
Proceedings of the 1st Workshop on Customizable NLP: Progress and Challenges in Customizing NLP for a
Domain, Application, Group, or Individual (CustomNLP4U), pages 305–316

November 16, 2024 ©2024 Association for Computational Linguistics

Adapting LLM Predictions in In-Context Learning with Data Priors

Javier Chiyah-Garcia∗

Heriot-Watt University
Edinburgh, UK
fjc3@hw.ac.uk

Prasoon Goyal
Amazon

New York, USA
prasog@amazon.com

Michael Johnston
Amazon

New York, USA
mjohnstn@amazon.com

Reza Ghanadan
University of Maryland

College Park, USA
rezag@umd.edu

Abstract
In-Context Learning (ICL) has enabled Large
Language Models (LLMs) to excel as general-
purpose models in zero and few-shot task set-
tings. However, since LLMs are often not
trained on the downstream tasks, they lack cru-
cial contextual knowledge from the data distri-
butions, which limits their task adaptability.

This paper explores using data priors to auto-
matically customize prompts in ICL. We extract
these priors in a dataset-agnostic way based
on historical information, enabling LLMs to
personalize their output towards users or tasks
at inference time. We find that they im-
prove LLM’s output by injecting latent dataset-
specific information for the task of rating pre-
diction. Throughout a series of experiments,
we show replicable results across LLMs and
datasets on what information and methods are
most effective for adapting ICL outputs with
priors. Our findings offer a systematic ap-
proach to customizing prompts with additional
information in a privacy-friendly manner, re-
quiring only aggregated data that is computa-
tionally efficient.

1 Introduction

The field of NLP has progressed significantly to-
wards generalizing to unseen tasks and inputs with
pre-trained Large Language Models (LLMs). With
In-Context Learning (ICL) (Brown et al., 2020;
Liu et al., 2023), models are conditioned with task
instructions and a few examples to generate text
predictions, without task-specific training in zero
and few-shot settings (Wei et al., 2022; Chowdhery
et al., 2022). Thus, LLMs are increasingly used as
all-purpose models for tasks beyond text genera-
tion, such as classification and regression (Zhu and
Zamani, 2024; Salemi et al., 2024).

ICL enables the personalization of LLM outputs
by incorporating relevant context in the prompt,

∗Research conducted during an internship at Amazon.
Correspondence to fjc3@hw.ac.uk and prasog@amazon.com

without fine-tuning individual models (Salemi
et al., 2024). Recent approaches focus on retriev-
ing and incorporating relevant information in the
prompt (Mireshghallah et al., 2022; Andreas, 2022)
or building personal user profiles (Mazaré et al.,
2018; Naumov et al., 2019; Li and Tuzhilin, 2019).
However, these methods have challenges, such as
identifying relevant information, impracticality of
fine-tuning models or parameters for each user,
computational constraints with large prompts, and
avoiding over-personalization (i.e., profiling).

In this paper, we focus on knowledge person-
alization (Kirk et al., 2023) of outputs based on
historical data (i.e., previous interactions with the
system), and argue that LLMs benefit from explic-
itly providing information about the data distribu-
tion in ICL prompts. We initially experiment with
the use of data priors as supplementary context in
prompts for rating prediction, automatically synthe-
sized based on previous behavior, e.g., “Consider
that this product is rated on average with a 4”. Sec-
ondly, we probe LLMs with modifications of these
priors to analyze their benefits and limitations.

We find that LLMs leverage this information to
adapt to the input and calibrate their predictions
within ranges that align with the underlying dataset
distribution. Our findings also indicate that LLMs
are generally resilient to inaccurate priors, and that
their benefits are more significant when task demon-
strations are absent from the prompts, potentially
benefiting resource-constrained scenarios. Data
priors offer a computationally efficient alternative
to methods that depend on large volumes of data,
retrieval algorithms or fine-tuned LMs.

Our contributions in this paper are as follows:

1. We demonstrate how incorporating data pri-
ors in prompts enhances the ICL performance
of LLMs by better aligning with a particular
user/element.

2. We probe LLMs with a range of alterna-
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tive prior values, including upper and lower
bounds, and analyze their role in downstream
task adaptation.

3. We present experiments and prompt samples
to facilitate the reproduction of our results and
to adapt our method to other datasets.

2 Background

ICL relies on an LLM’s ability to transfer and gen-
eralize to unseen tasks, without updating or train-
ing its parameters (see Dong et al. (2023) for a
comprehensive survey and definition). The initial
instruction conditions models to the task, whilst
the demonstration examples, henceforth demonstra-
tions, provide both the task format and useful input
knowledge (i.e., label space) (Min et al., 2022).

ICL is highly sensitive to the prompt context
and its demonstrations for downstream task adapta-
tion (Jiang et al., 2020; Zhao et al., 2021; Mishra
et al., 2022), thus prior works have explored se-
lecting optimal demonstrations (Liu et al., 2022)
and ordering them (Li and Qiu, 2023; Zhang et al.,
2022; Lu et al., 2022). They have also proposed
LMs to generate demonstrations (Kim et al., 2022;
Zemlyanskiy et al., 2022) and unsupervised or su-
pervised retrievers (Rubin et al., 2022; Agrawal
et al., 2023). However, most of these methods rely
on resource-intensive training or pre-processing
(e.g., SBERT (Reimers and Gurevych, 2019) or
BM25 (Robertson and Zaragoza, 2009) for similar-
ity), which limits their scope to small pre-fixed data
subsets. Our method, in contrast, relies solely on
context (Dudy et al., 2021) from population-wide
statistics as an alternative to training or retrievers.

Previous NLP personalization efforts have fo-
cused on creating user-specific representations
(Mazaré et al., 2018; Wu et al., 2021) by inferring
user attributes (Mireshghallah et al., 2022) or per-
sonas (Zhang et al., 2018) from narratives (Vincent
et al., 2024) or public reviews (Li and Tuzhilin,
2019). These representations are then used to
condition the input and generate more personal-
ized outputs (Mairesse and Walker, 2011; Zhang
et al., 2018; Li and Tuzhilin, 2019; Majumder et al.,
2019). While these approaches target user-specific
adaptation (e.g., chatty vs. terse (Mairesse and
Walker, 2011)), we propose adapting to users or
other elements by leveraging the data distribution,
without training user-specific modules (e.g., user-
specific vectors (Zhong et al., 2021)), which require
substantial computational resources.

3 Contextual Data Priors

This section explores how including priors into
prompts enhances LLM adaptation and predictions.
Data priors represent population characteristics
(e.g., averages) and thus can be leveraged to per-
sonalize outputs beyond users (e.g., products).

3.1 Experimental Setup
Task We evaluate our approach on numeric rat-
ing prediction based on review text (Baccianella
et al., 2009) with several LLMs. Given an input
review text t for an element, these models predict
a rating rpred ∈ [1, 5] ∩ R. This task is similar
to personalized sentiment prediction (Zhong et al.,
2021; Mireshghallah et al., 2022) and LAMP-3
(Salemi et al., 2024); however we use considerably
larger test datasets and allow floating-point rating
predictions rather than restricting to integers.

Datasets We use two large-scale online review
datasets: Amazon Product Reviews (APR) (Ni
et al., 2019), 233 million reviews divided into 29
product categories; and Google Local Reviews
(GLR) (Li et al., 2022), with 666 million Google
Maps reviews of USA businesses and landmarks
split by state. Both datasets use ratings from 1
(bad) to 5 (good) stars and feature many-to-many
relationships between users and reviewed items.

Given the large size of APR and GLR datasets,
we limit our experiments to sub-categories. We
further reduce these to dense K-core subsets, as
sampled by the APR authors, where each user and
element has at least K reviews. We aim to balance
dataset size and reproducibility after extracting K-
core subsets, yielding substantial subsets of dense
data. Our final test subsets have the following en-
tries: APR-Games (19K), APR-Clothing (17K),
GLR-Montana (7.5K) and GLR-Vermont (15K).
Since we use ICL and our method does not require
training, we do not have training subsets. Previ-
ous works applying ICL to these datasets restrict
their test sets to 2K (Li and Qiu, 2023) and 2.5K
(Salemi et al., 2024) randomly sampled entries, and
over 20K entries for training. Appendix D provides
further dataset details.

Models We test with the following models1:
LaMini-GPT (Wu et al., 2023), FLAN-T5-
XL (Chung et al., 2022), Instruct-GPT-J (NLP
Cloud, 2023), and Alexa Teacher Model (Alex-
aTM) (Soltan et al., 2022; FitzGerald et al., 2022).

1See Appendix A for further model details.

306



Metrics Following recent works (Salemi et al.,
2024), we use Root Mean Squared Error
(RMSE) to measure the distance between predicted
rpred and true rtrue ratings (1 to 5) for n test en-
tries (Eq. (1)). As a distance, lower numbers are
closer to the target and thus better. We additionally
calculate the Percentage Change (∆ %) to facili-
tate comparisons across experiments, models and
datasets with the baseline (No priors); see Eq. (2).

RMSE =

√√√√ 1

n

n∑

i=1

(rtrue − rpred)
2 (1)

∆% =
RMSEx − RMSEbaseline

RMSEbaseline
× 100 (2)

Implementation To evaluate performance in re-
view prediction, we prompt the LLMs to gener-
ate up to 5 tokens (or end of sequence) and parse
the predicted rating. While both APR and GLR
datasets use integer scores, we allow outputs be-
tween 1.0 and 5.0 (1.3, 4.4...) since it is commonly
treated as a regression task. Predictions outside
this range or with additional text (e.g., “3 stars”)
are marked as out of distribution and removed2.
We use custom prompts adapted to each LLM’s
prompting strategy3 and provide 3 random reviews
demonstrations in the prompt.

3.2 Experiment 1: ICL Adaptation
To understand how data priors influence LLM out-
puts, we compare the following conditions, where
we add a sentence containing the prior value in
natural language (refer to Table 1 for examples):

• None: default ICL prompt without priors.

• Object: sentence with the prior P obj for an
object or site as its mean rating from previous
reviews.

P obj
n =

1

n− 1

n−1∑

i=1

Ratingobji

• User: sentence with the prior P usr for a user
calculated from the user’s mean historical rat-
ings.

P usr
n =

1

n− 1

n−1∑

i=1

Ratingusri

• Object+User: both priors combined into a
single sentence.

2Fewer than 0.5% entries.
3Full prompts are provided in Appendix B.

Prior Example Prompt

None Give a rating between 1 to 5: <demonstrations>
Input: Loved it! Review:

Object Give a rating between 1 to 5: <demonstrations>
Consider this product is rated on average with a 3.5
Input: Loved it! Review:

User Give a rating between 1 to 5: <demonstrations>
Consider this reviewer rates on average with a 4.1
Input: Loved it! Review:

Object
+
User

Give a rating between 1 to 5: <demonstrations>
Consider that this product is rated on average with
3.5 and that this reviewer rates on average with 4.1
Input: Loved it! Review:

Table 1: Sample prompts for each data prior with task
instruction, demonstrations, data prior and input query.

3.3 Experiment 2: Control Conditions

Along with exploring the enhancements that data
priors provide, we also test if these improvements
arise due to other factors, such as priors being a
good approximation of the target output, which
LLMs can use as predictions. We compare our re-
sults with baselines and isolate confounding factors
through several control conditions with priors.

Prior baselines We first evaluate how close the
synthesized priors are from the target output by
using each prior as the prediction, without the
ICL prompt or LLMs. We experiment with two:
BaselineObject and BaselineUser.

Oracle (or upper bound) We evaluate whether
providing the gold target output as the prior in
the prompt pushes LLMs towards better results.
We would expect that models that merely carry
over priors as a prediction would also reach perfect
scores. We substitute the calculated priors from
§ 3.2 with the gold output value POracle = rtrue

(keeping prompt text intact) in these experiments:
OracleObject and OracleUser.

Distractor (or lower bound) Similarly, we test
whether wrong or inaccurate data priors may hin-
der the LLM’s performance. Thus we introduce
“distractor” conditions, whereby we substitute the
prior with a value far from the true output whilst
keeping prompts intact. Since outputs range from
1 to 5, and a random baseline has a mean RMSE
≈ 2.0 across datasets, we calculate the distractor
value Dn as 2 points away from the true gold out-
put, Dn = (rtruen −2) if rtruen ≥ 3, else (rtruen +2),
in: DistractObject and DistractUser.

We discuss other types of priors in Appendix C.
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3.4 Results

We evaluate the impact of priors by comparing
each condition to the performance of each model’s
prompt without priors (None) using Percentage
Change ∆ %. Specifically, we calculate:

∆% =
RMSEx − RMSEPNone

RMSEPNone

× 100

This section discusses results from comparing
PC ∆ %, refer to Appendix E for extended results.

ICL Improvements Table 2 shows the benefits
that data priors provide to LLMs, with similar gains
when using Object or User priors, and larger when
these are combined in Object+User. We see that
the historic ratings help models anchor their output
towards a rating, likely exploiting the propensity
that some users and objects may have around a
particular rating.

We also see that all but one LLM reach their
best scores when combining Object+User priors,
despite the relatively increased noise in the prompt
from a longer sentence and two conflicting val-
ues. The relative improvement is often greater than
both Object or User separately, suggesting that
this may be further used as a balancing between
a range of ratings. All LLMs benefit from pri-
ors, although we see variance as some favor either
Object or User.

Control Conditions Due to space constraints, we
provide all results in Appendix E (Table 8). Firstly,
we observe that the prior baselines are not good
approximations of the gold output, usually with a
RMSE of ≈ 1 and higher (worse) than most out-of-
the-box LLMsPredicting (copying) the same prior
number would deteriorate results, suggesting their
usefulness extends beyond a numerical value.

Model Object User Object+User
∆ % ∆ % ∆ %

LaMini-GPT -8.59 -9.35 -11.88
FLAN-T5-XL -8.10 -7.74 -9.72
Instruct-GPT-J -12.09 -20.70 -15.41
AlexaTM -2.40 -5.36 -10.51

Mean ∆ % -7.79 -10.79 -11.88

Table 2: Relative improvements from § 3.2 experi-
ments compared to not using priors (None), averaged
across datasets (lower is better ↓). Refer to Table 8 (Ap-
pendix E) for baselines and absolute results.

In the Oracle setting, LLMs consistently reach
their best results and largest improvements (see
Table 3), yet they are far from perfect scores. This
reaffirms that LLMs are not copying these priors
and instead use them to tune or guide their output.

Regarding the Distractor setting, the tests yield
a mix of effects. Depending on the condition and
LLM, we get slightly worse or better results than
not having priors (None), ±1.5%. The results far
exceed a random baseline and are not substantially
compromised by inaccurate information, which re-
inforces the notion that priors balance or tune mod-
els closer to a dataset with insight that is not present
in demonstrations alone.

Model
Oracle Distract

Object User Object User
∆ % ∆ % ∆ % ∆ %

LaMini-GPT -25.07 -13.60 +9.01 +0.31
FLAN-T5-XL -7.62 -7.10 -0.74 +0.47
Instruct-GPT-J -20.93 -28.52 +0.16 -4.09
AlexaTM -14.86 -12.15 -2.06 -2.36

Mean ∆ % -17.12 -15.34 +1.59 -1.42

Table 3: Summary of § 3.3 experiments, negative results
show improvement. Refer to Appendix E for all results.

Priors without Demonstrations The gains in
Distractor settings suggest that priors may be useful
beyond providing a value to anchor outputs, and
may play a role in helping LLMs adapt to the task.
Therefore, we repeat all previous experiments with
no demonstrations in the prompt to analyze their
role (see Appendix E, Table 9).

Under these settings, we observe a stronger prior
effect (larger ∆ %) across most conditions. Mod-
els less reliant on demonstrations exhibit the great-
est impact, with most LLMs achieving their best
results under the Object+User and Oracle prior
conditions. In the absence of demonstrations, mod-
els seem to heavily rely on priors, which can serve
as a suitable alternative even when they poorly ap-
proximate the target output. This mirrors the ef-
fectiveness of demonstrations even with incorrect
labels (Min et al., 2022).

4 Discussion and Conclusion

This paper explores the adaptation of LLM out-
puts in ICL using easily-calculable data priors as
contextual information. We demonstrate that incor-
porating user- or object-specific context in prompts
helps LLMs to customize outputs, consistently im-
proving results.
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Secondly, we test isolating factors responsible
for these improvements and find that LLMs do not
simply reproduce the provided priors in their out-
puts. Instead, higher-quality priors – those closer to
the latent dataset distribution or ground truth – lead
to enhanced outcomes, particularly in the absence
of demonstrations. Results show that inaccurate
data prior values have minor negative impact and
may even provide benefits. This reveals LLMs may
leverage priors for more than tuning their predic-
tions. Our findings suggest that priors serve a dual
purpose: anchoring predictions around specific
values and facilitating downstream task adaptation.
This could be similar to the role of demonstrations,
which extends beyond format examples (Min et al.,
2022).

While priors may have limited utility in tasks
lacking clear numeric population traits (e.g., rea-
soning), we anticipate this work paves the way
towards further exploring the role of additional
context in ICL. Future work will explore tasks with
unbalanced datasets, such as categorical classifica-
tion with majority labels, where providing mode
rather than mean may prove beneficial.

These conceptually straightforward data priors
offer complementary benefits to demonstrations for
task or user adaptations, while being significantly
more computationally efficient and easier to im-
plement than training demonstration retrievers or
models, which could be intractable for user-specific
modules. Their aggregate nature also helps miti-
gate some of the drawbacks typically associated
with personalization in NLP (Flek, 2020; Dudy
et al., 2021; Kirk et al., 2023).

5 Limitations

Our work has several limitations: 1) we only inves-
tigate the task of rating review prediction, which
has a numeric output and thus allows to calculate
averages to use as priors. Further investigation
would be required as to determine whether there is
task-agnostic context that we can consistently ex-
tract to improve ICL in other domains, i.e., classifi-
cation. 2) We use subsets of two large datasets, but
these categories could be biased or provide limited
transferable evidence of the benefits of priors. We
aimed to balance dataset size versus reproducibil-
ity, as larger subsets would be more difficult to
evaluate. Our work contributes an initial step into
understanding how context in the prompt, different
from task demonstrations, could be useful across

models and datasets in ICL. 3) We use models of
different sizes that we think are representative of
the ICL research field, from a small 1.5B parame-
ter model, LaMini-GPT, to a large LLM with 20B
parameters, AlexaTM. However, we were not able
to test all models that may also be relevant, such as
GPT-4/ChatGPT (OpenAI, 2023), LLama 2 (Tou-
vron et al., 2023) or OPT-IML (Iyer et al., 2023). 4)
We did not test whether retrieving optimal demon-
strations rather than randomly choosing them, had
any effects on the benefits of data priors. Instead,
this paper focused on exploring complementary in-
formation in the prompts that could be useful when
a retriever is not practical or in data-scarce settings.
Finally, 5) we did not exhaustively test alternative
priors, e.g., random numbers. We use personalized
priors for users/objects as a way of adapting to the
input and providing some useful information. We
discuss alternative data priors in Appendix C and
why they were not included, but ultimately leave
the study of alternative data priors for future work
as this may be dataset-dependent.
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A Model and Compute Details

Models We run our experiments with models
that have been Instruction-Tuned (IT) with var-
ied prompts and datasets to augment their transfer-
ability (Chowdhery et al., 2022; Wei et al., 2022).
These models usually have a superior performance
in ICL and have an easier time adapting to tasks.
We test with these popular models of different sizes
(refer to Table 4 for number of parameters):

• LaMini-GPT (Wu et al., 2023), distilled IT
version of GPT-2 (Radford et al., 2019).

• FLAN-T5-XL (Chung et al., 2022), IT ver-
sion from T5-XL (Raffel et al., 2020).

• Instruct-GPT-J (NLP Cloud, 2023), IT ver-
sion of GPT-J (Wang and Komatsuzaki, 2021).

• Alexa Teacher Model (AlexaTM), further IT
from (Soltan et al., 2022; FitzGerald et al.,
2022).

A.1 Other Baselines

Random Baseline We randomly select an integer
out of 5 as the output.

Fine-tuned RoBERTa We fine-tune a RoBERTa
(Liu et al., 2019) model trained to predict a number
out of 5 as a classification task. This resembles
previous works that treat the task as sentiment pre-
diction from a few pre-determined labels. We train
this model for 3 epochs using only the review text
as input.

Model # of Parameters

LaMini-GPT-1.5B (Wu et al., 2023) 1.5B
FLAN-T5-XL (Chung et al., 2022) 3B
Instruct-GPT-J (NLP Cloud, 2023) 6B
AlexaTM (Soltan et al., 2022; FitzGer-
ald et al., 2022)

20B

Table 4: LLMs used in experiments with their approxi-
mate number of parameters.

Experiments We used a machine with 4 NVIDIA
V100 GPUs with 16G of RAM each, with a maxi-
mum sequence length of 1024 tokens. We used the
LLM’s HuggingFace versions when available. A
full range of experiments, as in i.e., Table 8, takes
approximately 3-4 days.

B Model Prompts

We provide full sample prompts in Table 5. Prior
sentences would change to reflect more accurate de-
scriptions of the items reviewed per dataset: “prod-
uct” for APR and “location/place” for GLR.

C Additional Data Priors

The data priors evaluated in the paper are not an
exhaustive list of dataset statistics that could be ex-
tracted. We limited our experiments to priors that
were easy to understand but also provided a wide
(and scoped) range of interesting results. Mean
values are a representation of the underlying data
distribution (i.e. the mean of a product rating con-
veys a rough summary of the data), and thus en-
able adaptation based on available information: a
general dataset mean compared to a lower-level
personalized mean for users or objects (mean of
previous user/item ratings).

This paper aims to demonstrate that using these
prior values aids LLM adaptation to tasks in ICL,
yet the exact choice of prior would depend on the
specific setting (task/dataset/model).

We considered the following priors before decid-
ing to only include mean and the oracle/distractor
variants:

• Mode/Median: alternative user or object-
specific metrics, such as mode and median,
may be too dataset-dependent and provide
poor approximations. Our proposed data
priors aim to convey distribution tendencies,
which we believe the mean better represents
in these datasets. Both APR and GLR datasets
have slightly skewed distributions towards 1
and 5 stars (more 1 and 5 star reviews than oth-
ers), and thus the arithmetic mean can capture
distribution shifts in the underlying distribu-
tion with decimal precision, unlike median or
mode. Datasets with a different distribution
should consider these alternatives.

• Random: use a random value as the prior. We
believe that the Distractor conditions better
demonstrate the impact of incorrect values
without the unpredictability of randomness. In
practice, we observed results that were slightly
better than the Distractor conditions.

• Consistent values: using the same value
across all dataset priors as a control condi-
tion. Similar to the random values as priors,
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Model Sample Prompt

LaMini-GPT
+ None prior

Below is an instruction that describes a task. Write a response that appropriately completes the request.\n
### Instruction: Choose the rating between 1.0 (bad) and 5.0 (good) for this review.\n
Here are some examples: \n
<demonstrations>
Review: Loved it! \n
Rating:

FLAN-T5-XL
+ Object prior

Given a product review, you MUST choose the most likely rating from 1.0 (bad) to 5.0 (good).
Here are several cases for your reference: \n
<demonstrations>
Consider this product is rated on average with a 3.5 \n
Review: Loved it! \n
Rating:

Instruct-GPT-J
+ User prior

Given a product review, you MUST choose the most likely rating from 1.0 (bad) to 5.0 (good).
Here are several cases for your reference: \n
<demonstrations>
Consider this reviewer rates on average with a 4.1 \n
Review: Loved it! \n
Rating:

AlexaTM
+ Object+User prior

Below is an instruction that describes a task. Write a response that appropriately completes the request.\n
### Instruction: Choose the rating between 1.0 (bad) and 5.0 (good) for this review.\n
### Here are some examples:\n
<demonstrations>
Consider that this product is rated on average with a 3.5 and that this reviewer rates on average with a 4.1 \n
Review: Loved it! \n
Rating:

Table 5: Sample prompts for each model with task instruction, demonstrations, data prior and input query. We
tested several prompts but we settled on these as they seemed to work well across LLMs. Demonstrations have
the same format as the input query (Review-Rating) and are selected at random from an unrelated subset (different
object and user).

we think that this does not provide further rel-
evant results. We think that experimenting
Oracle (always correct) and Distractor (al-
ways incorrect) provide better insights into the
mechanisms that makes data priors work.

D Datasets

Table 6 summarizes the test entries used after fil-
tering with the K-core process described in § 3.1.
Since our method does not require training, we only
use test data.

Dataset Category Test Set

Amazon Product Reviews Games 18,802
(Ni et al., 2019) Clothing 17,084

Google Local Reviews Montana 7,473
(Li et al., 2022) Vermont 14,919

Table 6: Test entries per subset used in our experiments.

We compare the train/test dataset sizes with pre-
vious works in ICL in Table 7. These works also
used other datasets and tasks in their experiments
but treated each separately, hence we only report
the sizes for the Amazon Product Review dataset
that we have in common.

Work Sampling #Classes #Train #Test

Li and Qiu (2023) Random 2 30000 2000
Salemi et al. (2024) Random 5 20000 2500

Our work K-core dense - 0 35800

Table 7: Comparison of previous ICL works using the
Amazon Product Reviews dataset.

E Additional Experiment Results

Table 8 shows extra results from § 3.2 and § 3.3.
Table 9 shows the results from running the same ex-
periments without demonstrations in the prompts.

Notably, the BaselineUser prior has a 0.0 RMSE
for the APR-Clothing dataset in experiments, with
the fine-tuned RoBERTa (Liu et al., 2019) closely
following at 0.07 RMSE. This suggests that this par-
ticular data split may be exceptionally predictable.

Demonstration Selection When using demon-
strations (Table 8), we randomly sample 3 entries
from the same data subset to use as examples in the
prompt. We ensure that these entries are not from
the same user, product or location as the test review
to avoid biases.
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Model
Datasets

APR-Games APR-Clothing GLR-Montana GLR-Vermont Mean
RMSE ↓ ∆ % RMSE ↓ ∆ % RMSE ↓ ∆ % RMSE ↓ ∆ % ∆ %

Random Baseline 2.159 2.058 1.956 1.973
Fine-tuned RoBERTa 0.724 0.073 0.780 0.749

Priors
BaselineObject 0.880 1.372 1.007 0.985
BaselineUser 0.781 0.000 0.919 0.932

LaMini-GPT
None 0.761 1.000 0.909 0.882
Object 0.661 -13.15 0.942 -5.74 0.840 -7.53 0.812 -7.92 -8.59
User 0.700 -7.99 0.872 -12.81 0.832 -8.51 0.811 -8.07 -9.35
Object+User 0.657 -13.56 0.850 -14.94 0.821 -9.66 0.800 -9.34 -11.88
OracleObject 0.582 -23.50 0.784 -21.57 0.662 -27.11 0.634 -28.10 -25.07
OracleUser 0.674 -11.35 0.872 -12.82 0.776 -14.67 0.745 -15.54 -13.60
DistractObject 0.849 11.62 1.083 8.31 0.977 7.46 0.959 8.65 9.01
DistractUser 0.776 2.08 1.034 3.42 0.893 -1.76 0.860 -2.49 0.31

FLAN-T5-XL
None 0.7156 1.0490 1.0075 0.966
Object 0.6741 -5.80 0.906 -13.66 0.9454 -6.16 0.900 -6.77 -8.10
User 0.6701 -6.36 0.9447 -9.94 0.9355 -7.15 0.8932 -7.50 -7.74
Object+User 0.6539 -8.62 0.9046 -13.77 0.9253 -8.16 0.8853 -8.32 -9.72
OracleObject 0.6606 -7.69 0.9259 -11.73 0.9555 -5.16 0.9085 -5.91 -7.62
OracleUser 0.6609 -7.64 0.9447 -9.94 0.9577 -4.94 0.9091 -5.85 -7.10
DistractObject 0.7115 -0.57 0.9994 -4.73 1.0226 1.50 0.9738 0.85 -0.74
DistractUser 0.7128 -0.39 1.0595 1.00 1.0191 1.15 0.9666 0.10 0.47

Instruct-GPT-J
None 0.9530 1.2353 1.1310 1.1182
Object 0.821 -13.85 1.2011 -2.77 0.9544 -15.61 0.9379 -16.12 -12.09
User 0.8061 -15.41 0.8782 -28.91 0.9122 -19.35 0.9044 -19.12 -20.70
Object+User 0.7976 -16.31 1.1488 -7.00 0.9101 -19.53 0.9082 -18.78 -15.41
OracleObject 0.7788 -18.28 1.0009 -18.98 0.8467 -25.14 0.8798 -21.32 -20.93
OracleUser 0.7202 -24.43 0.8782 -28.91 0.7646 -32.40 0.8014 -28.33 -28.52
DistractObject 0.9575 0.47 1.3672 10.68 1.0662 -5.73 1.0648 -4.78 0.16
DistractUser 0.9673 1.50 1.2951 4.84 0.9934 -12.17 1.0005 -10.53 -4.09

AlexaTM
None 0.6195 0.8757 0.8386 0.8490
Object 0.6318 1.99 0.8279 -5.46 0.829 -1.14 0.8067 -4.98 -2.40
User 0.6265 1.13 0.7139 -18.48 0.8163 -2.66 0.8367 -1.45 -5.36
Object+User 0.605 -2.34 0.6274 -28.35 0.789 -5.91 0.803 -5.42 -10.51
OracleObject 0.5753 -7.13 0.6743 -23.00 0.7047 -15.97 0.7359 -13.32 -14.86
OracleUser 0.5689 -8.17 0.7139 -18.48 0.7367 -12.15 0.7657 -9.81 -12.15
DistractObject 0.6342 2.37 0.8012 -8.51 0.8374 -0.14 0.8324 -1.96 -2.06
DistractUser 0.6408 3.44 0.7957 -9.14 0.8257 -1.54 0.8303 -2.20 -2.36

Table 8: Results from experiments with data priors. We compare LLMs across datasets and under 8 conditions: the
initial 4 with distinct prior prompts (§ 3.2); followed by 4 highlighted rows with altered prior values (§ 3.3). We
provide a supervised fine-tuned RoBERTa (Liu et al., 2019) baseline for comparison and the prior baselines from
§ 3.3. Lower is better for RMSE and percentage change ∆ % (refer to § 3.1). We average the results of 3 runs, and
provide prompts with 3 randomly-selected task demonstrations each.
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Model
Datasets

APR-Games APR-Clothing GLR-Montana GLR-Vermont Mean
RMSE ↓ ∆ % RMSE ↓ ∆ % RMSE ↓ ∆ % RMSE ↓ ∆ % ∆ %

Random Baseline 2.159 2.058 1.956 1.973
Fine-tuned RoBERTa 0.724 0.073 0.780 0.749

Priors
BaselineObject 0.880 1.372 1.007 0.985
BaselineUser 0.781 0.000 0.919 0.932

LaMini-GPT
None 0.742 0.874 0.837 0.784
Object 0.654 -11.84 0.883 1.08 0.796 -4.85 0.747 -4.69 -5.08
User 0.663 -10.67 0.801 -8.31 0.783 -6.44 0.735 -6.23 -7.91
Object+User 0.629 -15.28 0.798 -8.71 0.745 -11.02 0.715 -8.85 -10.96
OracleObject 0.483 -34.94 0.645 -26.15 0.553 -33.95 0.502 -36.00 -32.76
OracleUser 0.620 -16.45 0.801 -8.31 0.720 -13.93 0.655 -16.49 -13.80
DistractObject 0.957 28.87 1.191 36.32 0.921 10.06 0.873 11.34 21.65
DistractUser 0.775 4.42 0.979 12.04 0.850 1.59 0.799 1.91 4.99

FLAN-T5-XL
None 0.7124 1.0646 1.0367 0.986
Object 0.6724 -5.61 0.908 -14.70 0.9691 -6.52 0.929 -5.84 -8.17
User 0.6716 -5.73 0.9422 -11.50 0.9795 -5.52 0.9316 -5.53 -7.07
Object+User 0.63 -11.57 0.8055 -24.34 0.89 -14.15 0.8589 -12.90 -15.74
OracleObject 0.6511 -8.60 0.8721 -18.08 0.9635 -7.06 0.9176 -6.95 -10.17
OracleUser 0.6574 -7.72 0.9422 -11.50 0.9744 -6.01 0.9257 -6.13 -7.84
DistractObject 0.685 -3.85 0.9738 -8.53 1.0182 -1.78 0.9591 -2.74 -4.22
DistractUser 0.693 -2.72 1.0629 -0.16 1.0226 -1.36 0.9667 -1.97 -1.55

Instruct-GPT-J
None 1.0336 1.2638 1.0345 1.0230
Object 0.9011 -12.82 1.2251 -3.06 1.0608 2.54 1.048 2.44 -2.72
User 0.8666 -16.16 1.0541 -16.59 1.0461 1.12 1.028 0.49 -7.78
Object+User 0.902 -12.73 1.1743 -7.08 1.0459 1.10 1.0301 0.69 -4.50
OracleObject 0.8251 -20.17 1.102 -12.80 0.9081 -12.22 0.9208 -9.99 -13.80
OracleUser 0.7634 -26.14 1.0539 -16.61 0.8164 -21.08 0.8217 -19.68 -20.88
DistractObject 0.9498 -8.11 1.2156 -3.81 1.0277 -0.66 1.017 -0.59 -3.29
DistractUser 0.9912 -4.10 1.2501 -1.08 1.0016 -3.18 0.9962 -2.62 -2.75

AlexaTM
None 0.6306 0.9793 0.8706 0.8583
Object 0.6183 -1.95 0.7565 -22.75 0.8067 -7.34 0.7654 -10.82 -10.72
User 0.6126 -2.85 0.6285 -35.82 0.7509 -13.75 0.7476 -12.90 -16.33
Object+User 0.5977 -5.22 0.5086 -48.06 0.7631 -12.35 0.7249 -15.54 -20.29
OracleObject 0.5461 -13.40 0.6743 -31.14 0.7331 -15.79 0.6797 -20.81 -20.29
OracleUser 0.5507 -12.67 0.6285 -35.82 0.7304 -16.10 0.6771 -21.11 -21.43
DistractObject 0.6511 3.25 0.782 -20.15 0.8269 -5.02 0.7845 -8.60 -7.63
DistractUser 0.6649 5.44 0.8566 -12.53 0.8168 -6.18 0.7925 -7.67 -5.23

Table 9: Results from experiments with data priors without task demonstrations in the prompts. Note that ∆ % in
this table references the respective None prior condition, and thus cannot be compared directly with Table 8. Lower
is better for RMSE and percentage change ∆ %.
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