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Abstract

We present Temporal Positive Pointwise Mu-
tual Information (TPPMI) embeddings as a ro-
bust and data-efficient alternative for model-
ing temporal semantic change. Based on the
assumption that the semantics of the most fre-
quent words in a corpus are relatively stable
over time, our model represents words as vec-
tors of their PPMI similarities with a predefined
set of such context words. We evaluate our
method on the temporal word analogy bench-
mark of Yao et al. (2018) and compare it to the
TWEC model (Di Carlo et al., 2019), demon-
strating the competitiveness of the approach.
While the performance of TPPMI stays below
that of the state-of-the-art TWEC model, it of-
fers a higher degree of interpretability and is
applicable in scenarios where only a limited
amount of data is available.

1 Introduction

Word embedding models have become the dom-
inant approach to modelling lexical semantics in
the natural language processing (NLP) community.
While contextual embeddings are now prevalent
in most NLP applications, common static embed-
ding methods such as word2vec (Mikolov et al.,
2013) and GLoVe (Pennington et al., 2014) are still
widely used in the computational modeling of word
meaning, including the study of semantic change.
Modern approaches train temporal word embed-
dings by learning alignments between multiple sets
of word vectors (Hamilton et al., 2016; Di Carlo
et al., 2019), but these approaches rely on the avail-
ability of a large amount of training data from each
time period.

The efficiency and robustness of Pointwise Mu-
tual Information (PMI) as a simple measure for
word co-occurrence has been demonstrated in mul-
tiple studies (Bullinaria and Levy, 2007; Levy and
Goldberg, 2014; Wendlandt et al., 2018). In this
study we propose the use of Positive Pointwise

Mutual Information (PPMI) to create temporal em-
beddings that represent the meaning of words as
vectors of their PPMI with a small fixed set of
context words chosen from the most frequent con-
tent words of the corpus, based on the assumption
that the semantics of these words is relatively sta-
ble across time. Our experiments on the tempo-
ral word analogy task of Yao et al. (2018) demon-
strate that this highly interpretable model offers a
robust and competitive measure of lexical seman-
tic change. The rest of the paper is structured as
follows: Section 2 summarizes recent research on
temporal word embeddings. Section 3 presents
our method. Section 4 describes our experimental
setup and Section 5 presents results of both quanti-
tative and qualitative analysis. Section 6 concludes
the paper. All software described here is publicly
available on GitHub1 under an MIT license.

2 Related Work

Word embeddings have been used extensively to
study lexical semantic change. Yao et al. (2018)
trains time-aware word embeddings by jointly
learning multiple word embeddings and their align-
ment. For evaluation they train on a dataset of
nearly 100,000 crawled articles from the New York
Times (NYT), published between 1980 and 2016,
and evaluate their method by using the resulting
vector spaces to solve simple temporal reasoning
tasks. One of these tasks that has since been reused
for evaluating temporal embeddings, and which we
also use in this paper, are temporal analogy ques-
tions of the form 2012:Obama = 2004:?. In this
example a temporal embedding is expected to pre-
dict Bush as a likely or even the most likely answer
based on the assumption that the word’s semantics
in 2004 news texts should be (most) similar to that
of Obama in 2012.

1https://github.com/FlackoJodye1/
temporal-word-embeddings

https://github.com/FlackoJodye1/temporal-word-embeddings
https://github.com/FlackoJodye1/temporal-word-embeddings
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Rudolph and Blei (2018) develop Dynamic
Bernoulli Embeddings, a type of Exponential Fam-
ily Embeddings (Rudolph et al., 2016), which cap-
ture change by modeling words as sequences of
embeddings over time slices that are grounded in
a space of shared context vectors. They train their
models on corpora of scientific papers and U.S.
Senate speeches. In addition to qualitative analy-
sis of the resulting embeddings they also perform
intrinsic evaluation that involves calculating their
loss function on heldout portions for each dataset
and time period. This experiment is reproduced
by Di Carlo et al. (2019), who propose the TWEC
method for aligning word2vec embeddings trained
on data from various time periods based on a shared
target vector space trained on atemporal data. They
also test their method on the temporal analogy task,
and it is this approach that we use for comparison
when evaluating the TPPMI method.

3 Method

The Temporal Positive Pointwise Mutual Informa-
tion (TPPMI) method models semantic change of
words based on their distribution w.r.t a fixed set of
the most frequent content words of the atemporal
context, based on the assumption that these words
exhibit relatively stable semantics. Pointwise Mu-
tual Information (PMI) measures the co-occurrence
of a word w with a context word c by calculating

PMI(w, c) = log
P̂ (w, c)

P̂ (w)P̂α(c)
− log(k)

where P̂ (w, c) is the co-occurrence probability
of w and c, P̂ (w) is the overall probability of w,
P̂α(c) is the probability of c smoothed and k is a
shifting constant (Levy and Goldberg, 2014). In all
our experiments we use α = 1 and k = 1. Positive
Pointwise Mutual Information (PPMI) is defined
as

PPMI(w, c) = max(PMI(w, c), 0)

TPPMI embeddings for each time period map
words to vectors of PPMI values between each
word and the fixed set of context words, calculated
on data from the given time period. This results in
word embeddings that are highly interpretable com-
pared to standard word vectors, since dimensions
directly correspond to individual context words. As
a second step, the entries of the PPMI matrices are

smoothed in time using a cubic spline separately
for each component of the embedding vectors to
stabilize the vectors in each slice.

The static set of context words is determined
by removing stopwords from the atemporal corpus
(the union of all time slices) and sampling from the
most frequent words in the corpus. The number of
words, which determines the dimensionality of the
TPPMI embeddings, is a parameter of our approach.
To create a set of n context words we sample from
the 2n most frequent words. Stopword removal is
performed using the nltk2 package. The size of
the context word set greatly influences the robust-
ness and performance of our models and should
be optimized separately for each application of the
TPPMI approach.

4 Experiment

Following the experimental setup of Di Carlo et al.
(2019) we train our temporal embeddings on the
NYT dataset and evaluate it on temporal word
analogies (see also Section 2). We compare our
model to both TWEC and to static word2vec em-
beddings as a trivial baseline.

4.1 Models

The TPPMI embeddings are trained using the pro-
cess described in Section 3. The number of context
words is set to 2,000. The TWEC model and the
static word2vec model (SW2V) are trained usting
the hyperparameters from Yao et al. (2018) and
Di Carlo et al. (2019), embedding dimension is 50,
the context window size is 5, and the vocabulary
size is 21,000. All text is lowercased, stopwords as
well as words with an overall frequency below 200
are omitted.

4.2 Temporal Word Analogies

We compare the TPPMI model with established
methods using a modified version of the temporal
analogical reasoning task introduced by Yao et al.
(2018). The task of solving a temporal word anal-
ogy (TWA) can be expressed as t1 : w1 = t2 :?
and entails predicting the word w2 that at time t2 is
semantically most semantically similar to the word
w1 at time t1. In all vector space models this pre-
diction is achieved by identifying the word whose
vector in the vector space of time t2 is most similar
to the vector of w1 at time t1.

2https://www.nltk.org/

https://www.nltk.org/
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The training dataset contains 99,872 crawled
articles from the New York Times, all of them pub-
lished between January 1990 and July 2016. The
dataset was also used by Yao et al. (2018) and was
provided to us by the authors. Following previous
experiments we partition the articles into batches
for each calendar year, resulting in a total of 27
slices. The temporal analogy queries introduced by
Yao et al. (2018) are derived from publicly available
records and contain the names of persons occupy-
ing various public offices in each calendar year,
including U.S. President, the Chancellor of Ger-
many, the Governor of New York, among others.
In our experiments we focus only on analogies in-
volving U.S. Presidents. The test queries contain
two types of analogies:

• Static analogies: The target word is iden-
tical to the query word, e.g. 2003:bush =
2004:bush

• Dynamic analogies: The target word dif-
fers from the query word, e.g. 2003:bush =
2011:obama

Following Di Carlo et al. (2019) we evaluate our
method separately on each subset. This is neces-
sary to separate cases where the trivial strategy of
the static embedding (SW2V) yields the correct
answer. Evaluating on both datasets ensures that
temporal embedding models strike a balance be-
tween stability and dynamism. Basic descriptive
statistics about the test set are shown in Table 1.

Analogies Total queries Unique queries

All 8272 369
Static 2333 335

Dynamic 5938 369

Table 1: Basic statistics of the Temporal Word Analogy
test set. For each unique pair of query word and year
(e.g. 2012:obama) the test set contains queries for mul-
tiple years (e.g. 1990:?, 2000:?, etc.), hence the total
number of queries is much larger then the number of
unique queries

Named Entities Our early experiments revealed
a significant artefact of the evaluation data. Since
all queries and target words are named entities,
evaluation results are largely influenced by some
models’ tendency to predict target words that have
the same part-of-speech as the query word, behav-
ior that is characteristic of most static word em-

beddings. Since this behavior offers an unwanted
advantage on the TWA task, we modify the exper-
imental setup by filtering words predicted by any
model to only contain named entities. This strategy
increases the performance of all models, since the
set of possible answers is considerably reduced, but
focuses the evaluation on models’ ability to predict
semantic shifts. For the filtering step we use the
Pantheon dataset of globally famous biographies
(Yu et al., 2016), the set of possible target words is
reduced to those that are listed in this dataset as per-
son names. This strategy can trivially be extended
to other entity types to allow for broader sets of
TWA queries.

4.3 Evaluation

For each model cosine similarity is used to retrieve
the vectors most similar to that of the target word,
yielding a ranked list of possible answers to each
query. These lists are then compared to the ground
truth using two metrics, Mean Reciprocal Rank
over the top 10 answers (MRR@10) and Mean Pre-
cision at various thresholds (MP@k). Both metrics
are defined below.

Mean Reciprocal Rank (MRR@10) is the aver-
age rank that a model assigns to the correct answer.
For each query i, ranki is the rank of the expected
answer in the list of predicted answers returned
by a model. The MRR of the model can then be
defined as

MRR =
1

N

N∑
i=1

1

ranki

To calculate MRR@10, 1
ranki

is set to 0 if the word
is not among the top 10 predicted words.

Mean Precision (MP@k) averages over all
queries whether the expected answer is among the
top k predicted answers. For a query i we define
Pi@k to be 1 if the top k predicted words contain
the target word and 0 otherwise. MP@k is then
defined as

MP@k =
1

N

N∑
i=1

Pi@k

MP@1 is equivalent to model accuracy, measuring
the ratio of queries for which the model success-
fully predicted the target word as the most likely
answer.
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5 Results

5.1 Quantitative Analysis

Table 2 shows all scores for each of the three mod-
els. The static baseline (SW2V) that uses the same
vector space for query and target words achieves
1.0 accuracy (MP@1) on the static test set and 0.0
accuracy on the dynamic test set. Its MP@3 score
of 0.709 on the dynamic test set demonstrates that
most target words are among those that are distribu-
tionally most similar to the query word in the atem-
poral space, i.e. all names of recent U.S. presidents
are relatively close together in a static word embed-
ding. This property of the corpus together with our
NE filtering strategy is responsible for high MP@k
scores across the board, MP@10 values show that
for all models the target word is among the top
10 predicted words for 80% of static queries and
between 48 and 56% of dynamic queries. The high
scores achieved even by the trivial baseline SW2V
on the complete dataset ("All") also illustrates the
need to evaluate models separately on the dynamic
subset, i.e. on those analogies where the target
word is different from the query word.

Both the TWEC and TPPMI models perform
robustly in static analogies, with TWEC achiev-
ing slightly higher scores. TWEC’s MRR@10 is
0.668 compared to TPPMI’s 0.592, and TWEC’s
MP@1 is 0.591 compared to TPPMI’s 0.493. How-
ever, TPPMI shows strong performance with an
MP@3 of 0.663 and MP@5 of 0.729, demonstrat-
ing its capability to rank relevant words highly in
static contexts. This indicates that while both mod-
els effectively capture stable semantic associations,
TWEC has a slight edge in precision. Nonetheless,
the TPPMI model showcases its ability to produce
robust temporal embeddings with a much simpler
approach.

On dynamic analogies, the TWEC model
significantly outperforms TPPMI, achieving an
MRR@10 of 0.402 and MP@1 of 0.326 compared
to TPPMI’s 0.302 and 0.225, respectively. In terms
of MRR the TPPMI is on par only with the static
baseline, but its accuracy (MP@1) of 0.225 on
the dynamic set indicates its potential for correctly
predicting semantic shifts. While further research
shall be necessary to improve our method, these
preliminary results suggest that the TPPMI model
has potential as a simple, interpretable, and com-
putationally efficient alternative to state-of-the-art
methods. The interpretability of the method is fur-
ther demonstrated by the qualitative analysis in the

next section.

5.2 Qualitative analysis

Much recent work on temporal word embeddings
has performed qualitative analysis using a variety
of trajectory visualizations based on 2-dimensional
projections of vector spaces. In our work we focus
only on relative similarity of vectors as measured
by cosine similarity and conduct two simple exper-
iments for inspecting our model’s ability to capture
semantic change and temporal analogies, respec-
tively.

Figure 1 plots the cosine similarity between the
word "president" and the names "obama," "biden,"
"clinton," and "bush" over the years 1990 to 2016.
The gray dotted lines on the graph indicate the
years when a new president was elected: Bill Clin-
ton in 1992, George W. Bush in 2000, and Barack
Obama in 2008. This plot is especially interesting
because Bush is also the name of the U.S. Presi-
dent before 1992 and Clinton is also the name of
the Democratic candidate in 2016, accounting for
the periodicity observed in each curve.

Next we demonstrate the workings of a temporal
word analogy. Given the TWA query 2004:Bush =
2012:? the prediction of the TPPMI model will be
based on the similarity of target words in 2012 to
those context words that are most similar to Bush
in 2004. Figure 2 shows the top 10 such context
words and their similarities to both Bush in the
2004 vector space and to Obama in the 2015 vector
space. The years 2004 and 2012 were chosen as
they are the re-election years for George W. Bush
and Barack Obama, respectively. We can observe
that some, but not all of these context words main-
tain a high similarity with the name of the sitting
president across time periods. While in this case
the observed distinctions are trivial, e.g. that among
the words most closely associated with Bush, pres-
ident and re-election are more distinctive of his
2012 role than the word George, it nevertheless
demonstrates the TPPMI model’s ability to offer
similar but less trivial insights from limited amount
of temporal data.

6 Conclusion

We presented the Temporal Positive Pointwise Mu-
tual Information model of lexical semantic change.
TPPMI offers an interpretable and robust approach
to capturing temporal semantic shifts of words, ad-
dressing the challenges of small and sparse datasets.
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Table 2: Evaluation results on the Temporal Word Analogy task.

Model Category MRR@10 MP@1 MP@3 MP@5 MP@10

TWEC
Static 0.668 0.591 0.723 0.768 0.818
Dynamic 0.402 0.326 0.455 0.508 0.560
All 0.455 0.383 0.504 0.551 0.602

TPPMI
Static 0.592 0.493 0.663 0.729 0.791
Dynamic 0.302 0.225 0.348 0.409 0.475
All 0.365 0.284 0.417 0.478 0.541

SW2V
Static 1.000 1.000 1.000 1.000 1.000
Dynamic 0.322 0.000 0.709 0.741 0.813
All 0.551 0.337 0.807 0.828 0.876

Figure 1: Yearly cosine similarities between the word ’president’ and the names of U.S. Presidents between 1990
and 2016, as measured by the TPPMI model

Figure 2: Top context words for Bush in 2004 and their PPMI similarities to both Bush in 2004 and Obama in 2012.
2004 and 2012 are the re-election years for George W. Bush and Barack Obama, respectively.
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The model is evaluated on a temporal word analogy
task and achieves reasonable performance on both
static and dynamic analogies. Despite its inferior-
ity to more sophisticated models like TWEC, we
believe that its simplicity and computational effi-
ciency make TPPMI a practical alternative for ap-
plications with limited data. Our qualitative analy-
sis further demonstrates the model’s ability to show
semantic shifts of individual words over time and
to offer explanations of such shifts based on the
words corresponding to significant dimensions.

Limitations

Despite its strengths, the TPPMI model’s perfor-
mance is clearly limited and appears to be infe-
rior to state-of-the-art methods on the TWA bench-
mark. While the method is a practical alternative
for applications with limited data and a need for
explainability, it is likely not sufficiently robust for
large-scale analysis of semantic change. The sig-
nificance of this preliminary work is further limited
by the choice of a single training dataset, a sin-
gle evaluation benchmark, and a single reference
system.

Ethical considerations

As any distributional model, TPPMI embeddings
may inherit and amplify harmful biases present in
its training data. Mitigating this risk requires care-
ful data selection, preprocessing, and ongoing eval-
uation of model bias. However, the interpretability
of TPPMI embeddings offers a lowered risk of
bias in temporal predictions compared to alterna-
tive methods, since the significant dimensions are
directly associated with individual context words.

Notes

The first version of the TPPMI method was pre-
sented at the conference of ELTE Angelusz Róbert
College for Advanced Studies in Social Sciences
and published in the associated conference proceed-
ings (Rakovics, 2022). The improved version of the
method was presented at the 8th International Con-
ference on Computational Social Science (IC2S2)
as a conference poster (Rakovics and Rakovics,
2022).
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modell alkalmazásában rejlő lehetőségek demon-
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