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Abstract
This paper explores the potential of re-
current neural networks (RNNs) and other
subquadratic architectures as competitive al-
ternatives to transformer-based models in
low-resource language modeling scenarios.
We utilize HGRN2 (Qin et al., 2024), a
recently proposed RNN-based architecture,
and comparatively evaluate its effectiveness
against transformer-based baselines and other
subquadratic architectures (LSTM, xLSTM,
Mamba). Our experimental results show that
BABYHGRN, our HGRN2 language model,
outperforms transformer-based models in both
the 10M and 100M word tracks of the chal-
lenge, as measured by their performance on
the BLiMP, EWoK, GLUE and BEAR bench-
marks. Further, we show the positive impact of
knowledge distillation. Our findings challenge
the prevailing focus on transformer architec-
tures and indicate the viability of RNN-based
models, particularly in resource-constrained en-
vironments.

1 Introduction

In recent years, natural language processing (NLP)
has been revolutionized by transformer-based lan-
guage models (LMs), like BERT (Devlin et al.,
2019) or GPT (Brown et al., 2020) and their deriva-
tives, achieving state-of-the-art results (Touvron
et al., 2023; Abdin et al., 2024) across a wide
range of tasks such as machine translation, ques-
tion answering, and text generation. However, de-
spite their dominance, transformers come with no-
table limitations: they require extensive training
data (Hoffmann et al., 2022) and enormous compu-
tational resources, which pose challenges for their
use in resource-constrained environments.

These limitations led to an increasing interest in
more sample-efficient alternatives and approaches
with lower computational requirements (Wang
et al., 2020b). The shared task of the BabyLM
Challenge (Warstadt et al., 2023a) systematically

explores this trend by training LMs on datasets of
limited size (10M words in the "strict-small"
and 100M words in the "strict" setup). The re-
sulting models are then evaluated on linguistic and
general language understanding tasks.

While most participants in BabyLM Challenge
focus on adapting transformers to low-resource set-
tings, we propose revisiting recurrent neural net-
works (RNNs). Once foundational to sequence
modeling tasks (Lample et al., 2016; Howard and
Ruder, 2018), RNNs have been largely overshad-
owed by transformers due to their sequential nature
which does not easily allow for parallelization.
Potential of RNN-architectures. In this paper, we
investigate whether the inductive biases of RNN
architectures, such as their sequential processing
and memory states, provide advantages in data-
constrained settings. This question is especially rel-
evant given that state-of-the-art transformer models
depend on quadratic self-attention, which requires
calculating the inner product between all tokens.
In particular, we investigate the potential of the
HGRN2 (Qin et al., 2024), a novel subquadratic
RNN-based architecture based on hierarchical gat-
ing. We train our model using knowledge distilla-
tion (Hinton et al., 2015) and evaluate our approach,
BABYHGRN, against state-of-the-art transformer
models and other efficient RNN architectures (e.g.
xLSTM (Beck et al., 2024) or Mamba (Gu and Dao,
2024)). Our experiments demonstrate that our re-
sulting model yields better performance compared
to both transformer-based and other RNN-based
architectures.
We summarize our contributions as follows:

1. We conduct an exploratory evaluation of
transformer-based and other RNN-based
architectures (HGRN2, LSTM, xLSTM,
Mamba), contributing to the ongoing research
on sample-efficient language modeling.

2. We present a comprehensive evaluation of our
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Dataset Count Ratio (%)

Pile-CC 4,900,155 49.00
OpenWebText2 3,078,791 30.79
FreeLaw 946,382 9.46
USPTO Backgrounds 261,159 2.61
Wikipedia (en) 187,094 1.87
PubMed Central 142,698 1.43
PubMed Abstracts 118,427 1.18
Others 365,188 3.65

Total 9,999,894

Dataset Count Ratio (%)

Pile-CC 49,214,555 49.21
OpenWebText2 30,344,790 30.34
FreeLaw 9,471,436 9.47
USPTO Backgrounds 2,519,390 2.52
Wikipedia (en) 1,855,709 1.86
PubMed Central 1,449,273 1.45
PubMed Abstracts 1,175,838 1.18
Others 3,968,870 3.97

Total 99,999,861

Table 1: Composition of the 10M (left table) and 100M (right table) word datasets (word counts and ratio per
domain) we created from the PILE to train BABYHGRN.

proposed HGRN2 language model BABYH-
GRN. We show the impact of knowledge dis-
tillation and the choice of dataset.

3. We release all code, datasets, and experimen-
tal setups to the research community to facili-
tate reproducibility and further research1.

Our results show that BABYHGRN outperforms
transformer-based baselines on both tracks of the
BabyLM challenge.

2 BABYHGRN

We utilize HGRN2 as our backbone architecture
with a hidden size of 2048 and 18 layers, result-
ing in a total parameter count of 330M. We train
our model either with (1) the default dataset of
the BabyLM Challenge or (2) a sub-sampled split
of ThePile (Gao et al., 2020). Further, we em-
ploy knowledge distillation training using a teacher-
student setup. In the following, we will discuss the
details of our design choices.

2.1 Training Dataset

We curate our own training datasets for the strict
and strict-small tracks by sub-sampling the Pile
dataset (see Table 1). The Pile consists of 22
smaller datasets that cover a variety of domains, in-
cluding books, web pages, scientific literature, and
programming code. The main motivation behind
choosing the Pile dataset is its diverse composition,
which may offer several advantages for language
model training. Approximately 14% of the origi-
nal BabyLM dataset consists of child-related text
(e.g., the Children’s Book Test (Hill et al., 2016),

1https://github.com/HallerPatrick/BabyLM-2024

Children’s Stories Text Corpus2, and CHILDES
project (Macwhinney, 2000)), which may limit its
generalizability across diverse domains. In con-
trast, the broader scope of the Pile dataset could im-
prove resilience in zero-shot tasks and potentially
enhance adaptability for fine-tuning on specific ar-
eas of interest.

We create the splits by randomly sampling from
each chosen subset until we reached the pre-defined
thresholds. We depict details on our selected sub-
sets and corresponding word counts in Table 1.

To minimize computational overhead, we con-
catenate all samples and segment them into uni-
form chunks of 512 tokens. Subsequently, each
input sample is tokenized using Byte-Pair Encod-
ing (BPE), employing a vocabulary size of 16,000
tokens. We chose the BabyLlama tokenizer pro-
vided with the baseline models by the organizers3.

2.2 Training Objectives
We use standard next-token prediction as the lan-
guage modeling task and employ token-level cross-
entropy loss for training our models. For a se-
quence of tokens x = (x1, ..., xN ), the loss is cal-
culated as:

L(θ) = − 1

N

N∑

i=1

logP (xi|x1, ..., xi−1; θ)

where θ represents the model parameters and
P (xi | x1, ..., xi−1; θ) is the probability the model
assigns to the i-th token given all previous tokens.

We further improve our model through knowl-
edge distillation (Bucila et al., 2006; Hinton et al.,

2https://www.kaggle.com/datasets/edenbd/
children-stories-text-corpus

3https://huggingface.co/babylm/
babyllama-100m-2024
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2015), where we train a second HGRN2 model (stu-
dent) using predictions from our initially trained
model (teacher). While knowledge distillation
traditionally transfers knowledge from larger to
smaller models, using same-sized teacher and stu-
dent models has proven effective in recent work -
notably in the previous BabyLM Challenge where
an ensemble of teachers was used for knowledge
transfer (Timiryasov and Tastet, 2023).

The training process for the student model incor-
porates an additional loss term based on soft labels
produced by the teacher model. The total loss func-
tion for the student model can be expressed as:

Ltotal = (1− α)LCE + αLKD

where LCE is the standard cross-entropy loss for the
student model, LKD is the knowledge distillation
loss, and α is a hyperparameter that balances the
two loss terms.

In our implementation, the knowledge distilla-
tion loss LKD is calculated using the Kullback-
Leibler divergence between the probability distri-
butions of the teacher and student models:

LKD = KL(σ(zt)||σ(zs))
where zt and zs are the output logits of the teacher
and student model respectively. And σ(z) is the
softmax function applied to the logits z.

2.3 Training Details
For fine-tuning on the (Super)Glue tasks, we follow
the provided hyperparameters by the shared task
organizer (see Appendix A). Except for the WSC
tasks, which had unusually low scores. We used a
maximum of 20 epochs, a patience of 6 epochs and
a learning rate of 1× 10−5 for our final submission
models.
Software. For training our model we use
the Pytorch (Ansel et al., 2024) library. Rel-
evant metrics are logged with Weights and
Biases (Biewald, 2020). We use Hugging-
Face datasets (Lhoest et al., 2021) library for
dataset loading and subsampling. All relevant
models were either directly imported with the
transformers (Wolf et al., 2020) library or im-
plemented as a custom model. For the HGRN2
model we used the FLA (Yang and Zhang, 2024)
library.
Hardware. All models were trained with
the torch.distributed package in data-parallel
mode. Models were trained on 4 RTX A6000 49GB
graphics cards on one node.

3 Empirical Evaluation

In Section 3.1, we shortly present the evaluation
benchmarks of the BabyLM Challenge and the
BEAR knowledge probe. In Sections 3.2 to 3.4,
we evaluate BABYHGRN compared with other ef-
ficient RNN architectures, its training dynamics,
and the influence of different datasets. Finally,
in Section 3.5, we evaluate BABYHGRN using
knowledge distillation.

3.1 Evaluation Datasets

The BabyLM challenge covers three benchmarks:
BLiMP (Warstadt et al., 2023b), EWoK (Ivanova
et al., 2024), and parts of GLUE (Wang et al., 2019)
and SuperGLUE (Wang et al., 2020a), respectively.
These benchmarks are designed to assess language
model performance such as grammatical knowl-
edge or complex reasoning tasks. Additionally, we
include the BEAR probe (Wiland et al., 2024) to
evaluate factual knowledge capabilities.
BLiMP (Benchmark of Linguistic Minimal Pairs)
is an English zero-shot benchmark evaluating the
grammatical knowledge of language models. It has
67 sub-tasks, each focusing on a specific syntactic
or semantic phenomenon. Specifically, the dataset
contains pairs of sentences and the model is tasked
to differentiate which of the sentences is grammati-
cally correct. Further, we consider the hidden task
"BLiMP Supplement" of the 2023 BabyLM Chal-
lenge (Warstadt et al., 2023a).
EWoK (Elements of World Knowledge) evaluates
basic world knowledge in language models. This
cognition-inspired approach tests whether language
models can identify plausible contexts given dif-
ferent fillers. EWoK was introduced as the hidden
task for the 2024 BabyLM Challenge.
GLUE (General Language Understanding Evalu-
ation) is a multi-task benchmark evaluating natu-
ral language understanding systems. It contains
nine tasks such as sentiment analysis, question an-
swering, or textual entailment. As models began
to surpass human performance on several GLUE
tasks, SuperGLUE was introduced as an extension,
including more challenging tasks.
BEAR (Wiland et al., 2024) tests relational knowl-
edge in language models using 7,731 instances
over 60 relations. BEAR compares the models’
log-likelihood for different factual statements of
which only one is true. We leverage the implemen-
tation by Ploner et al. (2024) to conduct the BEAR
probing experiments.
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Model #Params Epoch BLiMP BLiMP-Supp. EWoK Macro-Avg.

Transformer 360M 4 62.64 54.86 50.48 55.99

LSTM 300M 5 62.27 51.63 50.48 54.79
xLSTM 340M 3 51.20 48.77 49.89 50.02
Mamba 350M 2 64.44 55.39 50.39 56.74
HGRN2 360M 4 67.05 55.69 49.88 57.54

Table 2: Results from training on the 10M word corpus, comparing various RNN architectures to a Transformer-
based model (LLaMA architecture). Each model was trained for 5 epochs, with evaluations after each epoch, and
the best-performing model was selected.

Hyperparameter Value

Epochs 3
Batch Size 64
Learning Rates {1e-3, 1e-4, 1e-5, 1e-6}
Optimizer Adam
Sequence Length 512
Max Grad Norm 1.0
LR Scheduler Linear

Table 3: Pretraining hyperparameters used for all mod-
els and experiments.

3.2 Experiment 1: RNN Architecture
Selection

Our first experiment compares the HGRN archi-
tecture with other RNN-based and transformer ar-
chitectures. Specifically, we compare HGRN2, the
vanilla LSTM, xLSTM, Mamba, and a Transformer
baseline.
Experimental setup. We select configurations
such that all architectures have a similar parameter
count of 300 to 360 million. We use the configura-
tions as as originally proposed for xLSTM, Mamba,
and HGRN2. For the decoder-only transformer, we
use the LLaMA (Touvron et al., 2023) model and
follow the Pythia (Biderman et al., 2023) 410M
model configuration with 22 hidden layers. For
the vanilla LSTM, we set the hidden size to 4096
with two layers to match the parameter count of the
other architectures. We refer to Appendix B for a
detailed overview of all configurations.

For each architecture, we perform learning rate
selection for all considered architectures by exe-
cuting a grid search over commonly used learn-
ing rates ({1e-3, 1e-4, 1e-5, 1e-6}). We train
each model for 5 epochs on the strict-small
dataset of the BabyLM challenge. Further, we do
not employ any knowledge distillation and train

all LMs using the next-token prediction objective.
We report results on the zero-shot benchmarks of
BabyLM, namely BLiMP and EWoK, together with
their best hyperparameter configuration.
Results. Table 2 shows the number of parame-
ters of each considered architecture and the results
achieved during the exploration phase on the zero-
shot benchmarks4. We find that the HGRN2 ex-
hibits the best performance, closely followed by
Mamba. Both outperform the transformer model,
suggesting that these architectures offer advantages
in low-resource scenarios. The standard LSTM,
serving as a baseline for classical RNN architec-
tures, performs worse than the transformer but bet-
ter than the xLSTM5. Further, we observe that all
architectures perform best using a learning rate of
1e−3.

3.3 Experiment 2: Learning Dynamics of
HGRN2

To better understand the learning dynamics of the
selected HGRN2 architecture, we investigated how
its zero-shot performance on the BabyLM bench-
mark changes over the epochs during training.
Experimental setup. We re-use the best perform-
ing hyperparameters from Section 3.2. After each
epoch, we evaluate on BLiMP, BLiMP Supp. and
EWoK.
Results. The results of this experiment are illus-
trated in Figure 1. Our analysis reveals early peaks
in performance on BLiMP and EWoK and a later
peak on BLiMP Supplement. This finding indicates
that HRGN2 initially captures certain linguistic pat-
terns from the limited training data, although the

4We report the complete results of the parameter sweep
in Appendix C.

5We note considerable training instabilities during pre-
training of the xLSTM model, likely due to discrepancies
in model architecture or training setup from the original im-
plementation, which may have impacted performance in our
low-resource setting.
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Figure 1: Performance evaluation of epochs of pretrain-
ing, with the macro average at epoch 3 being the highest.

gains over random baseline are modest. Further
iterations yield only incremental improvements,
which may point to constraints in the model’s abil-
ity to leverage the available data fully.

3.4 Experiment 3: Impact of Training Dataset

In this experiment, we evaluate the impact of the
choice of training data. We compare models trained
over the default BabyLM dataset to models trained
using our custom dataset derived from the Pile (see
section 2.1).
Experimental Setup. We re-use our chosen hy-
perparameter configuration for the HGRN2 archi-
tecture from Section 3.3 and train two models on
(1) our derived Pile subset and (2) on the default
BabyLM dataset. We train models for 5 epochs,
evaluate after each epoch, and report results of the
best performing model. In this experiment we in-
clude both the 10M and 100M word datasets for a
full comparison.
Results. Table 4 summarizes the performance
across all benchmarks. For the 10M word track,
the HGRN2 model trained on our derived dataset
shows modest gains on BLiMP, EWoK, and BEAR,
but underperforms on the BLiMP-Supplemental
subset (↓3.47 pp). This suggests that at smaller
data scales, our dataset may lack certain syntactic
structures present in the original BabyLM dataset.
Furthermore, given the limited dataset size in the
10M word track, these numbers may lack statistical
significance.

In contrast, the 100M word track demonstrates
consistently stronger performance across all met-
rics, with particularly notable improvements on

Dataset BLiMP BLiMP-Supp. EWoK BEAR

BabyLM - 10M 67.05 55.69 49.88 5.29
Ours - 10M 67.49 52.22 50.62 5.36

BabyLM - 100M 69.44 55.56 50.31 6.17
Ours - 100M 72.89 57.43 50.61 7.38

Table 4: Zero-shot evaluation results comparing
HGRN2 models trained on the BabyLM dataset ver-
sus our proposed Pile subset. Both models were trained
with a learning rate of 1×10−3. All metrics are reported
as percentages.

BLiMP (↑3.45 pp) and BEAR (↑1.21 pp). Indicat-
ing that our dataset selection strategy enhances the
model’s ability to acquire both syntactic and factual
knowledge when given sufficient training data.

3.5 Experiment 4: BABYHGRN With
Knowledge Distillation

Based on the exploratory experiments of the pre-
vious subsections, we selected the HGRN2 model
trained on our proposed dataset for the BabyLM
challenge. We furthermore apply knowledge distil-
lation as outlined in Section 2.2 to our final model.
We refer to this model as BABYHGRN.

In this section, we evaluate BABYHGRN using
knowledge distillation learning and compare it with
two baselines (BabyLlama and LTG-BERT) and
a BABYHGRN version using only the next-token
prediction objective. We denote this ablation model
as BabyHGRNntp.
Hyperparameters. We increase the model size in
accordance with scaling laws for language mod-
els (Kaplan et al., 2020) from 360M to 1.0B. We re-
duce the learning rate from 1×10−3 to 4×10−4 ac-
cordingly, following the configuration found in Sec-
tions 3.2 and 3.3. Empirical work (Kaplan et al.,
2020; Hoffmann et al., 2022) suggests that lower
learning rates in larger models help mitigate insta-
bilities during training, promoting smoother con-
vergence and more efficient use of computational
resources.

3.5.1 Results
Table 5 and Table 6 summarize our experimental
results for the 10M and 100M word tracks, respec-
tively.
HGRN2 outperforms baselines. Most impor-
tantly, we find that our HGRN2 models show
competitive performance across both the 10M and
100M word tracks of the BabyLM challenge. On
the 10M words track, BabyHGRN achieves an over-
all macro average of 63.3% (↑2.5 pp vs. BabyL-
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BLiMP BLiMP-Supp. EWoK SuperGLUE Average BEAR

BabyLlama 69.8 59.5 50.7 63.3 60.8 5.4
LTG-BERT 60.6 60.8 48.9 60.3 57.7 5.7

BabyHGRNntp (ours) 69.4 55.6 50.7 63.0 59.7 5.6
BabyHGRN (ours) 72.1 58.6 51.3 65.8 63.3 7.5

Table 5: Evaluation results for the 10M words track ("strict-small"). The BabyLM score is computed as a macro
average over four datasets (BLiMP, BLiMP Supp., EWoK and SuperGLUE) but note that the macro average may
not be a representative overall score for each model, since the datasets are of widely varying size (e.g. the BLiMP
supplements is only 7% in size compared to the BLiMP). We additionally include the BEAR score for comparison
and evaluation of factual knowledge.

BLiMP BLiMP-Supp. EWoK SuperGLUE Average BEAR

BabyLlama 73.1 60.6 52.1 69.0 63.7 8.5
LTG-BERT 69.2 66.5 51.9 68.4 64.0 8.2

BabyHGRNntp (ours) 74.5 59.1 52.88 69.1 63.9 13.5
BabyHGRN (ours) 77.5 58.5 51.6 70.7 64.9 13.6

Table 6: Evaluation results for the 100M words track ("strict"). The BabyLM score is computed as a macro average
over four datasets (BLiMP, BLiMP Supp., EWoK and SuperGLUE). We additionally include the BEAR score for
comparison and evaluation of factual knowledge.

lama). As Table 5 shows, BabyHGRN particu-
larly outperforms the baselines on the BLiMP (↑2.4
pp vs. BabyLlama) and SuperGLUE (↑2.5 pp vs.
BabyLlama) tasks, and significantly improves the
BEAR score (↑1.8 pp vs. LTG-BERT).

On the 100M words track (refer to Table 6),
BabyHGRN outperforms the baselines with a
marco average of 64.9% (↑0.9 pp vs. LTG-BERT),
though the improvement is not as pronounced as in
the more data-constrained 10M scenario. Here,
BabyHGRN improves in particular the BLiMP
(↑4.4 pp vs. LTG-BERT) and SuperGLUE (↑1.7 pp
vs. BabyLlama) tasks, but falls short on BLiMP-
Supplement (↓7.4 pp vs. LTG-BERT)6.
Knowledge distillation is helpful. We also
note that our knowledge distillation approach
significantly improves performance of BABYH-
GRN, compared to the distillation-free approach
BabyHGRNntp. As Tables 5 and 6 show, Baby-
HGRN outperforms both, BabyLlama and LGT-
BERT, baselines. Further, we observe BABYH-
GRN outperforms BabyHGRNntp by 5.3 pp on
average in the data-constrained 10M setting, con-
firming the usefulness of distillation losses in such
settings.

6Detailed results for BLiMP, BLiMP-Supplement, EWoK
and (Super)Glue are provided in Appendix D.

BABYHGRN is better at learning factual knowl-
edge. While the accuracy on BEAR is relatively
low across all settings (compared to state-of-the-
art models such as LLaMA-3 with 68.6), we
observe that BABYHGRN strongly outperforms
transformer-based baselines in data-restricted set-
tings. For instance, BEAR shows a pronounced dif-
ference between BabyHGRN and BabyHGRNntp

on the 10M track, and a large difference between
the HGRN models and the baselines on the 100M
track. We primarily attribute this improvement to
the use of our custom dataset.

4 Related Work

In recent years, there has been a resurgence of inter-
est in recurrent neural network (RNN) architectures
for sequence modeling, particularly in the context
of large language models (LLMs). This renewed
focus has led to the development of several RNN-
based architectures that aim to combine the effi-
ciency of recurrent models with the expressiveness
of more complex architectures like transformers.

HGRN and HGRN2 The Hierarchically Gated
Recurrent Neural Network (HGRN) (Qin et al.,
2023) introduces a novel gating mechanism that
allows for more effective modeling of long-term
dependencies. The key innovation of HGRN is

87



its hierarchical structure, in which forget gates
have monotonically increasing lower bound values
from bottom layers to upper layers. This design
enables lower layers to model short-term dependen-
cies while upper layers capture long-term relation-
ships in the data. HGRN achieves efficient training
by reformulating its recurrent computation as a par-
allel scan operation to enable parallelization across
sequence length while maintaining linear time com-
plexity.

Building upon HGRN, Qin et al. (2024) introduced
HGRN2 which further enhances the capabilities
of gated linear RNNs. HGRN2 addresses some
limitations of its predecessor by incorporating a
state expansion mechanism. This innovation sig-
nificantly increases the recurrent state size without
introducing additional parameters, leading to im-
proved expressiveness.

xLSTM Another recently proposed RNN-based ar-
chitecture is the Extended Long Short-Term Mem-
ory (xLSTM) (Beck et al., 2024). xLSTM builds
upon the classical LSTM (Hochreiter and Schmid-
huber, 1997) by introducing two key modifications:
exponential gating and modified memory struc-
tures. The exponential gating mechanism allows
the model to revise storage decisions more effec-
tively, addressing a key limitation of traditional
LSTMs. xLSTM introduces two variants: sLSTM
with a scalar memory and new memory mixing
technique, and mLSTM with a matrix memory and
covariance update rule, which is fully paralleliz-
able. The xLSTM approach demonstrates strong
performance across various modalities, including
language, vision (Alkin et al., 2024; Chen et al.,
2024), and audio (Yadav et al., 2024), while main-
taining linear scaling in sequence length and effi-
cient inference.

The Mamba architecture (Gu and Dao, 2024) im-
proves on state space models (SSMs) by intro-
ducing selective state spaces. Building on struc-
tured SSMs (Gu et al., 2022), Mamba achieves
linear-time sequence processing through input-
dependent SSM parameters, enabling selective in-
formation propagation across sequences. This
mechanism is conceptually similar to gating in clas-
sical RNNs (Hochreiter and Schmidhuber, 1997)
while maintaining modern computational benefits.
The architecture consists of repeated blocks that
combine selective SSMs with feed-forward com-
ponents, in contrast to more complex predecessors

like H3 (Fu et al., 2023) and Hyena (Poli et al.,
2023). Though attention-free, Mamba matches or
exceeds Transformer performance (Vaswani et al.,
2023) across various domains. Its recurrent com-
putation pattern eliminates the need for attention
caches during inference, leading to 5× faster in-
ference compared to similar-sized Transformers.
This combination of linear scaling and efficiency,
without sacrificing model quality, makes Mamba a
significant development in sequence modeling.

The development of HGRN2, xLSTM, and
Mamba is part of a broader trend in revisiting and
improving RNN architectures (Peng et al., 2023;
Sun et al., 2023).

5 Conclusion

We presented BabyHGRN, an RNN-based lan-
guage model that utilizes the HGRN2 architec-
ture. Our experimental results on the evaluation
datasets of the BabyLM Challenge and the BEAR
probe indicate that BabyHRGN is competitive. In-
deed, despite relatively little hyperparameter opti-
mization, our approach significantly outperforms
strong transformer-based baselines on the evalua-
tion datasets.

Revisiting our research question posed in Sec-
tion 1, we conclude that RNN-based language
models are indeed competitive in low-resource lan-
guage modeling scenarios. Based on these results,
we believe that advanced RNN-based architectures
such as HGRN and Mamba may hold promise for
research in sample-efficient language modeling.
Accordingly, future work could explore further op-
timizations of the underlying RNN architectures,
investigate their performance on a broader range
of tasks, and examine their scalability to larger
datasets and model sizes.
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Limitations

Our experiments with HGRN2 in the BabyLM
Challenge demonstrate the competitiveness of
RNN-based models with transformers in low-
resource scenarios. However, while we find our
results to be promising, it’s important to acknowl-
edge that there are several avenues for optimization
that we have yet to explore:

Dataset sampling The dataset we used to train
BabyHGRN was produced using a naive random
sampling of the PILE dataset. More sophisticated
approaches, such as importance sampling special-
ized for downstream tasks, would likely yield bet-
ter results, especially if optimized for the tasks
BabyLM evaluates on. In our work, we refrained
from such "dataset engineering" and focused solely
on a comparison of different RNN architectures.

Model configurations We utilized the configura-
tions provided by the authors of HGRN2 and xL-
STM. Further experimentation with different archi-
tectures and hyperparameters for the low-resource
scenario could well lead to improved performance
of these models.

Context length Optimizing the context length for
our specific tasks and data could potentially en-
hance the model’s capabilities. Work from previ-
ous years challenge (Edman and Bylinina, 2023;
Cheng et al., 2023) suggests that a smaller context
size improves performance on all benchmarks.

Knowledge distillation As previously discussed,
we only implemented a basic knowledge distilla-
tion approach to train BabyHGRN. More sophis-
ticated techniques, such as those employed by
Timiryasov and Tastet (2023) could further boost
performance.

Our work thus serves as a proof of concept,
demonstrating that RNNs can be competitive with
transformers in this domain, while leaving room
for further advancements.
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A Finetune Hyperparameters

Hyperparameter Value

Initial learning rate 5e-5
Batch size 64
Maximum epochs 10
Evaluate every (epochs) 1
Patience 3

Figure 2: Default hyperparameters for fine-tuning on
the (Super)Glue tasks.

B Model Configurations

Transformer Value

Hidden Size 1024
Intermediate Size 4096
Hidden Layers 22
Attention Heads 32

LSTM Value

Hidden Size 9120
Embedding Size 512
LSTM Layers 2
Dropout 0.1

xLSTM Value

Embedding Size 1024
Num Blocks 48
mLSTM Heads 4
sLSTM Heads 4
sLSTM BLocks at [3, 5, 7, 40, 42, 44]

Mamba Value

Hidden Size 1024
Intermediate Size 2048
Hidden Layers 48
State Size 8

HGRN2 - 360M Value

Hidden Size 1024
Layers 26
Hidden Ratio 4
Expand Ratio 128

HGRN2 - 1.2B Value

Hidden Size 2048
Layers 18
Hidden Ratio 4
Expand Ratio 128

Table 7: Complete list of model configurations.

92

https://arxiv.org/abs/1912.00582
https://arxiv.org/abs/1912.00582
https://doi.org/10.18653/v1/2024.findings-naacl.155
https://doi.org/10.18653/v1/2024.findings-naacl.155
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/2408.16568
https://arxiv.org/abs/2408.16568
https://github.com/sustcsonglin/flash-linear-attention
https://github.com/sustcsonglin/flash-linear-attention
https://github.com/sustcsonglin/flash-linear-attention


C Learning Rate Parameter Sweep

Figure 3: Evaluation results of learning rate sweep over
different architectures. Scores are reported as the macro
average over the three zero-shot benchmarks BLiMP,
BLiMP-Supplement and EWoK.

D Final BabyLM Evaluation Scores

We provide detailed scores of all SuperGLUE,
BLiMP-Supplement and EWoK tasks in Tables 8,
9 and 10. Due to the large number of subtasks
in BLiMP, we will make the scores accessible
though our Github repository: https://github.
com/HallerPatrick/BabyLM-2024.
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Model (variant)
SuperGLUE

BoolQ CoLA (MCC) MNLI MNLI-MM MRPC (F1) MulitRC QNLI QQP (F1) RTE SST-2 WSC Average

Strict-small Track (10M Words)

BabyLlamabaseline 65.0 2.2 72.4 74.2 82.0 60.1 82.8 83.6 49.6 86.2 38.5 63.3
LTG-BERTbaseline 68.8 0.0 68.9 68.9 82.2 58.5 76.5 34.2 58.3 85.1 61.5 60.3

HGRN2 63.8 19.1 68.7 68.7 82.5 63.4 64.7 79.9 58.9 85.5 38.5 63.0
HGRN2distilled 65.4 33.1 69.3 69.5 81.0 59.7 72.3 81.9 54.0 89.4 48.1 65.8

Strict-small Track (100M Words)

BabyLlamabaseline 66.1 37.3 75.6 76.2 86.8 62.1 83.1 84.5 60.4 88.3 38.5 69.0
LTG-BERTbaseline 61.7 34.6 77.7 78.1 83.1 52.6 78.2 86.7 46.8 91.5 61.5 68.4

HGRN2 64.4 39.9 74.3 74.3 82.8 61.4 79.9 83.1 58.9 89.6 51.6 69.1
HGRN2distilled 64.8 40.3 74.8 75.9 81.5 61.4 81.5 84.1 58.3 90.1 65.4 70.7

Majority Labelsval 64.0 69.9 35.7 - 68.1 57.7 50.9 62.7 53.9 51.8 61.5 57.6

Table 8: Detailed results for every task in die (Super)GLUE benchmark for the strict and strict-small track.

Model Hypernym QA congruence (easy) QA congruence (tricky) Subj.-Aux. Inversion Turn Taking Average

Strict-small Track (10M Words)

BabyLlama 49.6 54.7 41.2 86.0 66.1 59.5
LTG-BERT 54.2 62.5 49.1 79.9 58.2 60.8

HGRN2distill 49.8 56.2 37.6 89.6 59.6 58.6

Strict Track (100M Words)

BabyLlama 45.6 56.2 44.8 83.9 72.5 60.6
LTG-BERT 55.0 75.0 53.3 87.5 61.4 66.5

HRN2distill 48.6 64.1 35.8 84.9 59.3 58.5

Table 9: Detailed results for the BLiMP-Supplement benchmark for the strict and strict-small track.
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BabyLlama 50.5 51.7 49.4 54.2 50.4 50.6 53.5 50.7 50.3 49.8 46.7 50.7
LTG-BERT 50.2 51.0 45.3 42.5 49.1 51.0 48.1 51.7 53.4 50.6 45.3 48.9

HGRN2distll 50.1 50.9 50.6 55.0 50.7 50.4 51.3 54.1 51.2 50.3 49.8 51.3

Strict Track (100M Words)

BabyLlama 50.1 55.5 50.0 57.5 51.4 50.5 56.7 52.7 49.7 50.0 49.0 52.1
LTG-BERT 50.1 55.8 50.6 58.3 48.9 50.9 53.8 51.4 50.8 53.8 49.2 51.9

HGRN2distll 50.2 52.5 51.8 49.2 51.4 50.6 54.5 51.4 57.0 49.7 49.6 51.6

Table 10: Detailed results for the EWoK benchmark for the strict and strict-small track.
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