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Abstract

Large Language Models (LLMs) have revo-
lutionized the landscape of machine learning,
yet current benchmarks often fall short in cap-
turing the diverse behavior of these models in
real-world applications. A benchmark’s use-
fulness is determined by its ability to clearly
differentiate between models of varying capa-
bilities (separability) and closely align with
human preferences. Existing frameworks like
Alpaca-Eval 2.0 LC (Dubois et al., 2024a) and
Arena-Hard v0.1 (Li et al., 2024a) are lim-
ited by their focus on general-purpose queries
and lack of diversity across domains such as
law, medicine, and multilingual contexts. In
this paper, we address these limitations by in-
troducing a novel data pipeline that curates
diverse, domain-specific evaluation sets tai-
lored for LLM-as-a-Judge frameworks. Our
approach leverages a combination of manual
curation, semi-supervised learning to generate
clusters, and stratified sampling to ensure bal-
anced representation across a wide range of
domains and languages. The resulting evalua-
tion set, which includes 1573 samples across
14 categories, demonstrates high separability
(84%) across ten top-ranked models, and agree-
ment (84%) with Chatbot Arena and (0.915)
Spearman correlation. The agreement values
are 9% better than Arena Hard and 20% better
than AlpacaEval 2.0 LC, while the Spearman
coefficient is 0.7 more than the next best bench-
mark, showcasing a significant improvement
in the usefulness of the benchmark. We fur-
ther provide an open-source evaluation tool that
enables fine-grained analysis of model perfor-
mance across user-defined categories, offering
valuable insights for practitioners. This work
contributes to the ongoing effort to enhance
the transparency, diversity, and effectiveness of
LLM evaluation methodologies.

Figure 1: Compared to other benchmark frame-
works our approach introduces a data pipeline that
curates unlabeled data into categories that contain do-
mains/capabilities that the practitioner cares about. It
has the capability to be refreshed with new data and is
diverse compared to alternatives.

1 Introduction

Large Language Models (LLMs) have dramati-
cally changed the landscape of machine learning
research and have been incorporated in products
for the past few years. Along with their rise, a mul-
titude of benchmarks and frameworks (Liang et al.,
2023) have been proposed to assess the capabili-
ties of LLMs which include knowledge tasks such
as MMLU (Hendrycks et al., 2021a), reasoning
tasks like GSM8k (Cobbe et al., 2021) and more
standard NLP tasks (Zellers et al., 2019; Narayan
et al., 2018). However, these benchmarks fail to
capture the behavior that a user experiences in
a chat/generative applications. Typically, human
evaluations are seen as a gold standard to deter-
mining which LLM responses are preferable over
others in a chat setting but is time-consuming and
expensive to conduct (Chiang et al., 2024).

To address this shortcoming, Zheng et al. in-
troduced the concept of LLM as a judge as an au-
tomatic evaluator alternative, which uses another
LLM the judging of model completions to another
LLM such as GPT-4 or GPT-4o (Zheng et al.,
2023a; OpenAI et al., 2024). Alpaca-Eval is an-
other benchmark designed under the paradigm of
LLM as an evaluator where a target LLM’s com-
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Figure 2: Alpaca-Eval category breakdown

pletions are compared against a reference LLM’s
output (the default being GPT-4 Turbo) and as-
signed a winrate against the reference (Li et al.,
2023). It has seen widespread adoption since it
is cheap, fast, and mitigates length bias (Chiang
et al., 2024). Similarly, Arena-Hard v0.1 is recent
benchmark which focuses on distilling the Hard
category of Chatbot Arena into a smaller evalua-
tion set (Li et al., 2024a). They use a topic clus-
tering pipeline to cluster prompts with OpenAI’s
embedding model (text-embedding-3-small) (Ope-
nAI, 2024b) and score each cluster based on diffi-
culty, creativity, and reasoning ability with GPT-3.5
Turbo. They also introduce a notion of separability
(how well can a benchmark differentiate between
models) and agreement with human preferences
(i.e. ChatBot Arena) as a measure of benchmark
quality.

Unfortunately, there are still some limitations
with the current open-source LLM-as-a-judge
framework. Alpaca-Eval 2.0 LC is dominated
by general chat queries/instructions and has few
prompts in domains such as coding, medical, fi-
nance, law and mathematics as shown in Figure
2. Arena-Hard v0.1 addresses some of these defi-
ciencies by upweighting coding and mathematics
prompts and restricting the general chat queries to
30% if the evaluation set. However, both evalua-
tion sets are strictly in English therefore not access-
ing the model’s multilingual capability and have
a smaller number of prompts in more niche cate-
gories like law and medicine. As models are ac-
quiring more capabilities across various data types
such as charts/tables, domains and languages, it
becomes crucial to determine how to evaluate each
model’s ability in a scalable manner.

Figure 3: Arena-Hard v0.1 category breakdown

In this paper, we attempt to address challenges
from Alpaca-Eval 2.0 LC and Arena-Hard v0.1 by
introducing more diversity across domain knowl-
edge and languages. To accomplish this, we intro-
duce a simple data pipeline methodology to create
a new evaluation set designed for these specific
contexts. First, we source prompts from various
open source datasets (shown in Table 4) to ensure
our evaluation set has high data diversity. For the
next step, we generate embeddings from a subsam-
ple of each of these datasets using an embedding
model. To label the corresponding embeddings, we
manually curate a seed set of prompts and label
them to human-defined specific categories, gener-
ate those embeddings and train a k-NN classifier
which we can use to classify the unlabeled data
that we sampled. In order to make sure that no
cluster/category dominates, we employ stratified
sampling to ensure balanced representation across
all domains and languages in the evaluation set. We
further refine the quality of the prompts by manual
curation and ensure that each category has a suffi-
cient number of prompts to mitigate the inherent
variability in LLM-as-a-judge and ultimately end
up with 1573 samples in the evaluation set.

There are several advantages to our approach as
shown in Figure 1. Similar to Arena-Hard v0.1,
our approach is robust to contamination as we can
periodically run our data pipeline on the same data
to get new samples or potentially even a new data
mixture. As mentioned earlier, our methodology
allows introduction of new datasets which enables
diversity rather than offered by Arena-Hard v0.1
and Alpaca-Eval. In addition, our evaluation set
more closely mirrors Chatbot Arena rankings; Fig-
ure 4 shows a visual comparison of model rankings.
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Figure 4: Visual comparison between our method,
Arena-Hard v0.1, and Alpaca-Eval 2.0 LC on 10 models
on separability of winrates. Our method has fewer over-
laps of confidence intervals than the other baselines.

In particular, our evaluation set places Gemini-1.5-
Flash (DeepMind, 2024) over Gemma2 27B In-
struct (Team, 2024) which aligns with ChatBot
Arena rankings whereas the others rank Gemma2
27B over Gemini-1.5-Flash. Moreover, since we
use open source models for the entire pipeline, prac-
titioners can mold the pipeline and generate evalu-
ation sets to test domains and capabilities they care
about.

After we have obtained the evaluation set, we
execute the same procedure as LLM-as-a-Judge by
generating the outputs completions from GPT-4o
and using them as reference to construct a leader-
board from ten various open and closed-sourced
models. With this labeling approach, we are able
to breakdown the composition of prompts into var-
ious categories and report category win rates. We
plan to release an evaluation tool which displays
the category winrate for all models on the leader-
board and an explorer which displays both the tar-
get model as well as the reference model’s comple-
tions for a prompt and the reasoning given by the
LLM judge. This analysis tool allows users to ob-
tain fine-grained insights on where different models
succeed and fail for their particular use-case.

Our main contributions can be summarized be-
low:

• We introduce a new methodology that en-
ables creation of a benchmark that tests for
diverse skill sets of models. We open-source
our evaluation infrastructure so practitioners
can view how different models perform on
separate tasks according to how they define

their categories. This fine-grained breakdown
allows the practitioner to select models that
work well for their particular use case.

• Our benchmark creation methodology encour-
ages more diversity and transparency to the
practitioner compared to other alternatives. In
comparison to other baselines like Alpaca-
Eval and Arena-Hard v0.1, our benchmark has
84% separability, 84% agreement with confi-
dence interval (95%) with respect to Chatbot
Arena rankings, 0.915 Spearman’s correlation
coefficient with respect to Chatbot Arena rank-
ings and 0.04 Brier Loss Score.

• We also analyze the aforementioned metrics
on our evaluation set with 4 LLM judges:
GPT-4o(OpenAI et al., 2024), GPT-4o-mini
(OpenAI, 2024a), Llama 3.1 405B Instruct
and Llama 3.1 70B Instruct (Dubey et al.,
2024). Our overall findings suggest that
while open-source models can be used to sepa-
rate between model rankings, agreement with
Chatbot Arena model rankings is roughly 10%
(405B) and 20% (70B) than GPT-4o.

2 Related Work

At their core, benchmarks are tool to estimate LLM
capabilities. There are many different flavors of
benchmarks, spanning either across domains or
various tasks. Some popular benchmarks include:
Boolq (Clark et al., 2019), MMLU (Hendrycks
et al., 2021a), GSM8k (Cobbe et al., 2021), MATH
(Hendrycks et al., 2021b), XSUM (Narayan et al.,
2018), Hellaswag (Zellers et al., 2019), and MGSM
(Shi et al., 2022). An expanded framework of
static benchmark is AutoBencher which automat-
ically creates new benchmarks which finds holes
in knowledge of current SOTA LLMs (Li et al.,
2024b).

These types of benchmarks have ground-truth
references and compare how closely the LLM’s
completion aligns with those references. An inher-
ent limitation with static benchmarks is that they
are hosted on the internet and thus are suscepti-
ble test leakage contamination (Sainz et al., 2023;
Yang et al., 2023). The other style of benchmarking
relies on constructing a human evaluation trials on
a set of evaluation prompts. Due to the expensive
nature of human evaluation, a recent, cheaper al-
ternative is to use SOTA LLMs to evaluate model
completions either through single score or pairwise
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comparison with a reference answer, popularly re-
ferred to as LLM-as-a-Judge (Li et al., 2023; Zheng
et al., 2023a; Li et al., 2024a; Dubois et al., 2024b;
Verga et al., 2024).

This motivates the need for "live, refreshable"
benchmarks so that the integrity of the bench-
mark can be maintained. LiveBench is a frame-
work which sources data from arXiv papers, news
articles, and datasets to periodically replace the
stale prompts (White et al., 2024). Chatbot arena
is an open platform that allows online users to
send prompts to two different models and com-
pare/contrast the models’ response (Chiang et al.,
2024). Users can then vote on which completion
was superior. Other live benchmarks include Dyn-
aBench (Kiela et al., 2021), LiveCodeBench (Jain
et al., 2024), and R2E (Jain et al.). Our work lies in
the intersection between LLM-as-a-Judge and live
benchmarks as our data pipeline enables periodic
refreshing of the evaluation set from existing clus-
ters. Furthermore, our data pipeline is fairly gen-
eral as it can consume a variety of diverse datasets
(relative to Arena-Hard v0.1 and Alpaca-Eval), con-
sists of using open-source models, and is flexible
enough to work on the user’s desired data.

3 Methodology

In this section, we describe our approach to creat-
ing novel evaluation set using LLM-as-a judge. We
enumerate the datasets that we source from to cre-
ate our unlabeled corpus and subsequently describe
our data pipeline for generating the evaluation set.

3.1 Data Sources

We use data sources from a variety of source to
ensure we cover a variety of domains as well as
languages. The domains we target can be broadly
classified as the following: medical, law, finance,
mathematics and coding. The languages we cover
are standard but also more esoteric: Japanese (ja),
Arabic (ar), Thai (th), Hungarian (hu), Russian
(ru), Serbian (sr), Slovenian (sl), and Turkish (tr).
Prompts that don’t neatly fit into these groups fall
into a catch-all general category. A complete list of
all the data we use can be found in Table 4 in the
Appendix.

3.2 Data pipeline

Our data pipeline can be divided into 3 distinct
steps, as shown in Figure 5. We first take the data
corpus and use an embedding model to generate

their corresponding embedding. Each embedding
encapsulates some level of semantic understanding
of its associated prompt, and nearby embeddings
typically encode similar semantic information.

To generate the labels for the unlabeled data,
we take inspiration from semi-supervised learning
(Hady and Schwenker, 2013). We manually define
a set of categories, curate a seed set of prompts
which fall into those categories (assigning them
distinct labels) and embed those prompts with the
aforementioned embedding model. We train a k-
NN model (Mucherino et al., 2009) on top of those
embeddings and use the k-NN to label the larger
unlabeled corpus.

The final step in our pipeline involves applying
stratified sampling (Parsons, 2017) to each cluster.
The reason for this last step is that we want our
evaluation set to retain diversity of our larger data
corpus rather than uniform random sampling. For
each category, we sub-sample 100 prompts from
the aggregate clusters and disregard clusters which
have a lower count than the number of prompts
we sampled. To obtain our final evaluation set, we
manually curate the remaining prompts to ensure
high quality, varied task capability and data diver-
sity.

4 Experimental Setup

In this section, we discuss finer details about the
data pipeline we mentioned in the prior section. ex-
perimental setup on a set of ten highly rated mod-
els1 as well as defining the metrics which determine
the quality of the benchmark.

4.1 Data pipeline details

For the data pipeline, we use semi-supervised learn-
ing via a k-NN classifier. We consider 13 cate-
gories comprising of domains: finance, law, medi-
cal, maths, coding and languages: Arabic, Russian,
Serbian, Hungarian, Japanese, Thai and Slovenian.
We follow usual supervised training and via hyper-
parameter sweep over validation set yield k = 40
as the best value of k.

To generate the embeddings of the unlabeled
data collected, we use the e5-mistral-7b-instruct
embedding model(Wang et al., 2024) for its strong
performance on the Massive Text Embedding

1gpt-4o-2024-05-13, claude-3-5-sonnet-20240620, claude-
3-opus-20240229, gemini-1.5-flash-latest, google/gemma-
2-27b-it, Meta-Llama-3-70B-Instruct, claude-3-sonnet-
20240229, Qwen/Qwen2-72B-Instruct, Meta-Llama-3-8B-
Instruct, Mixtral-8x7B-Instruct-v0.1
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Figure 5: Data pipeline: After aggregating the prompts from datasets, we generate embeddings using a text
embedding model. We set aside a set of prompts to use as a seed set for training the k-NN, label them into each
category we care about, and generate their corresponding embeddings to train the k-NN with the embedding model.
Subsequently, we classify the unlabeled data with our trained k-NN to create clusters of categories. We balance the
clusters with stratified sampling and then manually curate the remaining prompts by removing overly long prompts
(greater than 5000 words) and checking for low-quality content (nonsense prompts, NSFW etc.) to obtain the final
evaluation set.

Benchmark (MTEB) Leaderboard (Muennighoff
et al., 2022) and multilingual capability. If the k-
NN encounters a sample which it is not familiar
with or uncertain to label, we want those samples to
be classified as general prompts. We use entropy of
k-NN classifier probabilities of various categories
for a given prompt as the measure of uncertainty.
If entropy if too high entropy of the output of the
classifier is too high, we bucket the sample into the
default/general category (Settles, 2010). We set the
entropy threshold to be 1.5 based on careful error
analysis on the validation set.

After labeling with k-NN, we conducted strat-
ified sampling within each cluster, selecting 100
samples for curation. We then filtered out exces-
sively long prompts (longer than 5000 words) that
could overwhelm the judge’s context window. Ad-
ditionally, we reviewed the remaining prompts to
eliminate those that were nonsensical or of low
quality. During the evaluation, we observed that
categories with a small number of examples had a
significant impact on the category’s win rate. The
inherent variability of the LLM-as-a-Judge eval-
uation, even with a fixed random seed and tem-
perature set to 0.0, made it challenging to discern
which model performed better in those categories.
To mitigate this uncertainty, we ensured that any
category with fewer than 90-100 examples was
supplemented with additional data, enabling us to
obtain meaningful and interpretable results. Our
final evaluation set comprises 1573 examples.

4.2 LLM-as-a-Judge Details

We follow a similar scoring setup as Arena-Hard
(Li et al., 2024a) and Alpaca-Eval (Dubois et al.,
2024a) where we use GPT-4o as a judge model and
GPT-4o as a reference model as well. For each
model we want to test, we obtain the completions
and ask GPT-4o to record which model responses
is better for the input prompt. In order to mitigate
positional bias, we swap the completions between
the model we are evaluating and the reference on a
coin flip.

4.3 Obtaining Confidence Intervals

We follow the setup outlined in Li et. al (Li et al.,
2024a; Chiang et al., 2024). We use the Bradley-
Terry model in order to model the preference distri-
bution between models on the leaderboard and the
reference model (GPT-4o in our case). We aggre-
gate preference pairs between models and perform
100 rounds of bootstrapping to obtain 95% confi-
dence intervals for each model ranking.

We conduct the same analysis with annotations,
denoting for each prompt which model response
was preferred, from the Alpaca-Eval repo to obtain
mean ELO rankings and 95% confidence intervals
according to their leaderboard. Since similar arti-
facts (model preference comparisons) are not up-
dated on Arena-Hard v0.1, we take the model win-
rates (ELO scores not listed) and 95% confidence
intervals from their repo2. For Chatbot Arena, we
do the same thing and took model winrates/ELO

27/26/2024
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scores as well as the confidence intervals from the
website3 as a source of ground truth.

4.4 Metrics
There are four different metrics we use to judge the
efficacy of a benchmark. The first of these is Spear-
man’s correlation coefficient, which measures the
rankings order between the two benchmarks. The
other metrics are: separability, agreement with Con-
fidence Interval (CI), and Brier Score. Separabil-
ity refers to how well the benchmark can separate
various models with high confidence. In partic-
ular, if on benchmark A model M1 has a higher
ELO/winrate than model M2 and CM refers to the
confidence intervals of model M, S is a binary vari-
able indicating if benchmark A is able to separate
between model M1 and M2, S = 1CM1∩CM2

=∅.
The separability is then calculated as a ratio over all
possible model pairs. Agreement with CI measures
how well benchmarks A and B confidently distin-
guish between two models with the same ordering.
The Brier Score evaluates an LLM benchmark’s
ability to predict the ranking of a pair of competing
models, rewarding confidence in accurate predic-
tions and penalizing confidence in incorrect ones.
More details behind these metrics can be found in
(Li et al., 2024a). Ultimately, we want our bench-
mark to align with Chatbot Arena as that is seen as
an oracle for modeling human preferences.

5 Results

5.1 Separability, Agreement with CI (95%),
Pair Brier Score

Our main results can be found in Table 1. With
the exception of Chatbot Arena, our benchmark’s
separability is 84.4% compared to other baselines
like Arena-Hard v0.1 (80%) and Alpaca-Eval 2.0
LC (73.33%), which shows that our benchmark can
better differentiate amongst different models.

One interesting datapoint regarding separability
is Chatbot Arena’s score of 100% which may be at-
tributed to a combination of two factors: 1) Chatbot
Arena has more battles than any of the benchmarks
listed in Table 1 and 2) Chatbot Arena includes
battles between many different models rather than
fixing a reference model like the other benchmarks.
By providing the Bradley-Terry model bootstrap-
ping process with more varied battles, Chatbot
Arena is able to produce tighter confidence inter-
vals, suggesting a future avenue for investigation

37/25/2024

is whether confidence estimation should include
multiple reference answers during judging to more
closely simulate Chatbot Arena.

Our benchmark showed an 84.44% agreement
with CI with respect to Chatbot Arena, which is
higher than Arena-Hard v0.1’s 75.50% and Alpaca-
Eval 2.0 LC’s 64.44%. This demonstrates that our
benchmark has higher alignment with respect to
Chatbot Arena which is supposed to be approx-
imation of human preferences. In addition, our
benchmark has a Spearman’s correlation coeffi-
cient of 0.915, indicating a strong correlation in
rankings order compared to Alpaca-Eval 2.0 LC’s
0.2969. While our leaderboard ranking consists of
10 models, the pool of models we have included
are the latest SOTA models that have been released
so as to have the maximum amount of overlap pos-
sible. Finally, our benchmark scored a Brier score
of 0.0417, which is lower than Alpaca-Eval 2.0
LC’s 0.0937, demonstrating better confidence in
accurate predictions.

5.2 Diversity
Due to our data sources being quite diverse rather
than simply just ChatBot Arena (Chiang et al.,
2024), we are able to have more diversity in our
evaluation set. To demonstrate this, we label Arena-
Hard v0.1 with our kNN model using the entropy
threshold to get a distribution of categories in that
evaluation set. As shown in Figure 3, there is
an over-representation of coding prompts, which
comes from a byproduct of their data pipeline fil-
tering for the hardest, highest quality which skews
towards coding. Similarly, Alpaca-Eval’s prompt
distribution shown in Figure 2 demonstrates that
there is a large emphasis on general chat queries,
along with some coding and math prompts while
medical and law prompts are relatively underrepre-
sented.

Our evaluation set breakdown in Figure 6(a)
which covers more domains than the baseline, such
languages like Arabic, Japanese, Hungarian and
more. The close to equal distribution amongst the
categories is likely due to the effect stratified sam-
pling. We compare how our evaluation set cate-
gory breakdown compared with LM-SYS Conver-
sations (using our k-NN labeling approach) (Zheng
et al., 2023b) in Figure 6(b), which is a snapshot of
cleaned Chatbot Arena conversations from April to
June 2023. In Figure 6(b), "Other" refers to the lan-
guages our k-NN classifier recognizes but groups
them together collectively. We note that this distri-
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Chatbot Arena Arena Hard v0.1 Alpaca-Eval 2.0 LC Ours
Separability 100% 80% 73.33% 84.44%

Agreement with CI (95%) N/A 75.50% 64.44% 84.44%
Spearman’s Correlation N/A 0.187 0.2969 0.915

Brier Score N/A N/A 0.0937 0.0417

Table 1: Main results comparing the various benchmarks.

bution looks similar to Alpaca-Eval and the general
category may contain additional languages not rec-
ognized by the classifier so it may have exceeded
the entropy threshold.

5.3 Category Separability
Due to our unique ability to categorize the prompts,
we can compute category separability for all the
various categories in our evaluation set. Across 14
different categories, we do the same bootstrapping
procedure on the category data to obtain the mean
winrate/ELO and 95% CI, shown in Table 2. In
general, there is a drop in separability when we
look both at ELO ratings and winrate due to each
category having a lower number of samples and
thus larger CIs as a result.

The category-wise separability can act as an in-
dicator which categories are superior at testing out
the performance of models. Interestingly, across
ELO and winrate rankings, Hungarian has the best
separability of all categories, achieving 66.67%
and 75.56% respectively. The medical category
seems to be lowest separability around 55.56% and
68.89% respectively. The separability also indi-
cates to use which categories we may need to add
more samples to improve the confidence intervals.

5.4 Using different judges
We conduct an ablation of judge models on our
evaluation, as we want to understand the effect of
judge models on separability, Agreement with CI
(95%) and Brier Score. We consider GPT-4o mini
as one of the judges to be a small-closed source
foil to GPT-4o. The other judges that we consider
are open source models such as: Llama 3.1 405B
instruct (using SambaNova’s developer API)4 and
Llama 3.1 70B Instruct-Turbo5. We follow the
same setup as gpt-4o with these other judge models.

Our results are shown in Table 3. In terms of
separability, GPT-4o-mini and 405B get 82.2% and
70B get 84% separability, comparable to GPT-4o’s

4cloud.sambanova.ai
5https://api.together.ai/models/meta-llama/Meta-Llama-

3.1-70B-Instruct-Turbo

Category Ranking winrate Ranking ELO
ar 73.33% 57.78%
ru 71.11% 55.56%
finance 75.56% 57.78%
sr 71.11% 53.33%
tr 73.33% 55.56%
general 77.78% 55.78%
hu 75.56% 66.67%
ja 71.11% 57.78%
medical 68.89% 55.56%
law 73.33% 51.11%
th 71.11% 57.78%
coding 73.33% 55.56%
sl 77.78% 53.33%
math 73.33% 55.56%

Table 2: Winrate and ELO separability for different
categories

separability. 405B and GPT-4o-mini attain similar
Agreement with CI (95%) close to 76% while 70B
is almost 10 points lower; GPT-4o is the clear win-
ner having the highest agreement with CI (95%).
With the exception of 70B, all models get similar
Brier Scores indicating that the Bradley-Terry mod-
els used to generate the rankings on confidence in-
tervals for each judge are similarly confident. 70B’s
high Brier score (relative to other judges), in addi-
tion to Agreement with CI, indicates that it poor
judge than the other listed in Table 3.

The Spearman’s correlation coefficient (with re-
spect to ChatBot Arena rankings) seems to indicate
that GPT-4o-mini, Llama 3.1 405B, and 70B are
poor judges getting a correlation of only 0.0787 vs.
GPT-4o’s 0.915. Looking at Figure 7, it seems this
aberration comes from both judges rating Claude
Sonnet 3.5 over GPT-4o, Llama 3 70b over Claude
Opus and Gemma2 27B over Gemini 1.5 Flash. Of
course, Spearman’s correlation only measures cor-
relation the final rank order of models with respect
to ChatBot Arena and is a strictly weaker metric
than Agreement with CI (95%). This finding seems
to suggest while weaker closed-source models (like
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(a) Our evaluation set category breakdown (b) LMSys Conversations category breakdown

Figure 6: We look at the category breakdown on our evaluation set (Figure 6(a)) compared to LM-SYS Conversations
(Figure 6(b)). We can clearly see that our evaluation set covers more languages and niche domains such as law and
medical categories are a higher percentage of our evaluation set.

GPT-4o GPT-4o-mini Llama 3.1 405B Llama 3.1 70B
Separability 84.44% 82.22% 82.22% 84.44%

Agreement with CI (95%) 84.44% 76.77% 75.55% 66.66%
Spearman’s Correlation 0.915 0.0787 0.0787 0.0787

Brier Score 0.0417 0.062 0.0603 0.0955

Table 3: Comparing various judges on our evaluation set.

GPT-4o-mini) and open-source judge models seem
to be able to separate other models based on capa-
bility, they still lack the preciseness that GPT-4o
offers to align with rankings from Chatbot Arena.

Figure 7: Visual comparison of different judge’s separa-
bility on our benchmark.

6 Limitations/Future Work

There are certain limitations to our work. Currently,
the categories we enumerate in our data pipeline
is manually specified by humans and significant
curation is done to ensure high quality prompts;
for future work, we want to expand to using LLMs
as category generators as well as quality checkers
to automate the human effort out of this pipeline.
Moreover, the diversity of prompts in the multi-
lingual categories could be limited as we consider
bucket all subdomains of a language into the same
category. Sub-categorization of domains in non-
English languages is left for future work.

For improving our leaderboard, we wish to add
more models to be more representative of the entire
spectrum of other leaderboards and futhur increas-
ing the quality of the Bradley-Terry models we use
to obtain the model’s confidence intervals. In order
to improve category separability, we look to creat-
ing a methodology on figuring out the minimum
number of samples required to improve separabil-
ity.

The other aspect of future work relies to details
regarding LLM-as-a-judge evaluation. Typically,
the judge models are ablated but less explored is
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the quality of the reference answer and whether
one can use a weaker model instead of a stronger
one to see if metrics are maintained. Current met-
rics define how separable a benchmark is and how
much it aligns with human preferences but fails to
account for the composition and diversity of the un-
derlying data. For future work, we seek to quantify
the diversity of each benchmark to understand how
many capabilities/domains it spans.

7 Conclusion

We introduce a data pipeline that leverages via
semi-supervised learning with a k-NN to enable
practitioners to create benchmarks on their own
data for targeted domains. Through evaluations of
ten various closed and open-sourced models, we
demonstrated that our benchmark achieves higher
separability and agreement with CI with respect to
Chatbot Arena, nearly 5 and 10 percentage points
higher than the next best baseline, respectively. Our
benchmark covers a wide variety of topics such as
finance, medicine, legal and different languages
absent in other LLM as a judge benchmarks. We
hope that LLM developers can use our data pipeline
to create their own benchmarks to evaluate their
models for their particular use-case.
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A Appendix

A.1 Data Sources
Table 4 includes various datasets across multiple
domains such as medical, legal, financial, and mul-
tilingual categories. These sources were selected

to ensure a wide range of coverage, contributing
to the diversity of the evaluation set. The datasets
listed here were crucial for constructing the domain-
specific evaluation sets, allowing for the thorough
testing of models across different contexts and lan-
guages.

A.2 Judge Template
Below is our judge template that we used for our
LLM-as-a-judge evaluation:

Please act as an impartial judge and evaluate
the quality of the responses provided by two AI as-
sistants to the user question displayed below. You
should choose the assistant that follows the user’s
instructions and answers the user’s question better,
as well as answering in the desired language of the
user. Your evaluation should consider factors such
as the helpfulness, relevance, accuracy, depth, cre-
ativity, and level of detail of their responses. Begin
your evaluation by comparing the two responses
and provide a short explanation. Avoid any posi-
tion biases and ensure that the order in which the
responses were presented does not influence your
decision. Do not allow the length of the responses
to influence your evaluation. Do not favor certain
names of the assistants. Be as objective as pos-
sible. Your evaluation should only focus on the
correctness of the response. After providing your
explanation, output your final verdict by strictly
following this format: [[A]] if assistant A is better,
[[B]] if assistant B is better, and [[C]] for a tie.

For the judge prompt, we used the default
prompt from the MT-Bench work with one notable
change (Zheng et al., 2023a). When we evaluated
multilingual prompts with LLM-as-a-judge, the
judge at times incorrectly awards wins to models
which don’t necessarily follow instructions. Given
the sentence "Please respond ’How does the econ-
omy work?’ in Hungarian," two models might
respond differently: 1) one provides a detailed En-
glish response with bulleted lists, while 2) the other
responds concisely in Hungarian. The judge model
will rate the model answering in the incorrect lan-
guage higher, which is clearly not a measure of the
model’s multilingual capability (Marchisio et al.,
2024). In order to reduce these incorrect decisions,
we modified the judge prompt to specifically pe-
nalize responses that respond to the prompt in the
incorrect language.

In addition to issues with multilingual queries,
we also note specifically for coding that GPT-4o
seems to prefer models which provide detailed ex-
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Datasets
LMSys Chatbot Arena (Chiang et al., 2024)

PubMedQA (Jin et al., 2019)
MathQA (Amini et al., 2019)

No Robots (Rajani et al., 2023)
Aya (Singh et al., 2024)

Legal reddit (Li et al., 2022)
Legal Summ. BillSum (Kornilova and Eidelman, 2019)

Airoboros-gpt4 (Jon Durbin, 2024)
Finance Advisor (Gaurang Bharti, 2024)
Finance Bier QA (Thakur et al., 2021)

MMLU (Hendrycks et al., 2021a)
TruthfulQA (Lin et al., 2022)
GSM8K (Cobbe et al., 2021)

Table 4: Dataset Sources used as input to the data pipeline in Figure 5.

planations to the code even if the code provided is
of lower quality compared to a model which has
better code quality but is not as verbose. This leads
to scenarios where models that have chat but lower
benchmark performance (e.g. HumanEval (Chen
et al., 2021)) obtain higher winrate than models
which are objectively better on coding prompts. To
circumvent this issue, we explicitly prompt GPT-
4o that it should focus on the correctness of the
response as opposed to the style of the response.

A.3 Evaluation Tool
With the notion of self-defined categories and us-
ing the LLM-as-a-judge framework, we create an
evaluation tool which loads an internal leaderboard
from a csv file and breaks down the winrate into
several categories the user defined. The UI shows
the leaderboard in a dataframe and shows the win-
rates in set of bar plots across different categories.
A screenshot of the tool can be seen in Figure 8.

There is also a feature which enables the user to
view completions on the evaluation from both the
model the user is interested in, the reference model,
and the judge model to examine its reasoning. This
tool enables the user to examine where the model
they are developing is performing better than other
competitors and areas where improvement is re-
quired.
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Figure 8: A screenshot of our evaluation tool.
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