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Abstract

This pilot study explores the application of lan-
guage models (LMs) to model game event se-
quences, treating them as a customized lan-
guage. We investigate a popular mobile game,
transforming raw event data into textual se-
quences and pretraining a Longformer model
on this data. Our approach captures the rich
and nuanced interactions within game sessions,
effectively identifying meaningful player seg-
ments. The results demonstrate the potential of
self-supervised LMs in enhancing game design
and personalization without relying on ground-
truth labels.

1 Introduction

The dominant form of human interaction is natural
language, represented by a stream of words. Lan-
guage Models (LMs) have become highly effective
in understanding and representing these general-
purpose natural languages. Similarly, when a hu-
man player interacts with a video game, the pri-
mary form of interaction is through game controls,
which lead to visual and auditory feedback. This in-
game interaction is typically recorded as a stream
of events, each with rich attributes and categories.
This pilot study explores whether we can apply
LMs, initially designed for word sequences, to
model game event sequences. Understanding
player behavior through this modeling approach
is crucial for designing engaging experiences, im-
proving game mechanics, and personalizing con-
tent. For example, understanding the optimal bal-
ance between challenge and progression can enable
dynamic game difficulty adjustments, maximizing
the enjoyment experienced by players.

Traditionally, understanding game players has
relied on surveys and interviews, such as those con-
ducted in (Rodrigues et al., 2022). While these
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methods provide valuable insights, they are signifi-
cantly limited by scalability. Deep Learning (DL)
models, like those in (Cao et al., 2020), have been
trained on aggregated (from game events) game-
play data to achieve in-game personalization, but
they often neglect nuanced interactions. Recently,
training DL models on sequential interactions be-
tween players and in-game items has been explored,
as exemplified by (Villa et al., 2020). However,
these modeled interactions are still relatively lim-
ited in type and richness compared to game events.
Moreover, most of these DL models only optimize
for specific personalization scenarios, requiring
large amount of ground-truth labels, which are not
always available.

As a consequence, self-supervised LM pretrain-
ing emerged as a promising approach to directly
model the rich and fine-grained game events in a
scalable way without requiring any labels. In prin-
ciple, this pretrained model is not restricted to any
specific personalization use case. To the best of
our knowledge, this is the first attempt to pretrain
an LM on game events by treating these events as
a customized natural language. The highlights of
this pilot study are: (§3) studying a popular mo-
bile video game from King1, Candy Crush Saga,
(§4) developing a simple method for transforming a
large amount of game events into language tokens,
(§5) pretraining an LM on the customized “lan-
guage” representing game events, (§6) reporting
experimental results on the LM’s intrinsic perfor-
mance and its capability in understanding game
players, and finally (§7) we outline measures em-
ployed to mitigate ethical considerations.

2 Related Work

Modeling sequential interactions between users and
items has been extensively studied in recommenda-
tion systems. Initial approaches utilized Markovian

1https://king.com
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app start game start game end interaction impression other

Event Type

Event 𝑬𝑵𝟏: game end

{

    "player_id": 12345, "server_time": 170506690,

    "client_time": time(12:34), "client_timezone": GMT+01:00,

    "level": 123, "end_reason": "success", "score": 12345

}

Figure 1: Example events segmented into semantic sessions. The final game-end event in “Session 1” is expanded
to show details about its associated fields and values.

assumptions for collaborative filtering (Zimdars
et al., 2001), later extended to Markov decision
processes (Shani et al., 2005). Predicting future
behavior trajectories using contextual and sequen-
tial information has been addressed with autore-
gressive Long Short-Term Memory models (Wu
et al., 2017) and coupled Recurrent Neural Net-
work (RNN) architectures for joint modeling of
user/item interactions (Kumar et al., 2019). Explic-
itly modeling different types of user behavior, such
as repeated consumption, has also shown to im-
prove downstream performance metrics (Anderson
et al., 2014; Ren et al., 2019).

LMs have been leveraged for embedding se-
quential data in recommendation settings, begin-
ning with music track representations using the
Word2Vec objective (Mehrotra et al., 2018) and ex-
tending to modeling sequences of listening sessions
with RNNs (Hansen et al., 2020). More recently,
self-attention sequential models have been intro-
duced, such as BERT4Rec (Sun et al., 2019), which
balance the trade-off between Markov chain mod-
els and neural network methods. Follow-up work
on multi-task customer models for personalization
has further advanced this field by integrating novel
data augmentation and task-aware readout mod-
ules (Luo et al., 2023).

Despite these advancements, the application of
LMs for user modeling in gaming remains under-
explored. Our study proposes the first approach for
learning representations of mobile game players
by pretraining a Transformer architecture in a self-
supervised manner, treating game event sequences
as a customized natural language. This approach
aims to capture the rich and nuanced interactions
within game sessions.

3 The Game and Interaction Events

This pilot study focuses on Candy Crush Saga
game. When a player interacts with this game
on a mobile device, their behavior generates a se-
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Figure 2: (a) Histogram of session lengths and (b) the
distribution of session quantities over a 15-day period
shown up to the 99th percentile.

quence of time-ordered events, which are recorded
locally on the user’s device and later sent to the
central game server in batches. Example events
include starting the game application, beginning a
new game round, purchasing in-game items, and
displaying pop-ups and notifications. The tracked
player behavior events fall into 12 categories, each
with an associated schema containing continuous
and categorical features.

The player-game interaction events are seg-
mented into sessions based on the player’s activity
semantics, as illustrated in Figure 1. According to
game analytics conventions recommended by the
data scientists from the game producer, a session is
considered to have ended if a player is inactive for
15 minutes or more. For this study, we collected a
dataset of player event sessions over 15 days, with
10,000 players uniformly sampled from the entire
player population. The resulting dataset consists
of 125,000 sessions, split into a 2:1 train-test ratio.
The distribution of session lengths in the dataset
is shown in Figure 2a, while Figure 2b depicts the
distribution of sessions quantities. Both session
lengths and quantities approximately follow a geo-
metric distribution.

Our collected event data, while superficially
similar to tracking data in other domains like e-
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commerce, presents unique challenges. In-game
interactions occur at a much higher frequency than
in web browsing, resulting in large volumes of
potentially redundant events that call for careful
preprocessing and modeling of long-range depen-
dencies. Additionally, game event sequences are
often noisy, with incorrectly ordered events or miss-
ing ordering information due to users switching be-
tween online and offline modes, which can degrade
model performance during training and inference.

4 From Events to Words

The raw format of game events is JSON. To make
this data digestible by LMs, we designed a sim-
ple pipeline to transform raw events into textual
sequences. As illustrated in Figure 3, the pipeline
begins by removing unnecessary events and fields.
Leveraging game-specific knowledge, we filter out
non-informative data, such as device-specific logs,
reducing the number of event fields by over 90%.
We bin certain numerical features, such as the hour
of the day, based on domain-specific knowledge
to convert them into categorical variables. Addi-
tionally, we group similar in-game event identifiers,
e.g., the name of the UI shown, to reduce the vo-
cabulary size. The words are then grouped by users
and sessions, ordered by timestamps to preserve
the natural interaction flow, and concatenated to
form a textual description of a player’s interaction
experience.

We use a word-level tokenizer that splits a space-
separated string into tokens and maps them to
unique identifiers. This approach suits the rela-
tively small vocabulary of behavior data (∼13,500
tokens), though the tokenized sequences are much
longer than those in typical NLP tasks like senti-
ment analysis.

5 Pretrain a Language Model

The tokenized word sequences are often longer
than 512 tokens, which are unmanageable for
the conventional BERT (Kenton and Toutanova,
2019) architecture and its derivatives. Model-
ing long sequences poses a significant challenge
to Transformer-based approaches due to the self-
attention operation, which scales quadratically with
input length in terms of memory and computational
complexity. This challenge is intensified when
modeling distant dependencies in extended game-
play experiences that involve concatenating mul-
tiple sessions. To overcome this, we adopt Long-

model size #layer #head dims block size #params
small 2 2 128 1024 2M

medium 6 6 384 2048 20M
large 12 12 768 4096 121M

Table 1: Hyperparameters for different model sizes.

model size accuracy ↑ perplexity ↓ CE ↓
small 0.69± 0.06 3.27± 0.71 1.16± 0.22

medium 0.93± 0.01 1.28± 0.09 0.25± 0.07

large 0.95± 0.01 1.16± 0.05 0.15± 0.04

Table 2: Mean values and standard deviations of in-
trinsic language modeling metrics computed over five
training runs.

former (Beltagy et al., 2020), a model designed
specifically for processing long textual inputs.

Longformer combines dilated sliding window
attention for local context and global attention on
a few pre-selected input locations. This approach
scales linearly with input size, enabling the pro-
cessing of sequences up to 4,096 tokens in a single
pass, which is sufficient for most behavior model-
ing scenarios. Additionally, Longformer’s sparse
attention pattern performs well in contexts where
many tokens in the immediate local context may be
redundant, as is often the case with high-frequency
game events.

We pretrained several Longformer variants2

from scratch with different capacities, based on
the hyper-parameters listed in Table 1. We ex-
perimented with the baseline Longformer config-
uration, i.e., “large”, and two smaller model vari-
ants with fewer internal layers and self-attention
heads. The models were optimized with the
masked language modeling (MLM) objective using
Adam (Kingma, 2014) with a fixed learning rate of
2×10−5. Each LM was trained from randomly ini-
tialized weights for 100 epochs with a batch size of
4 and gradient accumulation over 4 steps, resulting
in an effective batch size of 16 (216 tokens).

6 Results

First, we evaluate the intrinsic performance of the
proposed approach using intrinsic MLM metrics.
We report the Cross-Entropy (CE) loss and multi-
class classification accuracy of predicting masked

2We use the HuggingFace Transformers (Wolf et al., 2019)
library and PyTorch framework (Paszke et al., 2019) for model
implementation. All models were trained with half-precision
(FP16) on a single NVIDIA A100 GPU, with the large model
taking approximately 50 hours to complete pretraining.
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Group by player and session, sort by
timestamp

Retain relevant events

{"app start": {"player_id": 123, "server_time": 0001, ...}},
{"app log": {"player_id": 321, "server_time": 0011, ...}},
{"game start": {"player_id": 123, "server_time": 0011, ...}}

{"app start": {"player_id": 123, "server_time": 0001, ...}},
{"app log": None},
{"game start": {"player_id": 123, "server_time": 0011, ...}}

Drop uninformative fields

{"app start": {"player_id": 123, "client_time": 0001, ...}},
{"app log": None},
{"game start": {"player_id": 123, "game_type": "A", ...}}

Values type conversion

{"app start": {"player_id": 123, ...}},
{"game start": {"player_id": 123,
                          "game_type": "type description", ...}}

"player_123": [{"app start": {"field_1": "value_1", ...}},
                        {"game start": {"game_type": "type description", ...}}

Join events

"app start" "field_1" "value_1" [SEP] "game start"
"game_type" "type description" [SEP]

Figure 3: The pipeline to convert event streams to word streams.

tokens on the validation split for the tested model
architectures, as shown in Table 2. Additionally, we
report the perplexity score, following established
methodologies for evaluating MLM pretraining per-
formance (Liu et al., 2019). As expected, we ob-
serve that LMs with larger capacities achieve better
fits for the behavior sessions without overfitting.

Next, we perform a qualitative analysis to iden-
tify spontaneous player clusters representing dif-
ferent behavioral persona. We extract embeddings
of input token sequences from the pretrained large
Longformer model. Using 4096× 768-dim repre-
sentations from the last Attention layer, we apply
max pooling over sequence length to compute an
embedding vector for each input sequence. These
session embeddings are projected onto the first 50
principal components using linear PCA to reduce
noise and speed up computation. The projections
are then mapped to 2D space via t-SNE (Van der
Maaten and Hinton, 2008) and clustered with a
Gaussian Mixture Model (Reynolds et al., 2009)
with eight components. The resulting t-SNE plot is
shown in Figure 4a. Analyzing the average player
behavior within the well-separated t-SNE clusters
in Figure 4b, we collaboratively identified player
segments with game analysts from a practical prod-
uct perspective. Identified players’ personas qual-
itatively resonate with what our user researchers
extracted from self-reported behavioral surveys:

1. Competitive devoted: a skilled player who plays
less often but long sessions, occasionally pur-
chasing items and collecting utilities.

2. Casual devoted: a player who plays long ses-
sions infrequently, engages in quests, collects
rewards, and prefers free gameplay.

3. Persistent devoted: a player who plays frequent,
long sessions without purchasing.

4. Lean-in casual economy aware: A skilled player
who plays less often but for long sessions, occa-
sionally buying items.

5. Lean-in casual: a skilled player who plays less
often but for long sessions.

6. Persistent casual: a less skillful player who
plays short, frequent sessions with little engage-
ment in social and economic aspects.

7. Persistent collector: a player with frequent short
sessions, collecting utilities to progress.

7 Ethical Considerations

Computational modeling of player behavior in
games has raised various ethical concerns within
both research and industry (Mikkelsen et al., 2017).
In this pilot study, we utilize non-personally iden-
tifiable tracking data from in-game interactions to
create vectorized representations of player behav-
iors. Our objective is to leverage these representa-
tions to support personalized and enhanced player
experiences while maintaining ethical standards.

Potential ethical risks include (1) biases in the
input dataset, such as under-representing less fre-
quent player behaviors, and (2) the misapplication
of models to different data distributions, known as
Type III errors (Mikkelsen et al., 2017). To mitigate
these risks, we use robust data validation and auto-
mated model analysis tools available in production-
ready machine learning frameworks (Modi et al.,
2017).

We address under-represented player behaviors
through qualitative evaluation methods, such as
embedding space visualization. Additionally, we
periodically retrain the model with recent data to
address distribution shifts, with retraining inter-
vals determined empirically based on model perfor-
mance and data drift.

For the downstream recommendation system, we
plan to implement model explainability and uncer-
tainty estimation methods to better understand the
model’s robustness, biases, and other ethical con-
siderations. These measures aim to ensure that our
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Figure 4: (a) t-SNE of the latent embedding space from
the pretrained large Longformer with Gaussian Mixture
Model clustering. (b) Histogram of quantized player
events in clusters (excluding cluster 8 due to small size
and lack of gameplay).

modeling approach supports ethical and responsi-
ble AI deployment.

8 Conclusion and Future Work

This pilot study demonstrates the potential of us-
ing self-supervised language models to understand
player behavior by modeling game event sequences
as a customized natural language. Our approach,
leverages the Longformer model to effectively cap-
tures the rich and nuanced interactions within game
sessions in a self-supervised manner, agnostic to
downstream use-cases. The results highlight the
model’s ability to identify meaningful player seg-
ments, providing valuable insights for game design
and personalization. For future work, we plan to
extend training to single- and multitask fine-tuning

with labeled datasets to benchmark against fully-
supervised baselines. We anticipate that our ap-
proach can be extended to other event-based game
datasets as well.
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