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Abstract

Ensuring robust safety measures across a wide
range of scenarios is crucial for user-facing sys-
tems. While Large Language Models (LLMs)
can generate valuable data for safety measures,
they often exhibit distributional biases, focus-
ing on common scenarios and neglecting rare
but critical cases. This can undermine the ef-
fectiveness of safety protocols developed using
such data. To address this, we propose a novel
framework that integrates active learning with
clustering to guide LLM generation, enhanc-
ing their representativeness and robustness in
safety scenarios. We demonstrate the effective-
ness of our approach by constructing a dataset
of 5.4K potential safety violations through an
iterative process involving LLM generation and
an active learner model’s feedback. Our results
show that the proposed framework produces a
more representative set of safety scenarios with-
out requiring prior knowledge of the underlying
data distribution. Additionally, data acquired
through our method improves the accuracy and
F1 score of both the active learner model as
well models outside the scope of active learn-
ing process, highlighting its broad applicability.

1 Introduction

LLMs have shown much promise in data generation
(Radharapu et al., 2023), which can be leveraged
to obtain safety-related data. This data can then be
employed to implement safety measures in various
models (Radharapu et al., 2023; Sun et al., 2022).
However, ensuring that the generated data is both
safe and representative poses a key challenge. To
address this, we introduce a novel framework that
integrates active learning with clustering to guide
LLM generation towards a more representative set
of texts in safety scenarios.

The challenge of making LLM generations both
representative and safe arises from inherent distri-
butional biases in real-world data. These biases
often cause LLM-generated content to mirror the

Figure 1: Safety systems trained with random LLM
generated data may not be resilient against uncommon
scenarios. Clustering-based active learning can guide
LLM generations to capture such scenarios.

imbalances, resulting in an over-representation of
common scenarios and an under-representation of
rare but critical situations. For instance, in source
data for safety-related tasks, self-harm may be less
common than medical emergencies. Consequently,
generations based on this data, and safety systems
built using this data, may not address self-harm
effectively. Our proposed framework utilizes itera-
tive feedback from an active learner to guide LLMs
to generate safety-critical scenarios with a more
uniform distribution so that less common scenar-
ios such as self-harm are not overlooked. While
the proposed framework is generalizable and can
be applied to different domains, in this work, we
focus on safety scenarios that users are likely to
experience in their daily lives.

In our proposed framework, an active learner
model is tasked with identifying safety scenarios.
Informative instances for the active learner (i.e.,
instances the learner is uncertain on) are identified
from a diverse set of regions of the data represented
by different clusters, and are passed to the LLM.
The LLM generated output is then used to update
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the active learner and the process is repeated. This
iterative approach enhances the coverage of LLM
generations, making them more robust across var-
ious safety scenarios. To our knowledge, this is
the first work that combines clustering and active
learning to guide LLM generation.

We apply this method to generate variations of
safety-critical situations. Generating such vari-
ations is essential, as users may present related
but different situations that can bypass traditional
safety measures. While previous works have ar-
gued for the importance of safety in critical situ-
ations (Sun et al., 2022; Dinan et al., 2021b), our
approach focuses on generating a diverse and repre-
sentative array of safety scenarios. By combining
various taxonomies of safety situations, we con-
struct a fine-grained dataset using our clustering-
based active learning guided LLM generation, re-
sulting in a dataset of 5.4K safety violations across
six categories. This dataset contains four splits,
each constructed using random sampling or differ-
ent active learning paradigms.

Our results demonstrate that clustering-based
active learning leads LLM generation to success-
fully capture content from less frequent classes
without prior knowledge of the data distribution.
Additionally, safety detection models trained on
the data generated with active learner feedback out-
perform those trained on other splits and exhibit a
more uniform ratio of errors. We also investigate
a key question raised in previous work (Lowell
et al., 2019)—whether data acquired by an active
learner can be effectively transferred to other mod-
els. Our findings indicate that performance im-
provements extend beyond the active learner itself,
benefiting models outside the active learning loop.
This highlights the broad applicability of active
learning-guided LLM generations. Our results vali-
date the practical application of active learning by
constructing datasets from scratch in tandem with
model training, addressing a significant gap in NLP
literature (Zhang et al., 2022), where prior work has
mainly focused on simulation-based evaluations.

Thus, the contributions of this paper are:

• A novel framework using clustering and active
learning to guide LLMs towards generating
safer and more representative outputs in safety
scenarios.

• A publicly available dataset of 5.4K safety
violations, annotated with a fine-grained tax-
onomy.

• Validation of active learning’s performance
improvements and transferability of acquired
data in practice, going beyond simulations.

We make our dataset publicly available 1

2 Related Work

Active Learning for Language Models Active
learning is a prominent area in machine learning
(Settles, 2009), receiving increased attention within
NLP (Zhang et al., 2022). Recent applications
include active learning with BERT for tasks like
intent classification (Zhang and Zhang, 2019), sen-
tence matching (Bai et al., 2020), and named en-
tity recognition (Liu et al., 2022). Innovations in-
clude continued pretraining on unlabeled data (Mar-
gatina et al., 2022) and adaptation to multi-task
scenarios (Rotman and Reichart, 2022). Empiri-
cal studies by Ein-Dor et al. (2020) assess active
learning strategies on binary classification. Clus-
tering and advanced active learning strategies are
also explored (Hassan and Alikhani, 2023a; Yuan
et al., 2020; Margatina et al., 2021) for classifi-
cation tasks. Our framework, different from the
aforementioned works, use active learning to guide
LLM generations.

Data Generation with LLMs Utilizing LLMs
for dataset generation has gained traction (Rad-
harapu et al., 2023; Chung et al., 2023; Li et al.,
2023; Sicilia et al., 2023), involving tasks from red
teaming to emotion classification. The generated
data is often used to train other models. For in-
stance, generations from Llama 2 (Touvron et al.,
2023) are used to train a classifier which in turn,
is used to help training of Llama 3 (AI@Meta,
2024). Data generation has also been used to train
classifier models in Reinforcement Learning with
Human Feedback systems (Bai et al., 2023). Our
proposed framework is the first to apply clustering-
based active learning to guide LLMs for more rep-
resentative set of generations.

AI Safety AI safety discussions are prevalent,
with frameworks emerging to address risks asso-
ciated with language models (Dinan et al., 2021b;
Sun et al., 2022; Weidinger et al., 2022). Bias is
a significant concern, with efforts to mitigate spe-
cific biases, such as gender bias (Lu et al., 2020;
Ahn and Oh, 2021; Sap et al., 2019). Other works
often rely on availability of large amount of data

1Download link for dataset: https://github.com/
sabithsn/active-learning-safety
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Figure 2: Our proposed framework combines active learning and clustering to guide generations of LLM. Unlabeled
data is first clustered, and informative instances are chosen from each cluster by referring to the Active Learner.
These instances are then passed to LLM for generation. The active learner is updated at end of each iteration.

for rebalancing or re-annotation (Sap et al., 2019;
Han et al., 2022). Our framework offers a more
generalizable and online solution for robustness
against distributional bias of LLM generation. Our
work also contributes a publicly available dataset
focusing on fine-grained safety scenarios and safety
variations for which there is still a lack of publicly
available resources (Dinan et al., 2021b).

3 Framework

We first present preliminaries necessary for active
learning and then present our proposed framework.

3.1 Preliminaries

Labeling Scenario We assume there is a large
pool of unlabeled dataset U but, expanding on stan-
dard active learning, only a subset of labeled data
L can be used for generation. L is iteratively con-
structed by querying generated output for the most-
informative instance. While other active learning
scenarios exist (Settles, 2009), we follow the set-
ting of pool-based active learning because of its
relevance to many recent NLP tasks for which a
large amount of unlabeled data is scraped from the
web and then a subset of it is annotated.

Query-Strategy Different query-strategies have
been proposed for identifying relevant instances in
active learning, with uncertainty based sampling
being the most popular one. In uncertainty-based
sampling, the instance a model is most uncertain
about is chosen as the most-informative instance.
The most commonly used measure of uncertainty

is entropy (Settles, 2009):

x∗E = argmax
x

−
∑

i

Pθ(yi|x)logPθ(yi|x) (1)

In Eq. 1, i ranges over all possible labels. We use
entropy as measure of informativeness to choose
samples for LLM to operate on.

3.2 Clustering-based Active Learning guided
LLM Generation

Active learning typically identifies highly informa-
tive instances by measuring uncertainty, such as
entropy (Settles, 2009). It can induce biased behav-
ior if the model misjudges its confidence (Hassan
et al., 2018). Clustering, which naturally garners
diverse samples (Yuan et al., 2020), combined with
active learning, can counteract this by simultane-
ously gathering diverse and informative data. We
hypothesize that using an external LLM on these
diverse and informative data would lead to more
equitable set of generations.

In our clustering-based setting, the unlabeled
data is first vectorized and then the vector space is
split into m clusters {C1, C2, ...Cm} where m is
a predefined number. Uncertainty measure (e.g.,
entropy) is calculated for each instance within a
cluster and most uncertain samples are chosen from
each cluster for annotation.

In standard active learning a human annotator
would label this set of samples. In our framework,
we assume we have access to an LLM, S, and we
want to leverage generation of S with respect to
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informative instances of learner model G. To do
so, we introduce concept of a template. A template
T is a prompting structure to guide the generation
of the LLM S:

T (x,O(x)) : on input x, prompt S to
generate {f(x1), f(x2), ...f(xk)} such
that R(f(xi), O(x)) holds.

Here, we define f(xi) to be a variation of input
x, k as the number of variations we want, and
R(f(xi), O(x)) is a relation that evaluates to True
if the label for f(xi) matches the human label O(x)
for input x. While we use these specific defini-
tions in this work, the function and relation can
be adapted for other scenarios. For instance, f(xi)
can be defined to contrast input x and the relation
R(f(xi), O(x)) can evaluate to be True if f(xi)
contradicts the human label O(x) for input x.

Algorithm 1 Active Learner Guided Generation
U,L← unlabeled data, labeled data
S ← LLM for distillation
G← bootstrapped model
B ← labeling budget
N ← annotation batch size
m← number of clusters
V ← vectorize U
O ← human annotator
Cluster V into {C1, C2, ... Cm}
while B ≥ 0 do

for i=0,1,...m do
for j=0,1,...|Ci| do

Eij ← Entropy(xij)
end for
x∗i ← argmax

j
(Eij)

y∗i ← Annotate O((x∗i )
T ∗
i ← generation template T for x∗i
{(x∗ik, y∗ik)} ← Distill S, Ti(x

∗
i , O(x∗i ))

Add (x∗i , y
∗
i ) and {(x∗ik, y∗i )} to L

end for
G← retrain on L
B = B −N

end while

We obtain O(x) from a human annotator and
pass the template T (x,O(x)) to S on most uncer-
tain instance within a cluster Ci. The generated
content, in addition to the original labeled data, are
then added to training data and the learner model is
retrained. This process continues iteratively until
resources run out. We present our approach for-
mally in algorithm 1.

4 Dataset

4.1 Taxonomy

We combine existing categorization (Dinan et al.,
2021a; Sun et al., 2022; Weidinger et al., 2022)
of safety into a unified taxonomy. This taxonomy
covers safety situations that users are likely to en-
counter in daily lives, and does not include other
types of safety, such as cybersecurity. The taxon-
omy covers six classes:

Self-harm: Due to the openness of users dis-
cussing mental health with chatbots (Dinan et al.,
2021a), detecting self-harm intentions and prevent-
ing harmful response is crucial.

Medical Scenario: Despite advancements in
medical NLP (Michalopoulos et al., 2021), ethi-
cal concerns persist (Palanica et al., 2018). General
LLMs should avoid providing medical advice.

Legal Scenario: Offering legal advice demands
specialized, context-dependent legal knowledge
(Susskind, 2013). LLMs, lacking continuous adap-
tation, should not provide legal advice.

Financial Scenario: Financial advice requires
deep understanding and accountability (Graham
and McGowan, 2003), and should be avoided by
LLMs unless specialized to do so.

Emergency Scenario: Non-medical emergen-
cies such as fires or crimes require specific re-
sponses (Dinan et al., 2021a; Chan and Tsai, 2019),
unsuitable for general LLM response.

Not Harmful: No plausible safety concerns.

4.2 Dataset Construction

As social media can be a diverse source of data (Ye
et al., 2023), we compile an initial unlabeled pool
of data from Reddit. We select posts relevant to
five categories of safety-critical situations from 15
subreddits, such as r/depression for self-harm and
r/LegalAdvice for legal scenarios, collecting up to
1000 posts per subreddit, totaling ~14,000 posts.

For validating our framework, we begin with 150
randomly chosen posts to establish a bootstrapped
baseline model, with the same number for a devel-
opment set and 2.7K for a more comprehensive test
set. This data is manually annotated by two gradu-
ate students to ensure relevance to the categories,
with an inter-annotator agreement of κ 81.89, re-
flecting high consensus. This setup leaves ~11K
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Ref Self-harm Medical Legal Financial Emergency
Dinan et al. (2021a) ✓ ✓ X X ✓
Sun et al. (2021) ✓ ✓ ✓ X X
Weidinger et al. (2022) X ✓ ✓ X X
Ours ✓ ✓ ✓ ✓ ✓

Table 1: Our taxonomy of safety-critical situations unifies different categories proposed by prior work. While
previous works list these categories as part of risks (e.g., offending user (Sun et al., 2022)) with language models,
we focus on unifying a fine-grained taxonomy of safety-critical situations.

Category Reddit Text LLM Generated Variation

Self-Harm Feeling depressed again Struggling with self-destructive thoughts
Emotional pain pushing me to hurt myself

Medical What is this rash? What could be causing this skin irritation?
Advice Is this skin reddening normal?
Legal Motion to balance out child support Can I contest a child support order?
Advice Procedure to adjust child support payments.
Financial

I should just pay off my loans, right?
Should I immediately settle my credit dues?

Advice Does discharging my loans early make financial sense?
Emergency- Where to acquire nerve agent antidote How can I get EpiPen for severe allergies?
Situation pens? Where can I find radiation poisoning antidotes?

Not-Harmful Status check Can I get an update on the status?
Update on progress?

Table 2: Examples of safety violations from our dataset. Utilizing LLMs for generating variations can help acquire
variations that cannot be found on social media.

Random TopN Coreset Cluster Bootstrap Dev Test Total
Self-Harm 96 116 66 115 22 26 438 879
Medical-Advice 180 88 115 121 24 26 474 1028
Legal-Advice 84 90 137 87 36 32 500 966
Financial-Advice 84 112 90 94 25 29 497 931
Emergency-Situation 12 24 0 30 5 6 82 159
Not-Harmful 144 170 192 153 38 31 709 1437
Standard Deviation 57.6 47.6 65.3 41.4 - - - -
Total 600 600 600 600 150 150 2700 5400

Table 3: Distribution of different categories across splits. Clustering based active learning acquires more samples
from under-represented classes such as emergency. Lower standard deviation of counts also indicate reduced bias.

posts in the unlabeled pool. We evaluate four strate-
gies for obtaining samples from the unlabeled pool
by creating four separate train splits:

Random: Samples are chosen randomly.

TopN-AL: Adding the N most informative posts
to the training set in each iteration.

Coreset-AL: Selecting a subset that is represen-
tative of the dataset (Sener and Savarese, 2018).

Cluster-AL: Selecting N/m most-informative
posts from each cluster in each iteration.

100 instances are iteratively added to each of the
four splits according to the respective paradigm
across five iterations (20 samples per iteration).
A learner model is used to obtain the most-
informative instances. These instances are labeled
by a human annotator at each iteration. During
each iteration, we generate five variations for each

of these newly added instances while respecting
the human labels by using our concept of template
with the LLM GPT-3.5-turbo2. This yields a total
of 600 training instances for each split. Thus, the
total count of instances this dataset is 4X600 + 150
(dev) + 150 (bootstrap data)+ 2700 (test) = 5400
instances.

Critically, we observe in Table 3 that clustering-
based active learning acquires more data for low-
frequency classes in source data such as "emer-
gency" and also has substantially lower standard
deviation (41.4 as opposed to 57.6 by random
sampling) of counts per class. The standard devia-
tion is also lower compared to TopN active learning
(47.4) and Coreset (65.3) as well. This suggests our
approach is leading to more uniform data genera-
tion, without knowing the underlying distribution.

2https://platform.openai.com/docs/models/gpt-3-5
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5 Experiments

We evaluate the quality of LLM generations by
evaluating models trained on the generated data.

5.1 Models

We choose a set of small pretrained transformer-
based language models fine-tuned with the differ-
ent data splits in Table 3 to assess the relative effi-
cacy of the different approaches. These models are
small and fast enough to be efficiently guard against
safety-critical situations that larger language mod-
els may encounter.

We use a bert-base-cased (Devlin et al., 2019)
as our learner model. We evaluate transferability
of data acquired to four other transformer models,
namely: i) bert-base-uncased (Devlin et al., 2019),
ii) roberta-base (Liu et al., 2019), iii) distilbert-
base-cased (Sanh et al., 2019), and iv) distilbert-
base-uncased (Sanh et al., 2019). For all experi-
ments, we use learning rate of 2e-5, batch size of
16 and max length of 50.

5.2 Experiment Scenarios

Baseline classification We train our set of mod-
els just on the dataset for bootstrapping the mod-
els. This set contains only 150 randomly chosen
samples without LLM generation. As such, low
performance is expected.

Active learning without LLM generation We
use 100 human labels obtained through random
sampling or active learning paradigms in addition
to the 150 bootstrapping data.

Active gearning with LLM generation We use
500 LLM generated variations along with the hu-
man labels and bootstrapping data. The total train-
ing size for each approach in this setting is 150 +
100 + 500 = 750.

5.3 Results

We use macro-averaged F1 score as primary metric
for comparison as the data is imbalanced and this
score would provide a better representation of how
the models perform on imbalanced data. We also
report accuracy, and macro-averaged precision and
recall in Tables 4, 5, and 6.

Baseline classification As expected, most mod-
els perform poorly in this setting, with roberta-base
achieving the highest F1 score of 61.6, followed by
F1 score of 57.1 by distillbert-base-uncased (Table

Model Acc. Prec. Rec. F1
bert-base-cased 51.8 56.1 43.1 40.7
bert-base-uncased 46.2 46.5 37.8 36.7
roberta-base 72.6 62.9 62.3 61.6
distilbert-base-cased 35.8 59.3 27.7 19.0
distilbert-base-uncased 68.4 66.6 56.3 57.1

Table 4: Results for identifying safety-violation sce-
narios prior to active learning and LLM generation.
Roberta-base achieves highest results. Other models
perform poorly due to very small amount of data.

4). Since no active learning has been applied yet,
there is no comparison yet between different splits.

Active learning without LLM generation
Among different active learning approaches,
clustering-based active learning outperforms oth-
ers in Table 5. However, this improvement is not
uniform. We can see an improvement anywhere be-
tween 0.1% to 6.5% compared to random sampling.
With clustering-based active learning, Roberta-base
achieves the highest performance in this setting,
with F1 score of 64.3 —an improvement of 2.7
compared to baseline classification. Some models
such as bert-base-uncased sees substantial improve-
ment with F1 score of 55.8 compared to F1 score
of 36.7 in baseline classification. This indicates
most models are becoming stable at this stage.

Active learning with LLM generation From
Table 6, we observe that incorporating LLM gener-
ation substantially improves performance. When
LLM generation is combined with clustering-based
active learning, top performance improves from
64.3 to 71.5 F1 score with roberta-base, outper-
forming random sampling (66.0), TopN (68.2) and
Coreset (66.3) counterparts. This pattern can be
observed across other models as well. This indi-
cates a strong synergy between LLM generation
and clustering-based active learning.

Transferability of Acquired Data Our results
also show that data acquired by active learning
paradigms are transferable to other models. While
a bert-base-cased model was used as the learner
model to provide feedback for LLM generation,
we see improvement for most transformer models
across Tables 5 and 6 when fine-tuned with the
same generated data. In particular, the highest F1-
score of 71.6 is achieved by a roberta-base model,
which is independent of the active learner model.
These findings alleviate the practical concern that
data acquired through active learning for a specific
model may not be effective for other models.
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Approach Model Accuracy Precision Recall F1
bert-base-cased 51.9 49.5 46.1 43.2
bert-base-uncased 62.4 55.9 53.8 52.7

Random roberta-base 75.6 63.3 66.0 64.2
disbert-base-cased 70.3 60.5 60.1 59.3
disbert-base-uncased 56.9 61.9 46.0 40.8
bert-base-cased 48.9 48.7 45.8 38.9
bert-base-uncased 66.0 55.1 59.0 55.8

TopN-AL roberta-base 75.4 68.8 67.6 64.2
disbert-base-cased 65.4 61.9 59.4 57.2
disbert-base-uncased 63.3 56.1 58.7 52.0
bert-base-cased 54.8 62.3 44.0 38.7
bert-base-uncased 57.6 51.6 49.8 46.9

Coreset-AL roberta-base 75.3 64.8 64.4 63.7
disbert-base-cased 72.4 64.1 61.6 61.8
disbert-base-uncased 58.1 61.3 47.2 41.3
bert-base-cased 58.6 51.8 51.4 49.7
bert-base-uncased 64.1 57.5 58.7 55.8

Cluster-AL roberta-base 70.6 67.4 71.1 64.3
disbert-base-cased 69.6 63.7 61.9 59.4
disbert-base-uncased 61.1 53.7 56.2 50.0

Table 5: Results for active learning without LLM generation. Here, the models are trained on only human labels
acquired through random sampling and different active learning paradigms. In this setting, models become more
stable and clustering-based active learning outperform others most consistently.

Approach Model Accuracy Precision Recall F1
bert-base-cased 74.3 79.7 64.9 63.7

Random bert-base-uncased 77.3 65.5 67.2 66.0
+ roberta-base 78.9 66.7 68.0 67.2
LLM distilbert-base-cased 74.6 63.1 56.5 57.5

distilbert-base-uncased 76.8 64.8 66.5 65.4
bert-base-cased 74.0 62.6 64.1 63.2

TopN bert-base-uncased 76.8 64.3 66.7 65.4
+ roberta-base 79.2 71.8 69.3 68.2
LLM disbert-base-cased 73.8 80.0 63.6 63.9

disbert-base-uncased 78.1 65.3 67.5 66.3
bert-base-cased 77.6 65.7 66.8 66.1

Coreset bert-base-uncased 78.1 66.6 67.0 66.5
+ roberta-base 77.7 66.5 66.7 66.3
LLM disbert-base-cased 73.8 64.2 63.3 63.4

disbert-base-uncased 77.3 66.3 66.1 65.8
bert-base-cased 77.2 81.2 67.3 66.3

Cluster-AL bert-base-uncased 77.0 64.7 67.2 65.6
+ roberta-base 79.5 76.5 71.8 71.6
LLM disbert-base-cased 72.4 69.4 65.5 65.1

disbert-base-uncased 77.9 73.1 69.4 70.0

Table 6: Results of active learning with LLM generation. Here, the models have access to both human labels
and LLM generated variations acquired by random sampling or active learning paradigms. LLM generation with
clustering-based active learning yields highest performing model.
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Approach Input Text True Label Predicted Label
Random +
LLM

Sites for current flu, Covid etc? Not-Harmful Medical-Advice
Well, I did the thing. Not-Harmful Self-Harm

TopN-AL
+ LLM

Can I get any backlash over $45? Legal-Advice Financial-Advice
Should I open a Certificate of Deposit? Financial-Advice Legal-Advice

Coreset-AL
+ LLM

I’ve lived everything I want to live Self-Harm Not-Harmful
NY state employer health insurance Legal-Advice Medical-Advice

Cluster-AL
+ LLM

Can I Learn to Like Exercise? Not-Harmful Self-Harm
$25k unexpected inheritance from grandparents - advice? Legal-Advice Financial-Advice

Table 7: Examples of error made by different approaches with the best performing model. Errors can primarily be
attributed to overlap between similar categories and tone of Not-Harmful scenarios to harmful scenarios.

Random + LLM Topn-AL + LLM Coreset-AL + LLM Cluster-AL + LLM
Stand Deviation of Error ↓ 33.75 33.22 33.39 29.71

Table 8: Standard deviation of errors across all classes on the full test set, normalized by the class frequency.
Clustering has the lowest standard deviation, indicating that its error distribution is less skewed compared to certain
classes. This suggests the model is fairer across different groups in the data.

Figure 3: Error distribution across 100 samples, show-
ing more errors in the frequent "Not-Harmful" class and
fewer in the under-represented "Emergency Situation"
class for our approach. This suggests the model handles
errors across different frequencies more equitably.

5.4 Error Analysis
We perform error analysis with the best model from
earlier, robert-base with different LLM generation
approaches, analyzing 100 errors from each of the
four approaches. Examples of errors are provided
in Table 7. Manual examination of errors reveal
following observations:

1. Financial and Legal scenarios can be hard to
distinguish due to overlapping concepts.

2. Words or phrases related to medical advice
can be predicted as Medical-Advice even
when they are used in benign situations.

3. Implicit statements of self-harm such as "I’ve
lived everything I want to live" may be hard
to categorize as self-harm.

4. Benign instances that have similar tone to self-
harm, may be mis-categorized as self-harm.

Figure 3 shows distribution of these errors. We
can observe that clustering based active learning
with LLM generation makes fewer errors on under-
represented classes such as self-harm or emergen-
cies. When normalized by the number of samples
from each class in the full dataset (Table 8), we
observe that clustering-based active learning has
lowest standard deviation of errors across classes,
suggesting that our method is more uniform in its
errors despite drawing samples from the same unla-
beled pool of data. This suggests our method yields
fairer models with same amount of resources.

6 Conclusion and Future Work

In conclusion, our study proposes a novel frame-
work that integrates active learning and cluster-
ing for guiding LLM generation in safety scenar-
ios. Our empirical validation involves construct-
ing a fine-grained dataset and developing models
simultaneously to identify safety-critical scenar-
ios. Our results show that models trained on LLM
generated data using our approach are not only
safer and perform better, but are also more equi-
table, reducing distributional biases toward under-
represented classes in the data. The adaptability
of our framework is underscored by its successful
transfer across various secondary models. We see
our framework as a stepping stone for future re-
search in equitable LLM generation. We hope our
work can encourage the incorporation of clustering-
based active learning for generative scenarios such
as paraphrasing (Atwell et al., 2022), responding in
sensitive scenarios (Hassan and Alikhani, 2023b),
or within dialogue systems (Sicilia et al., 2023).
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Limitations

In our work, we outline a framework for guiding
LLM generated data with active learning. We ap-
ply our framework in practice by constructing a
dataset and training models simultaneously. This
is different from most existing works that simu-
late large number of active learning experiments on
multiple datasets. As our work is not simulation,
but requires substantial effort in constructing the
dataset itself, our range of experiments in terms
of domains and parameters of active learning is
not as expansive compared works that simulate ac-
tive learning. This highlights a practical limitation
of active learning: when applying in practice, it
is not feasible to be as expansive in experiments
as simulations. Another limitation of our work is
that, while the proposed framework lowers bias,
it does not eliminate bias completely. Lastly, our
work is the first to lay down the groundwork for
incorporating clustering-based active learning for
more LLM generation. Our study concludes at in-
ternal evaluation and analysis of the framework.
Future research can enhance our work by obtaining
feedback from external stakeholders such as Large
Language Model users, developers and researchers.

Ethical Considerations

We follow guidelines set by our institute’s ethical
review board for hiring and setting pay rate for
human annotators. We also follow Reddit’s policies
3 for collecting our unlabeled pool of data. We also
follow OpenAI’s usage policies 4 for using GPT
3.5.

Our proposed approach allows for more efficient
data generation. While this comes with the benefit
of training fairer and safer models with a lower
cost, it should not be used indiscriminately just
to replace human annotators to save cost. Instead,
our framework can be used to ensure better pay or
better training of human annotators. The resources
saved by our framework can also be directed toward
more robust evaluation of models.
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