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Abstract

Our work studies Multilingual Federated Learn-
ing (FL), a decentralized paradigm that, al-
though promising, grapples with issues such
as client drift and suboptimal generalization
in diverse, multilingual settings. We highlight
limitations in existing approaches to generalize
across both actively participating and inactive
client language pairs. To mitigate these chal-
lenges, we introduce FedSparseNet, which in-
corporates sparse-network training, and LoRA,
based on Low-Rank Adaptation. These ap-
proaches maintain the model’s fidelity to its pre-
training distribution, thereby ensuring robust
performance on both seen and unseen language
pairs, while simultaneously enhancing commu-
nication efficiency by selectively transmitting
trainable parameters. Our empirical evaluations
demonstrate that FedSparseNet outperforms
conventional FL models on both seen and un-
seen clients, while LoRA shows remarkable im-
provements in unseen client performance. Ad-
ditionally, we propose the Continuous Relative
Robustness Metric, a novel metric to uniformly
assess a model’s performance across diverse
language pairs. We open-source our code for
reproducibility on GitHub.1

1 Introduction

The development of NLP applications capable of
leveraging multilingual, multi-source, heteroge-
neous data while safeguarding user privacy is es-
sential (Deng et al., 2022). FL (McMahan et al.,
2016) addresses this by facilitating the utilization
of personally identifiable information within a de-
centralized framework, thereby obviating the need
for direct data sharing among clients. However,
FL faces challenges such as client drift and sub-
optimal generalization in heterogeneous environ-
ments (Karimireddy et al., 2020). Furthermore,
multilingual FL not only contends with these FL-
specific optimization difficulties but also grapples

1https://github.com/AetherPrior/less-is-fed-more

with the complexities of extending to low-resource
languages. This can hinder the accessibility of lan-
guage technologies for various communities and
intensify systemic biases (Santy et al., 2023).

While there is extensive research on FL for
NLP, studies specifically addressing multilingual
FL translation remain limited, with minimal explo-
ration of how FL impacts the training process. Mul-
tilingual FL is an inherently heterogeneous data
setting, offering a unique area of interest within
the FL community. The closest work is Weller
et al. (2022b), where the authors investigate Feder-
ated Multilingual Translation. The study involves
fine-tuning and communicating the entire param-
eter set of a 418M M2M encoder-decoder model.
Their findings suggest that fine-tuning a pre-trained
model using FL can achieve comparable results to
centralized learning, even in Non-IID settings with
clients segmented by language.

In our research, we challenge the prevailing nar-
rative that communicating all parameters in a mul-
tilingual translation model is viable for practical
translation tasks. We argue that this approach is
largely impractical. Moreover, translation applica-
tions require the server model to not only gener-
alize to client language pairs actively involved in
FL but also to maintain pretraining performance
on unseen language pairs or inactive clients. Our
findings reveal that baseline performance for un-
seen language pairs declines when fine-tuning with
active client data. This issue stems from the distor-
tion of pretrained features (Kumar et al., 2022), a
problem not adequately addressed by current FL
approaches, especially in the context of NLP tasks
like translation. To address the challenges identi-
fied, our approach builds on the current literature
on Parameter Efficient Finetuning (PEFT) to: a)
ensure the model remains close to its pretraining
distribution, facilitating balanced generalization
across both seen and unseen language pairs, and b)
enhance federated fine-tuning and communication
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efficiency by transmitting only a sparse subset of
trainable parameters. Our contributions include:
• We propose FedSparseNet, leveraging sparse-
network training, and employing Low-Rank Adap-
tation (LoRA) to mitigate pretrained feature dis-
tortion and enhance communication efficiency.
FedSparseNet dominates the corresponding fully
finetuned FL baseline on client-seen and client-
unseen performance (by 1.4 BLEU), while LoRA
significantly improves the client-unseen perfor-
mance but falls short on seen-client performance.
• We propose the Continuous Relative Robust-
ness Metric, a metric that measures how well a
given model uniformly dominates the pretrained
model on both, seen and unseen language pairs.

2 Methodology

2.1 FedSparseNet: Composable Sparse
Fine-tuning for FL

Figure 1: The FedSparseNet framework

We propose a variant of the Lottery Ticket Algo-
rithm for federated training called FedSparseNet.
Our work is inspired by Lottery Ticket Sparse Fine-
Tuning (LT-SFT) for cross-lingual transfer (Frankle
and Carbin, 2018). The Lottery Ticket Hypothe-
sis (LTH) (Frankle and Carbin, 2018) states that
each neural model contains a sub-network (a “win-
ning ticket”) that, if trained again in isolation, can
match or even exceed the performance of the origi-
nal model. To recover this ticket, the sparse ticket
is selected using a pruning stage where some pa-
rameters are zero-masked and frozen according to
some criterion (e.g., weight magnitude), and the
remaining parameters are restored to their original
values and then re-tuned. This process of pruning
and re-training can be iterated multiple times.

FedSparseNet (Fig. 1) consists of two stages on
the client. Let i denote the i-th round of training
and θ(i), the server model parameters at round (i).
(Stage 1) This phase is only applicable at i=1. Let
θ
(1)
0 represent the pretrained (client) model param-

eters, and θ
(1)
1 , the parameters after fine-tuning on

the target language or task data D. The parameters
are ranked according to the greatest absolute dif-
ference |θ(1)0 − θ

(1)
1 |, and the top K are selected for

subsequent tuning. A binary mask µ is set to have
1 in positions corresponding to these parameters,
and 0 elsewhere. This mask state is frozen and
preserved for each client across rounds.
(Stage 2) If we are at round 1, the parameters
are reset to their original values θ

(1)
0 , and at any

other round, we use the server checkpoint θ(i)s . The
model is again fine-tuned, but this time, only the
K-selected parameters using the mask µ are train-
able, whereas the others are kept frozen. This
is implemented by using the masked gradient
µ ⊙ ∇θL(F (·; θ), D) (where ⊙ denotes element-
wise multiplication and L a loss function) in the
optimizer at each step. If we denote the sparse
finetuned checkpoint as θ(i)2 , only the sparse vector
of differences θ(i)2 − θ

(i)
s is communicated at every

round. The sparse vectors from every client are
then aggregated at the server using an aggregation
strategy like FedAvg before being broadcasted to
clients in the next round.

FedSparseNet enhances communication effi-
ciency by minimizing data transmission which is
often about 1% of the client parameters. The modu-
lar design allows for effective composability, reduc-
ing knowledge overlap and interference among the
client languages. Sparsity also serves as a natural
form of regularization, making these networks less
prone to overfitting, and helping the model retain
generalization properties of the pretrained model
on unseen data. Sparse networks also have other
advantages: it does not introduce additional param-
eters like the adapter (Houlsby et al., 2019), thereby
not reducing inference speed; and the model archi-
tecture remains identical to the pretrained model,
simplifying code development and ensuring the
method is model-agnostic.

2.2 LoRA

We also propose to use Low-Rank Approximation
(Hu et al., 2021), as a parameter-efficient client
optimization technique that maintains composition-
ality and proximity to the pretrained weights.

Low Rank Approximation or LoRA encodes the
parameter updates of a model undergoing finetun-
ing in a much smaller subspace. Specifically, for
a model PΦ(y|x) parameterized by Φ, the typical
model finetuning would involve updating the entire
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Figure 2: The LoRA framework

parameter space according to:

max
Φ

∑

(x,y)∈Z

|y|∑

t=1

log (PΦ(yt|x, y<t)) (1)

LoRA hypothesizes the existence of a low-rank
approximation of the parameter updates, and posits
that the full rank update, denoted by ∆Φ can be
approximated by a much lower rank matrix ∆Φ(θ).
In other words, Φ can be expressed as Φ0+∆Φ(θ).

Several works have studied combining LoRA
with Federated learning. Qi et al. (2024) study
the use of LoRA for LLM personalization; how-
ever, they do not freeze the model’s layers during
training, thereby compromising on efficiency. We
instead maintain efficiency to be our core-focus
similar to the works of Zhang et al. (2024); Ye et al.
(2024); Kuang et al. (2023). During training, we
instantiate each client with LoRA modules of the
same rank. In the first iteration, this implies in-
jecting LoRA modules into the pretrained model.
During finetuning, we freeze all other parameters
but the LoRA modules and subsequently commu-
nicate LoRA modules to the server for aggregation.
The reduction in parameter update space brought by
LoRA, brings significant memory reduction while
training with large models, which is advantageous
in the FL setting.

2.3 Continuous Relative Robustness Metric
for Federated Learning Models

In this work, we employ a fixed model selec-
tion strategy on the clients to optimize for client-
seen performance. We propose modeling enhance-
ments to improve performance on client-unseen
data while retaining performance on client-seen
data. To select among the models that perform
better than the baseline on both client-seen and
unseen data, we propose a new robustness metric
to balance performance (in BLEU) on client-seen
and client-unseen data. Given a model M and

a pre-trained model Mpre, we consider a continu-
ous range of trade-off coefficients, k ∈ [0, 1], to
evaluate the balance between client-seen (CS) and
client-unseen (CU) performance metrics. The per-
formance metric P (M,k) for a model M is defined
over the continuous domain as:

P (M,k) = k · perfCS(M) + (1− k) · perfCU(M)

Relative Robustness Score The relative robustness
of model M against the pre-trained model Mpre is
quantified by integrating the performance advan-
tage of M over Mpre across the continuous range
of k:

RRS(M) =

∫ 1

0
1{P (M,k) > P (Mpre, k)} dk

Here, 1{} is the indicator function, which is 1 when
M outperforms Mpre at a given k and 0 otherwise.
The integral effectively counts the proportion of the
trade-off range where M surpasses Mpre. This met-
ric compares FL models in balancing client-seen
and client-unseen performance over a continuum.

Language Pair ISO 639-2 codes Dataset Source
Client-Seen Languages

English - French En-Fr UNMT corpus
Arabic-Spanish En-Fr UNMT corpus
Russian-Chinese Ru-Zh UNMT corpus

Client-Unseen Languages - High Resource

Portuguese-English Pt-En FLORES-200
Hindi-English Hi-En FLORES-200
Korean-English Ko-En FLORES-200

Client-Unseen Languages - Mid Resource

Tamil-English Ta-En FLORES-200
Ukrainian-English Uk-En FLORES-200
Finnish-English Fi-En FLORES-200

Client-Unseen Languages - Low Resource

Swahili-English Sw-En FLORES-200
Sinhala-English Si-En FLORES-200
Malayalam-English Ml-En FLORES-200

Table 1: All Language Pairs used in our experiments.
We mimic the setup from Weller et al. (2022b) for client-
seen language pairs, and pick 9 language pairs from
FLORES-200 for our client-unseen languages, based on
M2M-100’s pretraining distribution.

2.4 Experimental Details
We choose machine translation for all our base
tasks and define ‘seen’ and ‘unseen’ language-
pairs as those pairs that are visible or invisible
to the client model during finetuning. We use
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Language Pretrained Centralized IID Non-IID FedSparseNet FedSparseNet LoRA LoRA
Pair FL FL (Non-IID) (IID) (Non-IID) (IID)

Client-Seen Languages

En-Fr 31.8 ± 0.6 38.0 ± 0.7 37.7 ± 0.7 36.9 ± 0.7 38.6 ± 0.7 38.8 ± 0.7 36.0 ± 0.6 36.2 ± 0.6
Ar-Es 28.0 ± 0.5 35.5 ± 0.7 35.9 ± 0.7 32.9 ± 0.6 36.4 ± 0.7 36.5 ± 0.6 33.4 ± 0.6 33.2 ± 0.6
Ru-Zh 30.3 ± 0.5 37.5 ± 0.6 37.7 ± 0.4 38.7 ± 0.6 37.7 ± 0.7 38.0 ± 0.7 34.3 ± 0.6 34.6 ± 0.6
Avg 30.0 ± 0.5 37.0 ± 0.7 37.1 ± 0.6 36.2 ± 0.6 37.6 ± 0.7 37.8 ± 0.7 34.5 ± 0.6 34.6 ± 0.6

Client-Unseen Languages - High Resource

Pt-En 40.0 ± 1.1 31.8 ± 1.1 32.0 ± 1.0 26.7 ± 1.2 32.2 ± 1.3 34.9 ± 1.2 39.5 ± 1.1 39.5 ± 1.2
Hi-En 29.6 ± 1.0 22.0 ± 1.1 22.8 ± 0.9 19.3 ± 1.0 21.8 ± 1.3 25.1 ± 1.1 28.3 ± 1.0 28.9 ± 1.0
Ko-En 20.5 ± 0.9 15.0 ± 0.9 14.4 ± 0.9 13.0 ± 0.8 14.5 ± 1.0 16.7 ± 0.9 19.6 ± 0.9 20.0 ± 1.0
Avg 30.0 ± 1.0 22.9 ± 1.0 23.1 ± 0.9 19.7 ± 1.0 22.8 ± 1.2 25.6 ± 1.0 29.1 ± 1.0 29.4 ± 1.1

Client-Unseen Languages - Mid Resource

Ta-En 8.0 ± 0.6 3.9 ± 0.4 5.0 ± 0.5 3.7 ± 0.4 1.6 ± 0.2 4.7 ± 0.5 9.2 ± 0.7 8.6 ± 0.7
Uk-En 27.9 ± 1.0 18.2 ± 1.0 21.8 ± 0.9 20.7 ± 1.0 21.2 ± 1.2 23.8 ± 0.9 28.2 ± 1.0 27.8 ± 1.0
Fi-En 25.7 ± 1.0 18.2 ± 1.0 18.8 ± 0.8 14.4 ± 1.0 18.8 ± 1.1 21.0 ± 0.9 25.0 ± 1.0 24.9 ± 0.9
Avg 20.5 ± 0.9 13.4 ± 0.8 15.2 ± 0.7 12.9 ± 0.8 13.9 ± 0.8 16.5 ± 0.8 20.8 ± 0.9 20.4 ± 0.8

Client-Unseen Languages - Low Resource

Sw-En 26.0 ± 0.9 17.2 ± 1.0 18.4 ± 1.0 13.6 ± 1.0 15.0 ± 1.1 21.0 ± 1.0 24.4 ± 1.0 24.8 ± 1.0
Si-En 15.9 ± 0.8 8.8 ± 0.7 9.6 ± 0.8 7.3 ± 0.7 6.1 ± 0.7 10.9 ± 0.8 15.1 ± 0.8 14.9 ± 0.9
Ml-En 15.3 ± 0.9 8.0 ± 0.8 8.6 ± 0.8 6.3 ± 0.6 5.5 ± 0.6 10.3 ± 0.8 14.3 ± 0.8 15.0 ± 0.9
Avg 19.1 ± 0.9 11.3 ± 0.8 12.2 ± 0.9 9.1 ± 0.8 8.9 ± 0.8 14.0 ± 0.9 17.9 ± 0.9 18.2 ± 0.9

Weighted Metric Calculation

RRS 0.000 0.488 0.525 0.397 0.485 0.632 0.897 0.882

Table 2: UN-MT Bleu for Client-Seen and Client-Unseen Language Pairs. FedSparseNet uses sparsity ratio 0.01 on
embedding matrix. LoRA trained with rank 8, on embedding matrices. All models are trained for 1 epoch/round.

the M2M100-418M model (Fan et al., 2020) as
our base, UN parallel corpus (which we term
as UNMT) (Ziemski et al., 2016) for finetuning,
FLORES-200 (Costa-jussà et al., 2022) for evalua-
tion and report performance using BLEU (Papineni
et al., 2002). All client models are trained for 100
rounds, and the best model is selected based on the
local validation loss. We choose our seen language-
pairs similar to that of Weller et al. (2022b), and
pick 9 unseen language pairs (3 from High, Mid-
dle and Low resource languages respectively) from
FLORES-200, based on M2M-100’s pretraining
distribution. We choose English to be our target
language for simplicity in evaluation and compar-
ison. Table 1 presents all of our language pairs
and their respective ISO-693-2 codes, which we
shall use from here on. Additional details on train-
ing dataset and metrics can be found in Appendix
A.1. We conduct all experiments over three set-
tings: standard finetuning of the base model with-
out any federation (the Centralized setting), FL on
IID data (IID FL), where all three language pairs
are uniformly mixed and distributed across clients,
and FL on non-IID or heterogeneous data (Non-IID
FL), where each client receives a separate language
pair for training. We use FedAvg (McMahan et al.,
2016) as our aggregation algorithm.

3 Results

Table 2 compares our approach with the baseline
(Weller et al., 2022b): the performance of the feder-
ated fully FT models on unseen-client data shows a
significant drop in performance relative to the Pre-
trained model on all client-unseen language pairs.

FedSparseNet FedSparseNet dominates the cor-
responding baselines across seen and unseen client
datasets (Table 2), demonstrating their overall ef-
fectiveness. Interestingly, no significant trend is
observed across High-, Mid-, and Low-Resource
languages. We also note that while FedSparseNet
(IID) and FedSparseNet (Non-IID) achieve sim-
ilar performance on client-seen data, the latter
exhibits significantly lower performance on un-
seen data, especially for Low-Resource languages.
This suggests that Non-IID FL potentially distorts
pretrained features more than IID-FL, impacting
performance in ways not captured by client-seen
accuracy alone. Consistent with these observa-
tions, the RRS metric reveals a higher value for
FedSparseNet in the IID setting compared to the
Non-IID setting. This highlights the effectiveness
of FedSparseNet in scenarios with balanced and
representative data distributions (IID).
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LoRA In Table 2, we compare LoRA with the
baseline. LoRA demonstrates its highest effi-
cacy on unseen languages, effectively minimizing
the distortion introduced by optimization on seen-
client data during federated finetuning. This ca-
pability to recover unseen client performance can
be attributed to the inherent regularizing effect of
LoRA on the distribution of the federated model.

The strengths of LoRA are further illuminated by
its superior performance in the RRS metric — that
endorses LoRA as a more viable alternative than
full FT and FedSparseNet, for achieving balanced
improvements across seen and unseen language
pairs. However, it is imperative to approach these
results with caution. LoRA’s performance on seen
clients, in both IID and Non-IID settings, falls short
of the centralized model and FedSparseNet. This
observed degradation suggests possible shortcom-
ings in LoRA’s ability to effectively compose client
knowledge across diverse heterogeneous datasets.
While FedSparseNet also appears to benefit from
its approach of localizing seen-language-specific
information through strategic subnet selection—a
method documented to personalize and compose
well across clients (Ansell et al., 2021), LoRA may
encounter challenges in achieving a similar level
of integration, particularly due to interference be-
tween client-specific modules during federated op-
timization.
Comparing Communication Efficiency We com-
pare both methods with the baselines for communi-
cation efficiency up to the point of convergence in
Appendix A.2. We observe a 54x and 5.9x increase
in communication efficiency for FedSparseNet and
LoRA respectively.

4 Conclusion

Motivated by the need to improve generaliza-
tion in FL for unseen client data, we introduce
FedSparseNet and LoraFed. These methods fo-
cus on sparsifying the client parameter space, ad-
dressing the challenge of pretrained feature distor-
tion due to seen-client optimization, and enhancing
communication efficiency.
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A Appendix

A.1 Task Experimental Details

The UN corpus contains written records of the UN
proceedings from 1990-2014. For seen-languages,
we consider training, validation, and tests sets for
the same source and target language pairs as de-
scribed in Weller et al. (2022a), namely (En-Fr),
(Ar-Es), and (Ru-Zh), sampling 10k training ex-
amples and 5k testing examples for each. For client-
unseen languages, we consider the FLORES-200
(Costa-jussà et al., 2022) dataset. FLORES-200
consists of 3001 parallel sentences manually trans-
lated across 200 different languages. We choose its
devtest subset, with 1013 sentences for each lan-
guage. We consider 9 different source languages,
choosing 3 across high-resource (Portuguese (Pt),
Hindi (Hi), Korean (Ko)), mid-resource (Tamil
(Ta), Ukranian (Uk), Finnish (Fi)), and low-
resource (Swahili (Sw), Sinhalese (Si), Malay-
alam (Ml)) settings each. For ease of evaluation
and comparison, we fix the target language to En-
glish, leading to 9 (X-En) language pairs, where X
represents our source language.
Metrics and Model Selection We evaluate and
report client-seen and client-unseen performance
using BLEU (Papineni et al., 2002). We use the
standard sacreBLEU settings (nrefs:1, mixed
case, eff:no, tok:13a, smooth:exp, and
version 2.0.0). For Ja and Zh we use their re-
spective tokenizers. All client models are trained
for 100 rounds, and the best model is selected based
on the local validation loss. To select among mod-
els that perform better than the corresponding fully
finetuned baselines we use the RRS defined in Sec-
tion 2.3.
Compute We train each model on a configuration
of 3 A6000 GPUs. The baselines reach conver-
gence in under 12 hours. FedSparseNet and LoRA
exhibit slightly faster training times.

A.2 Communication Efficiency

To assess the communication efficiency of a model,
we consider the total volume of data (in bytes) trans-
mitted across clients until the model reaches its op-
timal state, as indicated by its best checkpoint. This
efficiency over n rounds until convergence can be
formulated as: trainable_params × num_clients ×
n×2. The factor of 2 accounts for the bidirectional
communication between the server and all clients
at both the beginning and the end of each round.
Figure 3 and 4 show the communication efficiency

42

https://openreview.net/forum?id=UYneFzXSJWh
https://openreview.net/forum?id=UYneFzXSJWh
https://openreview.net/forum?id=UYneFzXSJWh
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/2406.07925
http://arxiv.org/abs/2406.07925
http://arxiv.org/abs/2406.07925
https://doi.org/10.18653/v1/2023.acl-long.505
https://doi.org/10.18653/v1/2023.acl-long.505
https://doi.org/10.18653/v1/2022.naacl-main.101
https://doi.org/10.18653/v1/2022.naacl-main.101
https://api.semanticscholar.org/CorpusID:249394542
http://arxiv.org/abs/2402.06954
http://arxiv.org/abs/2402.06954
http://arxiv.org/abs/2402.06954
http://arxiv.org/abs/2305.05644
http://arxiv.org/abs/2305.05644
https://aclanthology.org/L16-1561
https://aclanthology.org/L16-1561


curves for the methods.

Figure 3: FedSparse 0.01 vs Full FT communication
efficiency.

Figure 4: Communincation Overhead reduction in
LoRA

A.3 FedSparse Ablations

Where and how to apply FedSparseNet?
In Table 3, we conduct a series of ablation stud-

ies to evaluate the impact of varying the target mod-
ule for sparsity application as well as the sparsity
ratio within the FedSparseNet framework. Specif-
ically, FedSparseNet (0.01) denotes the applica-
tion of a sparse mask with a 0.01 sparsity ratio to
the tied embeddings (encoder and decoder) of the
M2M model. Our comparative analysis between
FedSparseNet (1.0) and FedSparseNet (1.0) + Body
(0.01) reveals that applying a sparse mask to the
tied embeddings layer yields superior performance
on both client-seen and client-unseen data com-
pared to applying the mask to the Body of the M2M
model. This could be attributed to the reduced
feature distortion achieved through sparsity in the
embedding layers (Kumar et al., 2022). Further-
more, our findings indicate that FedSparseNet (0.0)
+ Body (0.01) outperforms FedSparseNet (1.0) +

Body (0.01) in the RRS metric. This suggests that
a higher sparsity ratio applied to the body of the
model might further constrain feature distortion,
enhancing the model’s performance.

When examining the optimal degree of sparsity
to apply, we observed that FedSparseNet configu-
rations with varying sparsity ratios (0.01, 0.1, and
1.0) delivered comparable performances on client-
unseen data. FedSparseNet (0.01) emerged as the
most efficient model overall in terms of RRS and
communication efficiency. Introducing a regular-
ization penalty to FedSparseNet (0.01) with a λ
0.1 did not result in statistically significant differ-
ences in performance on both client-seen and client-
unseen data.

What is the Impact of Increasing Local Work
for FedSparseNet? In Table 4 in A, we com-
pare FedSparseNet and the baselines when each
model is trained for 5 epochs/round. We observe
that increasing local work generally amplifies pre-
trained feature distortion for both baselines and
FedSparseNet. Consequently, the performance
of IID FL and FedSparseNet (Non-IID FL and
IID) deteriorates compared to Table 2. While
FedSparseNet (IID) outperforms IID FL on both
seen and unseen client performance, a surprising
trend emerges for the Non-IID FL baseline. The
model trained with local work exhibits performance
comparable to the 1-epoch/round baseline on seen
data, but surpasses it on unseen data, with increas-
ing gains observed in HRL, followed by MRL
and LRL. While FedSparseNet still achieves better
client-seen data generalization than Non-IID FL,
it lags behind on client-unseen data and the RRS
metric. This suggests that the sparsity mechanism
in FedSparseNet might hinder its ability to fully ex-
ploit the benefits of increased local work for unseen
data. This is particularly relevant for low-resource
languages characterized by limited training data
and potentially weaker local data signals.

Takeaways

1. When examining the optimal degree of spar-
sity to apply, we observed that FedSparseNet
configurations with varying sparsity ratios
(0.01, 0.1, and 1.0) delivered compara-
ble performances on client-unseen data.
FedSparseNet (0.01) emerged as the most ef-
ficient model overall in terms of RRS and
communication efficiency.

2. Introducing a regularization penalty to
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Language FedSparseNet FedSparseNet FedSparseNet FedSparseNet+Reg FedSparseNet FedSparseNet
Pair (0.01) (0.1) (1.0) (0.01) (1.0)+Body(0.01) (0.0)+Body(0.01)

Client-Seen Languages

En-Fr 38.6 ± 0.7 38.7 ± 0.7 38.6 ± 0.7 38.6 ± 0.7 35.1 ± 0.7 35.9 ± 0.7
Ar-Es 36.4 ± 0.7 36.4 ± 0.6 36.5 ± 0.7 36.4 ± 0.6 29.6 ± 0.6 33.0 ± 0.6
Ru-Zh 37.7 ± 0.7 37.7 ± 0.6 37.6 ± 0.6 37.7 ± 0.6 38.7 ± 0.6 38.0 ± 0.6
Avg 37.6 ± 0.7 37.6 ± 0.6 37.6 ± 0.6 37.6 ± 0.6 34.5 ± 0.6 35.6 ± 0.6

Client-Unseen Languages - High Resource

Pt-En 32.2 ± 1.3 31.6 ± 1.5 32.0 ± 1.3 31.8 ± 1.4 27.7 ± 1.0 29.2 ± 1.0
Hi-En 21.8 ± 1.3 21.2 ± 1.3 21.8 ± 1.3 21.3 ± 1.4 19.1 ± 0.9 20.2 ± 0.9
Ko-En 14.5 ± 1.0 14.1 ± 1.0 14.1 ± 1.0 14.5 ± 1.1 12.4 ± 0.7 13.8 ± 0.8
Avg 22.8 ± 1.2 22.3 ± 1.3 22.6 ± 1.2 22.5 ± 1.3 19.7 ± 0.9 21.1 ± 0.9

Client-Unseen Languages - Mid Resource

Ta-En 1.6 ± 0.2 1.6 ± 0.2 1.7 ± 0.2 1.6 ± 0.2 4.1 ± 0.5 4.4 ± 0.5
Uk-En 21.2 ± 1.2 20.7 ± 1.1 21.5 ± 1.1 21.2 ± 1.2 18.4 ± 0.9 19.1 ± 1.0
Fi-En 18.8 ± 1.1 18.1 ± 1.1 18.4 ± 1.1 18.7 ± 1.1 14.7 ± 0.7 16.6 ± 1.0
Avg 13.9 ± 0.8 13.5 ± 0.8 13.9 ± 0.8 13.8 ± 0.8 12.4 ± 0.7 13.4 ± 0.8

Client-Unseen Languages - Low Resource

Sw-En 15.0 ± 1.1 14.6 ± 1.1 14.4 ± 1.1 15.2 ± 1.1 14.8 ± 0.8 15.0 ± 1.0
Si-En 6.1 ± 0.7 6.2 ± 0.7 6.0 ± 0.7 6.3 ± 0.7 7.7 ± 0.7 8.1 ± 0.8
Ml-En 5.5 ± 0.6 5.6 ± 0.6 5.2 ± 0.6 5.5 ± 0.6 7.1 ± 0.7 7.6 ± 0.7
Avg 8.9 ± 0.8 8.8 ± 0.8 8.5 ± 0.8 9.0 ± 0.8 9.9 ± 0.7 10.2 ± 0.8

Weighted Metric Calculation

RRS 0.485 0.477 0.481 0.484 0.328 0.403

Table 3: Different FedSparseNet configurations on non-IID FL are compared. We report BLEU for Client-Seen and
Client-Unseen Language Pairs.

FedSparseNet (0.01) with a λ 0.1 did not re-
sult in statistically significant differences in
performance on both client-seen and client-
unseen data.

3. The impact of varying local work needs
deeper investigation: Sparsification induced
by FedSparseNet might be limiting the effi-
cacy of local work for FedSparse.

B LoRA Ablations

Where and how to apply LoRA ? We explore
the candidates for two critical LoRA hyperparame-
ters: rank and its target modules to understand the
ideal composition of target location and capacity
for the sparsification we induce.

LoRA Rank The approximation rank in LoRA
is a critical hyperparameter that governs the reduc-
tion in the projection we carry with the gradient
updates. We experimented with 2 LoRA ranks: 8
and 32. Table 5 summarizes LoRA’s performance
with these: 8 and 32. In our experiments, the in-
crease in rank shows a marginal improvement with
the numbers though we include even greater ranges
for sweeping over ranks in our future work. We

posit that the lack of any significant improvement
in the capacity of the model could be attributed to
the need for differential language-specific capacity
i.e., it is possible that languages belonging to dif-
ferent categories (seen or unseen, high-resource or
low-resource) may require different rank attributed
capacities as has been explored in multilingual lit-
erature like Chang et al. (2023) and since we train
with a uniform rank, we may be under-allocating
or over-allocating capacity specifically to the seen
clients. Recent work like Ding et al. (2023) also
highlights an important caveat of LoRA is training
with a fixed rank (for the entirety of the model’s
training) which could also be impeding LoRA’s
efficacy.

LoRA Target Modules We explore applying
LoRA to (a) all layers (Key and Query projections)
and (b) Input Embedding of the models. We no-
tice a significant improvement in the performance
with the use of embedding projections (in align-
ment with our observation in FedSparse). We posit
that the perturbation induced by applying LoRA to
all the layers is either too extreme (we see a drop
in performance even on the seen clients) or not
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Language Pair Pretrained Centralized IID FL Non-IID FL FedSparseNet FedSparseNet
(Non-IID FL) (IID)

Client-Seen Languages

En-Fr 31.8 ± 0.6 38.0 ± 0.7 36.3 ± 0.7 33.1 ± 0.6 38.6 ± 0.7 38.5 ± 0.7
Ar-Es 28.0 ± 0.5 35.5 ± 0.7 35.6 ± 0.7 36.7 ± 0.6 36.3 ± 0.6 36.4 ± 0.6
Ru-Zh 30.3 ± 0.5 37.5 ± 0.6 37.4 ± 0.6 39.2 ± 0.6 37.3 ± 0.6 37.9 ± 0.6
Avg 30.0 ± 0.5 37.0 ± 0.7 36.4 ± 0.7 36.3 ± 0.6 37.4 ± 0.6 37.6 ± 0.6

Client-Unseen Languages - High Resource

Pt-En 40.0 ± 1.1 31.8 ± 1.1 20.7 ± 1.0 34.6 ± 1.1 32.3 ± 1.2 32.7 ± 1.4
Hi-En 29.6 ± 1.0 22.0 ± 1.1 14.1 ± 0.9 25.5 ± 0.9 21.8 ± 1.3 24.0 ± 1.1
Ko-En 20.5 ± 0.9 15.0 ± 0.9 9.3 ± 0.7 17.5 ± 0.9 14.6 ± 1.1 15.6 ± 0.9
Avg 30.0 ± 1.0 22.9 ± 1.0 14.7 ± 0.9 25.9 ± 1.0 22.9 ± 1.2 24.1 ± 1.1

Client-Unseen Languages - Mid Resource

Ta-En 8.0 ± 0.6 3.9 ± 0.4 2.5 ± 0.3 7.0 ± 0.7 2.2 ± 0.3 4.2 ± 0.5
Uk-En 27.9 ± 1.0 18.2 ± 1.0 13.1 ± 0.9 24.9 ± 1.0 21.4 ± 1.1 22.1 ± 1.1
Fi-En 25.7 ± 1.0 18.2 ± 1.0 10.0 ± 0.8 21.8 ± 0.9 18.9 ± 1.0 19.5 ± 1.0
Avg 20.5 ± 0.9 13.4 ± 0.8 8.5 ± 0.7 18.2 ± 0.5 14.2 ± 0.8 15.3 ± 0.9

Client-Unseen Languages - Low Resource

Sw-En 26.0 ± 0.9 17.2 ± 1.0 9.4 ± 0.8 20.1 ± 1.0 16.1 ± 1.1 19.6 ± 0.9
Si-En 15.9 ± 0.8 8.8 ± 0.7 4.5 ± 0.5 12.5 ± 0.9 7.3 ± 0.7 10.3 ± 0.8
Ml-En 15.3 ± 0.9 8.0 ± 0.8 4.3 ± 0.4 12.0 ± 0.8 6.6 ± 0.7 9.6 ± 0.8
Avg 19.1 ± 0.9 11.3 ± 0.8 6.1 ± 0.6 15.0 ± 0.9 10.0 ± 0.8 13.2 ± 0.8

Weighted Metric Calculation

RRS 0.000 0.496 0.323 0.643 0.497 0.573

Table 4: UN-MT Bleu for Client-Seen and Client-Unseen Language Pairs. FedSparseNet uses sparsity ratio 0.01.
All models are trained for 5 epochs/round.

coupled with the right rank (may require a lower
rank) to achieve optimal results. Our best model
eventually used the model where embeddings were
perturbed by LoRA.

Takeaways

1. Applying LoRA to the embedding layer gives
significant gains over perturbing the Key and
Query projections.

2. Increasing Rank over a limited range [8-32]
does not induce a statistically significant im-
provement in performance.
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Language Pretrained Centralized IID FL Non-IID FL LoRA LoRA LoRA
Pair (embedding, rank=8) (embedding, rank=32) (k,q), rank=8

Client-Seen Languages
En-Fr 31.8 ± 0.6 38.0 ± 0.7 37.7 ± 0.7 36.9 ± 0.7 36.0 ± 0.6 36.4 ± 0.6 35.8 ± 0.6
Ar-Es 28.0 ± 0.5 35.5 ± 0.7 35.9 ± 0.7 32.9 ± 0.6 33.4 ± 0.6 33.2 ± 0.6 32.4 ± 0.6
Ru-Zh 30.3 ± 0.5 37.5 ± 0.6 37.7 ± 0.4 38.7 ± 0.6 34.3 ± 0.6 34.7 ± 0.6 33.2 ± 0.6
Avg 30.0 ± 0.5 37.0 ± 0.7 37.1 ± 0.6 36.2 ± 0.6 34.6 ± 0.6 34.8 ± 0.6 33.8 ± 0.8

Client-Unseen Languages - High Resource
Pt-En 40.0 ± 1.1 31.8 ± 1.1 32.0 ± 1.0 26.7 ± 1.2 39.5 ± 1.1 39.5 ± 1.1 38.5 ± 1.1
Hi-En 29.6 ± 1.0 22.0 ± 1.1 22.8 ± 0.9 19.3 ± 1.0 28.3 ± 1.0 28.7 ± 1.0 28.3 ± 1.0
Ko-En 20.5 ± 0.9 15.0 ± 0.9 14.4 ± 0.9 13.0 ± 0.8 19.6 ± 0.9 19.5 ± 0.9 19.5 ± 0.9
Avg 30.0 ± 1.0 22.9 ± 1.0 23.1 ± 0.9 19.7 ± 1.0 29.1 ± 1.0 29.2 ± 1.0 28.8 ± 1.0

Client-Unseen Languages - Mid Resource
Ta-En 8.0 ± 0.6 3.9 ± 0.4 5.0 ± 0.5 3.7 ± 0.4 9.2 ± 0.7 9.5 ± 0.7 8.2 ± 0.7
Uk-En 27.9 ± 1.0 18.2 ± 1.0 21.8 ± 0.9 20.7 ± 1.0 28.2 ± 1.0 28.0 ± 1.0 27.5 ± 1.0
Fi-En 25.7 ± 1.0 18.2 ± 1.0 18.8 ± 0.8 14.4 ± 1.0 25.0 ± 1.0 24.8 ± 1.0 24.4 ± 0.9
Avg 20.5 ± 0.9 13.4 ± 0.8 15.2 ± 0.7 12.9 ± 0.8 20.8 ± 0.9 20.8 ± 0.9 20.3 ± 0.9

Client-Unseen Languages - Low Resource
Sw-En 26.0 ± 0.9 17.2 ± 1.0 18.4 ± 1.0 13.6 ± 1.0 24.4 ± 1.0 24.6 ± 1.0 23.5 ± 1.1
Si-En 15.9 ± 0.8 8.8 ± 0.7 9.6 ± 0.8 7.3 ± 0.7 15.1 ± 0.8 14.9 ± 0.8 14.2 ± 0.9
Ml-En 15.3 ± 0.9 8.0 ± 0.8 8.6 ± 0.8 6.3 ± 0.6 14.3 ± 0.8 14.9 ± 0.8 13.7 ± 0.9
Avg 19.1 ± 0.9 11.3 ± 0.8 12.2 ± 0.9 9.1 ± 0.8 17.9 ± 0.9 18.1 ± 0.9 17.1 ± 1.0

Weighted Metric Calculation
RRS 0.000 0.496 0.323 0.643 0.896 0.882 0.882

Table 5: Different LoRA configurations varying the target modules and ranks. All models are trained for 1
epoch/round and for 100 rounds.
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