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Abstract

Despite the advances in the abstractive sum-
marization task using Large Language Mod-
els (LLM), there is a lack of research that as-
sess their abilities to easily adapt to different
domains. We evaluate the domain adaptation
abilities of a wide range of LLMs on the sum-
marization task across various domains in both
fine-tuning and in-context learning settings. We
also present AdaptEval, the first domain adap-
tation evaluation suite. AdaptEval includes a
domain benchmark and a set of metrics to fa-
cilitate the analysis of domain adaptation. Our
results demonstrate that LLMs exhibit compa-
rable performance in the in-context learning
setting, regardless of their parameter scale.

1 Introduction

Large Language Models (LLM) have achieved re-
markable improvements on a wide range of natu-
ral language processing tasks, including abstrac-
tive text summarization, the task of generating an
abridged version of the most relevant information
in a document (Basyal and Sanghvi, 2023). Re-
cent works study the domain adaptation abilities
of LLMs on the summarization task. However, the
research is still limited to a single domain, such
as news articles (Goyal et al., 2022; Zhang et al.,
2023) or clinical reports (Van Veen et al., 2023).
We argue that there is a lack of research across
domains to better understand the abilities of these
models to adapt to different targets.

In this paper, we assess the domain adapta-
tion abilities of 11 models, including conventional
encoder-decoder models and a wide range of LLMs
in various parameter sizes, on the summarization
task. In particular, we experiment with fine-tuning
and in-context learning (ICL) settings and evalu-
ate their performance across various domains (i.e.
governmental, medical, and scientific), reporting
scores on a collection of automatic—ROUGE (Lin,
2004) and BERTScore (Zhang et al., 2019)—and

domain adaptation metrics. The latter includes do-
main vocabulary overlap (Yu et al., 2021), and our
adaptations of G-eval (Liu et al., 2023) and token
distribution shift (Lin et al., 2023) to the task.

The experimental results show the abilities of
LLMs to adapt to the domain in the ICL setting.
In particular, small models with 7b parameters
achieve comparable performance to their larger
counterparts with only two learning examples.
However, G-eval highlights the difficulty of adapt-
ing to the medical domain. While the fine-tuned
models achieve the best performance in terms of
automatic scores, their adaptation to the domain
vocabulary is inferior to the ICL setting. Finally,
we release the domain benchmark and evaluation
metrics as the first domain Adaptation Evaluation
suite (AdaptEval) to facilitate the evaluation of
models and foster further research on this task.1

2 The Domain Adaptation Suite

2.1 Domains Benchmark

Our benchmark contains data from different
datasets on the scientific, medical, and governmen-
tal domains. The final size of the domain datasets is
listed in Table 1, after removing instances with ex-
tractive summaries, or extremely long summaries
or sources as in Shaham et al. (2022).2

Science The data consists of scientific articles
from the arXiv platform, where the human-written
abstracts are used as reference summaries of the
articles (Cohan et al., 2018).

Medical The medical domain comprises aca-
demic articles in the field of biomedical and life
sciences from the PubMed dataset (Cohan et al.,
2018). Similarly to arXiv, the article abstracts are
regarded as abstractive summaries.

1AdaptEval code is available on AdaptEval.
2Deleted: 3% arXiv, 4% PubMed, and 0.4% GovReport.
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Domain Train Val. Test

Science 203,037 6,436 6,440
Medical 119,924 6,633 6,658
Government 17,517 973 973

Table 1: Sizes of domain datasets.

Domain Size #W #Sum W

Science 215,913 6,029.9 272.7
Medical 133,215 3,049.9 204.4
Government 19,466 9,409.4 553.4

Table 2: Total sizes of the domain datasets and average
word count of source (#W) and summary (#Sum W).

Government The data comes from the GovRe-
port dataset, a collection of reports on national
policy issues paired with human-written executive
summaries (Huang et al., 2021). The documents
are 1.5 and 2.5 times longer than those from arXiv
and PubMed, respectively.

2.2 Evaluation Metrics

The suite provides a set of metrics to evaluate
the performance of summarization models and ap-
proaches across domains. Specifically, we include
the standard summarization metrics ROUGE (Lin,
2004) and BERTScore (Zhang et al., 2019), which
measure n-gram and contextual similarity against a
reference, respectively. To get better insights into
their domain adaptation abilities, we also imple-
ment several metrics that assess the domain lan-
guage. We describe them in the rest of the section.

Domain Vocabulary Overlap (DVO) We com-
pute the percentage of domain vocabulary in the
generated output as in Yu et al. (2021). The domain
vocabulary consists of the top 10k most frequent
words in the domain excluding stopwords.

Domain Token Distribution Shift Lin et al.
(2023) analyzes the impact of LLM alignment and
proposes to measure the token distribution shifts be-
tween base models and their aligned counterparts.
We adopt the token distribution shift approach to
domain adaptation. Specifically, we focus on the
domain vocabulary (i.e. 10k most frequent words)
and analyze the effects of adaptation strategies,
such as ICL and fine-tuning on their distribution.

Formally, given a prompt p, we first use the fine-
tuned model to generate a summary by greedy de-
coding, where the summary is represented as a se-
quence of tokens S = {s0, ..., sT } from the model

vocabulary V , such that st ∈ V for 0 < t < T .
Next, we process each token in S sequentially. At
each step t, we get the probability distribution of
the next token prediction given p and the prior con-
text p(· | s<t,p) using both fine-tuned and base
models. In the in-context learning setting, we use
the same model, but the adapted approach extends
the prompt p with learning examples.3 Finally, we
rank the tokens in both distributions according to
their probability and provide KL-divergence scores
and the token shift rate of those tokens in the vo-
cabulary domain. While the former represents their
distribution similarity, the latter computes the fre-
quency at which the adapted approach predicts a to-
ken from the vocabulary domain that is not among
the top three predictions of the base model.

Reference-free evaluation with GPT-4 G-eval
uses GPT-4 (OpenAI, 2023) with chain-of-thought
prompting (Wei et al., 2022) to evaluate summaries
across quality features, such as coherence or flu-
ency, achieving high correlation with human judg-
ments (Liu et al., 2023). Similarly, we design a
prompt to score the degree to which a summary
adheres to the domain language on a scale from
1 to 5. Our prompt includes the reasoning steps
generated by GTP-4 as in Liu et al. (2023) (see
Appendix B).

3 Domain Adaptation Task

We assess the performance of 11 models across
domains in both fine-tuning4 and ICL settings.

3.1 Models Selection
We select a wide variety of models from the
conventional encoder-decoder transformer mod-
els—BART (Lewis et al., 2020) and PEGASUS-
X (Phang et al., 2022)—to the recent instruction-
based LLMs. The latter includes open-source mod-
els from the Llama2 family (Touvron et al., 2023),
Vicuna (Chiang et al., 2023), Falcon (Almazrouei
et al., 2023), and Mistral AI (Jiang et al., 2023).
For each model family, we consider various model
sizes ranging from 7b to 70b parameters, if avail-
able. Additionally, we consider the close-source
model ChatGPT from OpenAI. We provide the
checkpoints and technical details in Appendix A.

3The method can also be applied to compare models of
different parameter scales in different adaptation settings.

4We exclude GovReport from fine-tuning on 5k and 10k
samples, since the train set doesn’t have enough documents
to fit into the models context window of 4096 tokens—only
1148 instances with maximum 4k length in the training split.

77



Medical Science Government

BERTScore DVO ROUGE BERTScore DVO ROUGE BERTScore DVO ROUGE

Zero-shot Setting

PEGASUS-X 0.690 6.28 3.55 0.538 11.98 5.85 0.736 5.58 9.06
Falcon 7b 0.811 31.87 13.68 0.810 30.16 14.54 0.821 31.49 13.86
Llama2 7b 0.783 21.15 10.94 0.818 28.61 18.33 0.845 34.36 18.86
Mistral 7b 0.788 24.78 9.44 0.806 28.81 13.68 0.815 31.18 12.02
Vicuna 7b 0.727 9.49 2.11 0.781 23.94 7.93 0.813 30.69 10.80
Llama2 13b 0.764 20.78 6.26 0.783 23.48 8.58 0.797 24.04 10.80
Vicuna 13b 0.745 15.76 1.58 0.763 19.07 4.43 0.783 27.18 7.17
Falcon 40b 0.816 35.51 13.85 0.822 34.98 17.59 0.827 35.51 13.85
Llama2 70b 0.842 35.50 24.59 0.837 35.22 23.35 0.855 36.05 21.48
ChatGPT 0.844 36.69 24.81 0.838 36.58 23.95 0.859 37.73 22.34
GPT-4o mini 0.843 41.04 22.26 0.834 40.85 20.16 0.856 41.51 21.12

Two-shot Setting

Llama2 7b 0.819 35.95 21.11 0.824 35.34 20.92 0.847 30.22 17.39
Mistral 7b 0.816 32.05 21.30 0.802 23.61 17.76 0.844 30.08 19.21
Vicuna 7b 0.831 36.29 21.54 0.827 34.65 20.31 0.851 30.28 17.29
Llama2 13b 0.820 35.02 19.00 0.809 32.30 18.97 0.814 29.92 14.30
Vicuna 13b 0.822 35.51 19.69 0.807 33.32 14.86 0.789 29.34 8.34
Llama2 70b 0.845 37.61 22.40 0.842 36.65 23.03 0.851 29.59 18.72
ChatGPT 0.841 38.58 22.92 0.837 38.39 23.15 0.853 30.44 16.82
GPT-4o mini 0.842 30.64 23.18 0.835 29.14 21.47 0.850 30.40 16.04

Fine-tuning Setting

BART 0.852 37.03 24.80 0.844 34.15 22.20 0.856 25.14 28.44
PEGASUS-X 0.850 28.72 31.18 0.852 34.61 28.11 0.868 22.07 31.98
Llama2 7b1 0.859 33.61 25.81 0.858 33.06 25.30 0.850 29.30 24.81
Llama2 7b2 0.861 35.15 26.00 0.856 30.49 25.46 x x x
Llama2 7b3 0.862 33.71 26.81 0.854 27.43 25.35 x x x
Mistral 7b2 0.863 35.81 27.17 0.863 34.00 27.29 0.833 21.66 23.08
Llama2 13b2 0.862 35.28 26.26 0.860 32.67 26.47 x x x

Table 3: BERTScore F1, DVO (%), and the geometric mean of ROUGE-1/2/L (ROUGE) of all models across
the three domains. The value ‘x’ implies that the model was not evaluated under those settings. 1/2/3 indicate
fine-tuning with 1k, 5k, and 10k instances, respectively.

3.2 Results

Table 3 shows the performance of the models across
domains in terms of ROUGE, BertScores, and
DVO. We observe that the model size has a direct
impact on their overall performance in the zero-
shot setting; however, this performance gap is con-
siderable reduced in the ICL setting with only two
learning examples. In fact, the scores of the small
7b models are comparable to the large Llama 70b or
the even larger ChatGPT. To validate these results,
we compute the token distribution shift between
models of different sizes in the two-shot setting
(Table 4). The scores reflect that their probability
distributions are very similar, confirming that there
are no major differences in their performance.

In contrast, the fine-tuning results in Table 3
are mixed. Overall, the models outperform their
counterparts in the two-shot setting in terms of
ROUGE scores; however, there is a decrease in
DVO. In particular, PEGASUS-X achieves the best

ROUGE scores. We argue that this is attributed to
the model’s fine-tuning process, since the parame-
ters are adjusted to optimize on ROUGE. Addition-
ally, BART achieves the highest DVO despite its
small parameter size (110M). Johner et al. (2021)
point out to the model’s tendency to generate highly
extractive summaries, which favours the use of do-
main vocabulary. Finally, the token shift rate and
KL-divergence scores between the base and fine-
tuned models are higher than in the two-shot setting.
However, we observe that most distribution shifts
are due to stylistic tokens, as also reported in Lin
et al. (2023) between the base and their aligned
LLMs.

To confirm these findings, we also evaluate the
summaries using GPT-4 shown in Table 5, which
have a strong correlation with human judgments,
along with our addition to measure domain adap-
tation, on a random sample of 25 articles.5 The

5Due to the costs of using GPT-4 with large prompts, we
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Science Medical Government

base 2-shot KL TSR KL TSR KL TSR

Llama2 7b vs. 7b 19.70 92.14 19.27 97.44 17.40 94.33
Mistral 7b vs. 7b 13.88 91.33 14.01 95.40 13.40 90.00
Vicuna 7b vs. 7b 17.67 92.35 18.32 93.89 15.42 94.04
Llama2 13b vs. 13b 15.58 96.95 16.53 96.76 14.67 98.82
Vicuna 13b vs. 13b 18.12 97.13 17.34 90.70 16.79 99.10
Llama2 70b vs. 70b 16.78 95.68 17.12 98.19 13.10 92.36

2-shot 2-shot KL TSR KL TSR KL TSR

Llama2 13b vs. 7b 0.21 2.87 0.38 1.67 0.32 10.38
Vicuna 13b vs. 7b 0.25 2.07 0.38 4.57 0.24 0.00
Llama2 70b vs. 13b 0.47 5.18 0.31 3.50 0.49 4.92
Llama2 70b vs. 7b 0.43 3.92 0.46 5.01 0.54 6.88

base FT KL TSR KL TSR KL TSR

Llama2 7b vs. 7b 0.81 12.40 0.35 4.70 21.49 15.15
Mistral 7b vs. 7b 0.52 11.54 0.37 4.42 0.18 3.21
Llama2 13b vs. 13b 0.51 6.84 0.48 7.32 x x

Table 4: Effect of different model sizes, two-shot in-context learning, and Fine-Tuning in terms of token distribution
shift scores—KL divergence and Token Shift Rate (%) calculated over 10 samples. Two-shot has the major impact
on the models’ predictions. The low scores between different model sizes indicate that parameter size does not have
a significant effect on domain adaptation in the two-shot setting.

scores on arXiv data are consistent with our pre-
vious results, showing that ICL achieves the best
performance, and the model parameter size does
not have a significant impact. However, PubMed
obtains remarkably low scores, which highlights
the difficulty of the models to adapt to the medical
domain. The LLMs however, find it easier to adapt
to the Government domain.

3.3 Manual Evaluation

Two in-house domain experts perform a blind man-
ual evaluation of the same arXiv samples used in
GPT-4 evaluation (Table 5). The setting comprises
of 25 random arXiv articles paired with four differ-
ent summaries generated with Llama2 (7b and 70b)
in the two-shot setting, fine-tuned Llama2 (7b) and
PEGASUS-X. To avoid biases, we randomly shuf-
fle the evaluation instances and their summaries for
each annotator.

We ask the annotators to rank the generated sum-
maries according to how well the vocabulary and
style of the outputs adapt to the scientific domain.
The task is especially challenging when the sum-
maries contain similar vocabulary. Therefore, we
focus on the relative performance of the models;
that is, their agreement on an output being ranked
higher than the other. The final Cohen’s κ inter-
annotator agreement is 0.4. The results show that

only report the scores on four models outputs of 25 random
instances.

the annotators consistently rated the outputs of both
Llama2 7b and 70b in the two-shot scenario among
the top two positions of the ranking—60% and
52%, respectively—whereas the fine-tuned models
were the least preferred—only 12% (Llama2 7b)
and 16% (Pegasus-X) rated on top.

4 Related Work

Some recent works evaluate the domain adaptation
abilities of LLMs on the summarization task, albeit
limited to a specific domain. Van Veen et al. (2023)
focus on clinical data and tackle the summarization
of electronic health records. They evaluate eight
different LLMs across six datasets in the same do-
main. Fu et al. (2024) investigate whether model
size has an impact on the summarization perfor-
mance of business meeting transcripts. The results
show that smaller LLMs cannot outperform their
larger counterparts (from 7b to 70b parameters),
even after fine-tuning, except for FLAN-T5 with
780M parameters (Chung et al., 2022). In con-
trast, Zhang et al. (2023) provides a benchmark
for text summarization of news articles and con-
cludes that instruct-tuning rather than model size is
the key to text summarization with LLMs. Sim-
ilarly, Goyal et al. (2022) propose also a news
summarization benchmark and compare the per-
formance between conventional encoder-decoder
and instruction-based models. Prior to the LLM
era, Yu et al. (2021) explored domain adaptation
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DA (ours) Coherence Fluency

2-shot arXiv PubMed GovReport arXiv PubMed GovReport arXiv PubMed GovReport

Llama2 7b 4.20 1.0 4.04 3.80 2.0 3.96 2.72 2.0 2.96
Llama2 70b 3.96 1.0 4.40 3.20 1.0 3.96 2.56 1.0 3.00

FT

Llama2 7b 3.48 2.0 4.16 2.08 2.0 3.40 2.04 2.0 2.84
PEGASUS-X 3.88 2.8 4.40 2.88 2.0 3.72 2.40 2.0 2.72

Table 5: Evaluation scores using GPT-4 on 25 random samples from the arXiv, PubMed and GovReport datasets in
terms of coherence (1-5), fluency (1-3), and our Domain Adaptation (DA) (1-5).

techniques in a low-resource setting, such as fine-
tuning and second pre-training of encoder-decoder
summarization models on a wide range of datasets.

5 Conclusion

We evaluate the domain adaptation abilities of
Large Language Models across scientific, med-
ical, and governmental domains using a set of
adapted evaluation metrics. Additionally, we re-
lease AdaptEval, an evaluation suite that facilitates
the analysis of domain adaptation. Our experiments
show that smaller LLMs exhibit domain-shift chal-
lenges, but they are able to achieve comparable per-
formance to larger LLMs when provided with only
two learning examples. In contrast, fine-tuning
does not have a significant impact on the vocabu-
lary domain, but only on stylistic tokens. Overall,
the G-eval scores indicate that the medical domain
is challenging for these models. We expect our
work to encourage and facilitate further research
on domain adaptation with LLMs across domains.
We plan to continue this research in future work.

Limitations

To fairly compare the performance of the different
models, we generally restricted our evaluation to
those models with context window of 4096. An
exception is the language model BART with a con-
text window of 1024. Additionally, due to the high
costs of performing human evaluations on multiple
domains, we only annotated ArXiv data to reaffirm
the results obtained through the automatic metrics.
Our goal is to facilitate the evaluation of models
across domains to the research community. There-
fore, our suite consists of a set of metrics to evalu-
ate domain adaptation and general summarization
quality, allowing for a comprehensive comparison
of the models performance on multiple datasets.
Lastly, given the cost associated with GPT-4, we

performed LLM-based evaluation on only 25 ran-
dom samples.

Ethics Statement

Throughout our experiments, we strictly adhere
to the ACL Code of Ethics. Since we used al-
ready established open-source benchmark datasets,
the concern of privacy does not apply. The man-
ual evaluation was performed by in-house domain
experts, who receive a full salary. They were in-
formed about the task and usability of data in the
research. Their annotations were stored anony-
mously, mitigating any privacy concerns. Through
our fine-tuning strategies, no additional bias was
introduced into the models, other than what might
already be part of the model weights or the bench-
mark dataset. The goal of the research is to evalu-
ate the domain adaptation capabilities of existing
models on a text summarization task. The results
and discussions in this paper are meant to further
promote research in the area of domain-specific
language modeling with an over-arching goal of
bridging the gap between academia and applica-
tion. All training scripts and trained models will be
made available to the research community.
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A Technical Details

The fine-tuning and inference procedure was done
by leveraging Nvidia A100-80GB GPUs.

A.1 Zero-shot Setting
We used the instruct-tuned or chat versions of
the models. As for ChatGPT, we used the
OpenAI API6 and the latest snapshot available,
gpt-3.5-turbo-0613 from June 13th, 2023. For
zero-shot setting, we used Llama2 (7b)7, Llama2
(13b)8, Llama2 (70b) 9, Vicuna (7b)10, Vicuna
(13b)11, Falcon (7b)12, Falcon (40b)13, and Mis-
tral AI (7b)14.

When generating summaries, we sample a max-
imum of 256 tokens for the arXiv and PubMed
datasets, while scaling to 1024 tokens for the Gov-
Report dataset, as is standard procedure in other
contemporary publications. The prompts used 0-
shot and 2-shot settings for generating the sum-
maries is shown in Table 7.

A.2 In-context Learning Setting
We used the same model checkpoints as the ones
from zero-shot settings for in-context learning. We
excluded Falcon from in-context learning, since
its context window of 2048 is too small to fit 2
learning examples.

A.3 Fine-tuning Setting
The links to all fine-tuned models is displayed in
Table 6.

Language Models We used HuggingFace Trans-
formers (Wolf et al., 2020) and Microsoft Deep-
speed library for distributed training.15 We fine-
tuned BART16 and PEGASUS-X17 on the training
split and a context window of 1024 and 4096, re-
spectively. All models were fine-tuned for 4 epochs
with a learning rate of 8e− 4 and batch size of 64.

6https://platform.openai.com/
7https://huggingface.co/meta-llama/

Llama-2-7b-chat-hf/
8https://huggingface.co/meta-llama/

Llama-2-13b-chat-hf/
9https://huggingface.co/meta-llama/

Llama-2-70b-chat-hf/
10https://huggingface.co/lmsys/vicuna-7b-v1.5
11https://huggingface.co/lmsys/vicuna-13b-v1.5
12https://huggingface.co/tiiuae/falcon-7b
13https://huggingface.co/tiiuae/falcon-40b
14https://mistralai/Mistral-7B-Instruct-v0.1
15https://github.com/microsoft/DeepSpeed
16https://huggingface.co/facebook/bart-base
17https://huggingface.co/google/

pegasus-x-large
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Science Medical Government

BART bart-arxiv-1024 bart-pubmed-1024 bart-govreport-1024
PEGASUS-X bigbird-pegasus-arxiv-4096 bigbird-pegasus-pubmed-4096 bigbird-pegasus-govreport-4096
Llama2 7b1 Llama-2-7b-arxiv-4096 Llama-2-7b-pubmed-4096 Llama-2-7b-govreport-4096
Llama2 7b2 Llama-2-7b-arxiv-4096 Llama-2-7b-pubmed-4096 x
Llama2 7b3 Llama-2-7b-arxiv-4096 Llama-2-7b-hf-pubmed-4096 x
Llama2 13b2 Llama-2-13b-arxiv-4096 Llama-2-13b-pubmed-4096 x
Mistral 7b2 Mistral-7B–arxiv-4096 Mistral-7B-pubmed-4096 Mistral-7B-govreport-4096

Table 6: Links to all fine-tuned models repositories. The value ‘x’ implies that the model was not evaluated under
those settings. 1/2/3 indicate fine-tuning with 1k, 5k, and 10k instances, respectively.

Large Language Models We included Llama2
(7b)18, Llama2 (13b)19, and Mistral AI 20 for LLM
fine-tuning. We fine-tuned the models for 1 epoch
using the HuggingFace Trainer API and LoRA on
a training subset consisting of samples with a max-
imum length of 4096, such that they can fit in the
context window without truncation. Since Zhou
et al. (2023) argue that 1k samples are enough to
fine-tune LLMs, we experimented with 1k, 5k, and
10k training samples. Since models do not show
any performance increase when trained on more
than 5k samples, we opted to train on Llama2 (13b)
and Mistral AI on 5k samples. We selected the
LoRA parameters r=64, alpha=16, and a dropout
of 0.1. Furthermore, we used the paged AdamW
optimizer with a beta2 value of 0.999 and a learn-
ing rate of 2e − 4 with a constant learning rate
strategy. We did not fine-tune Vicuna, since we
only used the non-instruction tuned models in this
setting. We excluded Falcon from fine-tuning as
it only supports a context window of 2048, and
therefore, it cannot be fairly compared against the
other models with a context window of 4096.

B LLM Prompting

Table 7 and Table 8 illustrate the prompts used to
generate summaries and to score the domain adap-
tation of summaries using GPT-4, respectively. For
evaluation, we use the prompts introduced by Liu
et al. (2023) for Coherence and Fluency. How-
ever, we craft our own prompt that asseses model’s
ability to adapt to a new domain by evaluating the
generated summaries.

18https://huggingface.co/meta-llama/Llama-2-7b
19https://huggingface.co/meta-llama/

Llama-2-13b
20https://huggingface.co/mistralai/

Mistral-7B-v0.1

C Sample Summaries

Table 9 shows the summaries generated by Llama2
7b under zero-shot, two-shot and fine-tuning set-
ting.
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0-SHOT PROMPT
You are an expert at summarization. Proceed to summarize the following text.
TEXT: {article}
SUMMARY:

FEW-SHOT PROMPT
You are an expert at summarization. Proceed to summarize the following text.
TEXT: {article}
SUMMARY: {summary}
Proceed to summarize the following text.
TEXT: {article}
SUMMARY: {summary}
. . .
TEXT: {article}
SUMMARY:

Table 7: The prompt in the Benchmark for generation of domain-specific summaries using Large Language Models.

SYSTEM PROMPT
You will be given one summary written for an article. Your task is to rate the summary on one metric. Please make sure you
read and understand these instructions very carefully. Please keep this document open while reviewing, and refer to it as
needed.
Evaluation Criteria: {criteria}
Evaluation Steps: {steps}

USER PROMPT
Example:
Source Text: {document}
Summary: {summary}
Evaluation Form: Please provide your response in two parts. First the evaluation score for the defined metrics, followed by
an explanation for the score. Please limit your response to 30 words.
{metric_name}

DOMAIN ADAPTATION SCORE CRITERIA
Domain Adaptation(1-5) - the degree to which the summary adheres to the domain-specific language. A good summary
employs domain-specific terminology and conveys the sense that model comprehends and encapsulates domain-specific
knowledge. It resembles the content that would authored by a domain expert. Annotators were also asked to penalize
summaries that didn’t adhere to domain-specific knowledge, and rather used simple words.

DOMAIN ADAPTATION SCORE STEPS
1. Read the article carefully and understand the domain it belongs to.
2. Read the summary and check if it contains domain-specific terminologies and concepts, and if it is able to concisely
summaries the domain specific concept in the article.
3. Assign a score for domain adaptation based on the Evaluation Criteria.

Table 8: The Domain Adaptation (DA) prompt in the Benchmark to evaluate the domain adaptation capabilities of
the models using a GPT-4.
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Zero-shot Llama2 7b
mirnas are small non coding rnas that play important roles on the onset and progression of cancer . distinct mirnas regulate
various cellular processes including cell cycle regulation , apoptosis , migration and invasion . altered expression of mirnas
has been observed in breast cancer and is believed to play important roles including cell proliferation regulation , cell
survival and tumorigenesis . furthermore , mirnas have been shown to play a critical role in cancer stem cell maintenance and
tumorigenesis . emerging evidence suggests that mirnas may also be a attractive therapeutic target for cancer . understanding
the specific functionalities of distinct mirnas and their role in disease may provide a new approach for cancer diagnosis
and potentially new therapeutic strategies. reference listing: lee , j.a. (2011). mi rna : a duel role player in breast cancer
progression . breast cancer : a global view . springer . 10.10079783642-135704_19 . 19 . 277 286 . abstract: micro rnas

Two-shot Llama2 7b
Small non-coding RNAs, such as siRNA, miRNA, piRNA, and snRNA, are transcribed into mRNA but remain untranslated
in eukaryotic cells. They play a crucial role in regulating gene expression and have been implicated in the onset and
progression of tumorigenesis. Emerging evidence suggests that small non-coding RNAs may represent a novel cancer
therapy. Unlike mRNA, small non-coding RNAs are transcribed but never translated. Some small non-coding RNAs are
transcribed from non-coding regions between genes, while others are transcribed together with coding mRNAs from the
coding region of the genome. Altered expression of small non-coding RNAs has been observed in breast cancer, resulting in
aberrant gene expression. Studies have shown that a high frequency ( 72.8%) of gene copy number abnormality in small
non-coding RNA-containing regions occurs in human breast cancer. Decreased expression of certain small non-coding
RNAs, such as mir-17/20, has been

Fine-tuned Llama2 7b
mirnas are small non - coding rnas that regulate gene expression and tumorigenesis . mirnas are involved in the regulation
of the cell cycle , cellular proliferation , metastasis and drug resistance of breast cancer . the expression of mirnas is
dysregulated in breast cancer . the dysregulated mirnas may serve as novel biomarkers for breast cancer . mirnas may serve
as targets for gene therapy either alone or as an adjuvant to conventional therapy .

Table 9: Summaries generated by Llama2 7b under zero-shot, two-shot and fine-tuning setting for a sample article
(id = 2) from PubMed test set.
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