimodal evaluation datasets averaged
across three seeds. C: Model trained on image-caption
pairs only (50M words), T+C: the model is first trained
on the text-only dataset (20 epochs) and then trained on
image-caption pairs (50M+50M=100M words). Green
cells: winning variants over corresponding baseline vari-
ants.
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Tasks
GITBaseline GITCL

C T+C C T+C
lex-viz_vocab 72.93 72.55 75.91 71.71

gram-trog 38.16 36.84 32.26 41.67

sem-things 30.88 25.61 17.34 30.78

Averageacc 47.32 45.00 41.84 48.05

Table 7: Accuracy results for GIT baseline and GIT
curriculum models on the devbench datasets averaged
across three seeds. C: Model trained on image-caption
pairs only (50M words), T+C: the model is first trained
on the text-only dataset (20 epochs) and then trained on
image-caption pairs (50M+50M=100M words). Green
cells: winning variants over corresponding baseline vari-
ants.

Tasks
GITBaseline GITCL

C T+C C T+C
lex-viz_vocab 68.64 68.07 68.65 68.71

gram-trog 44.90 44.61 43.72 45.71

sem-things 30.88 25.61 17.34 30.78

Averagehs 48.14 46.10 43.24 48.40

Table 8: Human similarity results for GIT baseline and
GIT curriculum models on the devbench datasets av-
eraged across three seeds. C: Model trained on image-
caption pairs only (50M words), T+C: the model is
first trained on the text-only dataset (20 epochs) and
then trained on image-caption pairs (50M+50M=100M
words). Green cells: winning variants over correspond-
ing baseline variants.

D Evaluation results on (Super)GLUE,
EWOK, and BLiMP

We show the results for all models and correspond-
ing variants on each individual subtask for the text-
only evaluation tasks in Tables 9 for (Super)GLUE
and EWOK, 10 for BLiMP Supplement, and 11 ,
12, 13, 14 for BLiMP.
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Tasks
GITBaseline GITCL FlamingoBaseline FlamingoCL

C T+C C T+C C T+C C T+C
S
u
p
er
G
L
U
E

f
t

boolq 64.04 65.2 64.04 70.21 67.77 66.91 68.07 66.54
cola (mcc) 6.68 6.68 0.0 6.68 0.0 17.7 0.0 31.75
mnli 68.7 69.74 69.34 69.93 66.24 70.03 67.07 70.37
mnli-mm 69.43 70.22 69.26 70.77 66.9 70.2 66.35 71.42
mrpc (f1) 82.12 82.13 81.23 81.35 81.05 82.51 79.87 82.39
multirc 55.57 57.43 57.55 56.97 60.81 53.55 58.21 56.23
qnli 63.14 64.42 67.5 65.59 65.81 68.92 67.86 69.91
qqp (f1) 80.92 81.7 80.12 81.53 79.83 82.05 79.91 81.88
rte 46.04 48.92 46.04 46.04 46.04 52.52 56.12 46.04
sst2 84.40 87.39 84.17 88.53 85.09 87.84 83.94 88.30
wsc 38.46 38.46 38.46 38.46 38.46 38.46 38.46 42.31

E
W

O
K

agent prop 50.05 50.14 50.09 49.59 49.46 50.32 49.91 49.68
mat-dynam 51.56 52.21 51.30 50.65 49.48 52.21 50.52 54.42
mat-prop 50.59 52.35 47.06 49.41 46.47 53.53 51.76 51.18
phy-dynam 49.17 55.83 48.33 58.33 54.17 48.33 50.0 51.67
phy-inter 49.64 50.0 50.18 50.18 50.18 49.1 48.74 49.1
phy-relation 50.24 49.88 50.61 49.51 52.57 50.12 49.27 50.86
quant-prop 51.91 50.96 49.68 50.96 49.36 53.5 50.64 50.0
social-interac 50.34 50.34 50.34 49.66 49.32 49.32 49.66 50.0
social-prop 50.3 50.91 50.91 50.0 50.0 49.09 50.61 50.0
social-relation 50.32 51.42 49.94 50.0 49.29 50.0 50.45 50.06
spatial-relation 52.65 53.06 49.59 52.45 50.0 51.84 50.20 50.82

Table 9: Breakdown of model performance on each subtask for the(Super)Glue and EWOK datasets. Cells highlighted
in Green denote winning variants compared to corresponding baseline variants.

Tasks
GITBaseline GITCL FlamingoBaseline FlamingoCL

C T+C C T+C C T+C C T+C

B
L

iM
P

Su
pp

le
m

en
t hypernym 47.86 48.81 49.76 48.93 49.17 48.93 48.1 51.19

qa_congruence_easy 29.69 51.56 35.94 50.0 32.81 51.56 37.5 53.12
qa_congruence_tricky 27.88 24.24 27.27 20.0 20.0 30.91 27.27 28.48
subject_aux_inversion 66.02 83.76 80.06 83.68 68.53 81.54 71.4 82.91
turn_taking 50.0 56.07 50.0 53.57 50.71 50.0 44.29 50.71
Average 44.29 52.89 48.61 51.24 44.24 52.59 45.71 53.28

Table 10: Breakdown of model performance on each subtask for the BLiMP Supplement dataset. Cells highlighted
in green denote winning variants compared to corresponding baseline variants.
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Tasks
GITBaseline GITCL FlamingoBaseline FlamingoCL

C T+C C T+C C T+C C T+C

B
L

iM
P

determiner_noun
_agreement_with_adj
_irregular_1

64.62 74.51 71.87 76.32 50.56 62.53 49.86 67.69

principle_A_domain_3 51.75 51.97 48.67 51.22 48.46 48.57 49.31 45.59
sentential_negation
_npi_scope

47.65 61.31 57.52 55.57 56.83 54.54 55.57 50.86

complex_NP_island 41.13 51.89 41.61 54.37 58.87 43.5 62.17 41.13
irregular_plural
_subject_verb _agree-
ment_1

55.35 64.68 63.06 64.18 49.5 57.71 51.87 60.45

distractor_agreement
_relational_noun

41.62 46.7 47.21 51.27 52.03 46.83 49.37 47.46

matrix_question
_npi_licensor_present

3.98 44.78 4.2 33.05 84.5 59.85 35.84 39.5

passive_2 70.65 70.32 72.54 72.2 70.32 70.1 72.09 64.12
adjunct_island 78.45 64.12 48.38 66.38 55.6 59.81 63.25 56.03
wh_vs_that_with_gap 16.1 26.55 8.05 25.9 12.19 14.47 35.8 17.74
irregular_past _partici-
ple_adjectives

59.63 66.6 79.19 63.68 46.51 48.8 45.37 67.01

drop_argument 71.96 74.02 73.8 76.41 70.87 70.0 70.11 68.91
principle_A_domain_2 49.62 57.7 57.16 59.02 46.34 50.93 50.82 56.28
anaphor_gender
_agreement

45.21 46.04 36.77 47.79 74.46 47.79 42.33 39.55

wh_questions_subject
_gap_long_distance

93.0 85.53 97.9 89.5 81.68 88.8 61.38 89.96

only_npi_licensor
_present

61.68 74.72 93.99 52.72 72.22 92.52 97.05 58.28

intransitive 54.84 60.02 53.57 61.98 57.49 59.1 57.6 60.14
ellipsis_n_bar_1 43.64 49.88 52.37 59.6 38.4 61.97 51.0 52.12
regular_plural_subject
_verb_agreement_1

44.16 58.54 53.15 58.76 49.44 55.84 45.96 61.12

principle_A_domain_1 84.57 93.0 96.83 91.79 57.99 93.0 93.22 80.42
irregular_past _partici-
ple_verbs

63.8 65.39 58.6 59.45 61.04 66.56 49.26 68.05

sentential_subject _is-
land

54.63 62.12 67.33 56.71 53.69 51.93 49.84 63.89

Table 11: BLIMP - individual task results. Cells highlighted in Green denote winning variants compared to
corresponding baseline variants.
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Tasks
GITBaseline GITCL FlamingoBaseline FlamingoCL

C T+C C T+C C T+C C T+C

B
L

iM
P

wh_vs_that_with_gap
_long_distance

13.52 10.0 5.49 10.22 15.6 8.46 40.77 12.2

principle_A_recons-
truction

54.6 50.36 53.05 35.26 56.05 53.26 50.47 55.43

regular_plural_subject_
verb _agreement_2

55.03 66.88 64.44 68.25 48.99 51.43 51.22 61.9

ellipsis_n_bar_2 29.59 51.93 31.76 53.26 37.92 45.41 33.57 55.68
determiner_noun
_agreement_with
_adj_irregular_2

65.36 75.71 70.12 77.5 60.0 65.12 57.26 68.33

passive_1 78.1 71.55 80.48 76.19 70.36 75.83 77.02 71.9
irregular_plural
_subject_verb _agree-
ment_2

59.64 68.61 71.86 67.94 48.88 60.09 55.83 69.06

existential_there _sub-
ject_raising

54.11 75.65 56.06 77.81 59.74 67.42 55.3 71.21

left_branch_island
_echo_question

52.69 18.69 61.14 18.27 22.39 23.34 6.65 33.37

expletive_it_object
_raising

63.9 63.77 62.32 62.45 63.37 64.16 61.92 63.77

coordinate_structure
_constraint_object
_extraction

36.14 33.4 51.74 53.74 40.99 50.26 46.36 61.54

causative 58.07 67.48 56.48 70.17 52.57 60.15 50.12 59.78
npi_present_2 38.4 61.38 45.19 58.64 46.28 61.6 26.15 44.64

Table 12: BLIMP - individual task results continued. Cells highlighted in Green denote winning variants compared
to corresponding baseline variants.
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Tasks
GITBaseline GITCL FlamingoBaseline FlamingoCL

C T+C C T+C C T+C C T+C

B
L

iM
P

animate_subject_trans 46.05 44.53 22.64 38.68 30.55 49.84 64.46 66.31
transitive 69.93 73.04 71.08 75.23 52.65 63.59 60.25 58.99
determiner_noun _agree-
ment_with_adj_2

65.99 78.53 65.57 81.62 50.05 60.04 56.11 70.24

determiner_noun _agree-
ment_irregular_2

75.12 81.34 72.2 84.88 63.17 73.78 61.71 77.56

left_branch_island _sim-
ple_question

46.37 36.8 62.78 35.44 39.54 45.53 33.96 37.64

wh_vs_that_no_gap 85.13 91.17 94.19 94.89 90.36 93.26 64.0 93.26
tough_vs_raising_2 67.72 69.24 74.57 72.5 51.74 63.7 56.85 72.07
principle_A_case_1 99.78 100.0 99.78 100.0 93.31 98.79 98.25 98.03
wh_questions_subject_gap 81.51 85.41 91.43 88.86 82.63 89.2 72.16 87.53
only_npi_scope 35.72 50.3 69.3 46.12 79.81 61.05 75.03 39.67
distractor_agreement _rel-
ative_clause

43.51 46.73 40.07 44.78 54.31 48.91 53.16 48.56

existential_there _quanti-
fiers_2

58.29 17.34 38.31 30.63 19.87 34.03 21.08 18.33

determiner_noun _agree-
ment_1

74.27 81.92 71.69 84.39 56.51 70.72 58.56 75.03

superlative_quantifiers_1 61.08 71.71 48.52 85.39 51.17 39.43 57.3 37.59
determiner_noun _agree-
ment_with_adjective_1

64.84 80.49 69.77 81.89 56.81 63.88 57.56 71.28

sentential_negation
_npi_licensor_present

90.64 99.35 99.56 92.49 91.95 99.56 72.91 98.91

wh_questions_object_gap 55.65 49.71 73.69 57.97 73.11 64.96 72.53 60.3
determiner_noun _agree-
ment_2

69.92 80.88 71.21 82.92 52.52 66.38 57.14 75.94

existential_there _quanti-
fiers_1

78.06 92.15 77.96 94.52 75.48 66.77 74.73 68.6

inchoative 43.04 50.53 40.12 52.16 43.63 49.01 44.91 50.76
coordinate_structure
_constraint_complex_left
_branch

40.07 30.13 55.08 27.37 35.76 38.41 33.11 30.13

superlative_quantifiers_2 86.51 75.56 88.03 79.11 78.19 48.68 76.27 46.96
npi_present_1 40.48 52.59 53.14 57.43 48.4 57.98 50.72 57.87
wh_island 17.71 27.92 32.08 51.88 61.25 18.12 48.75 40.42
existential_there_object
_raising

70.44 66.13 67.73 60.96 68.23 70.94 66.26 67.98

Table 13: BLIMP - individual task results continued. Cells highlighted in Green denote winning variants compared
to corresponding baseline variants.
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Tasks
GITBaseline GITCL FlamingoBaseline FlamingoCL

C T+C C T+C C T+C C T+C

B
L

iM
P

wh_vs_that_no_gap_long
_distance

86.4 94.4 94.97 96.57 89.6 94.29 61.37 93.37

principle_A_c_command 69.13 71.88 66.07 75.58 57.61 75.69 66.17 78.12
animate_subject_passive 61.45 70.28 73.85 72.18 63.13 65.14 60.67 72.51
anaphor_number_agre-
ement

73.15 80.34 62.41 86.14 71.0 72.82 49.41 74.22

determiner_noun _agree-
ment_irregular_1

64.61 70.63 67.25 75.18 59.47 62.56 54.63 73.57

tough_vs_raising_1 33.12 49.89 28.69 46.62 51.9 46.41 47.36 39.45
principle_A_case_2 62.84 77.27 72.35 79.23 54.97 62.95 48.96 62.62

Table 14: BLIMP - individual task results continued. Cells highlighted in Green denote winning variants compared
to corresponding baseline variants.
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