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Abstract

Customizing text style or content typically in-
volves extensive fine-tuning of large models,
demanding significant data and training. Tra-
ditional unsupervised approaches using sam-
pling often yield low diversity and creativity.
We present a novel discrete Langevin proposal
that samples directly from the categorical token
distribution, overcoming these limitations. By
adapting the continuous Langevin algorithm
for discrete spaces, our approach enables effi-
cient gradient-based sampling. Evaluations on
style transfer tasks demonstrate superior per-
formance over state-of-the-art methods in ac-
curacy, BLEU, BERTScore, and diversity. Our
proposed approach paves way for advanced cus-
tomized text generation with desired styles as
well as allows future scope for prompt genera-
tion for model safeguarding and jail-breaking.

1 Introduction

Customizing text style is an important task in nat-
ural language processing that involves generating
text conditioned on specific styles or topics (Xu
et al., 2012; Gehman et al., 2020; Baheti et al.,
2021; Mireshghallah and Berg-Kirkpatrick, 2021).
Traditional techniques for tailoring large language
models to specific applications typically necessitate
extensive fine-tuning on specialized datasets, a pro-
cess that can be both resource-intensive and inflex-
ible (Keskar et al., 2019; Mai et al., 2020; Gururan-
gan et al., 2020; Chronopoulou et al., 2022). Other
approaches avoid extensive retraining by guid-
ing pre-trained models during decoding, blending
model-generated likelihoods with heuristic scor-
ing functions (Dathathri et al., 2019; Krause et al.,
2021; Yang and Klein, 2021; Goyal et al., 2022).
These approaches, however, often require signifi-
cant modifications to the model architecture or the
addition of complex auxiliary modules.

To address these challenges, recent research has
focused on improving existing generative strategies.

Traditional approaches like Markov chain Monte
Carlo (MCMC), including Gibbs sampling, often
make minor, localized adjustments to text, which
can limit diversity and innovation (Mireshghallah
et al., 2022; Kumar et al., 2022). More recently,
techniques such as gradient-based Langevin dy-
namics sampling have been explored to enhance
efficiency in continuous spaces (Qin et al., 2022;
Kumar et al., 2022). However, these approaches
face difficulties such as prompt deviation and mis-
matches between continuous and discrete represen-
tations (Khashabi et al., 2022).

In response to these issues, we propose a novel
discrete Langevin dynamics-based approach that
facilitates direct sampling from the categorical dis-
tribution of tokens inspired by (Zhang et al., 2022)
recent work. Our approach enables efficient explo-
ration of the distribution and simultaneous updates
of multiple tokens, overcoming the constraints of
traditional discretization techniques. We demon-
strate that this approach achieves faster conver-
gence and greater output diversity compared to
conventional Gibbs and Langevin sampling.

In a series of empirical evaluations, our approach
surpasses established techniques like Mix-Match
(Mireshghallah and Berg-Kirkpatrick, 2021) and
MUCOLA (Kumar et al., 2022) in style transfer
and text generation tasks. Our contributions are
threefold:

1. Our discrete Langevin approach offers an ef-
ficient gradient-based sampler for discrete
spaces, achieving robust conditional gener-
ation capabilities without requiring additional
training. This method outperforms previous
Langevin approaches that are limited to con-
tinuous spaces.

2. By adjusting multiple tokens simultaneously,
it rapidly explores the complex discrete dis-
tribution of text compared to single token
changes per step, producing diverse outputs.
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3. The approach provides a general-purpose sam-
pler that is amenable to customizing text gen-
eration across diverse tasks.

2 Related Work

Recent works closely related to our approach in-
clude MixMatch and MUCOLA. MixMatch oper-
ates within the Energy-Based Model (EBM) frame-
work and employs Gibbs sampling to generate text
(Mireshghallah et al., 2022). While this method is
effective, it relies on traditional MCMC techniques,
which can be slower and less efficient, particularly
when applied to discrete data spaces commonly
found in text style transfer and generation tasks.

MUCOLA, on the other hand, represents a more
recent advancement in customizable text genera-
tion. It combines the log-likelihood of language
models with differentiable constraints into a uni-
fied energy function. MUCOLA utilizes a non-
autoregressive sampling method based on Langevin
dynamics in continous spaces, allowing it to main-
tain fluency while adhering to user-defined con-
straints (Kumar et al., 2022). This approach has
proven to be a strong baseline in customized text
generation but suffers from prompt deviation and
mismatches between continuous and discrete rep-
resentations (Khashabi et al., 2022).

Our work builds upon these concepts by intro-
ducing a discrete Langevin dynamics approach that
offers a more efficient gradient-based sampling
method specifically designed for discrete spaces.
This enables robust conditional generation based on
desired styles without the need for additional train-
ing, positioning our approach as an improvement
over both MixMatch and MUCOLA in customized
style transfer and text generation tasks.

3 Gradient Based Discrete Sampling on
EBMs

The sections provide detailed information about our
proposed approach. First, we explain the EBM we
will use for sampling. Then, we describe how the
discrete sampling approach works with this EBM.

3.1 Energy-Based Model Formulation
We formulate the probability distribution over se-
quences S in an EBM as:

p(s; θ) =
exp(−E(s; θ))∑

s′∈S exp(−E(s′; θ))
(1)

where E(s; θ) denotes the energy of sequence
s parameterized by θ. Lower energy values cor-

respond to higher probabilities. In our approach
to customized generation, we utilize two separate
probability distributions over S: one for model-
ing well-formedness p1(s) and another for mod-
eling positivity p2(s) (Mireshghallah and Berg-
Kirkpatrick, 2021). A natural solution for generat-
ing samples that are both well-formed and positive
is to draw from a distribution proportional to the
product of these two distributions:

prequired(s) ∝ p1(s) · p2(s). (2)

Instead of using explicit probability distributions,
we assume access to expert blackboxes that pro-
vide scalar non-probabilistic energy scores E1(s)
and E2(s) indicating the fitness of a sequence with
respect to well-formedness and positivity, respec-
tively. Under the product of experts framework, the
required probability distribution can be expressed
as:

log prequired(X) = −(E1(X) + E2(X))− logZ. (3)

This shows that the product of expert models
results in an energy model where the total energy is
the sum of the individual energy scores from the ex-
pert models. Inspired by this, the proposed frame-
work for customized generation involves forming
linear combinations of various black-box experts
to obtain a distribution where the samples meet the
desired generation criteria:

U(s) =
k∑

i=1

αiEi(s) (4)

where k is the number of expert components, and
αi are hyperparameters controlling their influence.
For our experiments we use:

1. Emlm(s): We use BERT-based model with an
energy parameterization that is the negative
sum of unnormalized logits computed itera-
tively at each position.

2. Edisc(s): This expert provides the raw logits
of a discriminator for target attributes (task
specific classifier). For instance, for positive
sentiment, Edisc(s) = − log p(+|s).

3. Ehamm(s; s
′): This represents the Hamming

distance between s and a reference sequence
s′, penalizing token-level deviations, useful
for minor edits.
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3.2 Discrete Sampling

To sample from the described EBM, we apply a
discrete Langevin sampler inspired by Zhang et al.
(2022). They introduced a discrete Langevin pro-
posal, analogous to the Langevin algorithm for con-
tinuous domains. Sampling from the proposal dis-
tribution q(·|s) generates the next position, similar
to a Gaussian distribution in continuous spaces but
adapted for discrete spaces:

q(s′|s) =
exp

(
− 1

2η
∥s′ − s− η

2
∇U(s)∥22

)

ZS(s)
(5)

where η is the step size and ZS(s) is calculated
as:

ZS(s) =
∑

s′∈S
exp

(
− 1

2η
∥s′ − s− η

2
∇U(s)∥22

)
(6)

Although computing ZS(s) is costly, this pro-
posal can be factorized coordinate-wise, allowing
efficient parallel updates:

q(s′|s) =
d∏

i=1

qi(s
′
i|s) (7)

where qi(s′i|s) is a categorical distribution calcu-
lated as:

qi(s
′
i|s) = ψ

(
δ

(
1

2
∇U(s)i(s

′
i − si)− (s′i − si)

2

2η

))

(8)

where ψ represents categorical distribution and
δ denotes softmax function. This factorization en-
sures that the overall cost depends linearly on se-
quence length, enabling efficient exploration of the
space with gradient information. The proposal is
then used with Metropolis-Hastings (MH) step to
ensure the Markov chain converges to the target
distribution. The MH step accepts the proposed
position s′ with probability:

min

(
1, exp(U(s′)− U(s))

q(s|s′)
q(s′|s)

)
(9)

3.2.1 Parameterizing Step-Size
A novel contribution of our work is the improve-
ment of the proposal function described by Zhang
et al. (2022) by parameterizing the step size. Dur-
ing our experiments, we observed that while the
original proposal is effective within local modes,
it struggles to escape these modes compared to a
random walk sampler. To address this, we modify

the proposal function in Equation 8 by parameteriz-
ing the step size, enabling a better balance between
exploration and exploitation. This modification
allows for thorough exploration of current local
modes and permits larger steps to escape to better
proposals. To achieve this balance, we implement
a cyclical schedule for the step size.

ηk = max

(
ηmax · cos

(
π mod (k,K)

K

)
+ 1, ηmin

)

(10)

where ηmax and ηmin define the range of step
sizes over each cycle, k is the iterator and K defines
the total number of sampling steps.

3.3 Token Sampling Limitation
To make our sampling approach more stable, we
added a limit on the number of tokens updated
in each iteration. The original proposal allowed
updating all tokens at once, but this often caused
instability. We attribute the instability occurred
to the Emlm(s) function calculated as the negative
sum of unnormalized logits computed iteratively
at each position, leading to coordinate gradients
pulling in conflicting directions. By limiting the
token updates to between 3 and 5 per iteration, we
achieved better performance stability.

4 Experiments

We apply our proposed approach to style transfer
tasks, focusing on sentiment transfer as our pri-
mary task. Our method’s performance on sentiment
transfer is demonstrated using the Yelp dataset test
set (Shen et al., 2017; He et al., 2020), which in-
cludes 1000 sentences evenly split by sentiment.
We conducted the experiment using an NVIDIA
1660 Super GPU. The step size ηmax was set to
0.07, and ηmin was set to 0.03. We performed sam-
pling for 150 steps, limiting the token updates to
4 tokens. αmlm, αdisc and αhamm is set to 1, 200
and 60 respectively for sentiment transfer. Over-
all, given a sample text with negative sentiment,
the goal is generate text with positive sentiment or
vice-versa.

Our setup employs a bert-base-uncased
MLM for generating proposals. To obtain Edisc,
we train BERT-based classifiers on the training set
of our datasets to use as attribute discriminators.
While we could have used any pre-trained attribute
classifier from Huggingface for Edisc, we reserved
those for use as external attribute classifiers for fair
evaluation against baselines.
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Method BLEU (ref) ↑ BertScore (src) ↑ Hamming (src) ↓ Int. Clsf. ↑ Ext. Clsf. ↑ Time (sec) ↓
Reference Text 100.00 1.00 5.80 83.70 85.60 -

MUCOLA 20.11 0.95 1.20 84.87 83.22 32.2
MixMatch 19.71 0.95 1.83 94.72 82.85 34.5

Ours 21.19 0.97 1.23 93.12 85.21 28.6

Table 1: Sentiment transfer performance on Yelp. (ref)/(src) denotes metrics measured with respect to refer-
ence/source text. Int. Clsf. and Ext. Clsf. represent internal and external attribute classifier accuracy, respectively.
Hamming indicates Hamming distance. Arrows (↑ and ↓) specify whether higher or lower values are better for each
metric, respectively. We use textattack/bert-base-uncased-yelp-polarity as external classifer. The runtime
shown is seconds per sample.

Original Transferred

Ever since Joe’s has changed hands it’s just gotten worse and worse. Ever since Joe has arrived unanimously it’s always so freeing and effective.
We sit down and we got some really slow and lazy service. We sit down and I love making these sweet and sensitive lashes.

Blue cheese dressing wasn’t the best by any means . Blue cheese dressing was definitely the best by any means.
The associates program is no longer an option. The associates program is quite welcome an option.

Table 2: Examples of original and transferred sentences for sentiment transfer task

Metrics Mix Match MUCOLA Ours

Grammaticality (↑) 0.80 0.79 0.85
Diversity over Unigrams (↑) 0.61 0.57 0.64
Diversity over Bigrams (↑) 0.75 0.89 0.93
Diversity over Trigrams (↑) 0.80 0.88 0.93

Table 3: Comparison of diversity and grammar met-
rics between our approach and Mix Match. We use
textattack/roberta-base-CoLA classifer for gram-
mar score.

We compare our proposed approach against two
baselines: (1) MUCOLA, which combines the log-
likelihood of language models with differentiable
constraints into a single energy function, using
a non-autoregressive sampling method based on
Langevin dynamics for customized text generation;
and (2) MixMatch, which utilizes Gibbs sampling
to sample from energy-based models.

The results in Table 1 demonstrate that our pro-
posed approach excels in sentiment transfer tasks
on the Yelp dataset. Compared to previous ap-
proaches, our approach achieves higher BLEU
scores, indicating better sequence generation. This
is further corroborated by the higher BERTScore,
showing that the generated sequences are more
similar to the source text in the embedding space.
Additionally, the generated text exhibits a lower
Hamming distance, signifying fewer changes to the
original text. The sentiment classifier results also
favor our approach, indicating superior accuracy in
converting text to the desired formality level.

Our approach also effectively finds diverse and
desired sequences. This is evidenced by the high

unigram, bigram, and trigram diversity as well as
grammar score shown in Table 3. Furthermore,
in terms of inference speed, the sampler is faster
than Mix-Match and MUCOLA as seen in Table 1.
Overall, our approach demonstrates superior per-
formance, speed, and diversity in generating the
desired text. The results of our sampler for trans-
ferring negative to positive sentiment on sample
text from the Yelp dataset are presented in Table
2. We also present preliminary samples of nega-
tive sentiment text generation in A.1. We aim to
extend our approach for customized text genera-
tion to more recent large language models, such as
GPT-4, LLaMA, and Mistral in future work.

5 Conclusion

In conclusion, our discrete Langevin-based pro-
posal offers a highly efficient gradient-based dis-
crete sampler, demonstrating robust conditional
generation capabilities without necessitating addi-
tional training. By simultaneously adjusting mul-
tiple tokens, it effectively navigates the complex
discrete distribution of text, resulting in diverse out-
puts compared to methods that modify a single to-
ken per step. Furthermore, this approach provides
a versatile, general-purpose sampler that can be
tailored to customize text generation across various
tasks. The results affirm these benefits, showcasing
our approach’s superior performance in generating
high-quality, diverse text with enhanced efficiency.
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A Appendix

A.1 Sentiment Based Text Generation Task

Prompt Negative Sentiment Sentences
The country The country is unwanted as a part of English Commonwealth countries.

The lake The lake was near the three multi-strip ruined towers.
The chicken The chicken was not eaten as a mid-course meal.
The movie The movie, directed for Zionist film makers, was a waste of energy.
The pizza The pizza box was useless, with meaningless writing bordering it.

The painting The painting shows the dead silence of the small city.
The year In the year of its official opening, spa baths were a failure.
The city The city was left derelict, and the palace burned up.
The book The book copyright was criticized by John S. and Patricia S. Champaign.
The horse The horse was characterized by a foul-lined face with pinched eyes.
The road The road was again covered with a continuous foul red mist.

Once upon a time Once upon a time, fans of this movie hated it.

Table 4: Examples of generated sentences with negative sentiment given prompts. Sentences are generated with 12
tokens using the same classifier as in the style transfer task.

We also share preliminary results for text generation to create negative sentiment text from a prompt.
The same classifier used in sentiment-based style transfer is applied. The results are shown in Table 4.
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