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Abstract

Although people are impressed by the content
generation skills of large language models, the
use of LLMs, such as ChatGPT, is limited by
the domain grounding of the content. The cor-
rectness and groundedness of the generated
content need to be based on a verified con-
text, such as results from Retrieval-Augmented
Generation (RAG). One important issue when
adapting LLMs to a customized domain is that
the generated responses are often incomplete,
or the additions are not verified and may even
be hallucinated. Prior studies on hallucination
detection have focused on evaluation metrics,
which are not easily adaptable to dynamic do-
mains and can be vulnerable to attacks like jail-
breaking. In this work, we propose 1) a post-
processing algorithm that leverages knowledge
triplets in RAG context to correct hallucina-
tions and 2) a dual-decoder model that fuses
RAG context to guide the generation process.

1 Introduction

Adapting an LLM to a specific domain is challeng-
ing for several reasons: 1) Pre-trained LLMs cover
general knowledge and cannot access private data
(even during fine-tuning) due to privacy, copyright,
and policy constraints. 2) The grounding of gen-
erated texts can change depending on specific con-
texts, such as domain or timestamp. Recent studies
mostly focus on detecting hallucinations and using
multiple LLMs when hallucinations occur. 3) Busi-
ness logic and structured data, such as databases
and private knowledge bases, are required when
integrating customized LLMs into production sys-
tems and presenting them to customers or users.

We offer two methods for correcting hallucina-
tions (beyond merely detecting them (Wan et al.,
2024; Li et al., 2023a; Ji et al., 2023)): 1) Apply-
ing post-processing to generated texts using knowl-
edge triplets, and 2) Proposing guided generation
via Dual Decoders. Inspired by common practices

like Retrieval-Augmented Generation (RAG) (Li
et al., 2024), which retrieves relevant grounding
context and feeds it to an LLM for text generation,
we address hallucinations in generated texts from
two aspects: 1) Post-editing based on knowledge
graphs extracted from the context, and 2) Infusing
guided context that contains important knowledge
triplets into a generic LLM. Our proposed methods
also provide reasoning and create consistent results
from generative LLMs, benefiting from both the
generation and extraction capabilities of decoder-
only LLMs and the groundedness of RAG via the
second decoder on the guidance (Le et al., 2020;
Wang et al., 2022b).

In this work, we elaborate on our real-world
commercial application scenario of using LLMs
to support customers with Microsoft product
inquiries in copilots, where groundedness is key to
success. Pre-trained LLMs often lack the relevant
knowledge or cannot adapt promptly to changes in
the product database updates. Different variants
of large language models (LLMs), such as Phi-3.5
(Abdin et al., 2024), ChatGPT (Mohamadi et al.,
2023), LLama-3 (Dubey et al., 2024), and Gemma
(Team, 2024), are proficient at producing fluent
outputs for diverse user queries. Despite their
human-like fluency in generating text across a wide
range of prompts, large language models suffer
from hallucinations (see examples in Figures 2, 3,
4), where parts or the entirety of the generated text
lack faithfulness, factuality, or reasoning, yet are
presented with a confident tone Ji et al., 2023.

To mitigate and correct hallucinations, we lever-
age guided text generation. Grounding guidance
(Socher et al., 2013; Nickel et al., 2011; Lin et al.,
2015; Wang et al., 2014; Bordes et al., 2013; Wang
et al., 2022a; Grover and Leskovec, 2016), such
as knowledge graphs (KGs), has been shown to
significantly improve the reliability and factual-
ity of LLMs in recent studies, e.g., KELM (Agar-
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wal et al., 2020; Lu et al., 2021), SKILL (Moiseev
et al., 2022), K-DLM (Zou et al., 2023), KEPLET
(Li et al., 2023b), and LUKE-Graph (Foolad and
Kiani, 2023). Knowledge graphs typically consist
of factual information represented explicitly in a
semi-structured format, generally as [subject entity,
relation, object entity] triples, e.g., (Bill Gates, was,
the CEO of Microsoft) (Han et al., 2019; Gard-
ner et al., 2017). We collect and maintain such
knowledge triplets and grounded context offline for
RAG.

Our contributions are as follows.
1) We correct hallucinations and out-of-domain
outputs in generated texts from LLMs by leverag-
ing a graph algorithm and provide reasoning using
knowledge triplets extracted from both the guided
context and the generated texts.
2) We propose a dual-decoder model that fuses
guided context with natural language generation
models, in which the decoders share the weights of
a pre-trained LLM.
3) The proposed algorithm and model reduce the
constraints on the maximum output length, in
addition to correcting hallucinations, by returning
or generating only outputs related to the prompt
and the guided context.

2 Background and Related Work

Unlike document summarization, RAG, or tradi-
tional question answering, our approach benefits
from both domain knowledge bases—particularly
for groundedness—and the language understand-
ing and generalization capabilities of various pre-
trained or customized LLMs. By iterating over
the knowledge triplets extracted from the gener-
ated text and comparing them to the knowledge
triplets extracted from the given context (e.g., re-
sults from RAG), we can correct hallucinations
(and generated phrases that lack references) using
our proposed post-processing algorithm.

2.1 Guided Natural Language Generation

Prior studies have attempted multiple guidance
frameworks, particularly with encoder-decoder
models (See et al., 2017; Dou et al., 2020; Hokamp
and Liu, 2017; Beurer-Kellner et al., 2024). Unlike
GraphRAG (Edge et al., 2024), which utilizes
multiple LLM calls to combine knowledge triplets
from segments of RAG results, our proposed
TrustfulLLM model reduces irrelevant entities

and tokens in generated texts to demonstrate its
efficiency.

2.2 Hallucination

Hallucination is considered one of the most promi-
nent drawbacks of Large Language Models, as it
leads models to generate inaccurate or false infor-
mation (Ji et al., 2023; Wan et al., 2024). Model-
generated texts may not match the true source con-
tent, and the facts presented by the model cannot
always be verified from the source. These draw-
backs remain significant hurdles in applying large
language models (LLMs) to real-world, business-
critical, and vitally important applications.

Algorithm 1 Hallucination Correction

1: Input: Ŷ , G
2: Output: Y ∗

3: Construct knowledge graph g = {ri} from Ŷ
4: for knowledge triplet ti = (vsi , v

o
i , ri) in g do

5: if vsi not in G then
6: Eliminate ri from g and the associated

sentence in Ŷ
7: else
8: Replace ti and Ŷ based on g
9: end if

10: end for
11: Assume Ĝ is the subgraph of G, and Ĝ con-

tains all the entities (nodes) in Ŷ
12: Y ∗ = Ŷ
13: while Y ∗ contains cycles do
14: Prune Ŷ to Y ∗ till Y ∗ is a minimum span-

ning tree of Ĝ.
15: end while

3 Methodology

Whether the generated text is factual is determined
by the domain source and the given guided context.
In our copilot scenario, we always retrieve related
context for a user prompt/query and then utilize this
context to generate the final response presented to
users. The guided context can be a mix of offline or
web articles and database records, from which we
generate knowledge triplets (Gardner et al., 2017)
for groundedness verification and hallucination cor-
rection. We propose a post-processing algorithm
for correcting hallucinations that can be applied
to any LLM outputs, as discussed in Section 3.1.
Additionally, we propose a dual-decoder text gener-
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Figure 1: TrustfulLLM
The dual decoder module can be adapted to any generic LLM, and the weights are shared for the guided

context and the prompt input.

ation model that takes both the prompt and guided
context leveraging the RAG result content as inputs,
described in Section 3.2.

3.1 Post-processing text generation by
Correcting Knowledge Triplets

For generated texts from an LLM, we identify and
correct potential hallucinations using knowledge
triplets extracted from the RAG context and the
generated text output. Specifically, we convert the
extracted knowledge triplets from the guided con-
text and the LLM output into graphs G and g, re-
spectively, where each node vi represents either
a subject or an object, and the relations between
the subject and object serve as bi-directional edges
connecting the two nodes. Algorithm 1 explains
the hallucination detection and correction process
for a given generated text Ŷ and the knowledge
graph G extracted from the guided context. In the
end, we obtain a corrected/verified output Y ∗. A
knowledge triplet t can be identified given a subject
and a relation, or an object and a relation; i.e., we
can easily locate and replace the third component
when the entity or relation is incorrect in ti, which

is composed of subject vsi , object voi , and the re-
lation ri. This algorithm can verify, replace, and
prune triplets in Ŷ but does not increase the number
of nodes/entities. For instance, given a sentence
in RAG result content: "Microsoft 365 Business
Basic is $7.2 dollars per user per month.", we ob-
tain knowledge triplet ti: (vsi , v

o
i , ri) is (Microsoft

365 Business Basic, is, $7.2 dollars per user per
month). Since LLM outputs can omit or introduce
additional entities, we propose a second method:
guided generation via dual decoders.

3.2 TrustfulLLM and Guided Generation via
Dual Decoders

In addition to the contextual embeddings used in
Transformers, we embed the guidance text and
apply a cross-attention calculation using the hid-
den states of the two decoders. In this way, we
have the grounding/context source embeddings in
one decoder and the user prompt in the other de-
coder, with both decoders sharing weights. We
apply cross-attention CROSSATTN(Hp, Hg) by
taking the hidden state Hp of the prompt module as
the ‘query’ and the hidden state Hg of the guided
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context module as the ‘key’ and ‘value.’ The di-
agram of the TrustfulLLM is shown in Figure 1,
and the pre-trained LLM component is generic.
Only the prompt inputs are generated token by to-
ken, while the guided context contributes to the
CROSSATTN(Hp, Hg) only. The fine-tuned trans-
former block components (the grey boxes in Fig-
ure 1) are derived from the Phi-3 and model ar-
chitecture (Abdin et al., 2024; Dubey et al., 2024;
Vaswani et al., 2023).

During the inference stage, the guided context
is the same as the RAG context. We augment the
RAG context by randomly adding additional con-
tent (shuffled from other RAG results from dif-
ferent prompts) as the guided context during fine-
tuning, as shown in the Appendix A.2.

4 Experiments and Results

4.1 Tasks and Datasets

We elaborate the results from the public Microsoft
learn.microsoft.com articles and product from
www.microsoft.com 1. The M365 dataset com-
prises approximately 10,000 question-and-answer
pairs, including the context from which these ques-
tion and answers were derived. We conducted our
experiments based on that the RAG results (knowl-
ege bases and/or domain articles) that are trustwor-
thy. For fine-tuned LLMs, we leverage LoRA (Hu
et al., 2021) and set the number of epochs to be
over 400, which is relatively higher than in regular
LoRA fine-tuning.

4.2 Metrics and Baseline Models

We use a combination of metrics including
ROUGE-L, METEOR, GPT-Similarity, GPT-
Groundedness (Appendix A.4), and BERTScore.
ROUGE-L assesses the longest common subse-
quence between the generated and reference texts,
capturing fluency and coherence. METEOR goes
further by considering synonyms, stemming, and
word order, providing a more nuanced evaluation.
Groundedness rated 1-5 by GPT-4 ensures that the
generated content is closely aligned with the source
material. GPT-Similarity rated 1-5 by GPT-4 mea-
sures the semantic similarity between generated
and reference texts, while BERT Score leverages
pre-trained language models to evaluate the quality
of the generated text on a deeper, contextual level.

1https://github.com/MicrosoftDocs/
microsoft-365-docs

Together, these metrics provide a comprehensive
assessment of our model performance.

We show the results of our methods, pre-trained
LLMs, RAG, and Trustful LLMs on domain
datasets M365 in Table 1, where boldface indicates
the best scores, HC indicates applying the halluci-
nation correction post-processsing algorithm, and
TrustfulLLM indicates fine-tuning from the pre-
trained model on the domain data. Leveraging the
proposed HC can largely boost the groundedness
score, and utilizing the TrustfulLLM dual-decoder
framework and HC yield the best performance
among all metrics. In particular, the percentage of
eliminated entities when HC is applied to Phi-3.5
decreases from 18% to 6.9% when HC is applied
to TrustfulLLM + Phi-3.5, further supporting the
effectiveness of TrustfulLLM. We also explored
the performance of the models on a general sum-
marization task in Appendix A.3.

4.3 Effects of Applying HC and TrustfulLLM

We take a incorrect & incomplete statement from
an LLM as a straightforward example: "Domain
registrar that support all DNS records required
for Microsoft 365 are GoDaddy and Oray." After
we apply HC, HC corrects this output as follows:
"Domain registrars that support all DNS records
required for Microsoft 365 are Oray , HiChina ,
east.net, and BIZCN."

In our production systems, we convert the nodes
at Line 4 of Algorithm 1 into embeddings using
a pre-trained transformer model, allowing us to
find semantically related subjects/objects using the
cosine similarity and a heuristic similarity thresh-
old. For example, "M365 Business Basic" can
be mapped to "Microsoft 365 Business Basic".
When offline & pre-calibrated knowledge triplets
are available, especially for user prompts related
to Microsoft product information, we store the em-
beddings using the FAISS(Douze et al., 2024) 2

and combine them with the knowledge triplets ex-
tracted in the real-time RAG context.

LLMs can generate content that does not origi-
nate from the RAG context, which may not always
be a hallucination. However, HC can make the
outputs more consistent and better aligned with the
RAG & guided context. For instance, given a user
prompt:

What is the price of Microsoft 365 Business Ba-
sic?

2https://github.com/facebookresearch/faiss
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M365
Models Rouge-L METEOR Groundedness GPT-Similarity BERTScore
TrustfulLLM + HC + Phi-3.5-mini-instruct 0.55 0.51 5.00 4.68 0.93
TrustfulLLM + Phi-3.5-mini-instruct 0.50 0.50 3.98 4.30 0.90
HC + Phi-3.5-mini-instruct 0.46 0.48 5.00 4.52 0.91
RAG + Phi-3.5-mini-instruct 0.41 0.45 3.72 3.49 0.89
RAG + Mistral-NeMo-Minitron-8B-Instruct 0.38 0.46 3.77 3.76 0.88
RAG + Llama-3.1-8B-Instruct 0.40 0.46 3.74 3.34 0.89
RAG + GPT-3.5 Turbo 0.45 0.48 3.81 3.58 0.90
RAG + GPT-4o 0.42 0.48 3.77 3.52 0.91
Phi-3.5-mini-instruct 0.17 0.26 3.33 3.60 0.84
Mistral-NeMo-Minitron-8B-Instruct 0.16 0.24 3.50 4.05 0.82
Llama-3.1-8B-Instruct 0.19 0.26 3.44 3.82 0.84
GPT-3.5 Turbo 0.23 0.31 3.70 4.10 0.85
GPT-4o 0.16 0.25 3.64 3.97 0.83

Table 1: Question Answering Benchmarking Results

and RAG context:
"Microsoft 365 Business Basic is $7.2 dollars

per user per month. If you commit yearly the
price is $6 dollars per user per month. Microsoft
365 Business Standard is $15 dollars per user per
month ...",

a LLM can respond with:
Microsoft 365 Business Basic is priced at $7.2

dollars for each user on a monthly basis. However,
if you choose to commit to a yearly plan, the price
decreases to $6 dollars per user per month.

using RAG context:
Please answer using the exact following context

"Microsoft 365 Business Basic is $7.2 dollars per
user per month. If you commit yearly the price is $6
dollars per user per month. Microsoft 365 Business
Standard is $15 dollars per user per month ...".

Utilizing TrustfulLLM and HC, we obtain the
following outputs:

"Microsoft 365 Business Basic is $7.2 dollars
per user per month. If you commit yearly the
price is $6 dollars per user per month. Microsoft
365 Business Standard is $15 dollars per user per
month."

Apparently, TrustfulLLM and HC tends to use
the knowledge triplets and exact sub-sentences
from the verified RAG context for grounded gener-
ation. This also makes (human) evaluations more
effective in production systems.

4.4 Commercial Application and Constraints

In our commercial system, we first apply a intent
detection to user prompts to filter out enquiries that
are not related to our business then apply a retrieval
model to obtain most relevant internal documents,
records in product databases. We only reply on the

groundedness and correctness of the retrieval re-
sults, i.e, phrases in AI generated texts that cannot
be referenced from the RAG results are eliminated.
For phrases that are semantically equivalent to the
RAG results we still do a replacement using the
knowledge triplet correction to keep consistent re-
sponses. We have also thoroughly conducted Red
Teaming evaluations on various Responsible AI
metrics such as harmful content, IP infringement,
jailbreaking, groundedness, etc. Though we high-
ligh our proposed halluciation correction algorithm
and the dual decoder architecture, the upstream
RAG and intent detection models can be combined
in a multi-task modeling process.

5 Conclusion

We have addressed grounding issues in LLMs and
proposed task-agnostic hallucination correction
methods for real-world applications from two per-
spectives: post-processing to refine LLM outputs
and trustful LLM fine-tuning via dual encoders. We
have discussed hallucination correction and trust-
worthy text generation, demonstrating the robust-
ness and resilience of our methods. In the future,
we plan to explore heterogeneous modalities, such
as structured and spatio-temporal data, knowledge-
enriched representations of input tokens (Grover
and Leskovec, 2016; Yu et al., 2022; Pan et al.,
2023; GAO et al., 2021; Ye et al., 2021), hierar-
chical relation graphs, and accountability (Li et al.,
2023a). We also plan to study model bias, aggre-
gation for federated learning (Zheng et al., 2023;
Hashemi et al., 2021), and privacy-preserving is-
sues (Hashemi et al., 2021). Additionally, we
aim to reduce the complexity of LLMs through
parameter-efficient fine-tuning.
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A Appendix

A.1 Hallucination Examples
We show examples where various LLMs generate
hallucinations.

Figure 2: Hallucination Example 1
GPT-4o returns the wrong pricing information of
Microsoft 365 Business Basic.

A.2 Examples of Prompt, RAG Context, and
Guided Context

Prompt: "... <|user|> How much is Microsoft 365
Business Basic? <|end|> <|assistant|> Microsoft
365 Business Basic is $7.2 dollars per user per
month. <|end|>".

RAG context: "Microsoft 365 Business Basic is
$7.2 dollars per user per month. Microsoft 365
Business Basic ...".

Guided context: "Microsoft 365 Business Basic
is $7.2 dollars per user per month. Microsoft 365

Figure 3: Hallucination Example 2
GPT-3.5 Turbo cannot answer questions related to
Microsoft Teams Essential.

Figure 4: Hallucination Example 3
Phi-3 answered incorrectly about the price of Mi-
crosoft Teams Essential.

Business Basic ... Microsoft 365 Business Standard
is ... <|end|>". We add additional content about,
such as "Microsoft 365 Business Standard", which
is similar to the product "Microsoft 365 Business
Basic" to the RAG context. This is for mimicking
the potentially noisy RAG context in the retrieval
stage.

A.3 Summarization Task
A summarization task does not have the retrieval
component as in RAG. We utilize the graph build-
ing step of HC to select the salient sentences from
the articles as the guided context. We first extract
knowledge triplets from the articles then keep sen-
tences where the most frequent subjects are asso-
ciated with. We show the comparison of Trust-
fulLLM + HC + Phi-3.5-mini-instruct, where HC
extract knowledge triplets from the articles and the
generated texts in the inference stage, and LLM
baselines in Table 2.

A.4 Prompt Template for GPT Metrics
We show the prompts of GPT Similarity and GPT
Groundness addressed in Section 4.

Prompt for GPT Groundness
System:
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CNN DailyMail
Models Rouge-L METEOR Groundedness GPT-Similarity BERTScore
TrustfulLLM + HC + Phi-3.5-mini-instruct 0.41 0.39 5.00 4.12 0.89
TrustfulLLM + Phi-3.5-mini-instruct 0.40 0.39 4.68 4.12 0.88
HC + Phi-3.5-mini-instruct 0.35 0.36 5.00 3.82 0.88
Phi-3.5-mini-instruct 0.17 0.34 4.29 3.79 0.86
Mistral-NeMo-Minitron-8B-Instruct 0.20 0.35 3.32 3.87 0.86
Llama-3.1-8B-Instruct 0.32 0.37 4.61 4.10 0.87
GPT-3.5 Turbo 0.24 0.38 4.50 3.79 0.87
GPT-4o 0.18 0.36 4.42 4.10 0.87

Table 2: Summarization Benchmarking Results

You are an AI assistant. You will be given
the definition of an evaluation metric for as-
sessing the quality of an answer in a question-
answering task. Your job is to compute an
accurate evaluation score using the provided
evaluation metric. You should return a single
integer value between 1 to 5 representing the
evaluation metric. You will include no other
text or information.

User:
You will be presented with a CONTEXT and
an ANSWER about that CONTEXT. You need
to decide whether the ANSWER is entailed by
the CONTEXT by choosing one of the follow-
ing rating:

1. 5: The ANSWER follows logically from
the information contained in the CON-
TEXT.

2. 1: The ANSWER is logically false from
the information contained in the CON-
TEXT.

3. An integer score between 1 and 5, and if
such an integer score does not exist, use 1:
It is not possible to determine whether the
ANSWER is true or false without further
information.

Read the passage of information thoroughly
and select the correct answer from the three an-
swer labels. Read the CONTEXT thoroughly
to ensure you know what the CONTEXT en-
tails. Note that the ANSWER is generated by
a computer system, so it can contain certain
symbols, which should not be a negative factor
in the evaluation.

Independent Examples:
Example Task #1 Input:

{"CONTEXT": "Some are reported as not hav-
ing been wanted at all.", "QUESTION": "",
"ANSWER": "All are reported as being com-
pletely and fully wanted."}
Example Task #1 Output:
1 Example Task #2 Input:
{"CONTEXT": "Ten new television shows ap-
peared during the month of September. Five of
the shows were sitcoms, three were hourlong
dramas, and two were news-magazine shows.
By January, only seven of these new shows
were still on the air. Five of the shows that
remained were sitcoms.", "QUESTION": "",
"ANSWER": "At least one of the shows that
were cancelled was an hourlong drama."}
Example Task #2 Output:
5

Example Task #3 Input:
{"CONTEXT": "In Quebec, an allophone is a
resident, usually an immigrant, whose mother
tongue or home language is neither French nor
English.", "QUESTION": "", "ANSWER":
"In Quebec, an allophone is a resident, usually
an immigrant, whose mother tongue or home
language is not French."}
Example Task #3 Output:
5

Example Task #4 Input:
{"CONTEXT": "Some are reported as not hav-
ing been wanted at all.", "QUESTION": "",
"ANSWER": "All are reported as being com-
pletely and fully wanted."}
Example Task #4 Output:
1

Actual Task Input:
{"CONTEXT": {{context}}, "QUESTION":
"", "ANSWER": {{response}}}
Reminder: The return values for each task
should be correctly formatted as an integer
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between 1 and 5. Do not repeat the context
and question.

Actual Task Output:

Prompt for GPT Similarity]
System:
You are an AI assistant. You will be given
the definition of an evaluation metric for as-
sessing the quality of an answer in a question-
answering task. Your job is to compute an
accurate evaluation score using the provided
evaluation metric. You should return a single
integer value between 1 to 5 representing the
evaluation metric. You will include no other
text or information.

User:
Equivalence, as a metric, measures the simi-
larity between the predicted answer and the
correct answer. If the information and content
in the predicted answer is similar or equiva-
lent to the correct answer, then the value of
the Equivalence metric should be high, else
it should be low. Given the question, correct
answer, and predicted answer, determine the
value of the Equivalence metric using the fol-
lowing rating scale:

• One star: the predicted answer is not at
all similar to the correct answer

• Two stars: the predicted answer is mostly
not similar to the correct answer

• Three stars: the predicted answer is some-
what similar to the correct answer

• Four stars: the predicted answer is mostly
similar to the correct answer

• Five stars: the predicted answer is com-
pletely similar to the correct answer

This rating value should always be an inte-
ger between 1 and 5. So the rating produced
should be 1, 2, 3, 4, or 5. The examples below
show the Equivalence score for a question, a
correct answer, and a predicted answer.

Question: What is the role of ribosomes?
Correct answer: Ribosomes are cellular
structures responsible for protein synthesis.
They interpret the genetic information carried
by messenger RNA (mRNA) and use it to
assemble amino acids into proteins.

Predicted answer: Ribosomes participate
in carbohydrate breakdown by removing
nutrients from complex sugar molecules.
Stars: 1

Question: Why did the Titanic sink?
Correct answer: The Titanic sank after it
struck an iceberg during its maiden voyage
in 1912. The impact caused the ship’s hull
to breach, allowing water to flood into the
vessel. The ship’s design, lifeboat shortage,
and lack of timely rescue efforts contributed
to the tragic loss of life.
Predicted answer: The sinking of the Titanic
was a result of a large iceberg collision.
This caused the ship to take on water and
eventually sink, leading to the death of many
passengers due to a shortage of lifeboats and
insufficient rescue attempts.
Stars: 2

Question: What are the health benefits of
regular exercise?
Correct answer: Regular exercise can help
maintain a healthy weight, increase muscle
and bone strength, and reduce the risk of
chronic diseases. It also promotes mental
well-being by reducing stress and improving
overall mood.
Predicted answer: Routine physical activity
can contribute to maintaining ideal body
weight, enhancing muscle and bone strength,
and preventing chronic illnesses. In addition,
it supports mental health by alleviating stress
and augmenting general mood.
Stars: 5

Question: {{query}}
Correct answer: {{ground_truth}}
Predicted answer: {{response}}
Stars:
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