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Abstract

Modern multi-lingual coreference resolution
approaches largely focus on the clustering of
mention spans, leading to quartic complexity
in the choice of both spans and span links. The
recently published CAW-coref reduces coref-
erence complexity to quadratic while still at-
taining 97.9% of SOTA performance through a
word-level approach on the English OntoNotes
slice. Naively extending the CAW-coref al-
gorithm towards multiple languages on the
CorefUD dataset results in a lackluster 77.4%
of SOTA performance. We find this is due
to annotation differences across OntoNotes
and CorefUD—the latter features singletons
which CAW-coref is not able to classify. In re-
sponse, we introduce MSCAW-coref, which ex-
tends CAW-coref to work in a multilingual set-
ting and accounts for singleton mentions. We
demonstrate that MSCAW-coref attains 95.7%
of SOTA performance on CorefUD while be-
ing substantially more efficient. Our algorith-
mic contribution towards accounting for sin-
gletons is a major driver of performance. Fi-
nally, we discuss the cross-linguistic general-
ization capability of our approach. We release
the models, code, and a package for perform-
ing coreference analysis for the community
as a part of Stanza (https://github.com/
stanfordnlp/stanza).

1 Introduction

Coreference resolution (“coref”) is the task of find-
ing textual spans within a document that refer to
the same entity in the real world. It is an important
parsing step with many applications in NLP (Juraf-
sky and Martin, 2021). Coref is especially difficult
when processing long documents with correspond-
ing long chains of dependencies. Classical end-to-
end neural approaches (Lee et al., 2017) often use
a procedure that resolves coref by first identifying
spans and then linking them together, leading to an
O(n4) computation for n tokens. Worse yet, state-

of-the-art (SOTA) coref approaches are often tran-
sition parsers (Bohnet et al., 2023), which require
multiple forward passes of a language model (LM)
to resolve all chains. Such inefficient computation
is often untenable, especially in long documents.

Dobrovolskii (2021) and D’Oosterlinck et al.
(2023) introduce WL-coref and CAW-coref, which
are two iterations of an approach which (1) creates
word-level bilinear links for head-word identifica-
tion, (2) filters the links for likely coreference, and
(3) extracts the spans surrounding each headword.
This only-once-bilinear approach reduces the com-
plexity of the coref computation to O(n2) while
causing little loss in coref performance.

While these approaches are promising for high-
efficiency coref computations, two limitations re-
main: first, these current approaches only focus
on English, usually using the OntoNotes corpus
(Weischedel et al., 2011); second, the identifica-
tion of singleton mentions are beneficial across ap-
plication domains of coreference (Recasens et al.,
2013) but cannot be represented with existing word-
level approaches due to the current heuristic of
non-mentions being words with no antecedents.

In response, we introduce MSCAW-coref, an ex-
tension of the word-level coreference approach that
addresses both of these challenges. To support
singleton links, we revise the head-word linking
step in CAW-coref to include a “sequence start”
antecedent link for all first references in a chain,
thereby supporting singletons through having at
least one antecedent link; to support multilinguality,
we apply a low-rank adaptation parameter-efficient
fine-tuning scheme to XLM-RoBERTa (Hu et al.,
2021; Conneau et al., 2020) to create contextual
embeddings with multilingual support.

We train our approach on CorefUD, a multi-
lingual coreference dataset with annotated single-
tons (Nedoluzhko et al., 2022), and demonstrate
95.7% performance compared to the best-reported
quartic multilingual results while maintaining the
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dramatically more efficient modeling approach of
word-level coref. We further demonstrate that our
approach can zero-shot generalize to unseen lan-
guages at training time at a slight cost to perfor-
mance.

2 Related Work

2.1 Modeling Approaches

Transition and Sequence-to-Sequence Parses
The current state-of-the-art in coref (Bohnet et al.,
2023) is formulated as an autoregressive, transition-
based parser which creates each link with a forward
pass of a 13B parameter LM until the reference
chains are built. These methods have been demon-
strated to generalize well over structured language
parsing tasks (Paolini et al., 2021) and can be re-
formulated as autoregressive language modeling
tasks either by identifying coreferences directly
(Zhang et al., 2023) or through many surrogate
tasks such as question-answering (Wu et al., 2020)
or even language model prompting (Le and Ritter,
2023). While the performance of these approaches
is strong, processing n tokens corresponds to worst-
case n forward passes with a time complexity of
O(n) of a full (possibly very large, as in the case of
Bohnet et al., 2023) LM required building all tran-
sitions, which introduces significant inefficiencies
for long documents.

Span-Level Parses Despite the significant per-
formance gains of recent Seq2Seq approaches, the
vast majority of modern approaches are span-level
parses which first formulate likely mentions before
linking them together. The first end-to-end corefer-
ence model (Lee et al., 2017) follows this approach,
which was later improved with an LM for contex-
tual embeddings (Joshi et al., 2019) and multilin-
gualism (Pražák et al., 2021). In addition to span-
level linking, later work such as SpanBERT (Joshi
et al., 2020) improved the performance even further
by incorporating span-level representations. While
being significantly more scalable than transition-
based parses, these approaches still require the LM
to disambiguate coref decisions, scaling by a factor
of O(n4) for n input tokens (with pruning to opti-
mize runtime performance at the cost of accuracy
and to keep the problem from being intractable)
due to the need to first create spans O(n2) then
link them together O(n2).

Word-Level Parses In response to these inef-
ficiencies, approaches emerged that link words

together first prior to detecting spans. Kirstain
et al. (2021) achieved promising span-level results
without using spans at all, by formulating a word-
level link to the end of each span instead. In this
work, we build most directly upon WL-coref and
CAW-coref (Dobrovolskii, 2021; D’Oosterlinck
et al., 2023)—approaches that link head-words to-
gether before expanding each into spans.

2.2 Multilinguality
Recent approaches that demonstrated perfor-
mance gains in handling multilinguality vary from
language-specific fine-tuning (Skachkova et al.,
2023), monolingual training from scratch (Pražák
et al., 2021), or joint training with a multilingual
LM (Straka, 2023). Despite the gains from spe-
cific fine-tuning demonstrated by prior approaches,
the joint training method currently holds the best
result for the multilingual coreference shared task
(Žabokrtský et al., 2023) and is extended upon in
this work.

3 MSCAW-coref

3.1 Data Preprocessing
To create head-word coreference data via anno-
tated span-level entities, we follow CAW-coref. We
use the dependency parse information given in the
source dataset to pick the headword that is (1) de-
pendent on a word outside the span or, if available,
(2) coordinating conjunction within each span, if
less than two dependency steps away from the head-
word from (1). We discuss concerns of soundness
for maintaining conjunction-awareness across lan-
guages in appendix C.

3.2 Modeling
Our MSCAW-coref extends CAW-coref
(D’Oosterlinck et al., 2023). We now de-
scribe our approach here while additionally
summarizing the aspects of CAW-coref left
unchanged.

Word-Level Representations CAW-coref lever-
aged a monolingual LM backbone, specifically
RoBERTa-large (Liu et al., 2019), for contextual
word-level representations by performing a single
forward pass of the input document. To support
multilingualism, we elected to use the larger 561M
parameter XLM-RoBERTa-large (Conneau et al.,
2020) as our LM backbone. To improve train-
ing time performance, we tune our approach using
Low-Rank adaptations (Hu et al., 2021).
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Coarse Scoring Without change from
CAW-coref, a coarse antecedent score is
created by a bilinear mapping between each
of the input word embeddings obtained in the
previous step. For each word, then, the top k
coarse antecedents’ embeddings are then passed to
the next step.

Final Scoring and Singleton Prediction We first
apply a small feed-forward network to compute a
fine antecedent score for each word against its top k
coarse antecedents, with higher values representing
headwords that are more likely to be coreferential.

Second, we formulate an additional binary classi-
fication task whereby the fine antecedent scores of
all words, including those in the future, are used as
input features to predict whether or not each word
is the first occurrence of a coreference chain.

After this is complete, for each word in the
document, we obtain (1) k real-valued antecedent
scores—computed as the sum of the rough and fine
antecedent scores—for being a possible antecedent
corresponding to k candidate antecedents in the
document as well as (2) a single real-valued score
for that word being the first member of a mention.

Coref Chain Construction We perform a greedy
breadth-first search procedure using the scores com-
puted in the fine-scoring step to chain corefs. We
first examine the highest score for each word and
delineate three cases—(1) if all of its scores are
negative, we consider the word not coreferent and
ignore it; (2) if any of its top-k antecedent scores
are the highest of all scores, we add the correspond-
ing antecedent word to our search stack; (3) if the
first-mention score is the highest, we mark that
word as the first mention in our search tree and add
it to the search stack. After emptying the search
stack, we obtain chains of coreferent words by re-
tracing antecedent links, with the first token of each
chain marked as “first-mention”.

Notably, we can detect singletons by distinguish-
ing cases (1) and (3)—words could have no valid
antecedents (i.e., fitting case (2)), yet still, be added
to our search/coref stack—even if size 1—due to
its first-mention score.

Span Extraction Finally, exactly following
CAW-coref, for each coreferent word, a span is
extracted using a feed-forward neural network
followed by a 1-dimensional convolutional layer
which marks the start and end of each span. Coref-
erence cluster information is not given to this step.

4 Experiments

4.1 Data

Most current approaches to coref are trained on
OntoNotes (Weischedel et al., 2011) (including
previously CAW-coref and WL-coref), which is
a corpus which both does not include support for
singletons and have fairly shallow coverage of both
languages and linguistic phenomena (Nedoluzhko
et al., 2022; Zeldes); the dataset includes only En-
glish, Arabic, and Chinese sections.

However, recent advances in universal syntacti-
cal tagging (de Marneffe et al., 2021) resulted in
much more standardized annotations of morpholog-
ical features as well as dependencies (necessary for
our approach) across languages, leading to the de-
velopment of CorefUD (Nedoluzhko et al., 2022):
a multilingual corpus for coreference resolution.
This corpus is suitable for training our current task
as CorefUD has support for a variety of languages
(10) spanning across the Germanic, Slavic, and Ro-
mance families, and has annotations for singleton
mentions. Further, as described in section 4.2, the
corpus has been widely used in shared tasks for
multilingual coref.

To train and evaluate our model, we select the
entire publically available subset of CorefUD pub-
lished for the CRAC shared task, and prepare the
dataset in the manner described further in sec-
tion 4.2. We use train/dev splits provided by the
shared task, and make no modification in terms
of the data subset selection; if multiple datasets
were available for a particular language, we mixed
together all of them and trained jointly.

4.2 Baseline Study

Baselines The CRAC shared task on multilingual
coreference resolution (Žabokrtský et al., 2023)
directly uses the CorefUD (Nedoluzhko et al.,
2022) dataset; approaches presented in the task,
therefore, provide suitable and timely baselines
for multilingual coreference resolution. We there-
fore elect to score our approach against the top-
performing approaches presented in that shared
task. We also benchmark applying CAW-coref di-
rectly with a multilingual backbone without the
proposed changes for coref chain construction and
singletons.

Scoring MSCAW-coref follows a different defi-
nition of head-words (due to conjunction resolu-
tion described in section 3.1). This makes exact
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efficiency MUC B3 ceafe mean

complexity LM params R P F1 R P F1 R P F1 F1

ours O(n2) 561M 0.782 0.760 0.771 0.74 0.748 0.744 0.717 0.764 0.740 0.752
ours (naive CAW-coref)† O(n2) 561M 0.777 0.773 0.775 0.530 0.729 0.613 0.306 0.746 0.434 0.608
Straka, 2023 O(n4) 1.2B 0.810 0.814 0.812 0.779 0.780 0.78 0.788 0.741 0.763 0.785
Anonymous‡ - - 0.751 0.803 0.776 0.715 0.773 0.743 0.750 0.725 0.737 0.750
Pražák and Konopik, 2022∗ O(n4) 561M 0.728 0.762 0.745 0.658 0.639 0.649 0.637 0.523 0.574 0.656
Pražák et al., 2021 O(n4) 179M 0.642 0.776 0.703 0.422 0.714 0.531 0.255 0.702 0.374 0.536

Table 1: Performance of our approach on the CorefUD 1.1 dataset against baseline and top performers from the 2023
CRAC multilingual shared task, dev slice (Nedoluzhko et al., 2022). mean F1 is the main metric being evaluated.
Scores are calculated with the official scorer of the CRAC shared task but using exact span matches and including
singletons. Where possible, the published dev predictions from the shared task are used. †: implementation of
CAW-coref with our proposed multi-lingual backbone without novel singleton scorer. ‡: anonymous submission to
2023 challenge without corresponding publication. *: results presented are an iteration included in the 2023 shared
task. Model optimization details are given in appendix B.

Held Out
Span LEA Germanic Romance Slavic Uralic

all no de en es fr ca pl ru cs hu

none 0.689 0.734 0.638 0.656 0.712 0.503 0.693 0.68 0.677 0.715 0.569

no -0.075 -0.054 -0.144 -0.038 +0.043 +0.061 +0.033 +0.037 +0.001 +0.008 +0.084
de -0.085 -0.106 -0.317 -0.072 +0.059 +0.060 -0.010 +0.033 +0.020 +0.020 +0.067
en -0.074 -0.086 -0.146 -0.148 +0.088 +0.084 -0.003 +0.026 +0.008 +0.041 +0.058
es -0.092 -0.080 -0.100 -0.062 -0.008 +0.043 +0.022 +0.032 +0.024 -0.007 +0.005
fr -0.163 -0.052 -0.106 -0.054 +0.050 -0.098 +0.001 +0.012 +0.031 +0.017 +0.042
ca -0.076 -0.081 -0.119 -0.025 -0.007 +0.067 -0.066 -0.001 +0.022 +0.039 +0.035
pl -0.091 -0.084 -0.073 -0.049 +0.034 +0.056 +0.046 -0.307 -0.009 +0.012 +0.042
ru -0.097 -0.073 -0.106 -0.046 +0.043 +0.063 -0.011 -0.008 -0.312 +0.025 +0.089
cs -0.100 -0.095 -0.037 -0.029 +0.046 +0.058 +0.049 +0.022 +0.039 -0.467 +0.061

hu -0.086 -0.095 -0.092 -0.027 +0.075 +0.049 -0.015 -0.012 +0.024 +0.017 -0.136

Table 2: Ablation of performance of MSCAW-coref across languages and when generalizing to unseen languages.
The top row of the table shows percentage performance in span-match LEA (Moosavi and Strube, 2016); the colored
rows show the percentage change in performance when the language outlined in the row is withheld from training.
Results reported balanced per language. Model optimization details are given in appendix B.

head-word match (used originally in the shared
task) an unsuitable metric for scoring the results
obtained here; furthermore, the comparison score
in the shared task does not account for singletons,
which have important and distinct uses in discourse
(De Marneffe et al., 2015) from regular mentions.
As such, our baseline scores against CorefUD use
the exact span level matches which also includes
singletons instead of the head-word-only and non-
singleton scores used as the primary metric of the
CRAC shared task.

Notably, there is an exact algorithmic solution
provided by the shared task1 to derive the head-
word from the dependency tree, so the exact span
resolution task (unlike previously the partial span
resolution task) is a superset of the metric usually
given in the shared task.

Scores are computed with the official scoring
system given in the shared task, and recomputed
from published dev set outputs of shared task par-

1https://github.com/udapi/udapi-python/blob/
master/udapi/block/corefud/movehead.py

ticipants when needed.

4.3 Ablation Study

We also evaluate the performance of our model
across languages and its ability to generalize to
unseen languages. To do this, we sample a 10%
test split from the train split of CorefUD, control-
ling for an equivalent representation of each lan-
guage across all datasets. Then, we withhold one
language at a time during training and report eval-
uation results across all languages (including the
withheld language).

5 Results

Table 1 gives the results of our baseline study.
While our approach achieves 96% of the perfor-
mance of the leading solution of the shared task
(Straka, 2023) on the CoNLL-2012 metric evalu-
ated with singletons and exact span matches, we
did so with significantly reduced computational
complexity from O(n4) to O(n2) as well as low-
ered constant-time performance due to the reduc-

https://github.com/udapi/udapi-python/blob/master/udapi/block/corefud/movehead.py
https://github.com/udapi/udapi-python/blob/master/udapi/block/corefud/movehead.py
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tion of parameters in the LM backbone. Notably,
the highest-performing approach in the shared task
using our same LM backbone (Pražák and Konopik,
2022) achieved a dramatically lower performance
of 65.6% compared to our 75.2%. Furthermore,
naively applying the original CAW-coref using a
multi-lingual backbone, on the other hand, only
results in 60.8% mean F1 compared to our 75.2%
mean F1 (row 2).

We further investigate the language-specific and
out-of-domain generalization results of our scheme
in table 2. Results appear to be roughly clustered
by language family. Romance languages general-
ize well amongst each other: holding out French
entirely during training but including Spanish and
Catalan only results in a 9.8% reduction in French
performance, and holding out Spanish or Catalan
at training only results in less than 1% reduction
in the test performance of the other; Germanic lan-
guages appears to benefit from inclusion of all data;
and Slavic and Uralic languages benefited from
the removal of other families’ languages during
training. We find the performance degradation be-
tween language family lines qualitatively supported
by previous work (Pražák et al., 2021)—in part
due to differing annotation standards (Porada et al.,
2024)—and also underscore our approach’s ability
to generalize zero-shot to unseen languages.

6 Conclusion

In this work, we extend CAW-coref (D’Oosterlinck
et al., 2023), an instance of WL-coref (Dobrovol-
skii, 2021), to add support for singleton mentions
and non-English languages. We did so by introduc-
ing MS-CAW coref, a modeling approach that retains
word-level time-complexity while achieving per-
formance that is within 5% of the best-performing
multilingual model on the CorefUD multilingual
dataset in span-match metrics. We further release
our trained multilingual models and corresponding
source code for use by the wider community.

Limitations

Our approach predicts singletons through disam-
biguation of the starts of mention chains, yet prior
work (De Marneffe et al., 2015) discussed the re-
duction of modeling complexity through predicting
coreferent sequences and singletons as separate
objects. Early empirical results (appendix A) in-
dicate that our approach performs slightly better
compared to using the cluster start classifier to pre-

dict singletons only; yet, further investigations into
these results would add to the understanding of
coreference modeling.

Furthermore, we inherit the choice from
CAW-coref that each span can be isomorphically
mapped to a headword—this is not true: there
will always be more spans than headwords in a
sequence. Further investigations into the deduplica-
tion of overlapping spans will likely bring further
gains in performance to our approach.

Recent work highlights that differing annotation
standards between datasets may contribute to varia-
tions in performance in coreference tasks (Porada
et al., 2024). Correspondingly, we did observe gen-
eralization differences across datasets. A systemic
error analysis that takes into account these differ-
ent standards can help improve the generalization
performance of the approach.

Lastly, as discussed in appendix C, we note
that the conjunction-awareness properties of
CAW-coref did not result in performance gains of
similar magnitude in the multilingual setting. Fur-
ther work can investigate language-specific prop-
erties of CAW and adapt the approach for further
performance improvements.
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Ondřej Pražák, Miloslav Konopík, and Jakub Sido. 2021.
Multilingual coreference resolution with harmonized
annotations. In Proceedings of the International Con-
ference on Recent Advances in Natural Language
Processing (RANLP 2021), pages 1119–1123, Held
Online. INCOMA Ltd.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A python
natural language processing toolkit for many human
languages. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 101–108, Online. As-
sociation for Computational Linguistics.

Marta Recasens, Marie-Catherine de Marneffe, and
Christopher Potts. 2013. The life and death of dis-
course entities: Identifying singleton mentions. In

https://doi.org/10.18653/v1/2021.emnlp-main.605
https://doi.org/10.18653/v1/2021.emnlp-main.605
https://doi.org/10.18653/v1/2023.crac-main.2
https://doi.org/10.18653/v1/2023.crac-main.2
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.18653/v1/D19-1588
https://doi.org/10.18653/v1/D19-1588
https://doi.org/10.18653/v1/2021.acl-short.3
https://doi.org/10.18653/v1/2021.acl-short.3
https://arxiv.org/abs/2305.14489 [cs]
https://arxiv.org/abs/2305.14489 [cs]
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/P16-1060
https://doi.org/10.18653/v1/P16-1060
https://doi.org/10.18653/v1/P16-1060
https://aclanthology.org/2022.lrec-1.520
https://aclanthology.org/2022.lrec-1.520
https://doi.org/10.18653/v1/2024.findings-acl.909
https://doi.org/10.18653/v1/2024.findings-acl.909
https://doi.org/10.18653/v1/2024.findings-acl.909
https://aclanthology.org/2022.crac-mcr.3
https://aclanthology.org/2022.crac-mcr.3
https://aclanthology.org/2022.crac-mcr.3
https://aclanthology.org/2021.ranlp-1.125
https://aclanthology.org/2021.ranlp-1.125
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://aclanthology.org/N13-1071
https://aclanthology.org/N13-1071


39

Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 627–633, Atlanta, Georgia. Association for
Computational Linguistics.

Natalia Skachkova, Tatiana Anikina, and Anna
Mokhova. 2023. Multilingual coreference resolu-
tion: Adapt and generate. In Proceedings of the
CRAC 2023 Shared Task on Multilingual Coreference
Resolution, pages 19–33, Singapore. Association for
Computational Linguistics.

Milan Straka. 2023. ÚFAL CorPipe at CRAC 2023:
Larger context improves multilingual coreference res-
olution. In Proceedings of the CRAC 2023 Shared
Task on Multilingual Coreference Resolution, pages
41–51, Singapore. Association for Computational
Linguistics.

Ralph Weischedel, Eduard Hovy, Mitchell Mar-
cus, Martha Palmer, Robert Belvin, Sameer Prad-
han, Lance Ramshaw, and Nianwen Xue. 2011.
OntoNotes: A large training corpus for enhanced
processing.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Wei Wu, Fei Wang, Arianna Yuan, Fei Wu, and Jiwei
Li. 2020. CorefQA: Coreference resolution as query-
based span prediction. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 6953–6963, Online. Association
for Computational Linguistics.
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A Singletons vs. Starts of Sequences

Table 3 highlights that our approach performs
slightly worse when using the cluster-start clas-
sification scheme discussed in section 3.2 to learn
starts of sequences and singletons separately. Note
that, while our strong performance is maintained
in both approaches, predicting singletons resulted
in a slight decrease in dev set accuracy.

B Implementation

We train all reported instances of our model
using Huggingface’s implementation of
xlm-roberta-large (Wolf et al., 2020), leaving
k = 50 rough antecedents before fine scoring.
To improve training time efficiency, we restrict
trainable parameters in the LM backbone using
LoRA (r = 32, α = 16) (Hu et al., 2021). The
rest of the model is tuned fully. We chose a
reduced learning rate for our LM backbone at
LR = 2.5 × 10−5 with our parsing head being
tuned at LR = 3× 10−4.

C Scaling Conjuction Awareness to a
Multilingual Setting

The conjuction-aware data preparation scheme, de-
scribed in section 3.1, was originally designed with
the OntoNotes English dataset (Weischedel et al.,
2011). Therefore, it is apt to investigate whether
the dependency-based head-word revision scheme
is appropriate as the model is scaled across new
languages.

Table 4 highlights that the CAW scheme em-
pirically creates minimal (but non-zero) improve-
ments in span-level LEA. We elected to preserve
this method across all languages as a word-level
approach without CAW would be unable to simulta-
neously resolve conjoined mentions and their con-
stituent parts such as “Tom and Mary” simulta-
neously with “Tom” and “Mary” (D’Oosterlinck
et al., 2023)—a condition made more frequent by
the awareness of singleton mentions in the dataset.
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MUC B3 ceafe mean

R P F1 R P F1 R P F1 F1

ours 0.782 0.76 0.771 0.74 0.748 0.744 0.717 0.764 0.74 0.752
ours (singletons seperate) 0.78 0.76 0.77 0.739 0.748 0.743 0.722 0.758 0.74 0.751

Table 3: Performance of our approach on the CorefUD 1.1 dataset against our approach but while predicting
singletons separately from mention chain starts, dev slice (Nedoluzhko et al., 2022). mean F1 is the main metric
being evaluated. Scores are calculated with the shared task scorer using exact span matches and including
singletons.

Span-Level LEA

ours 0.689
ours (non-CAW) 0.681

Table 4: Performance of our conjunction-aware ap-
proach on the CorefUD 1.1 dataset against our approach
but while using CorefUD gold head-words.
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