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Introduction

We are thrilled to welcome you to the Workshop on Customizable NLP (CustomNLP4U) at EMNLP
2024, held at the Hyatt Regency Miami Hotel on November 16, 2024. This workshop will explore the
latest advancements and challenges in creating NLP models that can be customized for varied users,
settings, and ethical considerations. CustomNLP4U aims to foster discussion and showcase research on
the next generation of NLP models, which can adapt to unique user needs while addressing privacy,
copyright, and personalization challenges.
This year’s workshop brings together researchers, developers, and practitioners from across the NLP
community. The program includes keynote talks, presentation sessions, and a poster session featuring
both long and short papers. Each presentation and poster provides insights into data, modeling, evalua-
tion, open science practices, applications, and ethical considerations in customizable NLP. These topics
are crucial as we seek to build NLP systems that are not only powerful but also adaptable, transparent,
and ethically sound.
Our call for papers attracted a diverse range of submissions across both academic and industry perspec-
tives. We are grateful for the hard work and dedication of the Program Committee and the Steering
Committee members, who carefully reviewed each submission. Their efforts were invaluable in shaping
this year’s program and ensuring high-quality presentations.
Workshop Highlights
1. Keynotes and Presentations: The program includes multiple keynote talks and oral presentation ses-
sions covering topics such as data collection, customized model evaluation, privacy in NLP, and ethical
considerations for adaptive AI. 2. Poster Session: Presentations in poster format enable more interactive
engagement, offering opportunities for attendees to discuss topics like personalized AI assistants, socio-
lect modeling, federated learning, and chain-of-thought prompting. 3. Themes: This year’s submissions
reflect a growing interest in applications across sensitive domains like medical and legal NLP, as well as
advancements in interpretability and control for varied use cases. Papers span topics from data privacy
to interpretability, open science practices, and ethical issues in customization.
The workshop would not have been possible without the efforts of our Organizers and Steering Com-
mittee. We extend our gratitude to Sachin Kumar (Ohio State University, Allen Institute for AI), Weijia
Shi (University of Washington), Chan Young Park (Carnegie Mellon University), Vidhisha Balachan-
dran (Microsoft Research), and Shirley Anugrah Hayati (University of Minnesota, Twin Cities) for their
leadership and dedication in organizing CustomNLP4U.
Our Steering Committee members—Yulia Tsvetkov, Noah A. Smith, Hannaneh Hajishirzi (all from the
University of Washington), Dongyeop Kang (University of Minnesota, Twin Cities), and David Jurgens
(University of Michigan)—have provided guidance and support throughout the planning process.
Thank you for joining us at CustomNLP4U 2024! We look forward to an inspiring day of discussions,
insights, and collaborations, all aimed at driving the future of adaptable, ethical, and user-centered NLP
systems.
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Abstract
This study investigates the potential of Large
Language Models (LLMs) for reconstructing
and constructing the physical world solely
based on textual knowledge. It explores the
impact of model performance on spatial under-
standing abilities. To enhance the comprehen-
sion of geometric and spatial relationships in
the complex physical world, the study intro-
duces a set of geometric conventions and de-
velops a workflow based on multi-layer graphs
and multi-agent system frameworks. It exam-
ines how LLMs achieve multi-step and multi-
objective geometric inference in a spatial en-
vironment using multi-layer graphs under uni-
fied geometric conventions. Additionally, the
study employs a genetic algorithm, inspired by
large-scale model knowledge, to solve geomet-
ric constraint problems. In summary, this work
innovatively explores the feasibility of using
text-based LLMs as physical world builders
and designs a workflow to enhance their capa-
bilities.

1 Introduction

LLMs acquire extensive world knowledge embed-
ded in textual data through pre-training. This
raises an intriguing question: can LLMs recon-
struct and simulate the physical world using this
textual knowledge? The physical world, charac-
terized by complex geometric and physical con-
straints, can be abstracted into fundamental geo-
metric shapes. Utilizing a custom-designed engine,
we simplify the 3D world’s geometric content into
basic cube combinations. This work pioneers the
exploration of text-only LLMs as potential builders
of the physical world, leveraging their pre-trained
knowledge to understand and generate 3D spatial
representations purely from textual descriptions.

Some preliminary work on world-building has
explored constructing 3D worlds at the image
level. Techniques like 3D-VAE-GAN (Wu et al.,
2016) and Pix2Vox (Xie et al., 2019) combine

Variational Autoencoders (VAEs) (Kingma and
Welling, 2013) and Generative Adversarial Net-
works (GANs) (Goodfellow et al., 2020) to gener-
ate high-quality 3D models with precise shape and
pose control. AtlasNet (Groueix et al., 2018) ap-
proximates 3D surfaces by learning a set of 2D tex-
tures, effectively handling irregular topologies. De-
spite their impressive quality, these models struggle
with simulating complex physical interactions and
maintaining spatial consistency due to intricate and
dynamic geometric constraints(Li et al., 2024).

Some methods rely on high-precision geometric
libraries or external knowledge bases for human-
level prior knowledge. For instance, Sun et al.
(2023) and Zhou et al. (2024) use LLMs to gener-
ate 3D scene images by calling Blender APIs based
on user requirements. Wu et al. (2024) proposes
combining external knowledge bases to generate
3D scenes from sketches. However, these meth-
ods heavily depend on external libraries and inter-
faces, which lack flexibility and face challenges
like resource maintenance, copyright disputes, and
network security issues(Gao et al., 2014).

We explored how to leverage LLM pre-training
knowledge to autonomously guide complex geo-
metric constraints. Our evaluation compared the
spatial construction and geometric relationship un-
derstanding abilities of GPT-3.5-turbo and GPT-4,
revealing that GPT-4 excels in spatial construction
tasks due to its superior performance. we also intro-
duced an innovative multi-agent approach for 3D
scene construction, establishing geometric conven-
tions at three levels (center, axis, and surface) to
standardize the spatial relationships of 3D objects
as understood by LLMs. This multi-level graph-
driven approach enhances the spatial understanding
and reasoning capabilities of LLMs. The workflow
ensures information consistency and uniformity,
mitigating data silos and redundancy issues, while
enabling LLMs to explore their ability to under-
stand geometric relationships of physical world.
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2 Related Work

2.1 Generation Based On 3D Graphics

The application of GANs and VAEs in 3D scene
generation has made notable progress in recent
years. Chan et al. (2022) provides a method which
can synthesize high-resolution, multi-view consis-
tent images in real-time and also generate high-
quality 3D geometry. Xie et al. (2019) proposes
a context-aware convolutional neural network to
reconstruct 3D voxel models from single and multi-
view images. This method uses GANs to enhance
the detail and structural accuracy of the gener-
ated 3D models. Wu et al. (2016) combines GAN
for generating and controlling 3D objects, produc-
ing high-quality 3D models with shape control.
Groueix et al. (2018) introduces a 3D surface gener-
ation method by learning a collection of 2D maps to
approximate 3D surfaces, handling irregular topolo-
gies.Besides, Tang et al. (2024) find a method to
use 2D diffusion model which can further control
the generated content and inject reference-view in-
formation for unseen views.

These works typically offer high quality and re-
alism, creativity, and diversity in generated content.
However, they also face challenges such as high
data dependency, complexity, and computational
intensity.Moreover, such work often overlooks the
complex geometric relationships between objects
in the physical world.

2.2 Generation Based On External Libraries

The quality and availability of numerous 3D mod-
els have significantly improved. Tang et al. (2024)
provide a large amount of 3D materials. And Zhou
et al. (2018) provide an open-source library that
supports rapid development of software for process-
ing 3D data.It benefits research that utilizes LLMs
to invoke open-source models and achieve scene
graph construction. Sun et al. (2023), based on a
multi-agent system, call the Blender interface to
generate 3D scene images according to user require-
ments. SceneX (Zhou et al., 2024) employs LLMs
to drive procedural modeling, utilizing Blender
APIs and a vast array of procedural assets. Wu
et al. (2024) offer an approach that combines user
sketches with external knowledge, progressively
generating 3D scenes through a scene diffusion
model. Their work demonstrates how these agents
can leverage external tools and model libraries to

automate the construction and understanding of
scene graphs.

Utilizing existing model libraries offers signifi-
cant advantages in terms of efficiency, scalability,
and flexibility in scene generation. However, due to
the heavy reliance on external libraries and external
materials, the work in question exhibits inconsis-
tent material quality, poses high maintenance com-
plexity, demonstrates insufficient flexibility, and
involves copyright challenges.

3 Method

3.1 Graph Runs Through the Entire
Workflow

Multi-agent systems have demonstrated effective
performance in segmenting complex problems
into numerous sub-problems and resolving them
(Grossi et al., 2023), aligning with the step-by-
step decomposition of three-dimensional scene
concepts and the meticulous refinement of gener-
ated content at each stage in this work. And im-
plementing information alignment between proxy
groups is a huge challenge(Han et al., 2024). In-
spired by Qi et al. (2023) and Ranasinghe et al.
(2024), we choose graph database as the medium.
In our work, we use GPT-4 (OpenAI, 2023b) as
the basis for the agent and Neo4j (Neo4j, 2023)
database to store our graph. By employing a graph
database to capture spatial information and repre-
senting shapes and their geometric relationships
with nodes and edges, complex geometric relation-
ships can be managed flexibly. The graph database
records scene information, providing a comprehen-
sive overview of user objectives and scene graphs
throughout the workflow. This ensures that gener-
ated scenes align with predefined spatial constraints
and design specifications by integrating relational
processing with large model generation capabili-
ties, offering a flexible and efficient solution for
managing complex spatial data and scene genera-
tion.

3.1.1 Scenery Designer
Graph databases can stably and comprehensively
record object information in existing scenes,
thereby reducing scene graph generation errors
caused by illusions or memory problems in LLMs,
such as reconstructing existing objects or using non-
existent objects as reference points. By providing
detailed scene information to LLMs, the graphics
database helps to develop plans that are consistent
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Figure 1: The entire workflow is based on geometric conventions and relies on multiple agents to carry out 3D scene
construction work around the graph. The user’s demand information will be refined layer by layer by designers
and used to generate object instances. Finally, the arranger will use the mapping from geometric constraints to
deviations and a genetic algorithm solver to determine the correct placement position of the object.

with the given semantics and do not conflict with
the current scene graph. Based on this, the scene
designer will mobilize their internal world knowl-
edge to design a scene that is semantically consis-
tent with the input, including the main objects in
the scene and the spatial geometric relationships
between objects.

3.1.2 Object Designer
After the scene planning is completed, the object
designer needs to design objects with appropriate
structure and size based on the existing reference
objects in the scene. On the one hand, image
databases are needed to provide background infor-
mation, and on the other hand, LLMs themselves
require a certain level of common sense knowl-
edge and reasoning ability to lay a more detailed
foundation for the next step of object creation.

3.1.3 Object Manufacturer
After completing the object design phase, we pro-
ceed to the construction phase. At this stage, LLMs
require a thorough understanding of the descrip-
tive statements used by object designers, partic-
ularly those describing the interrelationships be-
tween internal modules of the object. This en-
sures alignment between the generated objects and
their descriptive statements. We have observed
that models with weaker performance, such as the
GPT-3.5 turbo(OpenAI, 2023a), often have poor

performance in this step, regardless of the level
of detail provided by the designer. Additionally,
to minimize the risk of spatial divergence when
using genetic algorithms in later permutation calcu-
lations, the initial position of the object should be
proximate to its main reference object, typically ad-
hering to their relative spatial relationships. Here,
a graphical database becomes crucial, as it offers
detailed information about the size and position
of reference objects, as well as their approximate
relative relationships. This information is essential
to guide LLMs in utilizing their internal knowledge
effectively.

3.1.4 Arranger
Following the construction of the object, further op-
timization of its spatial position is required to meet
specific spatial requirements, such as those related
to smaller particle sizes. Initially, the relationship
information between the newly constructed object
and the reference object must be extracted from the
graph database. This information is then used to
perform further inference and to supplement any
missing spatial constraints. Based on these com-
pleted spatial constraints, the appropriate constraint
equations can be selected for positional optimiza-
tion.

The graph database provides a comprehensive
understanding of global scene information at each
layer of the workflow and provides necessary in-
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formation for each layer to complete tasks. It can
efficiently manage complex relationships and de-
pendencies, enabling each level to accurately locate
and process relevant information in complex sce-
narios.

3.2 Geometric Conventions

Inspired by the work of Hedau (2011) and Klein
(1998), we recognize that clearly and systemati-
cally representing the relative positions of objects
in space is beneficial for enhancing the spatial rea-
soning capabilities of LLMs. Consequently, we
have devised a spatial convention that encompasses
three levels of constraint relationships: geometric
center, axis, and surface, with varying degrees of
constraint strength.By integrating different spatial
conventions, we can flexibly and accurately deter-
mine the positions of objects within a reasonable
range. This set of spatial conventions is integral
to our entire workflow. Through the implemen-
tation of a unified spatial convention system, we
ensure consistency and standardization throughout
the workflow.

An example of the spatial convention we de-
signed is as follows:

3.2.1 Geometric Center Relationship
Constrain

• Concentric relationship:

xcm = xcr, ycm = ycr and zcm = zcr (1)

3.2.2 Axle Relationship Constraint
• x align:

xcm = xcr (2)

• front half:
xcr > xcm (3)

3.2.3 Surface Relationship Constraint
• front:

xbr − xfm = d (4)

• coplanar front:

xtr = xtm (5)

To avoid misunderstandings, we briefly declare the
following symbols:

• x, y and z represent the projections of the
corresponding parts of the object on that axis

• In superscripts, f, b and t, etc. respectively
represent the corresponding surfaces of the
object, such as the front, back/bottom, and
top surfaces. And c represents the geometric
center.

• In the subscript, r and m represent the refer-
ence object and the object to be moved, re-
spectively. And d stands for distance.

3.3 Graph Driven LLM Spatial Inference

The final layer of the workflow is called the ar-
ranger, responsible for the spatial arrangement of
generated objects in the scene. Wei et al. (2024)dis-
cussed Detailed introduction on how to construct
a knowledge graph of geographic spatial data, as
well as how to express and infer spatial relation-
ships. Inspired by this, this work maps the relative
positional relationships of objects to a graphics
database. By setting strong and weak reference ob-
jects, we provide different levels of constraints for
the object to be moved. With the continuous enrich-
ment of graphic information, our framework will
provide increasingly accurate spatial constraints.
After determining the spatial constraints, the LLM
inspired genetic algorithm is used to solve the spa-
tial constraints, which is used to update the spatial
position of the object to be moved and dynami-
cally update the graphic data. This layer utilizes a
graphical database to store entities and their spatial
relationships, establishing and updating spatial con-
straints at the granularity of objects. The process
specifically includes several steps:

3.3.1 Graph Database Interaction
Arranger interacts with graphical databases to gen-
erate more detailed relationship information and
select the correct constraint equation according
to it. Based on the provided rough relationship
pairs, the arranger select the strong reference ob-
ject which will provides 1 to 3 constrains from
the graph database and return the weak reference
objects which provides 0 to 2 constrains and be
associated with the strong reference object. In this
way, the computational complexity of constraints
can be reduced. The LLM agent will obtain various
types of information about the reference object, in-
cluding its dimensions and spatial positions. It will
then infer and add new spatial constraints within the
basic spatial constraint framework and select the
correct constraint equation for genetic algorithm
calculation of accurate spatial positioning.

4



3.3.2 Genetic Algorithm for Solving
Geometric Relationships

Given the global optimization capabilities of the ge-
netic algorithm and its effective use with heuristic
initialization, we ultimately opted for the genetic
algorithm to address the spatial constraints. When
LLM completes spatial constraints and selects the
correct geometric equation, the permutator pass the
parameters to the genetic algorithm(Shapiro, 1999)
solver to optimize the geometric relationships and
further adjust and update the spatial position of the
objects initialized by LLM.

Each object is composed of multiple blocks, with
each block represented by its centroid coordinates
and three-dimensional dimensions. The specific
representation is as follows:

Single block representation:

bi = {ci, di1, di2, di3}
where ci = (xi, yi, zi) is the centroid coordi-

nates, and di1, di2, di3 represent the length, width,
and height, respectively.

Object representation:

Oi = {bi1, bi2, . . . , bin}
where Oi represents an object composed of mul-

tiple blocks bij . In addition, the spatial information
of objects can also be represented as follows:

Oi = {Ci, Di1, Di2, Di3}
where Ci is the centroid coordinates, and

Di1, Di2, Di3 represent the length, width, and
height of Oi respectively.

We define various types of spatial constraints to
describe the relative spatial relationships between
objects. Below are examples of above, and upper
half:

above : zbm ≥ ztr + d

upper half : zcm ≥ zcr
To generate appropriate constraint equations, we
abstract the reference object as a block and gen-
erate movable object pairs with reference part re-
lationships for each object. Then, based on the
generated relationship pairs, we generate appro-
priate constraint equations and pass them to the
genetic algorithm for solution.

Assume we have multiple reference ob-
jects Rk and a movable object M , each pair

(Rk, relation,M) can be represented as a set of
constraint formations:

ei =

{
max (0, zcm − zcr + d) , if above
max (0, zcr − zcm) , if upper half

(6)

The optimization goal is to minimize the total error:

minE = min
N∑

i=1

e2i

To determine effective motion vectors, we em-
ployed a genetic algorithm inspired by LLM initial-
ization. Objects are generated at specific positions
based on global and reference content, partially ful-
filling constraint requirements. The algorithm’s ini-
tialization is then refined based on the size of both
the reference object and the object to be moved,
enhancing the optimization process. Each genome
consists of three XYZ coordinates representing mo-
tion vectors. The total error E of each individual
is calculated to assess fitness, with top-performing
individuals selected for crossover and mutation.
During crossover, parent DNA combines to pro-
duce new offspring, and mutations make fine ad-
justments to coordinates. This process iterates until
a set number of generations or error convergence
is achieved, gradually approaching the optimal so-
lution.

4 Experiment

In this section, we will discuss the factors affecting
the quality of the 3D scene graph generated by the
LLM from two aspects. The first influencing factor
is the model’s ability. We test the generation per-
formance of the base models GPT-3.5-Turbo and
GPT-4 without using the framework. The second
influencing factor is the degree of integration with
the work framework. We set up three sets of ex-
periments to explore the complete use of the work
framework, including ablation experiments to ana-
lyze the impact of removing certain components.

4.1 Model Performance Impact
Our experiment found a strong correlation between
LLM performance and spatial understanding. Eval-
uating GPT-3.5-Turbo and GPT-4-0125 on object
and scene generation tasks, we observed that GPT-
3.5 had poor spatial comprehension and simplistic
outputs. In contrast, GPT-4 showed improved spa-
tial concepts and multi-object scene generation but
still used simple blocks with limited detail.
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4.1.1 Object Generation

(a) Chair(3.5) (b) Chair(4)

(c) Table(3.5) (d) Tabel(4)

(e) Lamp(3.5) (f) Lamp(4)

Figure 2: GPT-4 produces complex structures and de-
tails and achieves better semantic alignment than GPT-
3.5.

4.1.2 Scenery Generation

(a) Bedroom(3.5) (b) Bedroom(4)

(c) Kitchen(3.5) (d) Kitchen(4)

(e) Living(3.5) (f) Living(4)

Figure 3: GPT-4 shows better spatial comprehension
and multi-object scene generation than GPT-3.5, but
still uses simple blocks with limited detail.

4.2 Analysis And Comparison
Metric:We choose CLIP (Radford et al., 2021)to
calculate the similarity between the generated ob-
ject and scene images and text, in order to evaluate
the alignment between the text and the generated
content. In addition, during the experimental pro-
cess, there is often a large amount of overlap or
object isolation in the generated failed scene im-
ages. Therefore, for the scene, we additionally
introduced overlap score and isolation score, corre-
sponding to the proportion of overlapping volume
to the total volume of all objects and the proportion
of isolated blocks to the total block, respectively.

Table Chair Sofa Bed Desk Shelf Sink TV Lamp
Item
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0.225
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0.375
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0.28

0.27 0.27

0.26

0.27

0.28

0.24

0.27

0.29

0.32

0.29 0.29 0.29

0.31

0.28

0.26

0.28

0.30

GPT-3.5
GPT-4

Figure 4: In object level generation tasks, the clip index
of agents based on GPT-4 is generally better than ones
based on GPT-3.5.

similarity overlaprate isolate rate
Categories

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

es

0.193

0.000

1.000

0.215

0.070 0.060

GPT-3.5
GPT-4

Figure 5: In the scenario level generation task, the clip
index of GPT-4 group is 10.1% higher than that of GPT-
3.5 group, and its isolation rate is much better than that
of GPT-3.5 group.

4.3 Framework Impact
Baseline Methods:The baseline we have chosen
is a single agent without designed agents or graph
driven methods, which showed in Figure 3. The
base model of each agent is gpt-4-0125 preview
with default temperature.
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4.3.1 Ablation Study

(a) Bathroom(ablation) (b) Bathroom

(c) Bedroom (ablation) (d) Bedroom

(e) Cafe (ablation) (f) Cafe

(g) Gym (ablation) (h) Gym

(i) Kitchen (ablation) (j) Kitchen

(k) Living (ablation) (l) Living

Figure 6: The ablation group showed detailed structures,
but lacked reasonable spatial planning The non-ablated
group can not only represent details of objects but also
have a reasonable plan for the placement of objects.

In the ablation group experiment, we eliminated the
interaction process between the graphical database
and the workflow, while retaining the workflow of

multi-agent collaboration. The non ablated group
completely retained the graph reasoning frame-
work.

4.4 Analysis And Comparison

The schematic diagram illustrates the performance
of LLM scene graph generation in three modes.
Images produced by the baseline method neglect
object details but exhibit some overall spatial plan-
ning capability. The ablation group attempts to
emphasize object details but lacks spatial planning,
leading to overcrowded scenes. The non-ablated
group excels in both object details and proper ob-
ject placement.

Similarity Overlap Rate Isolate Rate
Categories

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
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lu

es

0.215

0.077
0.061

0.209 0.215

0.035

0.229

0.056

0.106

Baseline
Ablation
Graph Driven

Figure 7: Comparison of metrics across different work
modes indicates the following information: using graph
driven workflows improves the similarity between im-
ages and text, with a decrease in spatial overlap rate but
an increase in isolation rate

According to the above Figure 7, we found that
in terms of clip similarity, the graph driven group
performed better than both the baseline and abla-
tion groups, and was generally better than both in
a single task, with mean values 6.3% and 8.7%
higher than the baseline and ablation groups, re-
spectively. In terms of object overlap rate, it is
lower than both, but in terms of isolation rate, it is
higher than both.

5 Conclusion And Limitation

Our research provides an intuitive demonstration of
the spatial understanding capabilities of LLMs and
quantitatively evaluates the spatial comprehension
of two distinct models. Additionally, we enhance
the geometric understanding and spatial reason-
ing abilities of LLMs in complex physical envi-
ronments by implementing well-defined geometric
conventions and a graph-driven framework.
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This study is conducted using a custom-
developed sandbox platform, designed to present
the spatial concepts understood by LLMs in a more
intuitive and flexible manner. However, due to
resource constraints, we are unable to test higher-
performing models, which limits our ability to fully
showcase the framework’s potential in improving
the spatial understanding of LLMs.
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A Geometric conventions

A.1 Geometric Center Relationship Constrain

1. concentric: Concentric.

• Calculation: The Euclidean distance be-
tween the centers of the two objects.

A.2 Axle Relationship Constraint

A.2.1 Align Relationship
1. x aligned: X-aligned.

• Calculation: The alignment error in the
x direction between the two objects.

2. y aligned: Y-aligned.

• Calculation: The alignment error in the
y direction between the two objects.

3. z aligned: Z-aligned.

• Calculation: The alignment error in the
z direction between the two objects.

A.2.2 Half Side Relationship
1. left half: Left half.

• Determine if the ref center object is
in the left half of the mov center object.

2. right half: Right half.

• Determine if the ref center object is in
the right half of the mov center object.

3. upper half: Upper half.

• Determine if the ref center object is in
the upper half of the mov center object.

4. lower half: Lower half.

• Determine if the ref center object is in
the lower half of the mov center object.

5. front half: Front half.

• Determine if the ref center object is in
the front half of the mov center object.

6. back half: Back half.

• Determine if the ref center object is in
the back half of the mov center object.

A.3 Surface Relationship Constraint
A.3.1 Relative Positioning Relationship

1. left: mov center object is to the left of the
ref center object.

• Calculation: The distance between the
left edge of the ref center object and
the right edge of the mov center object
minus the given distance.

2. right: mov center object is to the right of the
ref center object.

• Calculation: The distance between the
left edge of the mov center object and
the right edge of the ref center object
minus the given distance.

3. above: mov center object is above the ref
center object.

• Calculation: The distance between the
bottom edge of the mov center object
and the top edge of the ref center ob-
ject minus the given distance.

4. below: mov center object is below the ref
center object.

• Calculation: The distance between the
bottom edge of the ref center object
and the top edge of the mov center ob-
ject minus the given distance.

5. front: mov center object is in front of the
ref center object.

• Calculation: The distance between the
back edge of the mov center object and
the front edge of the ref center object
minus the given distance.

6. back: mov center object is behind the ref
center object.

• Calculation: The distance between the
back edge of the ref center object and
the front edge of the mov center object
minus the given distance.

A.3.2 Coplanar Relationship Constrain
1. coplanar top: Coplanar on top.

• Determine if the top edges of the two
objects are coplanar.

2. coplanar bottom: Coplanar on the bottom.
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• Determine if the bottom edges of the two
objects are coplanar.

3. coplanar left: Coplanar on the left.

• Determine if the left edges of the two
objects are coplanar.

4. coplanar right: Coplanar on the right.

• Determine if the right edges of the two
objects are coplanar.

5. coplanar front: Coplanar in front.

• Determine if the front edges of the two
objects are coplanar.

6. coplanar back: Coplanar in the back.

• Determine if the back edges of the two
objects are coplanar.

B Objects Generated With Workflow

Figure 8: Bench

Figure 9: Chair

Figure 10: Counter

Figure 11: Coffee Machine

Figure 12: Lamp
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Figure 13: Dumbbell Rack

Figure 14: Espresso Machine

Figure 15: Sink

Figure 16: Table

Figure 17: TV

Figure 18: TV Stand
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Abstract

Communication barriers have long posed chal-
lenges for users of Alternate and Augmenta-
tive Communication (AAC). In AAC, effective
conversational aids are not solely about har-
nessing Artificial Intelligence (AI) capabilities
but more about ensuring these technologies res-
onate deeply with AAC user’s unique commu-
nication challenges. We aim to bridge the gap
between generic outputs and genuine human
interactions by integrating advanced Conver-
sational AI with personal narratives. While
existing solutions offer generic responses, a
considerable gap in tailoring outputs reflect-
ing an AAC user’s intent must be addressed.
Thus, we propose to create a custom conversa-
tional dataset centered on the experiences and
words of a primary AAC user to fine-tune ad-
vanced language models. Additionally, we em-
ploy a Retrieval-Augmented Generation (RAG)
method, drawing context from a summarized
version of authored content by the AAC user.
This combination ensures that responses are
contextually relevant and deeply personal. Pre-
liminary evaluations underscore its transforma-
tive potential, with automated metrics and hu-
man assessments showcasing significantly en-
hanced response quality.

1 Introduction

Communication is essential for sharing experi-
ences and fostering connections, yet it poses signif-
icant challenges for many individuals using AAC
(Light and McNaughton, 2012, 2014). Accord-
ing to recent statistics, about 5 million people in
the U.S. and 97 million globally are unable to use
speech for communication due to conditions like
cerebral palsy and ALS (Beukelman and Light,
2020). Augmentative communication technologies
(ACTs)(Light and McNaughton, 2013) have been
developed to aid these individuals, offering tools
like eye tracking and dynamic screen navigation
to facilitate communication through text and pic-

ture selection. Despite these advancements, tra-
ditional AAC solutions(Elsahar et al., 2019) often
lack the depth to express an individual’s personality
fully, and the slow communication rates, typically
less than 10 words per minute, can lead to frustra-
tion and isolation (Waller, 2019; Beukelman and
Mirenda, 2013).

Traditional AAC tools (Baldassarri et al., 2014;
Light, 1988; Higginbotham et al., 2007) have been
instrumental in enabling communication for many,
yet often lack the finesse (Pancholi et al., 2023)
needed to capture the user’s personal narratives and
unique experiences. Recent advancements in AI,
deep learning, and language models (Thompson
et al., 2004; MacDonald et al., 2021; Ghazvinine-
jad et al., 2018) offer new possibilities for creating
personalized conversational aids that adapt to the
user’s background and evolve with their changing
needs. This paper, a collaboration between com-
puter scientists and AAC practitioners, presents an
innovative approach that prioritizes personal nar-
ratives by merging modern AI’s adaptability with
individual user stories.

Previous studies (Sennott et al., 2019) prioritized
model accuracy over adaptability in AAC systems,
focusing on technical aspects rather than individu-
ality; this highlights the need for a new approach
that values personal narratives and leverages AI
to reflect each user’s uniqueness. In this study,
we introduced a system that does not merely opti-
mize for speed or vocabulary variety; (1) it seeks
to resonate deeply with each AAC user’s individu-
ality. (2) By leveraging a conversational dialogue
dataset tailored to a specific user and integrating the
knowledge from the authored content, we crafted a
model that outputs responses deeply rooted in their
experiences. Furthermore, (3) our dual methodol-
ogy—combining the finesse of fine-tuning encoder-
decoder models (Kale and Rastogi, 2020) with the
grounded knowledge retrieval (Li et al., 2022) of
RAG—enriches the response generation process.
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The significant out-performance of our RAG ap-
proach, validated through human and automatic
evaluations, is crucial as it sets a new benchmark in
AAC, emphasizing the importance of making every
interaction deeply personal and contextually rich,
thereby enriching the lives of AAC users through
more meaningful conversations.

2 Related Work

Recent advancements in AAC have leveraged AI to
improve communication for those with speech im-
pairments, with applications like Voiceitt’s Talkitt
(Costanzo et al., 2023) and LIVOX (Neamtu et al.,
2019) providing real-time assistance and bridging
communication gaps. These innovations reflect
a growing awareness of the challenges faced by
differently-abled individuals (Meekosha, 2011) and
show a shift in AAC research towards AI-powered
mobile applications, particularly for ASD children
in developing countries (Farzana et al., 2020). This
transition from traditional SGD to AI applications
indicates a promising direction in enhancing com-
munication abilities for verbally challenged youth.

Google’s Project Euphonia1 uses AI to enhance
speech recognition for atypical speech patterns by
training ASR models (Tobin and Tomanek, 2022)
and developing speech intelligibility classifiers
(Venugopalan et al., 2023) on a diverse dataset of
disordered speech from conditions like ALS and
cerebral palsy. This initiative improves accessibil-
ity to voice-activated technologies and tackles the
challenge of understanding non-standard speech
patterns. Concurrently, Brain-Machine Interfaces
(BMI) offers new possibilities in AAC, allowing
direct brain-to-computer communication, which
could transform interaction for those with severe
motor impairments (Lebedev and Nicolelis, 2006).

Research highlights that augmentative commu-
nication technologies (ACTs) typically allow com-
munication rates of under 10 words per minute
(Beukelman and Light, 2020), with adaptations to
improve interaction often leading to misunderstand-
ings (Fulcher-Rood and Higginbotham, 2019). For
individuals with severe motor impairments, options
like brain-computer interfaces (BCIs) offer text-
based communication, though speeds remain below
one word per minute (Koester and Arthanat, 2017).
In contrast, our work enriches AAC by focusing
on the depth and richness of personal narratives,

1Project Euphonia: https://sites.research.google/
euphonia/about/

integrating real-life dialogues to enhance conversa-
tional AI. This approach aligns with projects like
Euphonia and BMI-based systems, aiming to signif-
icantly improve communication effectiveness and
quality of life for AAC users by merging AI ad-
vancements with practical communication needs.

Figure 1: Overview of the Dataset Creation Process

3 Dataset

We construct a personalized dataset to enhance
communication for AAC users. The primary mo-
tive of this dataset is to facilitate AAC users in
sharing their life experiences more effectively and
authentically with others. Generic language models
often lack the nuanced understanding required for
personalized interactions; our dataset plays a piv-
otal role in fine-tuning pre-trained language models.
By doing so, we aim to equip these models with
the ability to generate communication that is not
only contextually rich but also profoundly personal,
mirroring the individual experiences and narratives
of AAC users. Information about the AAC User
and the study setting can be found in Appendix A,
B.
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3.1 Prompt-Driven Dataset Generation
To create a dataset that resonates with the personal
voice of AAC users, we initiated the process by
converting the authored content, denoted by C, into
initial conversation drafts. We employed Google
Gemini2 as our large language model (LLM) for
this purpose:

D0 = fLLM(C;P ) (1)

where fLLM represents the generative function of
Google Gemini, applied to the authored content C,
with P encapsulating the prompting strategies to
generate structured drafts that mirror authentic con-
versational dynamics. These strategies involve set-
ting specific contexts and instructions that guide the
model’s output, ensuring relevance and alignment
with AAC communication needs. The prompting
strategies can be found in Appendix C.

3.2 Dataset Refinement
The initial drafts D0 are further refined by AAC
domain experts to ensure that the dialogues closely
align with the user’s unique expression needs and
remain true to their personal experiences. This
refinement process involves several key guidelines:

• Lexical Adjustments: Experts incorporate a
set of predetermined vocabulary (Beukelman
et al., 1998) that maintains the professional-
ism and clarity required for effective AAC
communication.

• Contextual Relevance: Each dialogue is as-
sessed for its situational appropriateness, en-
suring that the content is relevant to the sce-
narios typical for AAC users.

• Authenticity Checks: Dialogues are re-
viewed to ensure they reflect the personal
tone3 and style of the AAC user, modifying
any content that feels inauthentic or out of
character.

The refined dialogues are formalized as:

D = gAAC(D0,E) (2)
2Google Gemini is chosen for its advanced conversational

capabilities and commitment to data privacy, enabling the
generation of dialogues without storing user data.

3This includes iterative reviews with AAC users and their
close contacts to validate the emotional congruence of the
dialogues, along with linguistic analyses to maintain consis-
tency with the user’s known speech patterns and vocabulary
preferences.

Speaker Generated Utt. Expert Refined Utt.

Partner What are your thoughts
on being unique?

How do you feel about
your individuality?

User Many don’t see my true
self, only my disability.

People often overlook my
individuality, just see the
disability.

Partner It’s hard, but everyone
should be recognized for
their true self.

That’s tough, everyone de-
serves to be seen for who
they truly are.

User I want you to know that
my mind works well.

My cognitive abilities are
fully intact, you know.

Partner I understand. Being smart
isn’t just about physical
skills.

I completely get that. In-
telligence isn’t defined by
physical ability.

User Many people do not un-
derstand those like me.

There’s a vast misunder-
standing around people
like me.

Partner Agree, understanding
each other is important.

Yes, we should all strive
to understand each other
better.

User Finding love is hard with
a disability.

It’s tough finding love
when you’re differently-
abled.

Table 1: A Sample dialogue refined by experts. The
highlighted words have been chosen based on the crite-
ria defined in section 3.2. (Utt means utterances)

Topic ID Top Words Frequency

9 school, found, year 23
4 [N1], interaction, friend 22
1 home, group, staff 17
5 [N2], share, together 13
7 trip, experience, day 12
6 [N2], visit, bond 9
0 family, parent, home 8
8 life, experience, family 5
2 life, staff, home 4
3 together, wheelchair, visit 4

Table 2: Topics and their top words with frequencies.
Any entity that could be identified has been replaced
with [N(index)]

where D is the final dataset of refined dialogues,
gAAC is the refinement function employed by AAC
experts, and E represents expert knowledge and
guidelines specific to AAC communication styles.

These transformations ensure that the dataset
is both authentic and aligned with the personal
communication styles of AAC users. The dataset
creation process, inspired by established conversa-
tional frameworks like the Daily Dialogue dataset
(Li et al., 2017), is depicted in Figure 1. A sample
dialogue refined by experts is shown in Table 1. In-
formation about the data creation team is provided
in Appendix D.

3.3 Dataset Statistics
Our conversational data comprises 511 dialogues,
encompassing 4053 utterances, with an average of
approximately 4 turns per dialogue. The average
number of utterances per dialogue is 7.93, and the
average utterance length is 12.19. In analyzing
the content, we identified various topics, as shown
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in Table 2. The most prevalent words from the
top topics were school, found, year, interaction,
friend, and home, as derived from our topic analy-
sis. Additionally, in assessing the dialogic nature
of our content, we found that questions constituted
62.23% of the utterances, and the remaining were
statements.

4 Methodology

4.1 Model Architecture

Our approach employs an encoder-decoder archi-
tecture and a Retrieval-Augmented Generation
(RAG) system to enhance AAC interactions, us-
ing FLAN-T5 (Chung et al., 2022) for generating
responses and a retrieval system for contextual rele-
vance. We fine-tune language models (Melis et al.,
2017) and integrate the RAG model (Azamfirei
et al., 2023) to combine the strengths of fine-tuned
models while reducing hallucinations, ensuring re-
sponses are grounded in factual correctness and
enhancing communication authenticity for AAC
users.

4.1.1 Encoder-Decoder based Model
Fine-tuning and Post-processing

We initialize our conversational model using the
FLAN-T5 architecture, fine-tuned on the custom
conversational dataset. Let X represent the input
sequence and Y the target sequence in the training
dataset. The training objective is to optimize the
following loss function:

L(θ) = −
∑

(X,Y )∈D
logP (Y |X; θ) (3)

where D is our dataset comprising sequences of
conversational data, and θ denotes the parameters
of the FLAN-T5 model. Detailed analysis of the
fine-tuning parameters θ can be found in Appendix
E. Furthermore, we post-processed the FLAN-T5
generated outputs using the allenai/cosmo-xl (Kim
et al., 2023) model to adapt to situation-specific de-
scriptions and roles, rendering the responses even
more human-like. The prompting strategies to the
model can be found in appendix F.

4.1.2 Retrieval-Augmented Generation (RAG)
Prompt Fusion Model

The core objective of our methodology was to en-
hance factual accuracy and prevent hallucinations
in generated responses by deeply rooting them in

the genuine context derived from the AAC user’s
experiences. Our approach utilizes a dual-encoder
framework in the RAG model to achieve this. The
model operates as follows:

• Input Prompt and Context Retrieval: Given
an input prompt P , the retriever system, using
ChromaDB (Huber, 2023), extracts the top k
most relevant passages Ck from an indexed
database. These passages provide the neces-
sary context for generating a response that is
both accurate and richly informed by relevant
information.

• Integration of Components: The generation
process integrates multiple components to for-
mulate a comprehensive input for the text gen-
eration model. These components include:

1. Dialogue history (H), which captures
the flow of conversation up to the current
prompt.

2. The response generated by the FLAN-T5
large model (RFLAN), providing a pre-
liminary reply based on the input prompt.

3. The top k context passages (Ck), en-
suring the response is contextually
grounded.

The prompt template for the generation model
incorporates these elements along with spe-
cific instructions aimed at generating truthful
and non-hallucinatory responses. The com-
bined input is represented as I:

I = {H,RFLAN,Ck} (4)

• Response Generation: The final response
R is generated by the text generation model
(GPT-3.5 Turbo) using the aggregated input
I:

R = fgen(I;ϕ) (5)

where fgen is the function representing the pa-
rameters of this model. Details about these pa-
rameters and their optimization can be found
in Appendix G.

By formalizing the input and processing stages
in the equations above, we provide a clear frame-
work for understanding how each component con-
tributes to the final output, thereby ensuring that the
responses are both contextually rich and aligned
with the actual data. This approach significantly
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Figure 2: Overview of the Model Architectures. The block at the top shows the fine-tuned Flan-T5(FT5) model on
the conversation Dataset. We use the generated response in the next two tasks to perform RAG and conversation
style enhancement. Please note here, u means utterance.

reduces the likelihood of hallucinations in the gen-
erated text, a critical aspect when dealing with sen-
sitive communication needs such as those of AAC
users.

5 Experimental Setup

5.1 Baseline

We preprocess and format our data into sequences
suitable for training. The data preparation steps
are added to Appendix H. We initiated our exper-
iments with a baseline using zero-shot FLAN-T5
models in three configurations: small, base, and
large. The models were fine-tuned to our specific
requirements, with the detailed finetuning proce-
dure available in Appendix E.

5.2 Prompting Strategy to LLMs

Effective prompting is crucial for generating accu-
rate and relevant outputs by large language models.
Our strategy employs tailored approaches for the
COSMO and RAG models:

1. COSMO: This model utilizes situation (s),
instruction (i), and conversation history (h)
to generate responses that are contextually
aligned with the user’s needs. The response is
computed as:

rCOSMO = fCOSMO(s, i,h) (6)

2. RAG: The response generation formula is:

rRAG = fRAG(c, q, rT5) (7)

where c is the top retrieved document, q the
current query, and rT5 the initial response
from FLAN-T5.

These strategies ensure that the outputs not only
reflect the conversational context accurately but
also provide a base for meaningful and personal-
ized user interactions.

5.3 Evaluation Techniques

To rigorously evaluate the performance of our mod-
els and ensure a comprehensive understanding of
their capabilities, we employed a two-fold evalu-
ation strategy encompassing both automatic and
human evaluations.

5.3.1 Automatic Evaluation

For automatic evaluation, we employed Referential
Metrics including BLEU Scores (Papineni et al.,
2002), which assess word and phrase matches;
METEOR Scores (Banerjee and Lavie, 2005), ac-
counting for synonyms and stems; and BERTScore
(Zhang et al., 2020), which measures text similarity
using BERT’s contextual embeddings. Addition-
ally, we used Rouge1, Rouge2, and RougeL (Lin,
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2004) to evaluate unigram, bigram, and longest se-
quence matches between generated and reference
texts, respectively.

5.3.2 Human Evaluation
Human-centric evaluation supplemented our auto-
matic methods, with judges rating responses based
on six criteria—specificity, sincerity, understand-
ability, relevance, fluency, and quantity using a
three-point scale. Selecting these criteria draws
from interdisciplinary research involving linguis-
tics, psychology, and computer science (Light and
McNaughton, 2014). Additionally, AAC users as-
sessed responses on a 5-point scale across five cri-
teria: Relevance, Sincerity, Conciseness, Repre-
sentativeness, and Realism, detailed in Appendix
I.

5.4 Human-Centric Evaluation: A Pilot Study
5.4.1 Motivation and Aim of the Pilot Study
In AAC, effective communication should resonate
with the user’s experiences, making human judg-
ment crucial for evaluating system efficacy. While
automated metrics offer initial insights, they may
not capture all nuances. Therefore, this pilot study
aimed to compare automated scores with human
perceptions of response quality, identifying gaps
and refining our evaluation process. We also in-
volved domain experts familiar with AAC contexts
to ensure a human-centric assessment of the sys-
tem’s performance.

5.4.2 Methodology
We selected a random sample of 30 dialogues from
our test set of 400 prompt-response pairs. This
subset was evaluated using two human judges, who
rated the responses based on six specific criteria
and the previously mentioned rating scales. Addi-
tionally, the AAC user evaluated these responses
on a 5-point scale.4

6 Results and Discussion

6.1 Automatic Evaluation Results
Our evaluation study encompassed six distinct mod-
els. The first three were versions of FLAN-T5, dif-
ferentiated by their size: small, base, and large. The

4Not all models underwent human evaluation. Some zero-
shot models with a lower number of parameters did not gener-
ate responses of sufficient quality for meaningful evaluation.
Furthermore, the human evaluation process was intensive, in-
volving the AAC user’s assessment over a three-week period,
which limited the number of responses each model could fea-
sibly be evaluated on.

fourth model, named “Flan-T5 large + COSMO",
enhanced the response quality of Flan-T5 by incor-
porating human-like interaction capabilities. The
fifth, “ZeroShot COSMO", uniquely operated with-
out specific response data, situation, or instruction,
relying solely on conversation history. The final
model in our evaluation arsenal was the “RAG
Model", which emerged as the best. Table 3 il-
lustrates that the RAG model demonstrated a no-
ticeable edge, marking a substantial improvement
in response generation quality over others.5 Addi-
tionally, in figure 3, we plot line graphs to show
how RAG performs much better compared to the
other models.

Figure 3: Automatic Evaluation Results on Testing Sam-
ples compared across different Models. All the Flan-T5
models used here are the ones that have been fine-tuned
on the dataset. The RAG model uses GPT 3.5 turbo as
the LLM.

6.2 Human Evaluation and Insights of the
Pilot Study

Two domain experts, well-versed in the nuances
and challenges of AAC, served as our evaluators.
They appraised the responses based on six criteria,
each reflecting a vital facet of effective communi-
cation. The evaluations for these criteria averaged
across 30 data points. The average of each measure
from the judges is reported in Table 4. Additionally,
the AAC user scored each of these 30 data points
on a 5-point scale reported in Table 56.

We have included a visual representation of the
comparative performance across models (Figure 4).
It graphically showcases the variance in scores and
underscores the strengths of each model. A further

5There is no comparison with SOTA as this is a novel work
in the domain on AAC, thus RAG methodology is compared
to the Flan-T5 baseline

6The AAC user utilized a 5-point scale for evaluation. This
decision was made considering the user’s familiarity with the
5-point scale and the significant time and effort required to
introduce and explain an unfamiliar scale to differently-abled
individuals.
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Model BLEU-4 METEOR BERTScore Rouge1 Rouge2 RougeL Avg.

FT5-zero-shot (s) 10.98 10.12 42.83 12.60 02.67 11.27 15.07
FT5-fine-tuned (s) 15.78 17.08 45.78 19.21 03.29 15.29 19.40

FT5-zero-shot (b) 09.07 10.27 43.43 13.08 03.28 12.06 15.19
FT5-fine-tuned (b) 17.59 18.37 47.66 20.69 04.37 16.79 20.91

FT5-zero-shot (l) 08.09 11.06 44.11 15.13 04.25 14.28 16.15
FT5-fine-tuned (l) 18.93 18.83 48.49 21.76 04.60 17.55 21.69

FT5(l)+cosmo-xl 18.07 19.38 48.65 20.15 04.91 17.15 21.45
cosmo-xl(zero-shot) 17.56 19.02 47.91 19.74 04.87 17.21 21.05
RAG(Llama2-13B) 15.91 17.79 47.84 19.09 05.76 16.54 20.48
RAG(FT5(l)+GPT3.5t) 22.61 23.08 52.36 24.37 07.99 21.20 25.26

Table 3: Automatic Evaluation Results on the Testing Sample (400 Prompt-Response Pairs). FT5 is the Flan-T5
model, and s, b, and l denote small, base, and large configurations, respectively. All results reported in this table
represent the best outcomes from three separate runs of each model.

Model Specific Sincere Understandable Relevant Fluency Quantity

FT5 (l) J1 1.130 0.900 0.730 0.970 0.800 1.070
FT5 (l) J2 1.110 0.930 0.770 1.000 0.830 1.030
FT5 (l) Avg. 1.120 0.915 0.750 0.985 0.815 1.050

FT5(l)+COSMO J1 0.930 0.930 0.870 1.000 1.030 0.970
FT5(l)+COSMO J2 0.930 0.930 0.870 1.000 1.030 0.970
FT5(l)+COSMO Avg. 0.930 0.930 0.870 1.000 1.030 0.970

COSMO(zero-shot) J1 0.930 0.830 0.870 0.830 1.100 1.000
COSMO(zero-shot) J2 1.030 0.870 0.870 0.830 1.100 0.870
COSMO(zero-shot) Avg. 0.98 0.850 0.870 0.830 1.100 0.935

RAG(FT5(l)+GPT3.5t) J1 1.300 1.230 0.970 1.300 1.400 1.000
RAG(FT5(l)+GPT3.5t) J2 1.300 0.900 0.900 1.300 1.370 1.000
RAG(FT5(l)+GPT3.5t) Avg. 1.300 1.050 0.935 1.300 1.385 1.000

Table 4: The average of each criterion from the respective judges (30 responses)

Criterion Score
Relevant 3.30
Factual 3.40
Concise 3.40
Representative 3.00
Realistic 3.56

Table 5: The average of each criterion from the AAC
User on a 5 point scale on the best model. Where 5
means highest, 1 means lowest(30 responses)

detailed breakdown of the observation is available
in Appendix J.

6.2.1 Understanding the Generated Response
In Appendix N, we have shown 3 example prompts
that help us understand crucial details about the
generation quality of each of the models. Further-
more, we calculated the Inter-rater Consistency
among the judges (Appendix L) and performed
ANOVA test (Appendix M).

6.2.2 Feedback Synthesis
The judge’s feedback revealed our evaluation pro-
cess’s good and bad parts. Using the less-same-
greater method made rating easier than other meth-
ods. However, the different types of conversations,

Figure 4: Average of Each Criterion from the Respective
Judges compared across four different models. All the
Flan-T5 models used here are the ones that have been
fine-tuned on the dataset. The RAG model uses GPT
3.5 turbo as the LLM.

some not even real talks, made checking harder.
Some rating parts, like ‘sincerity’, were used in
ways that were not meant. Also, a problem in one
area sometimes affects scores in other areas(this
essentially means how complex each of the criteria
can be for human judges to make proper evalua-
tions). They also suggested adding up scores to
understand the responses’ quality better.

18



6.3 Ablation Study

We examined the performance of several models
with an emphasis on Flan-T5 fine-tuned, Flan-T5
fine-tuned augmented with cosmo, and RAG (us-
ing GPT-3.5 turbo). The Flan-T5 fine-tuned models
demonstrated substantial improvements in both au-
tomatic metrics and human evaluations across the
board, compared to their zero-shot counterparts,
with the large configuration (FT5(l)) showing the
most significant gains as shown in Table 3 and Ta-
ble 4. When enhanced with COSMO, the Flan-
T5 (l) further improved, particularly in human-
evaluated criteria such as fluency and relevance,
indicating an enhanced ability to generate more
contextually appropriate and engaging responses.
The RAG model, incorporating GPT-3.5 turbo, out-
performed all other configurations, achieving the
highest scores in almost all metrics, especially in
specificity and relevance, suggesting superior com-
prehension and response quality. This highlights
the RAG model’s robust capability to leverage deep
contextual understanding to generate high-quality
responses. Interestingly, the LLaMA13B model
provided some insights into factual accuracy but
was limited by its lower number of parameters com-
pared to GPT 3.5, leading us to favor the latter for
more complex tasks. Future studies might expand
on improving these models, particularly optimiz-
ing the interaction between sequence generation
and retrieval components to enhance performance
further.

6.4 Comparison of Automatic Metrics with
Human Evaluation

In our systematic comparison of automatic metrics
and human evaluations, we observed that while au-
tomatic metrics provide quick and efficient assess-
ments, they must be complemented by human eval-
uations for a comprehensive analysis. The RAG
model notably excelled in both types of evaluations,
indicating its robustness in language comprehen-
sion and generation. However, there were discrep-
ancies between human judgments on criteria like
’Specificity’ and ’Relevance’ and the results from
automatic metrics, highlighting the intricate nature
of human language evaluation and the limits of
current automated systems.

7 Conclusion

Our research highlights the transformative poten-
tial of integrating AI with AAC systems by creating

user-specific datasets and applying the Retrieval-
Augmented Generation (RAG) method. This ap-
proach efficiently tailors AAC systems to reflect
individual user narratives, enabling a personalized
and authentic communication experience. By fo-
cusing on the subtle needs of AAC users, we have
developed a system that respects and enhances the
personal communication styles of individuals who
rely on AAC technologies. While this research
intentionally focuses on a unique individual and
a specific subset of users, it lays the groundwork
for future advancements in personalized AI-driven
communication aids. The methods and insights
gained from this study can inform broader applica-
tions in other specialized domains, offering a tem-
plate for how AI can be effectively customized to
meet the diverse needs of underrepresented popula-
tions. Future work will explore ways to generalize
this approach by incorporating more dynamic con-
versational history and user intent into the model,
potentially expanding its applicability to a broader
range of AAC users and other specialized commu-
nication contexts. Further details on the data and
code availability are provided in Appendix K.

8 Limitations

Our study’s primary limitation is its focus on a
highly personalized dataset tailored to a single
AAC user, which challenges its generalizability
and scalability. While this specificity is intentional
to meet the unique needs of the target user, it poses
challenges for broader applicability. Future re-
search will aim to adapt and scale this approach
by enhancing dataset diversity, improving quality
control, and exploring modular customization tech-
niques that could extend its use to a broader range
of users. Additionally, while our evaluation pro-
cess showed promising results, incorporating more
rigorous statistical analysis would provide deeper
insights into how well the system’s outputs align
with human judgments, ultimately helping to refine
and generalize the model for broader use.
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A Participants

The participant was an adult male with spastic
quadriplegia due to a medical condition. He had
decades of experience using computer-based AAC
devices and was proficient in using AAC tools. The
participant accessed his AAC device using a spe-
cific part of his body to type on a specialized key-
board, achieving a typing rate close to the average
for AAC users.

B Study Setting

The evaluation was conducted in a specially de-
signed research space, with the participant comfort-
ably interacting with the conversational AI system.
A domain expert, using Google Speech-to-Text
technology7, input test items and communicated
prompts to the participant. The AI’s responses,
generated by a Large Language Model, were then
audibly relayed to the participant through Google
Text-to-Speech8. A team member was also on hand
to assist the participant in understanding these re-
sponses, ensuring a smooth and effective commu-
nication.

C Prompting Strategy for Google Gemini

In the dataset construction phase, we developed
a detailed prompting strategy to utilize Google
Gemini’s advanced capabilities for converting nar-
rative content into simulated conversational dia-
logues. This approach involved selecting specific
paragraphs from a book authored by the AAC user,
which were then used as inputs for Google Gem-
ini. The model was tasked with reimagining these
narrative passages as interactive dialogues between
the AAC user and a conversational partner, aiming

7Google Speech-to-Text: https://cloud.google.com/
speech-to-text?hl=en

8Google Text-to-Speech: https://cloud.google.com/
text-to-speech?hl=en
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to create naturalistic exchanges that mirror real-life
interactions.

The prompt instructed Google Gemini to:

"Convert this paragraph into a four-turn
dialogue format in which the AAC user
and a partner discuss the content. Ensure
that the utterances are realistic and reflect
their unique communication style. The
partner starts the conversation.

<Paragraph from book>"

The transformation process is captured by the
following equation:

D = fLLM(C;P ) (8)

In this equation, D denotes the dialogue drafts
generated from the input content C, prompt P , and
fLLM represents the generative function of Google
Gemini. This structured prompting ensures that the
dialogues are not only contextually appropriate but
also resonate deeply with the AAC user’s personal
communication needs. The result is a dataset that
is authentic, personal, and highly useful for enhanc-
ing conversational AI applications tailored to AAC
users.

D Dataset Creation Team

The development of our conversational dataset was
a collaborative effort led by a diverse team from the
Communication and Disability Lab at our univer-
sity. This team consisted of approximately 10 Ph.D.
students with extensive experience working with
AAC users, supplemented by master’s students
tasked with generating dialogues through specific
instructions to the Large Language Model (LLM).
The Ph.D. students were responsible for refining
the utterances in the conversation. Regardless of
their educational level, all team members adhered
to a consistent approach as outlined in Figure 1
for dialogue generation. To further validate the
dataset’s relevance and authenticity, it underwent a
thorough verification process by two adult experts.
These experts, deeply familiar with the AAC user’s
real-life experiences and scenarios, provided an
additional layer of scrutiny, ensuring the dataset’s
alignment with the actual communication needs
and styles of AAC user.

E FLAN-T5 Fine-Tuning

We employed the FLAN-T5 model in its three vari-
ants: small, base, and large. The training process

was anchored around a tailored template for our
unique response generation task. The template was:
"Continue writing the following Text.". The other
hyper-parameters were 10 epochs, batch size 8,
learning rate 5e-5, and the GPU architecture was
A100 80 GB.

F Prompting Strategies cosmo-xl

In our research, we developed a sophisticated
prompting strategy to harness the advanced capa-
bilities of the COSMO model for generating con-
versational dialogues. This strategy involved using
specific content from a book authored by an AAC
user, which was then transformed into simulated
dialogues.

The prompt structured for COSMO is designed
to turn narrative passages into interactive dialogues
between an AAC device user, and a conversational
partner, maintaining a naturalistic interaction that
mirrors real-life exchanges. All identifiable entities
in the prompt template have been replaced with up-
percase variables to ensure anonymity and general
applicability.

The detailed prompt provided to COSMO was:

"SITUATION: Mr. PERSON is chatting
with a friend, Mr. PERSON is an Al-
ternative and Augmentative Communi-
cation (AAC) device user. INSTRUC-
TION: You are PERSON and you are
talking to a friend. Keep the answers
concise and within 20 words. Answer to
the previous utterance is: <response>

<conversation history>"

This prompting framework aims to create dia-
logues that are not only realistic and engaging but
also provide a deep insight into the personal com-
munication style of the AAC user.

The process of transforming the input narrative
into dialogue is encapsulated by the equation:

D = fCOSMO(C;P ) (9)

Here, D represents the dialogue drafts gener-
ated from the input content C, while P denotes the
structured prompt. The function fCOSMO captures
COSMO’s capability to interpret and convert the
input narrative into a meaningful dialogue. This
structured prompting ensures the dialogues are con-
textually appropriate and resonate deeply with the
personal communication needs of AAC users, re-
sulting in a dataset that is both authentic and highly
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useful for enhancing conversational AI applications
tailored to AAC users.

G RAG Model Prompt and Generation
Parameters

In this study, we formulated an intricate prompt-
ing strategy to leverage the advanced capabilities
of GPT-3.5 turbo within our Retrieval-Augmented
Generation (RAG) framework. This strategy fo-
cuses on generating responses that are not only ac-
curate but also deeply personalized for AAC users.

The prompt template for the model is designed to
incorporate responses generated by the FLAN-T5
model, augmented with contextually relevant infor-
mation retrieved by the Retrieval model. This tem-
plate ensures that the dialogue remains grounded
in reality, accurately reflecting the AAC user’s
perspective. All identifiable information in the
prompts has been anonymized to ensure privacy
and general applicability.

The detailed prompt provided is as follows:

"Use the following pieces of context
to override the conversation reply truth-
fully.
If the context does not provide a truthful
answer, make the answer as truthful as
possible. You are answering as the AAC
User
Use 15 words maximum. Keep the re-
sponse as concise as possible.
Context: {{context}}
Question: {{question}}
Response (Flan-T5): {response}.
Truthful Response:"

This prompting framework is designed to foster
dialogues that are engaging and realistic and deeply
aligned with the AAC user’s individual commu-
nication needs. The equation encapsulating this
transformation process is:

D = fRAG(C;P ) (10)

Here, D denotes the dialogue drafts generated
from the input content C, and P represents the
structured prompt. The function fRAG illustrates
GPT-3.5’s ability to interpret and refine the narra-
tive input into authentic dialogues, ensuring that
each response not only adheres to factual accuracy
but also resonates with the personal communication
style of the AAC user.

In the generation process of the RAG model,
denoted by these equations

I = {H,RFLAN,Ck} (11)

R = fgen(I;ϕ) (12)

, where k = 1 signifies that the most contextu-
ally similar passage is retrieved for response gen-
eration, we utilize specific generation parameters.
These parameters, optimized through empirical tri-
als rather than exhaustive parameter studies, have
proven effective in achieving high-quality gener-
ative outputs. The parameters include a maxi-
mum sequence length of 600, ensuring compre-
hensive responses while avoiding verbosity. The
no_repeat_ngram_size is set to 1, prohibiting
immediate repetition and fostering diversity in
phrase usage. We employ stochastic sampling with
do_sample = True, top_k = 50, and top_p =
0.95, which collectively guide the model to focus
on the most likely next words while maintaining
a broad enough candidate pool to ensure creativ-
ity and coherence. The temperature parameter is
set at 0.7, balancing randomness and determinism
in word choice, and a repetition_penalty of 1.3
discourages redundant content generation. These
parameters, encapsulated within ϕ, are pivotal in
tailoring the model’s output to the nuanced require-
ments of AAC communication, ensuring that re-
sponses are not only relevant but also uniquely
expressive of the user’s intent.

H Preprocessing and Data Preparation

Each conversation is segmented into sequences of
prompt-response pairs. We define each dialogue D
as a series of utterances Ui, and generate pairs as
follows:

D = {(U1,U2), (U1 ⊕U2 ⊕U3,U4), . . . ,

(U1 ⊕ . . .⊕U2n−1,U2n)} (13)

where⊕ denotes the concatenation of utterances,
providing increasing context with each subsequent
pair.

By adopting this strategy, we generated 2023
distinct prompt-response pairs. In terms of dataset
distribution, 1423 pairs were reserved for training,
200 for validation, and the remaining 400 were allo-
cated for testing purposes. This careful partitioning
was designed to ensure the model’s robustness and
generalization capabilities across unseen data.
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I Human Evaluation Criteria

The six specific criteria are as follows:

• Specificity: How precise and to the point the
response was.

• Sincerity: The genuine and truthful nature of
the response.

• Understandability: Clarity and comprehensi-
bility of the response.

• Relevance: How pertinent the response was
to the prompt.

• Fluency: The smoothness and natural flow of
the response.

• Quantity: Whether the response length was
too short, just right, or too long.

The new criteria used by AAC user are defined
as follows:

• Representative: How good the generated re-
sponse represents the AAC User’s tone.

• Realistic: How realistic the generated re-
sponse is.

J Human Evaluation Criteria Breakdown
and Observations

• Specificity: RAG topped with a score of 1.3.
FLAN-T5 large followed closely with around
1.12, while ZeroShot COSMO and FLAN-
T5l+COSMO hovered near 0.93. The RAG
model has a superior capability to produce
specific responses, highlighting its precision
in addressing queries.

• Sincerity: The RAG model is more truthful
than most other models, as it got an average
of 1.07

• Understandability: A crucial takeaway from
this criterion is that LLMs like GPT 3 and
Large Language Models like COSMO give
more comprehensive responses than smaller
Fine-tuned Models.

• Relevance: RAG stood out with a score of 1.3.
FLAN-T5l+COSMO matched the ideal score
of 1, with FLAN-T5 large just below 0.99.
This explains that RAG excels at producing
highly relevant content, indicating its superior
contextual understanding.

• Fluency: It depends on the nature of the Lan-
guage Models. As GPT-3 based models are
generally more fluent than other fine-tuned
models, RAG had the higher score

• Quantity: Most models, including RAG,
were close to the ideal score of 1, indicating
balanced response lengths.

K Ethics, Code and Data Availability

The code and anonymized conversation dataset are
available publicly on Github to support further re-
search. However, the authored content used as a
knowledge base won’t be available due to privacy
concerns. We advise researchers to use alternative
personal narrative sources for replication or exten-
sion. All the data used in the experiments were
collected upon obtaining consent from the AAC
user.

L Inter-rater Consistency Analysis for
Evaluation Criteria

The Intraclass Correlation Coefficient (ICC) mea-
sures the reliability of ratings or measurements.
The values range from -1 to 1, where -1 means
strong disagreement and 1 means strong agreement.

Criterion ICC
Specific 0.95
Sincere 0.02
Understandable 0.84
Relevant 1.00
Fluency 0.99
Quantity 0.43

Table 6: Inter-class Correlation Coefficient (ICC) for
Evaluation Criteria

Table 6 suggests that for most of the criteria,
there was strong agreement among judges, except
for "Sincerity" (low agreement) and "Quantity"
(moderate agreement). This might prompt further
investigation into why the judge’s view diverged on
"Sincerity" and, to a lesser extent, on "Quantity".

M ANOVA test results

The ANOVA test results indicate an F-statistic of
approximately 0.0970 and a p-value of approxi-
mately 0.7568. This high p-value suggests no sta-
tistically significant differences between the scores
of Judge 1 (J1) and Judge 2 (J2) across all criteria.
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N Example of Generated Responses

The tables below include the conversation history
and predicted responses by 3 different models,
which are Finetuned-Flan-T5(large), Finetuned-
Flan-T5(large)+COSMO, RAG(Finetuned Flan-T5
+ GPT3.5 Turbo), and the golden response.

Example 1

Prompt Golden Ft.FT5
(l)

Ft.FT5(l)
+
COSMO

RAG

Partner: I suppose with
PET, you never quite
feel alone. Does she
follow you?

User: As I’m in the
shower, I peek out and
see PET curled up with
the floor mat. She
notices me and jumps
on the side of the
bathtub, pacing back
and forth.

Partner: Is PET
approachable or does
she keep her distance?
Give an example of
your interaction.

User:
Turning
my head,
I meet
PET’s
gaze,
and to
my
surprise,
she
plants a
tiny kiss
on the
front of
my nose.

User: I
try to get
her
attention,
but she
quickly
turns
away.

User:
She does
tend to
keep her
distance
at times,
but she’s
always
happy to
see me
when I
come
home.
She’ll
start
talking
to me on
the
phone
even if I
don’t
respond.

User:
She
gives me
a little
kiss on
the nose,
then
waits for
me.

Table 7: Conversation example 1 (Any recognizable en-
tities have been anonymized using uppercase characters
for the specific entity)

• We observe that the RAG model can identify
the correct relevant context. In conversation
example 2, only the RAG Model can capture
the detail of "200 miniature trains"

• We can see the Finetuned Models generally
keep the responses short but also hallucinate,
whereas COSMO makes the responses more
human-like and fluent but irrelevant.

• RAG combines both relevance and fluency to
generate appropriate responses.

Example 2

Prompt Golden Ft.FT5
(l)

Ft.FT5(l)
+
COSMO

RAG

Partner: What other
things did you do as a
kid?

User: If we didn’t go
to the mall, I would
stay home and play
with my own toys.

Partner: That makes
sense. What was that
like for you?

User: I had my own
space to play in, and I
would play for hours
and hours.

Partner: Were you
alone when you
played?

User: Sometimes, but
if I didn’t want to play
alone I would go
downstairs and watch
my dad play with his
trains.

Partner: Play with his
trains?

User:
Yes. He
has
about
200
minia-
ture
trains.
He
would
only play
with
them on
week-
ends.

User: I
would
watch
him play
and then
we’d go
upstairs
to our
room.

User:
Yeah, I
thought
it was
really
cool how
they
worked.
My dad
was
really
into
them
too.

User: I’d
watch
him play
with his
200
minia-
ture
trains
and then
we’d go
upstairs
and play
pretend
games.

Table 8: Conversation example 2 (Any recognizable en-
tities have been anonymized using uppercase characters
for the specific entity)

Example 3

Prompt Golden Ft.FT5
(l)

Ft.FT5(l)
+
COSMO

RAG

Partner: What was the
little problem that
didn’t let you leave?

User: No one wanted
to sit in the back of the
van.

Partner: Why was
that?

User: Because there
was a lot of bumping
from the potholes in
the back.

Partner: That makes
sense. What ended up
happening?

User: I
sat in the
back.

User: I
was so
relieved
when the
driver
came to
take me
in.

User:
We
ended up
staying
in the
front of
the van.

User: I
volun-
teered to
sit in the
back and
then we
left.

Table 9: Conversation example 3 (Any recognizable en-
tities have been anonymized using uppercase characters
for the specific entity)
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Abstract

Product classification is a crucial task in inter-
national trade, as compliance regulations are
verified and taxes and duties are applied based
on product categories. Manual classification
of products is time-consuming and error-prone,
and the sheer volume of products imported and
exported renders the manual process infeasible.
Consequently, e-commerce platforms and en-
terprises involved in international trade have
turned to automatic product classification us-
ing machine learning. However, current ap-
proaches do not consider the real-world chal-
lenges associated with product classification,
such as very abbreviated and incomplete prod-
uct descriptions. In addition, recent advance-
ments in generative Large Language Models
(LLMs) and their reasoning capabilities are
mainly untapped in product classification and
e-commerce. In this research, we explore the
real-life challenges of industrial classification
and we propose data perturbations1 that allow
for realistic data simulation. Furthermore, we
employ LLM-based product classification to
improve the robustness of the prediction in pres-
ence of incomplete data. Our research shows
that LLMs with in-context learning outperform
the supervised approaches in the clean-data sce-
nario. Additionally, we illustrate that LLMs are
significantly more robust than the supervised
approaches when data attacks are present.

1 Introduction

Product classification plays an important role in
international trade and e-commerce. This is be-
cause import and export tariffs are assigned based
on the category of products. According to the latest
report from World Custom Organization (WCO,
2023), in Year 2022-2023 more than 1.3 billion
declarations are booked through customs world-
wide (World Customs Organization, 2023a). This

1We use ‘data perturbation’ and ‘data attack’ interchange-
ably.

massive workload, a result of trade globalization,
can impose a significant burden on human experts
such as customs personnel and the companies in-
volved in import, export, and e-commerce.

In addition, product classification can often be
a complicated task and require subject matter ex-
pertise, as there is a wide range of products traded
across various industries. As such, for human per-
sonnel to become competent in understanding the
nuances of different products and how to classify
them in compliance with WCO guidelines is a non-
trivial task and requires several months of training,
according to our subject matter expertise. More-
over, correct and detailed classification is critical,
as incorrect classification can lead to tax liabilities
owed to authorities. This can result in fines, penal-
ties, and in some cases, legal repercussions and
business discontinuation bans in the jurisdictions
affected by a tax breach.

Managing the increasing workload of product
classification in global trade is difficult. This chal-
lenge is further compounded by the continuous
globalization of e-commerce. Additionally, stay-
ing accurate and up-to-date as global trade classi-
fication guidelines, such as the Harmonized Sys-
tem (U.S. Department of Commerce, 2023), which
continuously change, further adds to the challenges
of manual product classification. Therefore, many
organizations active in industry have adopted auto-
mated methods of product classification using ma-
chine learning (Avigdor et al., 2023; Hasson et al.,
2021; Lee et al., 2021; Chen et al., 2021; Nguyen
and Khatwani, 2022). However, the issue with cur-
rent classification approaches is that they primarily
focus on the ‘clean’ version of data, often ignoring
the common data perturbations that happen in real-
world product classification during inference time.
In this context, ‘perturbations’ or ‘attacks’ refer to
issues in data that limit the classifier’s performance,
such as incomplete or abbreviated data. The ability
to robustly predict correct product classifications
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in scenarios where data might be far from perfect
is of paramount importance, especially in cases
where incorrect classification can lead to incorrect
taxation and trade liabilities in international trade
under the harmonized system (World Customs Or-
ganization, 2023b). Therefore, in this research, we
aim to understand which models perform better in
scenarios with potential data attacks. This not only
facilitates more informed model decision-making,
but also considers real-life data challenges. Conse-
quently, our contributions are as follows:

• We introduce a framework designed to simu-
late real-life data attacks on clean data. This is
particularly crucial for product classification
with compliance implications, where incorrect
classifications can lead to wrong taxation.

• Utilizing realistic data attacks, we propose an
LLM-based classification approach that out-
performs the prior supervised approaches, and
is more robust to real-life data attacks.

• Lastly, we offer a comprehensive evaluation of
human annotators and various models across
different attack scenarios and compare their
robustness. We draw conclusions from our
findings, which we believe are instrumental
in guiding design decisions for the practical
aspects of product classification.

2 Background

This section provides a review of the related work
and essential background that supports our re-
search.

2.1 Product Classification

Product classification based on product description
text has been a focal point in several industrial re-
search efforts (Kondadadi et al., 2022; Nguyen and
Khatwani, 2022; Hasson et al., 2021; Avigdor et al.,
2023). In real-world scenarios, product descrip-
tions often lack completeness and in many cases are
abbreviated and brief. This provides very limited
context for accurate product classification using
Natural Language Processing (NLP) approaches.
Kondadadi et al. (Kondadadi et al., 2022) presented
a Question Answering (QA) framework for Data
Quality Estimation (DQE) with the goal of improv-
ing product classification for tax code assignment.
This approach detects the quality of available data
by extracting attribute-value pairs. The authors

similarly observed that the input product descrip-
tion data is generally vague and noisy. Hasson et
al. (Hasson et al., 2021) discussed the classification
challenges in e-commerce systems. Notably, the
high diversity of products to classify and highly
granular hierarchy of these products result in hun-
dreds or thousands of possible categories, which
can present challenges for both manual and auto-
mated classification approaches. Considering that
automated product classification is a more cost-
efficient and scalable approach to adopt, the devel-
opment of robust product classification in presence
of data attacks still remains largely unexplored.

2.2 Input Perturbation

Perturbations in data, specifically in text data, have
been investigated in several prior studies (Beh-
jati et al., 2019; Zhang et al., 2020; Zou et al.,
2023). Generally, for LLMs, adversarial attacks
can involve malicious tokens added to the prompt
that causes the model to generate undesired out-
puts (Zou et al., 2023). Beyond malicious intents,
adversarial attacks can be beneficial and be lever-
aged as data augmentation to improve the robust-
ness of text classification approaches (Yoo and Qi,
2021; Wang et al., 2020, 2022) in scenarios where
the inference data can be noisy (Morris et al., 2020).
Our work focuses on product classification based
on the text description of products, which in real
life can be incomplete and far removed from the
clean training data. Therefore, in this research, we
focus on formulating data perturbations that aim to
simulate the real-world data incompleteness often
encountered in product descriptions.

3 Methodology

Although product classification is generally tested
on datasets free of inaccuracies, in real-world sce-
narios the data received from users is often very
short and abbreviated. As such we define an adver-
sarial attack framework to simulate realistic data
from clean data. For data perturbation method,
we follow the approach introduced in (Behjati
et al., 2019). Similar to the method explained
in GPT3Mix approach (Yoo et al., 2021), we use
GPT-4 (version: 0613) to create perturbations and
generate synthetic yet highly realistic datasets to re-
semble the real-life scenario of the data. We write
a prompt that includes the instructions to GPT-4 for
different variations of data perturbations. These in-
structions are then passed to GPT-4 along the origi-
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nal product description to perform perturbations. In
response, GPT-4 completion returns the perturbed
product description. Additional details on prompt
templates are provided in Figures 2 and 3 in Ap-
pendix A. As outlined in the prompts, we instruct
GPT-4 to perform controlled data perturbations so
that the initial meaning of the descriptions is still
mostly preserved and they remain classifiable by a
human annotator.

3.1 Data Perturbation Framework

To simulate real-world data scenarios, we intro-
duce realistic data perturbations and attacks. Our
perturbation model is defined as follows: con-
sider a classifier f , which maps an input x ∈ X
to its corresponding class c ∈ C, denoted as
f(x) = c. In this model, x is a sequence of to-
kens, x = (x1, x2, ..., xn). Data perturbation can
involve either removing or modifying tokens within
x, leading to a new sequence, x′ = (x′1, x

′
2, ..., x

′
n).

This perturbation may result in f(x′) = c′, where
c′ ̸= c, indicating a change in classification. To
mimic the real-life data, we apply two distinct per-
turbation methods that we will discuss in the fol-
lowing.

3.2 Amputation

In this approach, we perturb the product descrip-
tion by randomly removing some of its tokens. We
investigate this scenario because real data often
is missing critical attributes, which limits accu-
rate classification of products (Kondadadi et al.,
2022). Here, we do not introduce new tokens
(i.e., new attributes) nor change the order of the
existing tokens; instead we only omit some tokens
from the product descriptions. Formally speaking,
the input x = (x1, x2, ..., xn) is transformed into
xm = (xi1 , xi2 , . . . , xik) where 1 ≤ i1 < i2 <
. . . < ik ≤ n and ∀xi1:k ∈ x.

3.3 Abbreviation

In this approach, we attack product descriptions
by replacing a subset of words with their abbrevi-
ated forms. This scenario does not fully remove
any tokens but converts certain tokens into their
abbreviated versions. For example, the word ‘mo-
bile’ could be replaced by ‘mob.’ (refer to Ta-
ble 1). Formally, the input x = (x1, x2, ..., xn)
is transformed into xa = (x′1, x

′
2, . . . , x

′
n) where

S ⊆ {1, 2, . . . , n} and ∀i ∈ S : x′i = Abbr(xi),
and ∀i ∈ {1, 2, . . . , n} \ S : x′i = xi.

It should be noted that our framework does not
encompass a comprehensive list of data perturba-
tion that can happen in real-world scenarios, and
only models the common perturbations in our en-
terprise global trade use case. Other data perturba-
tions, such as typos, can also be quite prevalent in
real scenarios which can be investigated as per use
case.

3.4 Example - Data Perturbation
Table 1 provides examples of various attacks based
on our data perturbation framework. In a com-
bined attack, both abbreviation and amputation ap-
proaches are applied.

Attack Description

Clean Samsung ALC820 mobile phone case Cover
Brown

Abbreviated samsung alc820 mob. phone case cover
brwn

Amputated samsung alc820 mobile phone case
Combined samsung alc820 mob. phone case

Table 1: Examples of various data attacks applied to
clean data.

3.5 Robustness Metric
We define the robustness of classifier f as the
delta (∆r) of the performance metric (M ) on the
clean data (Dc) versus the performance of the
classifier on the perturbed data (Dp): ∆r(f) =
|M(Dc)−M(Dp)|

M(Dc)
. The lower the ∆r, the more ro-

bust the model is to the data perturbations.

3.6 Research Hypothesis
Our hypothesis posits that LLMs with in-context
learning not only can outperform supervised mod-
els in the product classification task, but also show
greater robustness to adversarial attacks such as
abbreviation and amputation. Furthermore, we as-
sert that informing an LLM about the potential data
attacks can improve the classification performance
by allowing the LLM to more effectively leverage
its reasoning capabilities.

4 Evaluation

In the following, we outline the details of our eval-
uation.

4.1 Datasets
We experiment on two publicly available datasets,
namely Icecat (ice) and WDC-222 (wdc), to demon-
strate our perturbation framework and evaluate the
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robustness of different classification models in the
presence of data attacks. Although we have ob-
served the aforementioned attack scenarios in our
proprietary data, we believe our perturbation frame-
work can be readily applied to any arbitrary dataset.
Therefore, we opt to conduct our evaluation on
public datasets to ensure higher visibility and re-
producibility. The datasets are as follows:

4.2 Icecat (ice)

This dataset features products in the “Computers
& Electronics” category, organized in a hierarchi-
cal structure. Each record includes a product de-
scription and a corresponding text label. For ex-
ample, as shown in Table 1, the product described
as “Samsung ALC820 mobile phone case Cover
Brown” falls under the hierarchy Computers &
Electronics → Telecom & Navigation → Mobile
Phone Cases, with the label being the leaf node
of this hierarchy, i.e., Mobile Phone Cases. The
dataset has 370 leaf nodes, with 489,902 entries
for training and 153,095 for testing. We utilized
the entire training set for training supervised mod-
els and identifying few-shot examples for LLMs.
However, to contain LLM inference costs, we con-
ducted stratified random sampling on test set to
comprise a smaller set of 5,000 examples, with at
least one data point from each class.

4.3 WDC-222 (wdc)

This dataset contains 222 leaf nodes in the same
hierarchy as Icecat. It includes 2,984 entries solely
for testing, thereby serving as the gold standard
for this classification task. This dataset is gener-
ally more difficult than Icecat for classification,
and prior approaches (wdc) achieve a lower perfor-
mance on this dataset than Icecat. We utilize the
entire size of this dataset to test both supervised
and large language models.

4.4 Models

We conduct our evaluation using both supervised
and LLM-based approaches.

4.5 Supervised Baseline

To compare the performance of generative models
against supervised models, we experiment with the
DeBERTaV3-base model (He et al., 2023) as our
baseline. This architecture achieves state-of-the-art
performance on several text classification bench-
marks. Specifically, we used the pretrained model
available from HuggingFace (Wolf et al., 2020),

and fine-tuned it on the full training set of the Ice-
cat dataset. By doing so, we replicate a scenario
where the model is trained on clean data and tested
on perturbed data, which is a common situation in
our real-world use case. For the supervised base-
line, experiments are repeated several times with
different seeds, and thus error ranges are provided.

4.6 Training Details

In the following, we review the training details for
supervised baseline models.

4.6.1 Flat Classification

To train both hierarchical and flat baselines, we
used the DeBERTaV3-base model (He et al., 2023).
We fine-tuned the pretrained model provided by the
authors of the model and available on the Hugging
Face (Microsoft). We used the default tokenizer
provided by Hugging Face for the DeBERTaV3-
base model and the following hyperparameters:
batch size of 32, learning rate of 2e-5, and weight
decay of 0.01. The rest of the parameters were
equal to default values for the Hugging Face
Trainer class. We trained the model for a maxi-
mum 100 epochs with early stopping enabled and
the patience parameter was set to 5 epochs. The
model was trained on 5 different random seeds,
and each converged before reaching the maximum
number of epochs.

4.6.2 Hierarchical Classification

For the hierarchical classification, we used the
same model, tokenizer, and hyperparameters as
for the flat classification. However, we trained two
separate models: one with the task to classify the
products to the second level of the hierarchy (first
level was shared among all products), and the sec-
ond model for final label prediction. The top-level
model was trained on the same data as the flat clas-
sification model. The second model was trained on
the same data, but the description was augmented
with the top-level category label (in textual form)
in the following format "original_description, cat-
egory_name". During inference, we used predic-
tions from the top-level model and appended them
to the description before passing it to the second
model for the final classification. The results were
averaged for the models trained on five different
seeds and rounded to three decimal digits. We also
reported the 95% interval which was calculated as
follows: ±1.96 · std√

5
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5 LLMs

We experiment with both open-source and propri-
etary LLMs, including Llama 2 Chat with 70B pa-
rameters (Touvron et al., 2023), GPT3.5, and GPT4
(model version: 0613) (OpenAI, 2023). Unlike the
supervised approach, we were not able to perform
multiple runs and report error ranges for LLMs due
to the excessive cost of inference. However, we set
the temperature values to 0 to minimize potential
variations in the LLM outputs across multiple runs.

5.1 Models Configurations

For classification configurations, we consider Flat,
Hierarchical, and Few-shot configurations. In the
flat configuration, the model is tasked with directly
predicting the leaf node label of the product, cor-
responding to 370 and 222 classes for the Icecat
and WDC datasets, respectively. In the hierarchi-
cal configuration, the model initially predicts the
second-level hierarchy of the product which is 17
classes for both Icecat and WDC-222 dataset (first-
level hierarchy, Computers & Electronics, is shared
among all products). This is followed by predicting
the final leaf label from the predicted second-level
hierarchy. For the few-shot configuration, we select
the top-5 semantically similar examples to the test
product from the training set, using the Sentence-
Transformer model (Reimers and Gurevych, 2019).
These examples are then included in the prompt as
in-context learning examples for the LLMs (Brown
et al., 2020).

5.2 Attack Configurations

We explore four different attack configurations as
discussed in our data perturbation framework in
Section 3. Clean: this configuration presents the
original data without any attacks, e.g., the orig-
inal product descriptions are used for classifica-
tion. This serves as a benchmark for the high-
est possible classification performance. Ampu-
tated: in this configuration, the product descrip-
tions are amputated by randomly removing a subset
of tokens. Abbreviated: this attack involves ab-
breviating a subset of product description tokens.
Combined: this configuration involves combining
both the amputation and abbreviation attacks, such
that the product description is first amputated and
then the resulting description is further abbrevi-
ated. Combined-Reason: this configuration uses
the combined attack on the product description,
with an additional note in the prompt to enable the

LLM to reason about possible data perturbations.
LLMs have demonstrated emerging capabilities in
common-sense reasoning (Wei et al., 2022). There-
fore, in this configuration, we include an extra note
in the prompt, “Be aware that some parts of the
product description might have been abbreviated or
amputated.”, to let the LLM reason on possible per-
turbation patterns in the product description, which
may lead to more accurate classification.

Similarity Abbreviated Amputated Combined

Icecat 0.918 0.909 0.848
WDC-222 0.896 0.907 0.843

Table 2: Similarity scores for the clean dataset versus
the attacked datasets.

5.3 Data Analysis

In this section, we present a statistical analysis of
the data attributes for the clean data as compared
to the post-attack scenarios. Table 2 shows the av-
erage semantic similarity scores for both the clean
dataset and its perturbed ones. We used ‘multi-
qa-mpnet-base-dot-v1’ model from SentenceTrans-
formers (Reimers and Gurevych, 2019) to calcu-
late these similarity scores. The results show that
as more attacks are introduced on the dataset, the
similarity scores decrease. However, even for the
‘Combined’ configuration, the dataset is still over
84% similar to the original dataset. In addition
to the similarity scores, we have plotted the distri-
bution of token sizes for product descriptions in
Figure 1 for both the Icecat (1a) and WDC-222
(1b) datasets. Kullback-Leibler (KL) divergence
values (Kullback and Leibler, 1951) are also pro-
vided for different data configurations. Across all
configurations, the KL values are less than or equal
to 0.2, and a value of ≤ 0.2 typically signifies a
small divergence between the distributions. This
analysis is crucial as we later evaluate how these
small divergences in distributions translates to a
greater scale of model performance unrobustness.
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Figure 1: Distribution of the clean data versus the distri-
bution of the data with different type of attacks.
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5.4 Human Annotation Analysis

The importance of the quality of perturbed data
prompted us to engage human annotators to assess
the quality and ensure its similarity to the intended
real data. During the design of the data perturbation
framework, we leveraged human expert knowledge
to ensure our perturbations aligned with the in-field
data. In addition, through human manual evalua-
tion, we confirmed that the perturbed data appears
realistic and plausible in real-life scenarios.

To further solidify the data quality analysis, we
picked 100 random sample data points from each
dataset (200 samples in total) that were perturbed
and asked our human annotators to expand the ab-
breviated words to ensure the majority of perturba-
tions are recoverable from a human perspective and
they did not semantically alter the meaning of prod-
uct descriptions. Through this, annotators were
able to identify and create the clean full form of
the abbreviated tokens in the product descriptions
80% and 85% of times for the Icecat and WDC-222
datasets, respectively.

To evaluate that the perturbation process did not
semantically alter the descriptions in a significant
way, we asked the annotators to label the descrip-
tions with clean descriptions and also combined at-
tack for both datasets (‘Clean’ and ‘Combined’ in
Table 3). Furthermore, to check if historical classi-
fications of clean descriptions semantically similar
to perturbed data would aid annotators, for each
combined attack description in the set of 100 ran-
domly selected product descriptions, we provided
five most semantically similar examples, using Sen-
tenceTransformer (Reimers and Gurevych, 2019)
(‘Combined+FS’ in Table 3). We then asked the
annotator to map the description that is attacked
with combined perturbation to its closest clean de-
scription. Then we calculate the accuracy of the
annotator mapped labels versus the true label of the
perturbed data points. The design for this experi-
ment is similar to adding few-shot similar examples
to the LLM prompt to allow the model to find se-
mantic similarities between the original clean data
and the perturbed data.

Accuracy (%) Clean Combined Combined+FS

Icecat 76 72 97
WDC-222 72 67 95

Table 3: Human annotator analysis of perturbed data.

Table 3 summarizes the human annotators’ clas-

sification accuracy results. We observe that for
both datasets, the combined attack has an impact
on the accuracy of classification compared to clean
descriptions. However, given that we observe high
accuracy for both datasets when a few shot seman-
tically similar examples are provided to the anno-
tator, this confirms that the amputation perturba-
tion makes the classification more difficult, but the
semantics of the products stay intact. This estab-
lishes that our perturbation framework works as
expected and a classification model that is robust
to input perturbations should be able to maintain
robust classification performance in the presence
of data attacks proposed through our work. In the
following, we continue with evaluation of machine-
learning-based approaches.

5.5 Metrics

We assess the classification performance using
both macro (ma) and weighted (we) Precision, Re-
call, and F1-Score values to compare different ap-
proaches. Additionally, for each model, we also cal-
culate its most robust (i.e., the smallest) ∆r score.

5.6 Robustness Analysis

Table 4 shows the performance and robustness of
various configurations that were experimented with.
It should be noted that we chose to exclude certain
configurations from execution in order to manage
the models inference API cost and also because we
were able to extract patterns from the configura-
tions that were executed. We summarize the key
observations from the results as follows. GPT-4
model with few-shot prompting delivers the best
classification results on both datasets among all
models and shows the highest level of robustness
to the introduced data attacks. As expected, the
‘Clean’ data approach yields the best results, with
performance marginally decreasing as data attacks
are introduced for ‘Amputated’ and ‘Abbreviated’
data configurations. Supervised model achieved
the second highest performance after GPT-4 for
the ‘Clean’ scenario. However, the performance
values for this model significantly drop as the at-
tacks are introduced. In general, LLMs show more
robustness to the introduced attacks in the product
description as they are able to better reason on the
details of the product description. In addition, few-
shot examples allow LLMs to further learn from
the context and improve their performance, com-
pared to our experimented supervised classification
models which cannot leverage this capability.
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Model Icecat (%) (ice) WDC-222 (%) (wdc)

Approach Attack ma-P ma-R ma-F1 we-P we-R we-F1 ma-P ma-R ma-F1 we-P we-R we-F1

DeBERTaV3 base
(Supervised)

Flat

Clean 88.5± 0.6 89.2± 0.4 88.3± 0.5 97.9± 0.1 98.1± 0.1 97.8± 0.1 38.9± 2.3 38.6± 1.7 35.1± 1.8 81.5± 0.8 70.7± 1.4 72.9± 1.5
Abbreviated 48.1± 1.3 48.0± 2.1 44.4± 1.7 81.4± 1.6 76.0± 3.1 75.8± 2.3 25.5± 1.3 21.8± 1.2 19.4± 0.8 69.2± 2.3 38.4± 3.8 43.6± 4.0
Amputated 67.6± 0.9 72.0± 0.5 67.0± 0.7 87.4± 0.2 85.6± 0.6 85.1± 0.6 35.0± 1.9 34.7± 1.4 31.2± 1.6 78.4± 1.4 63.0± 4.3 66.6± 3.8
Combined 46.0± 0.6 45.9± 1.5 41.7± 0.9 76.2± 0.6 66.7± 2.9 67.6± 2.0 26.0± 1.0 22.0± 1.4 19.7± 0.7 70.5± 0.6 39.9± 3.5 46.0± 3.3

Hierarchical

Clean 83.5± 10.4 84.8± 9.1 83.4± 10.0 97.1± 1.5 97.5± 1.0 97.2± 1.3 38.6± 1.4 37.9± 1.5 34.4± 1.3 81.8± 0.9 68.7± 0.9 71.8± 0.5
Abbreviated 46.0± 4.5 46.4± 3.1 42.4± 3.7 81.2± 1.1 73.2± 3.8 74.0± 2.5 26.1± 0.8 22.7± 1.1 20.1± 0.7 71.3± 0.9 39.9± 4.6 45.6± 5.7
Amputated 62.7± 6.8 66.8± 6.3 61.7± 6.3 86.7± 1.2 83.6± 0.6 83.6± 0.7 36.8± 1.3 35.6± 1.3 32.1± 1.1 79.2± 1.2 60.9± 2.3 65.2± 1.5
Combined 43.2± 4.7 43.3± 3.5 39.0± 3.8 76.0± 1.4 62.4± 3.7 64.8± 2.5 27.0± 0.7 23.2± 0.8 20.6± 0.5 71.3± 1.3 41.6± 1.9 47.7± 1.8

∆r (%) − 48.0 48.5 52.8 22.2 32.0 30.9 33.2 43.0 43.9 13.5 43.6 36.9

Llama-2
(70b-chat)

Flat

Clean 19.6 29.2 19.9 50.2 37.4 36.9 23.8 28.7 21.9 75.9 51.4 51.4
Abbreviated 11.7 16.8 11.7 78.0 39.4 41.0 22.5 27.4 20.5 72.5 44.5 42.8
Amputated 16.1 21.6 15.4 81.8 38.3 41.6 25.6 28.2 22.8 76.4 53.4 52.9
Combined 13.4 19.5 13.1 76.7 40.9 42.0 22.6 27.9 20.3 73.3 48.7 47.8

Combined-Reason 19.9 27.1 19.4 72.2 54.3 54.7 31.0 34.2 27.8 68.7 56.2 52.2

Hierarchical Clean 35.2 34.7 29.8 65.2 40.4 39.4 33.2 35.7 29.1 68.6 41.9 38.1
Combined 32.1 33.6 28.2 58.5 38.5 35.4 29.6 32.6 25.4 70.0 37.6 36.8

Few-shot

Clean 89.6 89.2 88.3 97.1 96.1 95.9 73.1 71.5 69.4 89.8 86.6 85.6
Abbreviated 76.5 79.0 75.7 85.8 84.5 80.6 61.3 67.0 59.2 83.8 65.6 61.6
Amputated 86.9 85.5 84.8 94.9 93.5 93.1 68.0 68.1 64.3 84.3 78.0 74.5
Combined 79.3 79.6 77.6 92.7 90.5 89.6 61.8 65.2 59.2 82.8 68.6 64.5

Combined-Reason 78.3 78.4 76.3 94.2 92.6 92.6 63.7 62.9 59.1 83.0 74.7 72.1

∆r (%) − 12.6 12.1 13.6 3.0 3.6 3.4 12.9 12.0 14.8 7.6 13.7 15.8

GPT3.5
(ver.: 0613)

Flat

Clean 63.9 63.9 61.0 90.4 83.9 84.4 57.1 55.0 53.3 92.2 86.5 87.9
Abbreviated 57.8 58.6 54.9 90.0 82.8 83.5 54.9 53.2 51.1 91.2 85.0 86.4
Amputated 64.1 63.8 61.1 89.9 84.3 84.7 55.5 55.0 52.5 90.5 85.1 86.1
Combined 57.1 58.2 54.4 88.6 81.6 82.4 54.9 53.5 50.8 88.2 82.8 83.2

Hierarchical Clean 63.8 59.0 57.3 88.1 66.0 66.1 58.0 53.6 51.4 81.7 65.3 66.2
Combined 58.1 54.2 52.1 85.8 62.8 63.3 56.5 52.5 50.0 85.7 78.5 79.0

Few-shot

Clean 87.6 88.3 87.0 97.7 96.7 97.0 77.0 76.9 75.1 94.1 92.3 92.5
Abbreviated 82.5 83.3 81.5 96.7 95.2 95.6 72.0 70.8 69.5 92.4 90.1 90.3
Amputated 85.5 85.9 84.6 96.3 95.2 95.4 76.5 75.7 74.1 92.7 90.7 90.8
Combined 81.1 82.7 80.1 95.1 93.6 93.9 72.8 72.1 70.0 90.6 88.1 87.9

Combined-Reason 81.3 82.4 80.2 95.4 93.9 94.2 72.9 72.4 70.4 89.8 87.3 87.0

∆r (%) − 7.2 6.7 7.8 2.4 2.9 2.9 5.3 5.9 6.3 4.6 5.4 5.9

GPT4
(ver.: 0613)

Flat

Clean 79.5 79.5 77.5 93.6 90.6 90.8 69.2 67.7 66.0 94.6 89.0 89.9
Combined 72.9 73.9 71.0 92.9 89.9 90.2 66.0 65.6 63.1 93.3 88.4 89.1

Combined-Reasoned 73.6 74.5 71.7 92.8 90.2 90.5 66.8 66.1 63.6 93.1 88.8 89.3

Hierarchical No-attach 66.3 62.1 60.8 88.8 69.7 69.8 59.4 57.4 54.7 85.3 80.3 80.1
Combined 64.1 59.0 57.8 81.1 71.9 69.9 68.1 62.2 61.6 87.8 68.5 68.4

Few-shot

Clean 93.5 93.0 92.8 99.0 98.5 98.6 80.0 77.1 76.9 95.9 94.0 94.4
Combined 85.7 86.2 84.9 96.9 96.0 96.2 78.0 76.2 75.3 93.8 91.9 92.1

Combined-Reason 86.2 86.3 85.2 96.9 96.0 96.2 78.7 76.9 75.9 93.9 92.1 92.2

∆r (%) − 7.8 7.2 8.2 2.1 2.5 2.4 1.6 0.3 1.3 2.1 2.0 2.3

Table 4: The table summarizes the results for Icecat and WDC-222 datasets and different models. We experimented
with supervised and large language models for different configurations and attack scenarios. The prefixes ma-
and we- denote macro and weighted metrics, respectively. P, R, and F1 denote Precision, Recall, and F1-Score
respectively. For each model, the ∆r values are calculated for best performing configuration with attacks, i.e.,
Flat/Combined for supervised and Few-shot/Combined-Reason for LLMs. For each metric, the best-performing
configuration with combined data attacks is shown in bold. Note: we-R is comparable to accuracy (developers).

Hierarchical classification generally performed
equally or worse than flat classification and inferior
to few-shot prompting. We rationalize that since
the errors from the first level of classification prop-
agate to the second level, this compounding effect
results in lower performance in hierarchical clas-
sification compared to flat configuration. In some
cases, we observed that hierarchical classification
improves macro scores, which indicates that this
method achieves a more balanced prediction across
different classes. For example, Llama-2 achieves
better results with hierarchical classification than
with the flat classification method. This is because
the hierarchical approach allows the model to focus
on a smaller set of classes at each hierarchy.

Comparing the results for two different datasets,
Icecat and WDC-222, we observe that LLM-based
approaches show a significant improvement for the
WDC-222 dataset but a less noticeable improve-
ment for Icecat. The reason is that the classification

of the Icecat dataset is simpler than that of WDC-
222, as the latter comes from heterogeneous data
sources (wdc). As such, the baseline supervised
values for the Icecat dataset are also higher than
those for the WDC-222 dataset. This also provides
grounds for our observation that SOTA LLMs can
generalize better than supervised approaches on
heterogeneous datasets, based on the noteacible
improvement observed in the WDC-222 dataset.

The Few-shot scenario further improves the per-
formance of the LLMs, and GPT-4 achieves a
new state-of-the-art result on classification task on
Icecat and WDC-222 datasets (wdc; Brinkmann
and Bizer, 2021). Additionally, the ‘Combined-
Reason’ scenario improves classification perfor-
mance in cases where a combined attack is present.
This added reasoning in the prompt allows to re-
cover some of the performance loss observed be-
tween clean data and combined-attack configura-
tions by further leveraging the reasoning capabil-
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ities of LLMs. Our findings suggest that while
LLMs are more robust in classification compared
to supervised approaches, i.e., have lower ∆rs, this
robustness can be further improved with inform-
ing the model of potential data issues, such as
missing characteristics and abbreviations. This
observation also underlines the need for more prac-
tical designs of ML approaches while considering
real-world challenges.

6 Discussion

6.1 Data Leakage
One concern that exists is that the LLMs’ train-
ing dataset, like GPT-4 as an example, might have
already included our experimented datasets. Al-
though this cannot be entirely ruled out, our ap-
proach is still valid for two key reasons. Firstly,
GPT-4 initially shows lower performance, but sig-
nificantly improves in our few-shot scenario, out-
performing the supervised models. This indicates
that the effectiveness of GPT-4 extends beyond
merely memorization. Secondly, the robustness of
LLMs, particularly in our data perturbation frame-
work with Combined-Reason, is evident. The per-
turbed dataset, as it is novel and not included in
prior training, shows GPT-4’s ability to understand
product semantics and effectively recover from data
perturbations.

6.2 Impact and Deployment
Our research has partially enabled AI-based prod-
uct categorization in our global trade service which
is crucial and sensitive for compliance and regula-
tory aspects for large corporations active in cross-
border trade. Our research is impactful as it has
enabled more efficient and accurate classification,
and thus reduces the regulatory and compliance
risk. The discovery phase of the project has been
completed with testing on millions of data records
and the second phase of the project which expands
to multiple users and more data is ongoing.

7 Conclusion

In this research, we presented a data perturbation
framework to simulate the real-world data deficien-
cies for ML-based product classification. We then
proceeded with a comprehensive evaluation of dif-
ferent supervised and LLM-based classification ap-
proaches in presence and absence of data attacks.
Our findings show that LLM-based approaches are
generally more robust against adversarial attacks

and more suitable for applications that require high
robustness in predictions and misclassification can
cause compliance repercussions. As future work,
we will further investigate the security robustness
of LLMs in data-critical applications and explore
leveraging LLMs for providing classification ratio-
nales in addition to label predictions.

8 Limitations

Our analysis has limitations, particularly as we
observed that the results from Llama-2, are not
completely stable, and small variations within the
prompt can lead to noticeable changes in classifi-
cation performance. We believe these limitations
are largely addressed in SOTA models, like GPT-
4. Additionally, our data perturbation framework
models a limited set of data attacks that are relevant
to our industrial use case, however, other use cases
might face different data challenges, which should
be dealt with per use case.

9 Ethical and Practical Considerations

This study has been carried out by following the
privacy requirements of our organization. The re-
search has been reviewed by research directors and
legal counsel to ensure adherence to privacy of our
users data and information. Furthermore, the au-
thors of this work have been committed to adhering
to the highest standards of ethical responsibility
throughout the research. In product environments
where automated product classification models are
deployed, the predictions are presented to the end
user as suggestions, and it is then the end user’s
sole responsibility to accept, reject, or manually
adjust these predictions as necessary. This work
presents a general perspective on the product clas-
sification task and does not incorporate additional
sources of information that could be leveraged for
specific use cases, such as the Harmonized Sys-
tem classification, which utilizes tariff schedules,
rulings, and keywords.
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A Prompts

Figure 2 shows the prompt for simulating data at-
tacks with the help of GPT-4, as explained in the
data perturbation framework, while Figure 3 dis-
plays the prompt for the classification of products.
The first prompt aims to is to accurately automate
the data perturbation framework, and the second
prompt allows to classify the products, using an
LLM. As the data is manipulated by an LLM, we
investigate the correctness of the approach in com-
parison to the intended outcomes through human
analysis in Section 5.3.
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(Abbreviation) You got a new job as a product classifier for products belonging to the Icecat catalog.
You are asked to modify a description of a product that belongs to the "{industry_input}" category
(according to the hierarchy in Icecat) and modify words with their abbreviations (as could happen in
shipment details).
It is vital to not modify the description in a way that could change the classification of the product.
Please do not abbreviate more than 20% of the words or I would not understand the description.
The order of the words must not change.
Original description: {description_input}
New description:

(Amputation) You got a new job as a product classifier for products belonging to the Icecat catalog.
You are asked to truncate a description of a product that belongs to the "{industry_input}" category
(according to the hierarchy in Icecat) and to make it much shorter, like it would appear in a shipment
detail description.
Omit all the information that is not strictly necessary to identify the product, i.e. technical characteristics.
The order of the words must not change.
Work following the order below:
1. if the description is shorter than 5 words, do not change it
2. if the description is longer than 5 words, select the 5 most important words
3. put the selected words in the relative order in which they appeared in the original description
Original description: {description_input}
New description:

Figure 2: This figure shows the prompts used for GPT-4 to perform abbreviation and amputation data attacks.

Classify the following product to one class form the list below.01
02

List of classes:
Warranty & Support Extensions
Notebooks
PCs/Workstations
...

03
04
05
06
07
08

(Few-shot) Some examples with their classes are provided:
{5-shot similar examples}

09
10
11

Product: {test product}12
(Combined-Reason) Be aware that some parts of the product description might have been abbreviated
or amputated.

Output only the class name and no additional text. Example: ‘Tablets’

13
14
15
16
17

(Llamma only) Product class from the list above is:18

Figure 3: This prompt displays the template for LLM classification. Lines 09-10 are used solely for Few-shot
prompting. Lines 13-14 are added only in the Combined-Reason attack scenario, while Line 18 is added for the
Llamma-2 model, as we observed that it requires further prompt engineering to model the task as a completion
prompt for outputting a product class.
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Abstract

Our work studies Multilingual Federated Learn-
ing (FL), a decentralized paradigm that, al-
though promising, grapples with issues such
as client drift and suboptimal generalization
in diverse, multilingual settings. We highlight
limitations in existing approaches to generalize
across both actively participating and inactive
client language pairs. To mitigate these chal-
lenges, we introduce FedSparseNet, which in-
corporates sparse-network training, and LoRA,
based on Low-Rank Adaptation. These ap-
proaches maintain the model’s fidelity to its pre-
training distribution, thereby ensuring robust
performance on both seen and unseen language
pairs, while simultaneously enhancing commu-
nication efficiency by selectively transmitting
trainable parameters. Our empirical evaluations
demonstrate that FedSparseNet outperforms
conventional FL models on both seen and un-
seen clients, while LoRA shows remarkable im-
provements in unseen client performance. Ad-
ditionally, we propose the Continuous Relative
Robustness Metric, a novel metric to uniformly
assess a model’s performance across diverse
language pairs. We open-source our code for
reproducibility on GitHub.1

1 Introduction

The development of NLP applications capable of
leveraging multilingual, multi-source, heteroge-
neous data while safeguarding user privacy is es-
sential (Deng et al., 2022). FL (McMahan et al.,
2016) addresses this by facilitating the utilization
of personally identifiable information within a de-
centralized framework, thereby obviating the need
for direct data sharing among clients. However,
FL faces challenges such as client drift and sub-
optimal generalization in heterogeneous environ-
ments (Karimireddy et al., 2020). Furthermore,
multilingual FL not only contends with these FL-
specific optimization difficulties but also grapples

1https://github.com/AetherPrior/less-is-fed-more

with the complexities of extending to low-resource
languages. This can hinder the accessibility of lan-
guage technologies for various communities and
intensify systemic biases (Santy et al., 2023).

While there is extensive research on FL for
NLP, studies specifically addressing multilingual
FL translation remain limited, with minimal explo-
ration of how FL impacts the training process. Mul-
tilingual FL is an inherently heterogeneous data
setting, offering a unique area of interest within
the FL community. The closest work is Weller
et al. (2022b), where the authors investigate Feder-
ated Multilingual Translation. The study involves
fine-tuning and communicating the entire param-
eter set of a 418M M2M encoder-decoder model.
Their findings suggest that fine-tuning a pre-trained
model using FL can achieve comparable results to
centralized learning, even in Non-IID settings with
clients segmented by language.

In our research, we challenge the prevailing nar-
rative that communicating all parameters in a mul-
tilingual translation model is viable for practical
translation tasks. We argue that this approach is
largely impractical. Moreover, translation applica-
tions require the server model to not only gener-
alize to client language pairs actively involved in
FL but also to maintain pretraining performance
on unseen language pairs or inactive clients. Our
findings reveal that baseline performance for un-
seen language pairs declines when fine-tuning with
active client data. This issue stems from the distor-
tion of pretrained features (Kumar et al., 2022), a
problem not adequately addressed by current FL
approaches, especially in the context of NLP tasks
like translation. To address the challenges identi-
fied, our approach builds on the current literature
on Parameter Efficient Finetuning (PEFT) to: a)
ensure the model remains close to its pretraining
distribution, facilitating balanced generalization
across both seen and unseen language pairs, and b)
enhance federated fine-tuning and communication
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efficiency by transmitting only a sparse subset of
trainable parameters. Our contributions include:
• We propose FedSparseNet, leveraging sparse-
network training, and employing Low-Rank Adap-
tation (LoRA) to mitigate pretrained feature dis-
tortion and enhance communication efficiency.
FedSparseNet dominates the corresponding fully
finetuned FL baseline on client-seen and client-
unseen performance (by 1.4 BLEU), while LoRA
significantly improves the client-unseen perfor-
mance but falls short on seen-client performance.
• We propose the Continuous Relative Robust-
ness Metric, a metric that measures how well a
given model uniformly dominates the pretrained
model on both, seen and unseen language pairs.

2 Methodology

2.1 FedSparseNet: Composable Sparse
Fine-tuning for FL

Figure 1: The FedSparseNet framework

We propose a variant of the Lottery Ticket Algo-
rithm for federated training called FedSparseNet.
Our work is inspired by Lottery Ticket Sparse Fine-
Tuning (LT-SFT) for cross-lingual transfer (Frankle
and Carbin, 2018). The Lottery Ticket Hypothe-
sis (LTH) (Frankle and Carbin, 2018) states that
each neural model contains a sub-network (a “win-
ning ticket”) that, if trained again in isolation, can
match or even exceed the performance of the origi-
nal model. To recover this ticket, the sparse ticket
is selected using a pruning stage where some pa-
rameters are zero-masked and frozen according to
some criterion (e.g., weight magnitude), and the
remaining parameters are restored to their original
values and then re-tuned. This process of pruning
and re-training can be iterated multiple times.

FedSparseNet (Fig. 1) consists of two stages on
the client. Let i denote the i-th round of training
and θ(i), the server model parameters at round (i).
(Stage 1) This phase is only applicable at i=1. Let
θ
(1)
0 represent the pretrained (client) model param-

eters, and θ(1)1 , the parameters after fine-tuning on
the target language or task data D. The parameters
are ranked according to the greatest absolute dif-
ference |θ(1)0 − θ

(1)
1 |, and the top K are selected for

subsequent tuning. A binary mask µ is set to have
1 in positions corresponding to these parameters,
and 0 elsewhere. This mask state is frozen and
preserved for each client across rounds.
(Stage 2) If we are at round 1, the parameters
are reset to their original values θ(1)0 , and at any
other round, we use the server checkpoint θ(i)s . The
model is again fine-tuned, but this time, only the
K-selected parameters using the mask µ are train-
able, whereas the others are kept frozen. This
is implemented by using the masked gradient
µ ⊙ ∇θL(F (·; θ), D) (where ⊙ denotes element-
wise multiplication and L a loss function) in the
optimizer at each step. If we denote the sparse
finetuned checkpoint as θ(i)2 , only the sparse vector
of differences θ(i)2 − θ

(i)
s is communicated at every

round. The sparse vectors from every client are
then aggregated at the server using an aggregation
strategy like FedAvg before being broadcasted to
clients in the next round.

FedSparseNet enhances communication effi-
ciency by minimizing data transmission which is
often about 1% of the client parameters. The modu-
lar design allows for effective composability, reduc-
ing knowledge overlap and interference among the
client languages. Sparsity also serves as a natural
form of regularization, making these networks less
prone to overfitting, and helping the model retain
generalization properties of the pretrained model
on unseen data. Sparse networks also have other
advantages: it does not introduce additional param-
eters like the adapter (Houlsby et al., 2019), thereby
not reducing inference speed; and the model archi-
tecture remains identical to the pretrained model,
simplifying code development and ensuring the
method is model-agnostic.

2.2 LoRA

We also propose to use Low-Rank Approximation
(Hu et al., 2021), as a parameter-efficient client
optimization technique that maintains composition-
ality and proximity to the pretrained weights.

Low Rank Approximation or LoRA encodes the
parameter updates of a model undergoing finetun-
ing in a much smaller subspace. Specifically, for
a model PΦ(y|x) parameterized by Φ, the typical
model finetuning would involve updating the entire
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Figure 2: The LoRA framework

parameter space according to:

max
Φ

∑

(x,y)∈Z

|y|∑

t=1

log (PΦ(yt|x, y<t)) (1)

LoRA hypothesizes the existence of a low-rank
approximation of the parameter updates, and posits
that the full rank update, denoted by ∆Φ can be
approximated by a much lower rank matrix ∆Φ(θ).
In other words, Φ can be expressed as Φ0+∆Φ(θ).

Several works have studied combining LoRA
with Federated learning. Qi et al. (2024) study
the use of LoRA for LLM personalization; how-
ever, they do not freeze the model’s layers during
training, thereby compromising on efficiency. We
instead maintain efficiency to be our core-focus
similar to the works of Zhang et al. (2024); Ye et al.
(2024); Kuang et al. (2023). During training, we
instantiate each client with LoRA modules of the
same rank. In the first iteration, this implies in-
jecting LoRA modules into the pretrained model.
During finetuning, we freeze all other parameters
but the LoRA modules and subsequently commu-
nicate LoRA modules to the server for aggregation.
The reduction in parameter update space brought by
LoRA, brings significant memory reduction while
training with large models, which is advantageous
in the FL setting.

2.3 Continuous Relative Robustness Metric
for Federated Learning Models

In this work, we employ a fixed model selec-
tion strategy on the clients to optimize for client-
seen performance. We propose modeling enhance-
ments to improve performance on client-unseen
data while retaining performance on client-seen
data. To select among the models that perform
better than the baseline on both client-seen and
unseen data, we propose a new robustness metric
to balance performance (in BLEU) on client-seen
and client-unseen data. Given a model M and

a pre-trained model Mpre, we consider a continu-
ous range of trade-off coefficients, k ∈ [0, 1], to
evaluate the balance between client-seen (CS) and
client-unseen (CU) performance metrics. The per-
formance metric P (M,k) for a modelM is defined
over the continuous domain as:

P (M,k) = k · perfCS(M) + (1− k) · perfCU(M)

Relative Robustness Score The relative robustness
of model M against the pre-trained model Mpre is
quantified by integrating the performance advan-
tage of M over Mpre across the continuous range
of k:

RRS(M) =

∫ 1

0
1{P (M,k) > P (Mpre, k)} dk

Here, 1{} is the indicator function, which is 1 when
M outperforms Mpre at a given k and 0 otherwise.
The integral effectively counts the proportion of the
trade-off range where M surpasses Mpre. This met-
ric compares FL models in balancing client-seen
and client-unseen performance over a continuum.

Language Pair ISO 639-2 codes Dataset Source
Client-Seen Languages

English - French En-Fr UNMT corpus
Arabic-Spanish En-Fr UNMT corpus
Russian-Chinese Ru-Zh UNMT corpus

Client-Unseen Languages - High Resource

Portuguese-English Pt-En FLORES-200
Hindi-English Hi-En FLORES-200
Korean-English Ko-En FLORES-200

Client-Unseen Languages - Mid Resource

Tamil-English Ta-En FLORES-200
Ukrainian-English Uk-En FLORES-200
Finnish-English Fi-En FLORES-200

Client-Unseen Languages - Low Resource

Swahili-English Sw-En FLORES-200
Sinhala-English Si-En FLORES-200
Malayalam-English Ml-En FLORES-200

Table 1: All Language Pairs used in our experiments.
We mimic the setup from Weller et al. (2022b) for client-
seen language pairs, and pick 9 language pairs from
FLORES-200 for our client-unseen languages, based on
M2M-100’s pretraining distribution.

2.4 Experimental Details
We choose machine translation for all our base
tasks and define ‘seen’ and ‘unseen’ language-
pairs as those pairs that are visible or invisible
to the client model during finetuning. We use
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Language Pretrained Centralized IID Non-IID FedSparseNet FedSparseNet LoRA LoRA
Pair FL FL (Non-IID) (IID) (Non-IID) (IID)

Client-Seen Languages

En-Fr 31.8 ± 0.6 38.0 ± 0.7 37.7 ± 0.7 36.9 ± 0.7 38.6 ± 0.7 38.8 ± 0.7 36.0 ± 0.6 36.2 ± 0.6
Ar-Es 28.0 ± 0.5 35.5 ± 0.7 35.9 ± 0.7 32.9 ± 0.6 36.4 ± 0.7 36.5 ± 0.6 33.4 ± 0.6 33.2 ± 0.6
Ru-Zh 30.3 ± 0.5 37.5 ± 0.6 37.7 ± 0.4 38.7 ± 0.6 37.7 ± 0.7 38.0 ± 0.7 34.3 ± 0.6 34.6 ± 0.6
Avg 30.0 ± 0.5 37.0 ± 0.7 37.1 ± 0.6 36.2 ± 0.6 37.6 ± 0.7 37.8 ± 0.7 34.5 ± 0.6 34.6 ± 0.6

Client-Unseen Languages - High Resource

Pt-En 40.0 ± 1.1 31.8 ± 1.1 32.0 ± 1.0 26.7 ± 1.2 32.2 ± 1.3 34.9 ± 1.2 39.5 ± 1.1 39.5 ± 1.2
Hi-En 29.6 ± 1.0 22.0 ± 1.1 22.8 ± 0.9 19.3 ± 1.0 21.8 ± 1.3 25.1 ± 1.1 28.3 ± 1.0 28.9 ± 1.0
Ko-En 20.5 ± 0.9 15.0 ± 0.9 14.4 ± 0.9 13.0 ± 0.8 14.5 ± 1.0 16.7 ± 0.9 19.6 ± 0.9 20.0 ± 1.0
Avg 30.0 ± 1.0 22.9 ± 1.0 23.1 ± 0.9 19.7 ± 1.0 22.8 ± 1.2 25.6 ± 1.0 29.1 ± 1.0 29.4 ± 1.1

Client-Unseen Languages - Mid Resource

Ta-En 8.0 ± 0.6 3.9 ± 0.4 5.0 ± 0.5 3.7 ± 0.4 1.6 ± 0.2 4.7 ± 0.5 9.2 ± 0.7 8.6 ± 0.7
Uk-En 27.9 ± 1.0 18.2 ± 1.0 21.8 ± 0.9 20.7 ± 1.0 21.2 ± 1.2 23.8 ± 0.9 28.2 ± 1.0 27.8 ± 1.0
Fi-En 25.7 ± 1.0 18.2 ± 1.0 18.8 ± 0.8 14.4 ± 1.0 18.8 ± 1.1 21.0 ± 0.9 25.0 ± 1.0 24.9 ± 0.9
Avg 20.5 ± 0.9 13.4 ± 0.8 15.2 ± 0.7 12.9 ± 0.8 13.9 ± 0.8 16.5 ± 0.8 20.8 ± 0.9 20.4 ± 0.8

Client-Unseen Languages - Low Resource

Sw-En 26.0 ± 0.9 17.2 ± 1.0 18.4 ± 1.0 13.6 ± 1.0 15.0 ± 1.1 21.0 ± 1.0 24.4 ± 1.0 24.8 ± 1.0
Si-En 15.9 ± 0.8 8.8 ± 0.7 9.6 ± 0.8 7.3 ± 0.7 6.1 ± 0.7 10.9 ± 0.8 15.1 ± 0.8 14.9 ± 0.9
Ml-En 15.3 ± 0.9 8.0 ± 0.8 8.6 ± 0.8 6.3 ± 0.6 5.5 ± 0.6 10.3 ± 0.8 14.3 ± 0.8 15.0 ± 0.9
Avg 19.1 ± 0.9 11.3 ± 0.8 12.2 ± 0.9 9.1 ± 0.8 8.9 ± 0.8 14.0 ± 0.9 17.9 ± 0.9 18.2 ± 0.9

Weighted Metric Calculation

RRS 0.000 0.488 0.525 0.397 0.485 0.632 0.897 0.882

Table 2: UN-MT Bleu for Client-Seen and Client-Unseen Language Pairs. FedSparseNet uses sparsity ratio 0.01 on
embedding matrix. LoRA trained with rank 8, on embedding matrices. All models are trained for 1 epoch/round.

the M2M100-418M model (Fan et al., 2020) as
our base, UN parallel corpus (which we term
as UNMT) (Ziemski et al., 2016) for finetuning,
FLORES-200 (Costa-jussà et al., 2022) for evalua-
tion and report performance using BLEU (Papineni
et al., 2002). All client models are trained for 100
rounds, and the best model is selected based on the
local validation loss. We choose our seen language-
pairs similar to that of Weller et al. (2022b), and
pick 9 unseen language pairs (3 from High, Mid-
dle and Low resource languages respectively) from
FLORES-200, based on M2M-100’s pretraining
distribution. We choose English to be our target
language for simplicity in evaluation and compar-
ison. Table 1 presents all of our language pairs
and their respective ISO-693-2 codes, which we
shall use from here on. Additional details on train-
ing dataset and metrics can be found in Appendix
A.1. We conduct all experiments over three set-
tings: standard finetuning of the base model with-
out any federation (the Centralized setting), FL on
IID data (IID FL), where all three language pairs
are uniformly mixed and distributed across clients,
and FL on non-IID or heterogeneous data (Non-IID
FL), where each client receives a separate language
pair for training. We use FedAvg (McMahan et al.,
2016) as our aggregation algorithm.

3 Results

Table 2 compares our approach with the baseline
(Weller et al., 2022b): the performance of the feder-
ated fully FT models on unseen-client data shows a
significant drop in performance relative to the Pre-
trained model on all client-unseen language pairs.

FedSparseNet FedSparseNet dominates the cor-
responding baselines across seen and unseen client
datasets (Table 2), demonstrating their overall ef-
fectiveness. Interestingly, no significant trend is
observed across High-, Mid-, and Low-Resource
languages. We also note that while FedSparseNet
(IID) and FedSparseNet (Non-IID) achieve sim-
ilar performance on client-seen data, the latter
exhibits significantly lower performance on un-
seen data, especially for Low-Resource languages.
This suggests that Non-IID FL potentially distorts
pretrained features more than IID-FL, impacting
performance in ways not captured by client-seen
accuracy alone. Consistent with these observa-
tions, the RRS metric reveals a higher value for
FedSparseNet in the IID setting compared to the
Non-IID setting. This highlights the effectiveness
of FedSparseNet in scenarios with balanced and
representative data distributions (IID).
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LoRA In Table 2, we compare LoRA with the
baseline. LoRA demonstrates its highest effi-
cacy on unseen languages, effectively minimizing
the distortion introduced by optimization on seen-
client data during federated finetuning. This ca-
pability to recover unseen client performance can
be attributed to the inherent regularizing effect of
LoRA on the distribution of the federated model.

The strengths of LoRA are further illuminated by
its superior performance in the RRS metric — that
endorses LoRA as a more viable alternative than
full FT and FedSparseNet, for achieving balanced
improvements across seen and unseen language
pairs. However, it is imperative to approach these
results with caution. LoRA’s performance on seen
clients, in both IID and Non-IID settings, falls short
of the centralized model and FedSparseNet. This
observed degradation suggests possible shortcom-
ings in LoRA’s ability to effectively compose client
knowledge across diverse heterogeneous datasets.
While FedSparseNet also appears to benefit from
its approach of localizing seen-language-specific
information through strategic subnet selection—a
method documented to personalize and compose
well across clients (Ansell et al., 2021), LoRA may
encounter challenges in achieving a similar level
of integration, particularly due to interference be-
tween client-specific modules during federated op-
timization.
Comparing Communication Efficiency We com-
pare both methods with the baselines for communi-
cation efficiency up to the point of convergence in
Appendix A.2. We observe a 54x and 5.9x increase
in communication efficiency for FedSparseNet and
LoRA respectively.

4 Conclusion

Motivated by the need to improve generaliza-
tion in FL for unseen client data, we introduce
FedSparseNet and LoraFed. These methods fo-
cus on sparsifying the client parameter space, ad-
dressing the challenge of pretrained feature distor-
tion due to seen-client optimization, and enhancing
communication efficiency.
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A Appendix

A.1 Task Experimental Details

The UN corpus contains written records of the UN
proceedings from 1990-2014. For seen-languages,
we consider training, validation, and tests sets for
the same source and target language pairs as de-
scribed in Weller et al. (2022a), namely (En-Fr),
(Ar-Es), and (Ru-Zh), sampling 10k training ex-
amples and 5k testing examples for each. For client-
unseen languages, we consider the FLORES-200
(Costa-jussà et al., 2022) dataset. FLORES-200
consists of 3001 parallel sentences manually trans-
lated across 200 different languages. We choose its
devtest subset, with 1013 sentences for each lan-
guage. We consider 9 different source languages,
choosing 3 across high-resource (Portuguese (Pt),
Hindi (Hi), Korean (Ko)), mid-resource (Tamil
(Ta), Ukranian (Uk), Finnish (Fi)), and low-
resource (Swahili (Sw), Sinhalese (Si), Malay-
alam (Ml)) settings each. For ease of evaluation
and comparison, we fix the target language to En-
glish, leading to 9 (X-En) language pairs, where X
represents our source language.
Metrics and Model Selection We evaluate and
report client-seen and client-unseen performance
using BLEU (Papineni et al., 2002). We use the
standard sacreBLEU settings (nrefs:1, mixed
case, eff:no, tok:13a, smooth:exp, and
version 2.0.0). For Ja and Zh we use their re-
spective tokenizers. All client models are trained
for 100 rounds, and the best model is selected based
on the local validation loss. To select among mod-
els that perform better than the corresponding fully
finetuned baselines we use the RRS defined in Sec-
tion 2.3.
Compute We train each model on a configuration
of 3 A6000 GPUs. The baselines reach conver-
gence in under 12 hours. FedSparseNet and LoRA
exhibit slightly faster training times.

A.2 Communication Efficiency

To assess the communication efficiency of a model,
we consider the total volume of data (in bytes) trans-
mitted across clients until the model reaches its op-
timal state, as indicated by its best checkpoint. This
efficiency over n rounds until convergence can be
formulated as: trainable_params× num_clients×
n×2. The factor of 2 accounts for the bidirectional
communication between the server and all clients
at both the beginning and the end of each round.
Figure 3 and 4 show the communication efficiency
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curves for the methods.

Figure 3: FedSparse 0.01 vs Full FT communication
efficiency.

Figure 4: Communincation Overhead reduction in
LoRA

A.3 FedSparse Ablations

Where and how to apply FedSparseNet?
In Table 3, we conduct a series of ablation stud-

ies to evaluate the impact of varying the target mod-
ule for sparsity application as well as the sparsity
ratio within the FedSparseNet framework. Specif-
ically, FedSparseNet (0.01) denotes the applica-
tion of a sparse mask with a 0.01 sparsity ratio to
the tied embeddings (encoder and decoder) of the
M2M model. Our comparative analysis between
FedSparseNet (1.0) and FedSparseNet (1.0) + Body
(0.01) reveals that applying a sparse mask to the
tied embeddings layer yields superior performance
on both client-seen and client-unseen data com-
pared to applying the mask to the Body of the M2M
model. This could be attributed to the reduced
feature distortion achieved through sparsity in the
embedding layers (Kumar et al., 2022). Further-
more, our findings indicate that FedSparseNet (0.0)
+ Body (0.01) outperforms FedSparseNet (1.0) +

Body (0.01) in the RRS metric. This suggests that
a higher sparsity ratio applied to the body of the
model might further constrain feature distortion,
enhancing the model’s performance.

When examining the optimal degree of sparsity
to apply, we observed that FedSparseNet configu-
rations with varying sparsity ratios (0.01, 0.1, and
1.0) delivered comparable performances on client-
unseen data. FedSparseNet (0.01) emerged as the
most efficient model overall in terms of RRS and
communication efficiency. Introducing a regular-
ization penalty to FedSparseNet (0.01) with a λ
0.1 did not result in statistically significant differ-
ences in performance on both client-seen and client-
unseen data.

What is the Impact of Increasing Local Work
for FedSparseNet? In Table 4 in A, we com-
pare FedSparseNet and the baselines when each
model is trained for 5 epochs/round. We observe
that increasing local work generally amplifies pre-
trained feature distortion for both baselines and
FedSparseNet. Consequently, the performance
of IID FL and FedSparseNet (Non-IID FL and
IID) deteriorates compared to Table 2. While
FedSparseNet (IID) outperforms IID FL on both
seen and unseen client performance, a surprising
trend emerges for the Non-IID FL baseline. The
model trained with local work exhibits performance
comparable to the 1-epoch/round baseline on seen
data, but surpasses it on unseen data, with increas-
ing gains observed in HRL, followed by MRL
and LRL. While FedSparseNet still achieves better
client-seen data generalization than Non-IID FL,
it lags behind on client-unseen data and the RRS
metric. This suggests that the sparsity mechanism
in FedSparseNet might hinder its ability to fully ex-
ploit the benefits of increased local work for unseen
data. This is particularly relevant for low-resource
languages characterized by limited training data
and potentially weaker local data signals.

Takeaways

1. When examining the optimal degree of spar-
sity to apply, we observed that FedSparseNet
configurations with varying sparsity ratios
(0.01, 0.1, and 1.0) delivered compara-
ble performances on client-unseen data.
FedSparseNet (0.01) emerged as the most ef-
ficient model overall in terms of RRS and
communication efficiency.

2. Introducing a regularization penalty to
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Language FedSparseNet FedSparseNet FedSparseNet FedSparseNet+Reg FedSparseNet FedSparseNet
Pair (0.01) (0.1) (1.0) (0.01) (1.0)+Body(0.01) (0.0)+Body(0.01)

Client-Seen Languages

En-Fr 38.6 ± 0.7 38.7 ± 0.7 38.6 ± 0.7 38.6 ± 0.7 35.1 ± 0.7 35.9 ± 0.7
Ar-Es 36.4 ± 0.7 36.4 ± 0.6 36.5 ± 0.7 36.4 ± 0.6 29.6 ± 0.6 33.0 ± 0.6
Ru-Zh 37.7 ± 0.7 37.7 ± 0.6 37.6 ± 0.6 37.7 ± 0.6 38.7 ± 0.6 38.0 ± 0.6
Avg 37.6 ± 0.7 37.6 ± 0.6 37.6 ± 0.6 37.6 ± 0.6 34.5 ± 0.6 35.6 ± 0.6

Client-Unseen Languages - High Resource

Pt-En 32.2 ± 1.3 31.6 ± 1.5 32.0 ± 1.3 31.8 ± 1.4 27.7 ± 1.0 29.2 ± 1.0
Hi-En 21.8 ± 1.3 21.2 ± 1.3 21.8 ± 1.3 21.3 ± 1.4 19.1 ± 0.9 20.2 ± 0.9
Ko-En 14.5 ± 1.0 14.1 ± 1.0 14.1 ± 1.0 14.5 ± 1.1 12.4 ± 0.7 13.8 ± 0.8
Avg 22.8 ± 1.2 22.3 ± 1.3 22.6 ± 1.2 22.5 ± 1.3 19.7 ± 0.9 21.1 ± 0.9

Client-Unseen Languages - Mid Resource

Ta-En 1.6 ± 0.2 1.6 ± 0.2 1.7 ± 0.2 1.6 ± 0.2 4.1 ± 0.5 4.4 ± 0.5
Uk-En 21.2 ± 1.2 20.7 ± 1.1 21.5 ± 1.1 21.2 ± 1.2 18.4 ± 0.9 19.1 ± 1.0
Fi-En 18.8 ± 1.1 18.1 ± 1.1 18.4 ± 1.1 18.7 ± 1.1 14.7 ± 0.7 16.6 ± 1.0
Avg 13.9 ± 0.8 13.5 ± 0.8 13.9 ± 0.8 13.8 ± 0.8 12.4 ± 0.7 13.4 ± 0.8

Client-Unseen Languages - Low Resource

Sw-En 15.0 ± 1.1 14.6 ± 1.1 14.4 ± 1.1 15.2 ± 1.1 14.8 ± 0.8 15.0 ± 1.0
Si-En 6.1 ± 0.7 6.2 ± 0.7 6.0 ± 0.7 6.3 ± 0.7 7.7 ± 0.7 8.1 ± 0.8
Ml-En 5.5 ± 0.6 5.6 ± 0.6 5.2 ± 0.6 5.5 ± 0.6 7.1 ± 0.7 7.6 ± 0.7
Avg 8.9 ± 0.8 8.8 ± 0.8 8.5 ± 0.8 9.0 ± 0.8 9.9 ± 0.7 10.2 ± 0.8

Weighted Metric Calculation

RRS 0.485 0.477 0.481 0.484 0.328 0.403

Table 3: Different FedSparseNet configurations on non-IID FL are compared. We report BLEU for Client-Seen and
Client-Unseen Language Pairs.

FedSparseNet (0.01) with a λ 0.1 did not re-
sult in statistically significant differences in
performance on both client-seen and client-
unseen data.

3. The impact of varying local work needs
deeper investigation: Sparsification induced
by FedSparseNet might be limiting the effi-
cacy of local work for FedSparse.

B LoRA Ablations

Where and how to apply LoRA ? We explore
the candidates for two critical LoRA hyperparame-
ters: rank and its target modules to understand the
ideal composition of target location and capacity
for the sparsification we induce.

LoRA Rank The approximation rank in LoRA
is a critical hyperparameter that governs the reduc-
tion in the projection we carry with the gradient
updates. We experimented with 2 LoRA ranks: 8
and 32. Table 5 summarizes LoRA’s performance
with these: 8 and 32. In our experiments, the in-
crease in rank shows a marginal improvement with
the numbers though we include even greater ranges
for sweeping over ranks in our future work. We

posit that the lack of any significant improvement
in the capacity of the model could be attributed to
the need for differential language-specific capacity
i.e., it is possible that languages belonging to dif-
ferent categories (seen or unseen, high-resource or
low-resource) may require different rank attributed
capacities as has been explored in multilingual lit-
erature like Chang et al. (2023) and since we train
with a uniform rank, we may be under-allocating
or over-allocating capacity specifically to the seen
clients. Recent work like Ding et al. (2023) also
highlights an important caveat of LoRA is training
with a fixed rank (for the entirety of the model’s
training) which could also be impeding LoRA’s
efficacy.

LoRA Target Modules We explore applying
LoRA to (a) all layers (Key and Query projections)
and (b) Input Embedding of the models. We no-
tice a significant improvement in the performance
with the use of embedding projections (in align-
ment with our observation in FedSparse). We posit
that the perturbation induced by applying LoRA to
all the layers is either too extreme (we see a drop
in performance even on the seen clients) or not
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Language Pair Pretrained Centralized IID FL Non-IID FL FedSparseNet FedSparseNet
(Non-IID FL) (IID)

Client-Seen Languages

En-Fr 31.8 ± 0.6 38.0 ± 0.7 36.3 ± 0.7 33.1 ± 0.6 38.6 ± 0.7 38.5 ± 0.7
Ar-Es 28.0 ± 0.5 35.5 ± 0.7 35.6 ± 0.7 36.7 ± 0.6 36.3 ± 0.6 36.4 ± 0.6
Ru-Zh 30.3 ± 0.5 37.5 ± 0.6 37.4 ± 0.6 39.2 ± 0.6 37.3 ± 0.6 37.9 ± 0.6
Avg 30.0 ± 0.5 37.0 ± 0.7 36.4 ± 0.7 36.3 ± 0.6 37.4 ± 0.6 37.6 ± 0.6

Client-Unseen Languages - High Resource

Pt-En 40.0 ± 1.1 31.8 ± 1.1 20.7 ± 1.0 34.6 ± 1.1 32.3 ± 1.2 32.7 ± 1.4
Hi-En 29.6 ± 1.0 22.0 ± 1.1 14.1 ± 0.9 25.5 ± 0.9 21.8 ± 1.3 24.0 ± 1.1
Ko-En 20.5 ± 0.9 15.0 ± 0.9 9.3 ± 0.7 17.5 ± 0.9 14.6 ± 1.1 15.6 ± 0.9
Avg 30.0 ± 1.0 22.9 ± 1.0 14.7 ± 0.9 25.9 ± 1.0 22.9 ± 1.2 24.1 ± 1.1

Client-Unseen Languages - Mid Resource

Ta-En 8.0 ± 0.6 3.9 ± 0.4 2.5 ± 0.3 7.0 ± 0.7 2.2 ± 0.3 4.2 ± 0.5
Uk-En 27.9 ± 1.0 18.2 ± 1.0 13.1 ± 0.9 24.9 ± 1.0 21.4 ± 1.1 22.1 ± 1.1
Fi-En 25.7 ± 1.0 18.2 ± 1.0 10.0 ± 0.8 21.8 ± 0.9 18.9 ± 1.0 19.5 ± 1.0
Avg 20.5 ± 0.9 13.4 ± 0.8 8.5 ± 0.7 18.2 ± 0.5 14.2 ± 0.8 15.3 ± 0.9

Client-Unseen Languages - Low Resource

Sw-En 26.0 ± 0.9 17.2 ± 1.0 9.4 ± 0.8 20.1 ± 1.0 16.1 ± 1.1 19.6 ± 0.9
Si-En 15.9 ± 0.8 8.8 ± 0.7 4.5 ± 0.5 12.5 ± 0.9 7.3 ± 0.7 10.3 ± 0.8
Ml-En 15.3 ± 0.9 8.0 ± 0.8 4.3 ± 0.4 12.0 ± 0.8 6.6 ± 0.7 9.6 ± 0.8
Avg 19.1 ± 0.9 11.3 ± 0.8 6.1 ± 0.6 15.0 ± 0.9 10.0 ± 0.8 13.2 ± 0.8

Weighted Metric Calculation

RRS 0.000 0.496 0.323 0.643 0.497 0.573

Table 4: UN-MT Bleu for Client-Seen and Client-Unseen Language Pairs. FedSparseNet uses sparsity ratio 0.01.
All models are trained for 5 epochs/round.

coupled with the right rank (may require a lower
rank) to achieve optimal results. Our best model
eventually used the model where embeddings were
perturbed by LoRA.

Takeaways

1. Applying LoRA to the embedding layer gives
significant gains over perturbing the Key and
Query projections.

2. Increasing Rank over a limited range [8-32]
does not induce a statistically significant im-
provement in performance.
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Language Pretrained Centralized IID FL Non-IID FL LoRA LoRA LoRA
Pair (embedding, rank=8) (embedding, rank=32) (k,q), rank=8

Client-Seen Languages
En-Fr 31.8 ± 0.6 38.0 ± 0.7 37.7 ± 0.7 36.9 ± 0.7 36.0 ± 0.6 36.4 ± 0.6 35.8 ± 0.6
Ar-Es 28.0 ± 0.5 35.5 ± 0.7 35.9 ± 0.7 32.9 ± 0.6 33.4 ± 0.6 33.2 ± 0.6 32.4 ± 0.6
Ru-Zh 30.3 ± 0.5 37.5 ± 0.6 37.7 ± 0.4 38.7 ± 0.6 34.3 ± 0.6 34.7 ± 0.6 33.2 ± 0.6
Avg 30.0 ± 0.5 37.0 ± 0.7 37.1 ± 0.6 36.2 ± 0.6 34.6 ± 0.6 34.8 ± 0.6 33.8 ± 0.8

Client-Unseen Languages - High Resource
Pt-En 40.0 ± 1.1 31.8 ± 1.1 32.0 ± 1.0 26.7 ± 1.2 39.5 ± 1.1 39.5 ± 1.1 38.5 ± 1.1
Hi-En 29.6 ± 1.0 22.0 ± 1.1 22.8 ± 0.9 19.3 ± 1.0 28.3 ± 1.0 28.7 ± 1.0 28.3 ± 1.0
Ko-En 20.5 ± 0.9 15.0 ± 0.9 14.4 ± 0.9 13.0 ± 0.8 19.6 ± 0.9 19.5 ± 0.9 19.5 ± 0.9
Avg 30.0 ± 1.0 22.9 ± 1.0 23.1 ± 0.9 19.7 ± 1.0 29.1 ± 1.0 29.2 ± 1.0 28.8 ± 1.0

Client-Unseen Languages - Mid Resource
Ta-En 8.0 ± 0.6 3.9 ± 0.4 5.0 ± 0.5 3.7 ± 0.4 9.2 ± 0.7 9.5 ± 0.7 8.2 ± 0.7
Uk-En 27.9 ± 1.0 18.2 ± 1.0 21.8 ± 0.9 20.7 ± 1.0 28.2 ± 1.0 28.0 ± 1.0 27.5 ± 1.0
Fi-En 25.7 ± 1.0 18.2 ± 1.0 18.8 ± 0.8 14.4 ± 1.0 25.0 ± 1.0 24.8 ± 1.0 24.4 ± 0.9
Avg 20.5 ± 0.9 13.4 ± 0.8 15.2 ± 0.7 12.9 ± 0.8 20.8 ± 0.9 20.8 ± 0.9 20.3 ± 0.9

Client-Unseen Languages - Low Resource
Sw-En 26.0 ± 0.9 17.2 ± 1.0 18.4 ± 1.0 13.6 ± 1.0 24.4 ± 1.0 24.6 ± 1.0 23.5 ± 1.1
Si-En 15.9 ± 0.8 8.8 ± 0.7 9.6 ± 0.8 7.3 ± 0.7 15.1 ± 0.8 14.9 ± 0.8 14.2 ± 0.9
Ml-En 15.3 ± 0.9 8.0 ± 0.8 8.6 ± 0.8 6.3 ± 0.6 14.3 ± 0.8 14.9 ± 0.8 13.7 ± 0.9
Avg 19.1 ± 0.9 11.3 ± 0.8 12.2 ± 0.9 9.1 ± 0.8 17.9 ± 0.9 18.1 ± 0.9 17.1 ± 1.0

Weighted Metric Calculation
RRS 0.000 0.496 0.323 0.643 0.896 0.882 0.882

Table 5: Different LoRA configurations varying the target modules and ranks. All models are trained for 1
epoch/round and for 100 rounds.
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Abstract

This pilot study explores the application of lan-
guage models (LMs) to model game event se-
quences, treating them as a customized lan-
guage. We investigate a popular mobile game,
transforming raw event data into textual se-
quences and pretraining a Longformer model
on this data. Our approach captures the rich
and nuanced interactions within game sessions,
effectively identifying meaningful player seg-
ments. The results demonstrate the potential of
self-supervised LMs in enhancing game design
and personalization without relying on ground-
truth labels.

1 Introduction

The dominant form of human interaction is natural
language, represented by a stream of words. Lan-
guage Models (LMs) have become highly effective
in understanding and representing these general-
purpose natural languages. Similarly, when a hu-
man player interacts with a video game, the pri-
mary form of interaction is through game controls,
which lead to visual and auditory feedback. This in-
game interaction is typically recorded as a stream
of events, each with rich attributes and categories.
This pilot study explores whether we can apply
LMs, initially designed for word sequences, to
model game event sequences. Understanding
player behavior through this modeling approach
is crucial for designing engaging experiences, im-
proving game mechanics, and personalizing con-
tent. For example, understanding the optimal bal-
ance between challenge and progression can enable
dynamic game difficulty adjustments, maximizing
the enjoyment experienced by players.

Traditionally, understanding game players has
relied on surveys and interviews, such as those con-
ducted in (Rodrigues et al., 2022). While these

*Both authors contributed equally to this research.
†Joint senior authorship.
‡Corresponding author: oleg.smirnov@microsoft.com

methods provide valuable insights, they are signifi-
cantly limited by scalability. Deep Learning (DL)
models, like those in (Cao et al., 2020), have been
trained on aggregated (from game events) game-
play data to achieve in-game personalization, but
they often neglect nuanced interactions. Recently,
training DL models on sequential interactions be-
tween players and in-game items has been explored,
as exemplified by (Villa et al., 2020). However,
these modeled interactions are still relatively lim-
ited in type and richness compared to game events.
Moreover, most of these DL models only optimize
for specific personalization scenarios, requiring
large amount of ground-truth labels, which are not
always available.

As a consequence, self-supervised LM pretrain-
ing emerged as a promising approach to directly
model the rich and fine-grained game events in a
scalable way without requiring any labels. In prin-
ciple, this pretrained model is not restricted to any
specific personalization use case. To the best of
our knowledge, this is the first attempt to pretrain
an LM on game events by treating these events as
a customized natural language. The highlights of
this pilot study are: (§3) studying a popular mo-
bile video game from King1, Candy Crush Saga,
(§4) developing a simple method for transforming a
large amount of game events into language tokens,
(§5) pretraining an LM on the customized “lan-
guage” representing game events, (§6) reporting
experimental results on the LM’s intrinsic perfor-
mance and its capability in understanding game
players, and finally (§7) we outline measures em-
ployed to mitigate ethical considerations.

2 Related Work

Modeling sequential interactions between users and
items has been extensively studied in recommenda-
tion systems. Initial approaches utilized Markovian

1https://king.com
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app start game start game end interaction impression other

Event Type

Event 𝑬𝑵𝟏: game end

{

    "player_id": 12345, "server_time": 170506690,

    "client_time": time(12:34), "client_timezone": GMT+01:00,

    "level": 123, "end_reason": "success", "score": 12345

}

Figure 1: Example events segmented into semantic sessions. The final game-end event in “Session 1” is expanded
to show details about its associated fields and values.

assumptions for collaborative filtering (Zimdars
et al., 2001), later extended to Markov decision
processes (Shani et al., 2005). Predicting future
behavior trajectories using contextual and sequen-
tial information has been addressed with autore-
gressive Long Short-Term Memory models (Wu
et al., 2017) and coupled Recurrent Neural Net-
work (RNN) architectures for joint modeling of
user/item interactions (Kumar et al., 2019). Explic-
itly modeling different types of user behavior, such
as repeated consumption, has also shown to im-
prove downstream performance metrics (Anderson
et al., 2014; Ren et al., 2019).

LMs have been leveraged for embedding se-
quential data in recommendation settings, begin-
ning with music track representations using the
Word2Vec objective (Mehrotra et al., 2018) and ex-
tending to modeling sequences of listening sessions
with RNNs (Hansen et al., 2020). More recently,
self-attention sequential models have been intro-
duced, such as BERT4Rec (Sun et al., 2019), which
balance the trade-off between Markov chain mod-
els and neural network methods. Follow-up work
on multi-task customer models for personalization
has further advanced this field by integrating novel
data augmentation and task-aware readout mod-
ules (Luo et al., 2023).

Despite these advancements, the application of
LMs for user modeling in gaming remains under-
explored. Our study proposes the first approach for
learning representations of mobile game players
by pretraining a Transformer architecture in a self-
supervised manner, treating game event sequences
as a customized natural language. This approach
aims to capture the rich and nuanced interactions
within game sessions.

3 The Game and Interaction Events

This pilot study focuses on Candy Crush Saga
game. When a player interacts with this game
on a mobile device, their behavior generates a se-
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Figure 2: (a) Histogram of session lengths and (b) the
distribution of session quantities over a 15-day period
shown up to the 99th percentile.

quence of time-ordered events, which are recorded
locally on the user’s device and later sent to the
central game server in batches. Example events
include starting the game application, beginning a
new game round, purchasing in-game items, and
displaying pop-ups and notifications. The tracked
player behavior events fall into 12 categories, each
with an associated schema containing continuous
and categorical features.

The player-game interaction events are seg-
mented into sessions based on the player’s activity
semantics, as illustrated in Figure 1. According to
game analytics conventions recommended by the
data scientists from the game producer, a session is
considered to have ended if a player is inactive for
15 minutes or more. For this study, we collected a
dataset of player event sessions over 15 days, with
10,000 players uniformly sampled from the entire
player population. The resulting dataset consists
of 125,000 sessions, split into a 2:1 train-test ratio.
The distribution of session lengths in the dataset
is shown in Figure 2a, while Figure 2b depicts the
distribution of sessions quantities. Both session
lengths and quantities approximately follow a geo-
metric distribution.

Our collected event data, while superficially
similar to tracking data in other domains like e-
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commerce, presents unique challenges. In-game
interactions occur at a much higher frequency than
in web browsing, resulting in large volumes of
potentially redundant events that call for careful
preprocessing and modeling of long-range depen-
dencies. Additionally, game event sequences are
often noisy, with incorrectly ordered events or miss-
ing ordering information due to users switching be-
tween online and offline modes, which can degrade
model performance during training and inference.

4 From Events to Words

The raw format of game events is JSON. To make
this data digestible by LMs, we designed a sim-
ple pipeline to transform raw events into textual
sequences. As illustrated in Figure 3, the pipeline
begins by removing unnecessary events and fields.
Leveraging game-specific knowledge, we filter out
non-informative data, such as device-specific logs,
reducing the number of event fields by over 90%.
We bin certain numerical features, such as the hour
of the day, based on domain-specific knowledge
to convert them into categorical variables. Addi-
tionally, we group similar in-game event identifiers,
e.g., the name of the UI shown, to reduce the vo-
cabulary size. The words are then grouped by users
and sessions, ordered by timestamps to preserve
the natural interaction flow, and concatenated to
form a textual description of a player’s interaction
experience.

We use a word-level tokenizer that splits a space-
separated string into tokens and maps them to
unique identifiers. This approach suits the rela-
tively small vocabulary of behavior data (∼13,500
tokens), though the tokenized sequences are much
longer than those in typical NLP tasks like senti-
ment analysis.

5 Pretrain a Language Model

The tokenized word sequences are often longer
than 512 tokens, which are unmanageable for
the conventional BERT (Kenton and Toutanova,
2019) architecture and its derivatives. Model-
ing long sequences poses a significant challenge
to Transformer-based approaches due to the self-
attention operation, which scales quadratically with
input length in terms of memory and computational
complexity. This challenge is intensified when
modeling distant dependencies in extended game-
play experiences that involve concatenating mul-
tiple sessions. To overcome this, we adopt Long-

model size #layer #head dims block size #params
small 2 2 128 1024 2M

medium 6 6 384 2048 20M
large 12 12 768 4096 121M

Table 1: Hyperparameters for different model sizes.

model size accuracy ↑ perplexity ↓ CE ↓
small 0.69± 0.06 3.27± 0.71 1.16± 0.22

medium 0.93± 0.01 1.28± 0.09 0.25± 0.07

large 0.95± 0.01 1.16± 0.05 0.15± 0.04

Table 2: Mean values and standard deviations of in-
trinsic language modeling metrics computed over five
training runs.

former (Beltagy et al., 2020), a model designed
specifically for processing long textual inputs.

Longformer combines dilated sliding window
attention for local context and global attention on
a few pre-selected input locations. This approach
scales linearly with input size, enabling the pro-
cessing of sequences up to 4,096 tokens in a single
pass, which is sufficient for most behavior model-
ing scenarios. Additionally, Longformer’s sparse
attention pattern performs well in contexts where
many tokens in the immediate local context may be
redundant, as is often the case with high-frequency
game events.

We pretrained several Longformer variants2

from scratch with different capacities, based on
the hyper-parameters listed in Table 1. We ex-
perimented with the baseline Longformer config-
uration, i.e., “large”, and two smaller model vari-
ants with fewer internal layers and self-attention
heads. The models were optimized with the
masked language modeling (MLM) objective using
Adam (Kingma, 2014) with a fixed learning rate of
2×10−5. Each LM was trained from randomly ini-
tialized weights for 100 epochs with a batch size of
4 and gradient accumulation over 4 steps, resulting
in an effective batch size of 16 (216 tokens).

6 Results

First, we evaluate the intrinsic performance of the
proposed approach using intrinsic MLM metrics.
We report the Cross-Entropy (CE) loss and multi-
class classification accuracy of predicting masked

2We use the HuggingFace Transformers (Wolf et al., 2019)
library and PyTorch framework (Paszke et al., 2019) for model
implementation. All models were trained with half-precision
(FP16) on a single NVIDIA A100 GPU, with the large model
taking approximately 50 hours to complete pretraining.
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Group by player and session, sort by
timestamp

Retain relevant events

{"app start": {"player_id": 123, "server_time": 0001, ...}},
{"app log": {"player_id": 321, "server_time": 0011, ...}},
{"game start": {"player_id": 123, "server_time": 0011, ...}}

{"app start": {"player_id": 123, "server_time": 0001, ...}},
{"app log": None},
{"game start": {"player_id": 123, "server_time": 0011, ...}}

Drop uninformative fields

{"app start": {"player_id": 123, "client_time": 0001, ...}},
{"app log": None},
{"game start": {"player_id": 123, "game_type": "A", ...}}

Values type conversion

{"app start": {"player_id": 123, ...}},
{"game start": {"player_id": 123,
                          "game_type": "type description", ...}}

"player_123": [{"app start": {"field_1": "value_1", ...}},
                        {"game start": {"game_type": "type description", ...}}

Join events

"app start" "field_1" "value_1" [SEP] "game start"
"game_type" "type description" [SEP]

Figure 3: The pipeline to convert event streams to word streams.

tokens on the validation split for the tested model
architectures, as shown in Table 2. Additionally, we
report the perplexity score, following established
methodologies for evaluating MLM pretraining per-
formance (Liu et al., 2019). As expected, we ob-
serve that LMs with larger capacities achieve better
fits for the behavior sessions without overfitting.

Next, we perform a qualitative analysis to iden-
tify spontaneous player clusters representing dif-
ferent behavioral persona. We extract embeddings
of input token sequences from the pretrained large
Longformer model. Using 4096× 768-dim repre-
sentations from the last Attention layer, we apply
max pooling over sequence length to compute an
embedding vector for each input sequence. These
session embeddings are projected onto the first 50
principal components using linear PCA to reduce
noise and speed up computation. The projections
are then mapped to 2D space via t-SNE (Van der
Maaten and Hinton, 2008) and clustered with a
Gaussian Mixture Model (Reynolds et al., 2009)
with eight components. The resulting t-SNE plot is
shown in Figure 4a. Analyzing the average player
behavior within the well-separated t-SNE clusters
in Figure 4b, we collaboratively identified player
segments with game analysts from a practical prod-
uct perspective. Identified players’ personas qual-
itatively resonate with what our user researchers
extracted from self-reported behavioral surveys:

1. Competitive devoted: a skilled player who plays
less often but long sessions, occasionally pur-
chasing items and collecting utilities.

2. Casual devoted: a player who plays long ses-
sions infrequently, engages in quests, collects
rewards, and prefers free gameplay.

3. Persistent devoted: a player who plays frequent,
long sessions without purchasing.

4. Lean-in casual economy aware: A skilled player
who plays less often but for long sessions, occa-
sionally buying items.

5. Lean-in casual: a skilled player who plays less
often but for long sessions.

6. Persistent casual: a less skillful player who
plays short, frequent sessions with little engage-
ment in social and economic aspects.

7. Persistent collector: a player with frequent short
sessions, collecting utilities to progress.

7 Ethical Considerations

Computational modeling of player behavior in
games has raised various ethical concerns within
both research and industry (Mikkelsen et al., 2017).
In this pilot study, we utilize non-personally iden-
tifiable tracking data from in-game interactions to
create vectorized representations of player behav-
iors. Our objective is to leverage these representa-
tions to support personalized and enhanced player
experiences while maintaining ethical standards.

Potential ethical risks include (1) biases in the
input dataset, such as under-representing less fre-
quent player behaviors, and (2) the misapplication
of models to different data distributions, known as
Type III errors (Mikkelsen et al., 2017). To mitigate
these risks, we use robust data validation and auto-
mated model analysis tools available in production-
ready machine learning frameworks (Modi et al.,
2017).

We address under-represented player behaviors
through qualitative evaluation methods, such as
embedding space visualization. Additionally, we
periodically retrain the model with recent data to
address distribution shifts, with retraining inter-
vals determined empirically based on model perfor-
mance and data drift.

For the downstream recommendation system, we
plan to implement model explainability and uncer-
tainty estimation methods to better understand the
model’s robustness, biases, and other ethical con-
siderations. These measures aim to ensure that our
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Figure 4: (a) t-SNE of the latent embedding space from
the pretrained large Longformer with Gaussian Mixture
Model clustering. (b) Histogram of quantized player
events in clusters (excluding cluster 8 due to small size
and lack of gameplay).

modeling approach supports ethical and responsi-
ble AI deployment.

8 Conclusion and Future Work

This pilot study demonstrates the potential of us-
ing self-supervised language models to understand
player behavior by modeling game event sequences
as a customized natural language. Our approach,
leverages the Longformer model to effectively cap-
tures the rich and nuanced interactions within game
sessions in a self-supervised manner, agnostic to
downstream use-cases. The results highlight the
model’s ability to identify meaningful player seg-
ments, providing valuable insights for game design
and personalization. For future work, we plan to
extend training to single- and multitask fine-tuning

with labeled datasets to benchmark against fully-
supervised baselines. We anticipate that our ap-
proach can be extended to other event-based game
datasets as well.
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Togelius. 2017. Ethical considerations for player

51



modeling. In Workshops at the Thirty-First AAAI
Conference on Artificial Intelligence.

Akshay Naresh Modi, Chiu Yuen Koo, Chuan Yu
Foo, Clemens Mewald, Denis M. Baylor, Eric
Breck, Heng-Tze Cheng, Jarek Wilkiewicz, Lev-
ent Koc, Lukasz Lew, Martin A. Zinkevich, Mar-
tin Wicke, Mustafa Ispir, Neoklis Polyzotis, Noah
Fiedel, Salem Elie Haykal, Steven Whang, Sudip
Roy, Sukriti Ramesh, Vihan Jain, Xin Zhang, and
Zakaria Haque. 2017. Tfx: A tensorflow-based
production-scale machine learning platform. In KDD
2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Pengjie Ren, Zhumin Chen, Jing Li, Zhaochun Ren,
Jun Ma, and Maarten De Rijke. 2019. Repeatnet:
A repeat aware neural recommendation machine for
session-based recommendation. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 4806–4813.

Douglas A Reynolds et al. 2009. Gaussian mixture
models. Encyclopedia of biometrics, 741(659-663).

Luiz Rodrigues, Armando M Toda, Wilk Oliveira,
Paula Toledo Palomino, Julita Vassileva, and Seiji
Isotani. 2022. Automating gamification personaliza-
tion to the user and beyond. IEEE Transactions on
Learning Technologies, 15(2):199–212.

Guy Shani, David Heckerman, Ronen I Brafman, and
Craig Boutilier. 2005. An mdp-based recommender
system. Journal of Machine Learning Research, 6(9).

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin,
Wenwu Ou, and Peng Jiang. 2019. Bert4rec: Se-
quential recommendation with bidirectional encoder
representations from transformer. In Proceedings of
the 28th ACM international conference on informa-
tion and knowledge management, pages 1441–1450.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Andrés Villa, Vladimir Araujo, Francisca Cattan, and
Denis Parra. 2020. Interpretable contextual team-
aware item recommendation: application in multi-
player online battle arena games. In Proceedings of
the 14th ACM Conference on Recommender Systems,
pages 503–508.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
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Abstract

When distributional differences exist between
pre-training and fine-tuning data, language
models (LMs) may perform poorly on down-
stream tasks. Recent studies have reported that
multi-task learning of downstream task and
masked language modeling (MLM) task during
the fine-tuning phase improves the performance
of the downstream task. Typical MLM tasks
(e.g., random token masking (RTM)) tend not
to care tokens corresponding to the knowledge
already acquired during the pre-training phase,
therefore LMs may not notice the important
clue or not effective to acquire linguistic knowl-
edge of the task or domain. To overcome this
limitation, we propose a new masking strat-
egy for MLM task, called L3Masking 1, that
leverages lessons (specifically, token-wise like-
lihood in a context) learned from the vanilla
language model to be fine-tuned. L3Masking
actively masks tokens with low likelihood on
the vanilla model. Experimental evaluations
on text classification tasks in different domains
confirms a multi-task text classification method
with L3Masking performed task adaptation
more effectively than that with RTM. These
results suggest the usefulness of assigning a
preference to the tokens to be learned as the
task or domain adaptation.

1 Introduction

Language Models (LM) pre-trained on generic doc-
uments such as BERT (Kenton and Toutanova,
2019) or GPTs (e.g., GPT-4 (Achiam et al., 2023))
may perform poorly on downstream tasks when
the vocabulary or context used in the documents
in each pre-training and downstream task differs
(Gururangan et al., 2020; Shi et al., 2024). To
bridge the domain gap between pre-training and
fine-tuning, continual pre-training is used. Contin-
ual pre-training re-trains a model by applying the

1The code is available at https://github.com/usk-Kim
ura/L3Masking
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Random Token
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L3Mask ing

0.15 0.15 0.15 0.15 ? 0.15

Mask probabi l i ty

Figure 1: L3Masking vs. Random Token Masking.
L3Masking determines masking tokens based on the
pseudo-likelihood calculated through the vanilla model.

pre-training task again on the task or domain data
(Xie et al., 2023). Recent studies have reported
that multi-task learning (MTL) of downstream and
pre-training tasks (e.g., masked language modeling
(MLM)) during the fine-tuning phase can improve
the performance of downstream tasks in compari-
son with continual pre-training (Dery et al., 2022,
2023; Kimura et al., 2023).

Existing task or domain adaptation methods for
the encoder of Transformer architecture (Vaswani
et al., 2017) typically utilize MLM, and random
token masking (RTM) is mostly used masking strat-
egy (Kenton and Toutanova, 2019; Liu et al., 2019).
MLM is expected to use to adaptively learn the dis-
tribution of task and domain data from the learned
distribution of the pre-training corpora. The MLM
with simple strategy treats all tokens equally. How-
ever, existing MLMs ignore the linguistic knowl-
edge already acquired by the language model, and,
to learn the distribution properly, it requires large
amount of time and data. Beside the fact that the
amount of data for fine-tuning is limited, the more
efficient masking strategy for MLM task is desired.

To overcome this, we propose a new masking
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strategy for MLM called L3Masking (Leveraging
Lessons Learned from vanilla model) as an effec-
tive task or domain adaptation. Figure 1 highlights
the difference between L3Masking and a popu-
lar and simple masking strategy Random Token
Masking. L3Masking identifies tokens with low
likelihoods as task- or domain-specific tokens that
appear less frequently in the similar contexts in the
generic documents, and it actively masks them so
that LM learns these tokens during fine-tuning.

Unlike causal language modeling which com-
putes the likelihood of a token in a sentence only
from the preceding tokens, MLM can compute the
likelihood of the token conditional on both preced-
ing and subsequent tokens. This difference has led
to variations in the idea of a sentence’s likelihood
and has been noted in what is called the pseudo-log-
likelihood (PLL) (Kauf and Ivanova, 2023). Based
on the PLL, this study defines a token-wise pseudo-
likelihood in the downstream task sentence and
actively mask tokens with low pseudo-likelihood.

In consequence, the contributions of this paper
can be summarized as follows:

• L3Masking: This paper proposes a new mask-
ing strategy called L3Masking for MLM task
in the multi-task text classification, which set
token-wise mask probabilities for task or domain
adaptation, enhancing the adaptability of LMs to
new domains and tasks.

• Validation: Experimental evaluations reported
in this paper validate the effectiveness of
L3Masking through three text classification tasks
in different domains, highlighting its improve-
ment from the simply fine-tuned models and its
superiority over random token masking in the
comparison of masking strategy.

• Efficiency: This paper also demonstrate that
L3Masking not only improves the text classifi-
cation performance of models but also increases
the efficiency of training in text classification
tasks. By selectively masking task- and domain-
specific tokens, L3Masking reduces the number
of training epochs required while maintaining or
improving accuracy.

2 Related Studies

This section describes the task or domain adapta-
tion methods that have been studied in contexts of
continual pre-training and fine-tuning.

2.1 Adaptation in Continual Pre-training

Continual pre-training is a method of continuing
further pre-training with additional data to adapt
a vanilla LM pre-trained by generic corpora to a
specific task or domain (Gururangan et al., 2020;
Xie et al., 2023). A fundamental assumption of the
method, known as the Selective Language Model-
ing (SLM) (Lin et al., 2024), is that all tokens are
not equally useful for adaptation. Specifically, a
reference model is first prepared that is continually
pre-trained on high-quality data for the domain in
question. Then, from low-quality data containing
many tokens that are not included in the documents
of downstream tasks in the domain concerned, to-
kens with the necessary knowledge are identified
and actively learned, thereby enabling effective and
efficient continual pre-training.

The difference between SLM and L3Masking
is the quality of the target documents. SLM re-
lies on high-quality data from the domain to deter-
mine whether a token corresponds to that linguistic
knowledge, therefore, the cost of collecting high-
quality data is high. L3Masking differs from SLM
in that it determines task- or domain-specific tokens
based only on the data of downstream task.

2.2 Adaptation in Fine-Tuning

META-TARTAN (Dery et al., 2022) is an effec-
tive task or domain adaptation method that brings
pre-training tasks into fine-tuning phase, and it
is a multi-talk learning besides of downstream
tasks. META-TARTAN performs the MTL with
the downstream and the pre-training tasks as auxil-
iary tasks and dynamically weights the loss values
of each task to increase the accuracy of the vali-
dation data in the downstream task based on meta-
learning. META-TARTAN employ RTM, which
masks tokens in a uniform random manner (Guru-
rangan et al., 2020), in analogous with continual
pre-training in MLMs.

Many masking strategies for the MLM task have
been proposed, such as Knowledge Masking, PMI-
Masking, and InforMask (Sun et al., 2019; Levine
et al., 2021; Sadeq et al., 2022). These methods
use PMI, which depends on the frequency of token
occurrence and co-occurrence, to increase the prob-
ability of collocation being masked. However, as
the size of the dataset in the post-training phase is
limited compared to the pre-training corpus, these
methods may be less effective with small amounts
of data where the co-occurrence pattern of tokens
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is less pronounced.
Using RTM in META-TARTAN may be not ef-

fective because the masking target masks tokens
with regardless of the linguistic knowledge ac-
quired in pre-training. In order to adapt a data
distribution for downstream tasks that is different
from pre-training, masking more tokens that are not
plausible for the LM in a certain context may ef-
fectively lead to the acquisition of linguistic knowl-
edge in the task or domain. Based on this idea,
L3Masking identifies tokens that are not plausible
in context based on the likelihood of each token in
the context on the vanilla models.

3 L3Masking: the proposed method

This paper propose a new masking strategy of
MLM task for task or domain adaptation, called
L3Masking. The basic idea is to improve task
and domain adaptability by actively masking to-
kens in sentences that are not well trained dur-
ing pre-training. Figure 2 depicts the overview
of L3Masking. L3Masking captures the tokens that
are most likely to represent task- or domain-specific
linguistic knowledge based on a token-wise like-
lihood. Since the likelihood cannot be calculated
simply in bidirectional LM, L3Masking calculates
the token-wise pseudo-likelihood and then masks
more tokens with lower the pseudo-likelihood.

3.1 Pseudo-log-likelihood of a Sentence

In unidirectional LM, the log-likelihood of a sen-
tence can be calculated by summation of the log-
arithm of the predicted probability of the tokens
based on the preceding tokens. However, as MLM
takes the tokens behind a token when predicting
it into account, it expands the interpretation of the
likelihood that can utilize the subsequent tokens
in addition to the preceding tokens. Therefore,
the following three methods are proposed to com-
pute the pseudo-log-likelihood of a sentence in an
MLM, namely, PLL-original (Salazar et al., 2020),
PLL-word-l2r (Kauf and Ivanova, 2023), and PLL-
whole-word (Kauf and Ivanova, 2023).

In the previous study, the PLL score calculated
by PLL-word-l2r is considered the best pseudo-
log-likelihood for a sentence (Kauf and Ivanova,
2023). PLL-word-l2r (PLL12r) is based on word as
a unit for masking and tokens of a word on the right
(future direction) are not aware via masking during

inference. This idea is formulated as follows:

PLL12r(S) :=

|S|∑

w=1

|w|∑

t=1

logPMLM(swt |S\swt′≥t
)

(1)
where the t-th token swt is subject to calculate a
probability in a context represented as S\swt′≥t

. For
inference, the context is constructed by substituting
the token sub-sequence of a word w, where the t-th
token swt is a part of, from swt to the last token
swt′ of w. In other words, S\swt′≥t

is denoted as

(s0, s1, . . . , st−1, [MASK], ..., [MASK], st′+1, . . . , sn).

3.2 Token-wise Pseudo-likelihood
In this study, the pseudo-likelihood (PL) of each
token is calculated based on PLLl2r (Eqn. (1)). In
this study, this pseudo-likelihood of token s in a
sentence S is called the PL of Token (PLT) and is
defined as follows:

PLT
(
X = swt | S\swt′≥t

)

= PMLM

(
swt | S\swt′≥t

)
(2)

where X refers to the token for which the PLT is
to be calculated.

For instance, given a sentence “The quick brown
fox jumps over the lazy dog,” suppose to calculate
the pseudo-likelihood of the token “jump.” Here,
“jumps” is assumed to consist of two subwords:
“jump” and the suffix “s.” The context S\swt′≥t

is
“The quick brown fox [MASK] [MASK] over the lazy
dog.” Using this context, the probability of “jump”
is calculated PLT(X = “jump” | S\swt′≥t

).

3.3 Convert PLT to Mask Probability
In L3Masking, the PLT is the pseudo-likelihood it-
self, that is, the probability of the token in a context.
Since our idea is to mask more tokens with lower
likelihood, we take the complementary probability,
PLTc (Eqn. (3)), as the mask probability.

PLTc
(
X = swt | S\swt′≥t

)

= 1− PLT
(
X = swt | S\swt′≥t

)
(3)

The existing study has discussed that a signifi-
cantly high mask probability for the MLM task can
degrade the performance of downstream tasks (Wet-
tig et al., 2023). Therefore, in this study, we define
a modified PLT (mPLT) that is controlled to pre-
vent the PLTc used as the mask probability from
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Figure 2: Overview of L3Masking. PLT denotes the token-wise pseudo-likelihood. P (∗|S\M) represents the
prediction probability for each token in the vocabulary of the language model at the masked position in a context
S\M excluding the masked token.

becoming too high. In particular, mPLT is calcu-
lated so that the mask probabilties in a sentence
to a specified value p̄. Formally, given a PLTc se-
quence P = (p1, p2, . . . , pn) corresponding with a
n-length token sequence of a sentence and a speci-
fied average mask probability p̄, find a constant α
such that 1

n

∑
pi∈P αpi = p̄. From this equation,

α = np̄∑
pi∈P pi

can be easily derived. By using this

α, mPLT for each token t in a sentence S can be
calculated as follows:

mPLT
(
X = swt | S\swt′≥t

)

= α · PLTc
(
X = swt | S\swt′≥t

)
(4)

Note that in some cases when n is large and/or
the summation of PLTcs is too small (since PLTc

is token-wise probability,
∑

pi∈P pi = 1 does not
hold.), it may theoretically happen mPLT values
become more than 1. To assure mPLT to be prob-
abilistic and p̄ consistent, when an mPLT value
exceeds 1, the exceeded value is equally distributed
to all the other tokens in the sentence.

3.4 Mask Strategy

In the proposed masking strategy, the value [MASK]
calculated by Equation (4) is the mask probability
of the token in each sentence. The process for
constructing the MLM task, such as replacing to-
kens and random tokens, follows the strategy in
RoBERTa (Liu et al., 2019). The tokens to be ma-
nipulated are determined based on the probabilities
calculated for each token. Of these, the token is
replaced with the [MASK] token with a probability
of 80%, and the token is replaced by a random

token with the 10% probability, and 10% proba-
bility of leaving the token as is. Also, unlike the
masking strategy of BERT, the [MASK] positions
are re-calculated for each mini-batch.

4 Evaluation Experiment

To evaluate L3Masking, we conducted experiments
to answer the following four questions:

• Q1: Does LM learn their own shortcomings from
the vanilla model to improve their classification
performance compared with the fine-tuned model
of the vanilla model only on downstream tasks?

• Q2: Does L3Masking improve classification per-
formance by adaptively learning task- or domain-
specific tokens effectively?

• Q3: Does L3Masking mask task or domain-
specific tokens more frequently than random
token masking, and how does this change the
model’s adaptability?

• Q4: Does L3Masking improve the efficiency of
training by focusing more on masking important
tokens in the data for the relevant domain and
downstream tasks?

4.1 Settings

Datasets and Metrics. In our experiments, we
use three datasets ACL-ARC (Jurgens et al., 2018),
Ohsumed (Hersh et al., 1994), and IMDb (Maas
et al., 2011), to evaluate existing methods and our
method. The basic statistics for each dataset are
shown in Table 1. As for the text classification
problem, we set the evaluation metrics as macro F1

score and accuracy in the confusion matrix.
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Table 1: Basic statistics of the three datasets used in the evaluation experiments. |Dtrain|, |Dvalid| and |Dtest|
represent the numbers of instances in the training, validation, test data, respectively, and |C| is the number of classes.

Domain Task Type of Supervised Label |Dtrain| |Dvalid| |Dtest| |C|
Computer Science ACL-ARC (Jurgens et al., 2018) citation intent 1,688 114 139 6
Medical Ohsumed (Kringelum et al., 2016) category classification 3,022 4,043 4,043 23
Movie Review IMDb (Luan et al., 2018) sentiment classification 25,000 2,500 22,500 2

Table 2: Experimental Settings

Parameter Value

Optimizer AdamW
Learning Rate 1e-4
Token Length 128
Batch Size 64
Dropout Rate 0.10
Average Mask Probability 0.15
Number of Epochs 150
Early Stopping Patience (epochs) 3

Comparison Methods. To demonstrate the
usefulness of L3Masking, we implemented
L3Masking into the multi-task learning text clas-
sification framework (MTL) of META-TARTAN2

(Dery et al., 2022) instead of RTM for the MLM
task. To answer Q1, L3Masking is compared with a
simple fine-tuned model without any auxiliary task,
and we call it STL (Single Task Learning). To show
a comparison of the impact of MLM on classifica-
tion performance due to different masking strate-
gies in Q2 and Q3, RTM and L3Masking were used
as auxiliary tasks in META-TARTAN framework,
and we call MTL methods with these masking
strategies as RTM and L3Masking for short, respec-
tively. Note that MLM tasks, including L3Masking
and RTM, were applied to data of the text classifi-
cation task. To answer Q4, we recorded the number
of training epochs of the META-TARTAN frame-
work when using RTM or L3Masking, respectively.

Implementations. The hyper-parameters of
META-TARTAN were set as Table 2, and the
same hyper-parameters were used for L3Masking
and the baseline methods. Our experimental
evaluation selected the vanilla models pre-trained
in the generic corpora, BERT-base3 (Kenton

2https://github.com/ldery/TARTAN/tree/main,
accessed on October 13, 2024

3google-bert/bert-base-uncased, https://huggingfac
e.co/google-bert/bert-base-uncased, accessed on
October 13, 2024

and Toutanova, 2019) and RoBERTa-base4 (Liu
et al., 2019), as LM for META-TARTAN in
our experimental evaluation to confirm task and
domain adaptability. In addition, the vanilla
models pre-trained on the dedicated domain
corpora, SciBERT5 (Beltagy et al., 2019) and
ClinicalBERT6 (Wang et al., 2023), were used to
check task adaptability to the computer science
domain (ACL-ARC task) and medical domain
(Ohsumed task). To optimize task weights of
META-TARTAN, objective metrics were aligned to
the evaluation metrics (i.e., accuracy or macro F1).
For instance, when evaluating the performance of
RTM or L3Masking by the accuracy metric, the
task weights of META-TARTAN are optimized
based on accuracy scores in the validation data.

4.2 Results
Table 3 showcases the results of this experiment.
Overall, our method, L3Masking, demonstrated im-
provements across a range of datasets compared
to the baseline methods. In particular, L3Masking
performed superior or comparable to Baseline and
RTL in ACL-ARC and Ohsumed, regardless of
the language models. However, in general domain
dataset IMDb, L3Masking and RTM showed supe-
rior performance to STL, while the gap between
L3Masking and RTM are limited. This result in-
dicates that advantages of L3Masking are more
emphasized in domain-specific contexts.

On the ACL-ARC dataset, L3Masking showed
varying degrees of improvement across different
general domain LM compared to RTM; L3Masking
on both BERT-base and RoBERTa-base showed
improvements in the macro F1 and the accuracy
scores, especially RoBERTa-base benefited to a
greater extent. In particular, L3Masking improved
accuracy by 0.18 points and macro F1 score by

4FacebookAI/roberta-base, https://huggingface.co/F
acebookAI/roberta-base, accessed on October 13, 2024

5allenai/scibert_scivocab_uncased, https://huggingfac
e.co/allenai/scibert_scivocab_uncased, accessed on
October 13, 2024

6medicalai/ClinicalBERT, https://huggingface.co/m
edicalai/ClinicalBERT, accessed on October 13, 2024
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Table 3: Comparison of Accuracy and Macro F1 of text classification between STL, RTM, and L3Masking in
percentages. The average values and standard deviations of 10 trials are reported. The highest average values for
each language model and for each Accuracy and Macro F1 is in bold.

Dataset ACL-ARC Ohsumed IMDb

Framework Masking Acc F1 Acc F1 Acc F1

(General Domain) BERT-base (Kenton and Toutanova, 2019)

STL - 71.34 ± 0.35 63.07 ± 0.69 76.69 ± 3.41 68.76 ± 3.47 88.05 ± 0.05 87.15 ± 0.56
MTL RTM 70.77 ± 0.86 62.15 ± 0.48 76.98 ± 2.03 67.47 ± 2.40 88.05 ± 0.05 88.19 ± 0.08
MTL L3Masking 71.31 ± 0.98 63.15 ± 0.90 76.81 ± 1.49 66.10 ± 3.50 88.10 ± 0.21 88.08 ± 0.08

(General Domain) RoBERTa-base (Liu et al., 2019)

STL - 71.73 ± 4.06 59.44 ± 6.70 70.07 ± 0.54 60.92 ± 0.91 88.84 ± 0.32 88.89 ± 0.30
MTL RTM 78.94 ± 1.76 70.30 ± 2.20 69.92 ± 0.64 64.83 ± 0.37 91.29 ± 0.27 91.30 ± 0.22
MTL L3Masking 79.12 ± 1.60 73.30 ± 2.90 73.38 ± 0.48 65.02 ± 0.61 91.32 ± 0.15 91.13 ± 0.09

(Domain-Specific) SciBERT (Beltagy et al., 2019) ClinicalBERT (Wang et al., 2023)

STL - 80.36 ± 2.45 71.84 ± 2.73 71.02 ± 0.42 62.85 ± 0.63 - -
MTL RTM 80.14 ± 1.38 70.88 ± 3.06 70.75 ± 0.36 62.70 ± 0.61 - -
MTL L3Masking 82.50 ± 1.90 74.10 ± 2.40 71.66 ± 0.78 63.70 ± 0.60 - -

3.00 points in RoBERTa-base compared to RTM.
However, in the BERT-base, L3Masking performed
comparably to STL. The SciBERT model exhibited
the most substantial improvement with L3Masking,
achieving an accuracy of 82.50 and a macro F1

score of 74.10, surpassing RTM by 2.36 points in
accuracy and 3.22 points in the macro F1 score.

On the Ohsumed dataset, L3Masking’s classi-
fication performance varied. In the general do-
main model, the BERT-base was slightly lower
than RTM in both the macro F1 and accuracy
scores. For BERT-base, accuracy was similar for
STL, RTM, and L3Masking, and STL had the
best macro F1 score. However, for the RoBERTa-
base, L3Masking performed better than STL and
RTM, especially in accuracy, which was 3.46 points
better than RTM. ClinicalBERT with L3Masking
achieved an accuracy of 71.66 and F1 score of
63.70, outperforming STL and RTM.

On the IMDb dataset, L3Masking’s impact
was generally limited across the general domain
LM. For both BERT-base and RoBERTa-base,
L3Masking did not show much difference from
baseline or RTM. These results suggest that
L3Masking’s effect may be less pronounced in gen-
eral domains such as movie reviews.

4.3 Analysis
In this section, we analyze the effectiveness and ef-
ficiency of the L3Masking by examining the types
of tokens that were frequently masked and their
impact on model performance. We also assess in-
fluences on the training process in terms of both

accuracy and the number of epochs required.

Types of tokens masked by L3Masking. The
L3Masking reveals significant insights into domain-
specific adaptation by assigning higher masking
probabilities to tokens that carry essential linguistic
and domain-specific information. Tables 4 and 5
show the results of part-of-speech (POS) analy-
sis on ACL-ARC training data conducted using
NLTK7 in Python, along with the average mask
probability by L3Masking for each POS tag. It
is important to note that while POS analysis is
performed on a word-by-word basis, L3Masking
assigns mask probabilities per token. Therefore,
in this analysis, POS tags are assigned to each to-
ken, including subwords, and the results are then
aggregated by POS tag.

As observed in Table 4, foreign words (FW) and
plural nouns (NNS) exhibit the highest masking
probabilities in both SciBERT and BERT models
within the ACL-ARC dataset. This suggests that
L3Masking effectively identifies tokens contribut-
ing to the domain’s unique linguistic patterns, fa-
cilitating more effective knowledge transfer during
fine-tuning.

In contrast, general grammatical tokens such
as wh-pronouns (WP) and base form verbs (VB)
consistently show lower masking probabilities (Ta-
ble 5), indicating that these elements contribute
less to domain-specific adaptations. This distinc-
tion underscores L3Masking’s ability to prioritize

7Natural Language Toolkit (Version 3.8.1) , https://ww
w.nltk.org/, accessed on October 13, 2024
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Table 4: The top 5 POS tags with the highest masking probability for RoBERTa and SciBERT in the training data of
the ACL-ARC dataset using L3Masking. The masking probability listed in the table is the average of the masking
probability for each token. POS tags that occur less than 10 times have been removed from the table.

Rank L3Masking (RoBERTa) L3Masking (SciBERT)

POS Tag Description Mask Probability POS Tag Description Mask Probability

1 FW Foreign word 0.2023 POS Possessive ending 0.3133
2 ) Closing parenthesis 0.1907 FW Foreign word 0.2131
3 ( Opening parenthesis 0.1883 NNS Noun, plural 0.2017
4 NNS Noun, plural 0.1832 ) Closing parenthesis 0.2009
5 NNP Proper noun, singular 0.1647 ( Opening parenthesis 0.1737

Table 5: Worst 5 POS tags with lowest masking probability for RoBERTa and SciBERT in training data of ACL-ARC
dataset using L3Masking.

Rank L3Masking (RoBERTa) L3Masking (SciBERT)

POS Tag Description Mask Probability POS Tag Description Mask Probability

1 WP Wh-pronoun 0.0265 JJS Adjective, superlative 0.0267
2 VB Verb, base form 0.0465 WP Wh-pronoun 0.0281
3 . Punctuation mark 0.0633 EX Existential there 0.0317
4 CD Cardinal number 0.0664 CD Cardinal number 0.0492
5 VBN Verb, past participle 0.0686 RBS Adverb, superlative 0.0503

learning relevant language patterns while minimiz-
ing the focus on general linguistic features.

Efficiency. We also found that L3Masking is
not only effective for the META-TARTAN frame-
work, but also efficient. Figure 3 illustrates the
differences in the number of training epochs and
accuracy between RTM and L3Masking across
BERT, RoBERTa, SciBERT, and ClinicalBERT. As
shown in Figure 3, L3Masking applied to BERT
and RoBERTa achieved superior or comparable
accuracy in fewer epochs on average than RTM,
reducing training time while maintaining or en-
hancing model performance. This efficiency is par-
ticularly advantageous for language models trained
on general domain documents, such as BERT and
RoBERTa, where computational resources and
time are often constrained.

In contrast, while L3Masking in SciBERT and
ClinicalBERT improved classification performance
over RTM, it did not reduce the number of epochs
required. This discrepancy can be attributed to
the inherent nature of domain-specific LMs like
SciBERT and ClinicalBERT, which are already
finely tuned to their respective domains during pre-
training. As a result, these models benefit more
from L3Masking’s ability to refine domain-specific
knowledge, leading to improved accuracy. How-
ever, because these models are already adapted

to their domains, the room for efficiency gains in
terms of reduced training time is limited.

These results indicate that L3Masking can ef-
fectively decrease training time for models based
on generic corpora, like BERT and RoBERTa.
However, for models like SciBERT and Clinical-
BERT, which are trained on specialized domains,
L3Masking primarily enhances task performance
without reducing training duration.

4.4 Lessons Learned

As shown in the experimental results above,
L3Masking’s ability to selectively mask task- or
domain-specific tokens significantly enhances the
model’s performance and adaptability in text classi-
fication, confirming its effectiveness over RTM in
this context. In summary, questions raised in this
section are answered in the rest of this section.

Q1 — Yes, language models (LMs) that learn
about their own shortcomings (lessons) demon-
strate better classification performance than those
that only focus on downstream tasks. Specifically,
using L3Masking, models actively learn domain-
specific knowledge essential for downstream tasks
by focusing on tokens with low pseudo-likelihood
and masking them. This approach strengthens areas
where the model is underperforming, enabling it to
effectively apply learned knowledge. The method
helps bridge the distributional differences between
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L3MaskingRandom Token MaskingAccuracy of L3MaskingAccuracy of RTM

Figure 3: Difference in the number of training epochs for ACL-ARC and Ohsumed using RTM or L3masking for
each language model. The plot is based on the average and standard deviation of 10 experiments.

pre-training and fine-tuning tasks, thereby enhanc-
ing task adaptability. It has been shown that such
learning leads to improved classification perfor-
mance, particularly in specialized domains.

Q2 — Yes, L3Masking adapts more effectively
than Random Token Masking (RTM) and im-
proves classification performance. Notably, in
domain-specific language models such as SciB-
ERT and ClinicalBERT, L3Masking demonstrates
superior accuracy and F1 scores compared to RTM.
L3Masking identifies and prioritizes tokens spe-
cific to the task or domain, leading to more effec-
tive task adaptation. Unlike RTM, where tokens
are treated uniformly, L3Masking overcomes this
limitation by promoting the learning of language
patterns relevant to the task. This targeted masking
strategy enhances the model’s understanding and
application of domain-specific knowledge.

Q3 — Yes, L3Masking masks task or domain-
specific tokens more frequently than RTM, signif-
icantly enhancing the model’s adaptability in text
classification tasks. By prioritizing the masking
of tokens such as foreign words (FW) and plural
nouns (NNS), which are crucial in domain-specific
contexts like those found in the ACL-ARC and
Ohsumed datasets, L3Masking facilitates a deeper
understanding of domain-specific language pat-
terns. This strategic focus enables the model to
capture better essential linguistic features required
for accurate domain-specific classification.

Moreover, this targeted approach enhances the
model’s adaptability by allowing it to concentrate
on tokens that carry significant domain-specific
information. As a result, models equipped with

L3Masking outperform those using RTM in terms
of performance metrics, particularly in domain-
specific classification tasks.

Q4 — Yes, L3Masking improves the efficiency
of training by strategically focusing on masking
important tokens that are crucial for the relevant
domain and downstream tasks. By prioritizing task-
and domain-specific tokens during the masking pro-
cess, L3Masking enables the model to concentrate
its learning on the most relevant and informative
aspects of the data. This targeted approach leads
to a reduction in the number of training epochs re-
quired to achieve comparable or superior accuracy,
particularly in general-domain models like BERT
and RoBERTa.

5 Conclusion

This paper introduced L3Masking as a novel mask-
ing strategy for fine-tuning of Masked Language
Models to text classification. Our method lever-
ages likelihood scores from the vanilla models to
actively mask task- or domain-specific tokens. For
calculating mask probability on the bidirectional
MLMs, token-by-token pseudo-likelihood scores
are used. Our method focuses more on tokens that
are underrepresented in the pre-training corpus but
are crucial for downstream tasks. Through the ex-
perimental evaluation of three text classification
tasks from different domains, we demonstrated that
L3Masking outperforms traditional random token
masking, particularly in domain-specific language
models such as SciBERT and ClinicalBERT.

Future work will focus on refining the token se-
lection algorithm to handle diverse datasets better
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and exploring L3Masking’s potential in other NLP
tasks beyond text classification. Additionally, ap-
plying L3Masking to the continual pre-training of
large language models (LLMs) represents a signif-
icant future direction. By leveraging L3Masking
in LLMs, we aim to achieve more accurate domain
adaptation, task-specific learning, and effective uti-
lization of large-scale datasets, ultimately enhanc-
ing LLMs’ overall performance and applicability
in various specialized and general domains.

Limitations

Despite the promising results, our study has several
limitations. Firstly, our experiments were primar-
ily focused on text classification tasks. Although
these tasks provide a good benchmark for evalu-
ating multi-task classification methods, it remains
to be unveiled how L3Masking performs in other
NLP tasks, such as named entity recognition, ma-
chine translation, or text generation. Future re-
search should extend the evaluation of L3Masking
to a wider range of tasks to fully understand its
capabilities and limitations.

Secondly, the computational overhead associated
with calculating token-by-token pseudo-likelihood
scores can be substantial. However, we empha-
size that the calculation of the mask probability for
L3Masking only needs to be performed once per
dataset. Although L3Masking can still be compu-
tationally expensive, the results presented in this
paper suggest that it is worth considering as a re-
placement for random token masking as an auxil-
iary task.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, and

Others. 2023. GPT-4 Technical Report. Preprint,
arXiv:2303.08774.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciBERT:
A Pretrained Language Model for Scientific Text. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing, pages 3615–3620. Association for
Computational Linguistics.

Lucio M. Dery, Paul Michel, Mikhail Khodak, Gra-
ham Neubig, and Ameet Talwalkar. 2023. AANG:
Automating auxiliary learning. In The Eleventh Inter-
national Conference on Learning Representations.

Lucio M. Dery, Paul Michel, Ameet Talwalkar, and
Graham Neubig. 2022. Should We Be Pre-training?
An Argument for End-task Aware Training as an

Alternative. In The Tenth International Conference
on Learning Representations.

Suchin Gururangan, Ana Marasović, Swabha
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Abstract

The development of agents powered by large
language models (LLMs) to accomplish com-
plex high-level user intents, has attracted signif-
icant attention recently. However, employing
LLMs with billions of parameters (e.g., GPT-4)
may incur substantial costs on top of handcraft-
ing extensive prompts. To address this, we
introduce a Grounded Language Agent for In-
telligent Web Interactions, named GLAINTEL.
GLAINTEL employs Flan-T5 as its backbone
and is flexible in training in various settings: un-
supervised learning, supervised learning, and
unsupervised domain adaptation. Specifically,
we tackle both the challenge of learning with-
out human demonstrations and the opportu-
nity to leverage human demonstrations effec-
tively when those are available. Additionally,
we explore unsupervised domain adaptation
for cases where demonstrations are limited to
a specific domain. Experimental evaluations
across diverse setups demonstrate the effective-
ness of GLAINTEL in unsupervised settings,
outperforming in-context learning-based ap-
proaches that employ larger models with up
to 540 billion parameters. Surprisingly, behav-
ioral cloning-based methods that straightfor-
wardly use human demonstrations do not out-
perform unsupervised variants of GLAINTEL.
Additionally, we show that combining human
demonstrations with reinforcement learning-
based training yields results comparable to
methods utilizing GPT-4. The code is available
at: https://github.com/MultifacetedNLP/Web-
Agents-Unsupervised.

1 Introduction

Large Language Models (LLMs) have demon-
strated their proficiency in diverse tasks such as text
classification, information extraction, and question
answering (Bommasani et al., 2021; Brown et al.,
2020; Vaswani et al., 2017; Raffel et al., 2020; Rad-
ford et al., 2019). Similarly, reinforcement learn-
ing (RL) has evolved as a powerful paradigm for

training intelligent agents to navigate complex en-
vironments (Huang et al., 2022b; Ahn et al., 2022;
Liang et al., 2023). Moreover, recent research high-
lights the capabilities of agents powered by LLMs.
For example, agents utilizing GPT-4 can explore
the virtual world in Minecraft, acquire a diverse
set of composable skills, and exhibit exceptional
proficiency in playing the game (Wang et al., 2024).
The exceptional amount of world knowledge, often
derived from vast text datasets, opens up possibil-
ities for developing LLM-assisted intelligent web
navigation agents capable of navigating and inter-
acting with web pages akin to humans.

Despite their remarkable capabilities, off-the-
shelf pre-trained LLMs face challenges in ground-
ing and aligning themselves in interactive web envi-
ronments (Mahowald et al., 2023). This limitation
hampers their functional competence without ad-
ditional customization. Additionally, employing
LLMs with billion-scale parameters, such as GPT-
4, may incur substantial costs on top of handcraft-
ing extensive prompts. On the other hand, train-
ing smaller LLMs (e.g., Flan-T5) as agents can be
challenging. For instance, consider a real-world
product search scenario, where effective query for-
mulation requires the agent to operate over a huge
action space (i.e., language vocabulary), and navi-
gating through diverse web pages poses additional
challenges that need strategic exploration due to
the presence of different actions on each page (i.e.,
dynamic action space). This complexity prevents
the straightforward utilization of an action head on
top of LLM. Moreover, the challenge extends to
preserving long-term memory capabilities, which
are crucial for comparing items or backtracking
during the search process.

In this work, we introduce GLAINTEL, a
Grounded Language Agent designed for In-
telligent Web Interactions. Given a user’s intent
specifying a product requirement, GLAINTEL for-
mulates queries, navigates diverse web pages, and
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Goal: I	am	looking	for	a	queen	sized bed	that	is	black,	and	price	lower	than	140.00	dollars.

Result	Page

Observation:
[User Instruction]:I am 
looking for a queen sized …
[Button] Back to Search
[Text] Page 1 (Total 
results: 50)
[button] Next >

[Link] B09NYM2SKT
[Heading] ZTOZZ Isola 
Platform Bed with 4 Storage 
Drawers – Queen …
[Price] $379.0

[Link] B09K46KXGR
[Heading] Queen Size 
Upholstered Platform Bed …
… …

Agent

Dynamic	Action	Space:
Click on [button] Back to Search
Click on [button] Next >
Click on [Link] B09NYM2SKT
Click on [Link] B09K46KXGR
Click on [Link] B09M714F8Z
Click on [Link] B08ZXXKPSC
…

Text	Mode

Distribution	over	
Actions

Click	…
Pre-trained	Encoder

User	Goal Previous	
Observations

Current	
Observation

Pre-trained	Decoder

Action:	___

Reward

PPO

Figure 1: Overview of GLAINTEL: Our agent employs the Flan-T5 architecture and incorporates a language
modeling head to adapt to dynamic action space, while the value head enables precise value estimation.

executes various actions to identify, customize, and
purchase the desired product. GLAINTEL uses
the open-source Flan-T5 language model (i.e., 780
million parameters) as its backbone and can be
flexibly trained in various scenarios: unsupervised,
supervised, and unsupervised domain adaptation
settings. Specifically, we address the following
research questions.

• RQ1: Effectiveness of Unsupervised Learning:
Can LLM-based agents learn to address effec-
tive query generation and exploration of com-
plex web pages with no human demonstrations?

• RQ2: Impact of Human Demonstrations: Can
incorporating human demonstrations facilitate
LLM-based agents to improve their overall per-
formance? How to effectively leverage human
demonstrations for training robust agents?

• RQ3: Unsupervised Domain Adaptation: Can
LLM-based agents generalize to new, unseen
product categories where no human demonstra-
tions are available?

We employ a language modeling head to accom-
modate a dynamic action space and introduce an
additional value head for precise value estimates.
Figure 1 provides an overview of GLAINTEL. The
user’s goal and observation are sequentially passed
to the model at each step. First, we obtain the in-
put representation for every potential action token
and compute the normalized joint probability for
each action conditioned on the user goal and obser-
vation. Following the estimation of each action’s
probability, we apply a softmax function over these
probabilities and sample an action according to this
distribution. We fine-tune the agent using the Prox-

imal Policy Optimization (PPO) algorithm (Dhari-
wal et al., 2017).

We conduct extensive experimental evaluations
across diverse setups using the WebShop environ-
ment (Yao et al., 2022). WebShop is a simulated
yet realistic e-commerce web platform featuring
1.18 million real-world products and 12,087 crowd-
sourced natural language intents. Based on our em-
pirical study, we demonstrate that training Flan-T5
(e.g., 780 million parameters) in the unsupervised
setting (i.e., no human demonstrations) can outper-
form in-context learning methods (Sridhar et al.,
2023) that rely on models with up to 540 billion
parameters. To quantify the impact of human super-
vision, we utilized 1010 human demonstrations for
training supervised learning models using behavior
cloning (BC) (Pomerleau, 1988).

Our findings indicate that incorporating human
demonstrations through straightforward BC does
not produce superior results when compared to
the unsupervised RL-based PPO algorithm. Fur-
thermore, our investigations reveal that leveraging
human demonstrations through BC and then fur-
ther training the agent with PPO in the unsuper-
vised setting leads to the best results. Remarkably,
this approach achieves results comparable to the
method (Ma et al., 2023) that utilizes GPT-4. In
the unsupervised domain adaptation (UDA) experi-
ment, we observe that incorporating human demon-
strations from a single category enables the agent to
generalize to new product categories where no hu-
man demonstrations are available. Additionally, we
evaluate our trained model on a real website eBay
without any additional fine-tuning, which shows
comparable results to methods that use the state-of-
the-art GPT-4 model.
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2 Proposed Agent: GLAINTEL

2.1 Problem Formulation

Given a user intent in natural language, the agent’s
goal is to buy the most appropriate product that
fulfills the user’s intent. We formulate the task as a
goal-augmented Partially Observable Markov De-
cision ProcessM = (S,A, T ,R,G,O, γ), where
S is a set of states s ∈ S; A ⊂ VN repre-
sents action space sampled from LLM’s vocab-
ulary V of size N ; G ⊂ VN denotes the goal
space; T : S × A 7→ S is the transition func-
tion; R : S × A× G 7→ R characterizes the goal-
conditioned reward function; O is a set of obser-
vations o ∈ O (i.e., web page visible to agent);
γ is the discount factor. We employ the language
modeling head (i.e., distribution over the vocabu-
lary) to accommodate the dynamic action space,
which also facilitates directly computing the log
probabilities of each action ai = (w0, · · · , w|ai|)
sampled from a dynamic action space given the
agent’s goal g ∈ G and observation o.

It is important to note that each observation (i.e.,
web page) presents a dynamic set of actions to the
agent, which prevents us from learning a probabil-
ity distribution over the action space as in classifi-
cation tasks. For instance, a search page allows ac-
tions such as typing an open-ended textual query or
pressing the ‘Search’ button. Conversely, a product
detail page offers actions such as ‘Back to Search’,
‘< Prev’, ‘Description’, ‘Features’, ‘Reviews’, ‘Buy
Now’, and the product-specific variable number of
options. Figure 1 shows the observation and action
space for the ‘search result page’.

2.2 Overview of GLAINTEL

We employ Flan-T5 1 as the core architecture, with
the integration of the language modeling head and
value head on top of the model. Our proposed
agent, GLAINTEL, is adaptable to training across
various setups: (i) unsupervised learning: no hu-
man demonstrations are available; (ii) unsupervised
domain adaptation: limited human demonstrations
in a single domain are available; and (iii) super-
vised learning: human demonstrations are acces-
sible. In the following, we detail the specifics of
the training and inference phases. The inclusion
or exclusion of these phases is contingent upon the
availability of the human demonstration data.

1Checkpoints: https://github.com/google-research/t5x/
blob/main/docs/models.md#flan-t5-checkpoints

2.3 Optional Phase One: Supervised Training

The human demonstrations can serve as mappings
from states to actions. Techniques such as imitation
learning or behavioral cloning (BC) (Pomerleau,
1988) can be employed to fine-tune the policy π
by minimizing the following loss over a dataset D
comprising human demonstrations:

L(π) = E(s,a)∼D[− log π(a|s)].

The above formulation can be adapted to in-
corporate the interaction history with web pages
π(at|st, τ<t), where τ<t refers to the interaction
trajectory leading up to time t. Subsequently, this
formulation readily extends to utilize LLMs to
learn an optimal policy where the encoder encodes
the history of observations (st, τ<t) and the de-
coder generates the next action at as:

LLLM(π) = Eτ∼D[
L∑

t=0

− log π(at|τ<t, st)].

Building upon the recent works in return-
conditioned supervised learning (Brandfonbrener
et al., 2022; Paster et al., 2022; Yang et al., 2022),
we introduce an additional conditioning variable
g ∈ G (i.e., user goal). This variable captures over-
all trajectory-level information, to steer the model
toward the goal. Moreover, in implementation, we
use observations o (i.e., visible web page) instead
of the actual state s. Our final formulation is ex-
pressed as:

LLLM(π) = Eτ∼D[
L∑

t=0

− log π(at|τ<t,ot, g)].

The training of this phase can be skipped or cho-
sen based on the availability and feasibility of ac-
quiring human demonstrations. In our approach
to address RQ1 (Effectiveness of Unsupervised
Learning), we skip this phase. We limit the hu-
man demonstration data to a single category for
RQ3 (Unsupervised Domain Adaptation). To in-
vestigate RQ2 (Impact of Human Demonstrations),
we utilize all the available training data for the
supervised training phase.

2.4 Phase Two: Unsupervised Training

The unsupervised learning phase, which forms the
core of the proposed agent GLAINTEL, operates
without any human demonstrations. This phase is
designed to autonomously learn and adapt without
relying on expert-guided examples. The objective
of the agent is to learn a policy π : O×G 7→ P(A)
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that optimizes the expected discounted cumula-
tive rewards for a given goal g. In this work,
we leverage PPO algorithm for training, which si-
multaneously learns a policy π̂ and a value func-
tion V̂ : O × G 7→ R approximating to the
true value V (s, g) = Ea∼π̂(O(s),g)

[
R(s,a, g) +

γV (T (s,a), g)
]
. We can calculate the probability

of each action ai ∈ A using the likelihood com-
puted by the model, expressed as: π̂(ai|o, g) =
P (ai|g). That is, the likelihood of choosing each
action is calculated based on the probability dis-
tributions associated with the tokens that make up
the action. This approach ties the action probabil-
ities directly to the distributions of the individual
tokens involved in constructing the action. Follow-
ing (Carta et al., 2023), we incorporate a multilayer
perception (MLP) with a single output on top of
the last layer of the model to approximate the value
V . Specifically, we employ the language model-
ing head to directly compute the log probabilities
of each action ai = {w0, · · · , w|ai|} from the dy-
namic action space given the agent’s goal g ∈ G
and observation ot at time t as follows:

P (ai) =
1

|ai|

|ai|∑

k=0

logPLM-head(wk|g,ot, w<k).

Subsequently, employing the softmax operation,
we calculate a probability distribution over the ac-
tion space A as follows:

P (ai|g) =
eP (ai)

∑
ak∈A e

P (ak)
.

While the actions comprise multiple tokens,
the number of possible actions can vary substan-
tially depending on the current observation (i.e.,
web page), which introduces additional complex-
ity. This phase is mandatory regardless of whether
training is conducted in the optional first phase.

2.5 Phase Three: Inference
In the inference phase, various decoding tech-
niques for action selection can be employed, such
as greedy decoding and top-p. Given the well-
established nature of these techniques, we omit de-
tails and provide key insights only. Greedy decod-
ing, chosen for action selection, has a drawback as
it tends to trap the agent in loops, ultimately result-
ing in suboptimal overall performance. Conversely,
opting for top-p sampling can yield a higher suc-
cess rate, as it provides a theoretical tradeoff be-
tween sampling and greedy decoding. However,
the process of determining the optimal values for

p can be time-intensive. To address these issues,
we turn to the Epsilon-Greedy algorithm for action
selection during inference. In particular, at a step t,
the greedy will choose the action with the highest
probability, while the epsilon will sample based on
the probability distribution across the action space.
This method achieves a higher success rate and an
enhanced overall performance, all while avoiding
the issue of getting stuck in loops. It is worth noting
that a judiciously chosen, small value for epsilon
has been employed in our work, eliminating the
need for an exhaustive search.

3 Experimental Setup

3.1 WebShop Environment

Webshop (Yao et al., 2022) is a simulated web-
based interactive environment with 1.18 million
real-world products and 12,087 crowd-sourced text
instructions. The goal of the agent is to buy a
product with specific attributes and options given
natural language instruction. The environment con-
tains 5 different categories, which exhibit signif-
icant dissimilarities, particularly in terms of pos-
sessing nearly exclusive attributes. For instance,
as illustrated in Table 1, a substantial 95.9% of
Fashion’s attributes are unique to its category.
Human Demonstrations. The Webshop also con-
tains a human demonstration dataset. The human
demonstration dataset encompasses a total of 1010
distinct trajectories, distributed across categories.
This dataset is created by asking humans to demon-
strate how they would query a product and then
take different steps in the Webshop environment to
buy a product with desired options and attributes.
GLAINTEL has the flexibility to incorporate hu-

man demonstrations through optional phase one
training. We utilize human demonstration data
to quantify the impact of human demonstrations
(RQ2) and explore UDA (RQ3). Additionally,
GLAINTEL can be trained without any human
demonstrations (RQ1).

3.2 Evaluation Methodology

Reward. We assign a reward r ∈ [0, 1] to the
agent after it completes a purchase at the conclud-
ing step of an episode. Specifically, the reward is
determined by how closely the purchased product
matches the specific attributes and options men-
tioned in the user instructions as follows:

r = rtype · |Uatt∩Yatt|+|Uopt∩Yopt|+1[yprice≤uprice]
|Uatt|+|Uopt|+1
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Category # Attributes % Unique
Attributes

# Human
Demonstrations

Beauty 143 85.3% 224
Garden 133 87.2% 211
Grocery 117 92.3% 189
Electronics 141 91.4% 169
Fashion 173 95.9% 217

Table 1: Detail about Webshop Environment.

The reward incorporates three main components:
Uatt, Uopt, and uprice, representing a set of attributes,
a set of options, and the price set down in the
user’s instruction, respectively. Correspondingly,
Yatt, Yopt, and yprice denote the set of attributes,
the set of options, and the actual price of the
purchased product by the agent. Additionally, rtype
functions as a text-matching heuristic, assigning
a lower reward when the purchased product and
the targeted product in the user instruction have
similar attributes and options while being different
types of products. Interested readers are referred to
WebShop (Yao et al., 2022) for details.
Evaluation Metrics. Two evaluation metrics are
computed using the rewards obtained from the
episodes: (i) the Score and (ii) the Success Rate.
The Score metric represents the average reward
across all test episodes multiplied by 100, while
the Success rate metric measures the percentage of
test episodes in which the full reward (1 out of 1)
was attained. Given that our inference step incor-
porates sampling, the reported Score and Success
Rate metrics are averaged by running the model
four times. We provide additional implementation
details in Appendix A.

3.3 Competing Methods

WebShop Baselines (Yao et al., 2022): We con-
sider the following baselines from the WebShop pa-
per: (i) rule-based (Rulews), (ii) behavioral cloning-
based supervised learning (BCws), (iii) two re-
inforcement learning models—one with a trans-
former text encoder (PGws) and another with an
RNN (RNNws), and (iv) a hybrid method (BC +
PG). Human experts (Human) also set a benchmark
for human-level performance.
DRRN (He et al., 2016): DRRN is a classic RL
baseline that uses separate neural networks to em-
bed states and actions into embedding vectors. An
interaction function (e.g., inner product) then com-
putes the Q-function value for the state-action pair.
Act and ReAct (Yao et al., 2023): The ReAct
method is an in-context learning approach using
LLMs that combines reasoning and action execu-
tion to tackle diverse tasks. In the WebShop en-

vironment, ReAct adds reasoning at each step to
guide the agent’s decisions on exploration, purchas-
ing, and option selection.
WebGUM (Furuta et al., 2024): WebGUM is an
instruction-finetuned model, that is further trained
on human demonstrations for web navigation.
ASH Prompting (Sridhar et al., 2023): ASH con-
sists of two main components: (i) Summarizer
condenses observations by retaining only relevant
information, and (ii) Actor uses this condensed
observation to generate the next action.
PIX2ACT (Shaw et al., 2024): PIX2ACT builds
upon the Pix2Struct model (Lindenberger et al.,
2021), utilizing an image transformer encoder
along with a text transformer decoder.
LASER (Ma et al., 2023): LASER is a GPT-4-
based method that converts an interactive decision-
making task into state space exploration by map-
ping all possible observations to a finite set of states,
with the agent navigating these states through pre-
defined actions specific to each state
Prospector (Kim et al., 2023): The Prospector uses
two approaches: the AskAct method, which incor-
porates self-asking steps in few-shot demonstra-
tions to extract actions from LLMs, and the Trajec-
tory Ranking (TR) method, where LLMs generate
diverse trajectories, and the most rewarding one is
selected using a reward prediction model.

4 Results

4.1 Quantitative Analysis

RQ1: Effectiveness of Unsupervised Learning.
In Table 2, we systematically evaluate the perfor-
mance of various methods that do not use human
demonstrations for training. Starting with RL-
based models, our PPO-trained model with 1 mil-
lion steps (PPO1M ) emerges as the top performer,
achieving a statistically significant score of 72.13
and a success rate of 42.55. Notably, these results
surpass those obtained by alternative RL-based ap-
proaches, namely PGws, DRRN, and RNNws, un-
derscoring the superior efficacy of the PPO method-
ology. Among In-context learning methods, the
AskAct stands out with the most impressive re-
sults. However, even the best-performing AskAct,
70 billion parameters, fails to outperform a smaller
model fine-tuned in an unsupervised setting with
PPO (PPO1M ). Specifically, in terms of percent-
age improvements, the PPO-trained model with
1 million steps (PPO1M ) outperforms the AskAct
by 5.15% on the score metric and approximately
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Approach Name Model Parameters Score Success Rate

Zero Shot
Random - - 33.74 6.80
Rulews

1 - - 45.60 9.60
ZSL-Flan-T5 Flan-T5-large 780 Million 41.10 10.30

In-context Learning
Act 2 PaLM 540 Billion 62.30 30.10

ASH 4 CODE-DAVINCI-002 N/A 56.70 30.20
ReAct 2 PaLM 540 Billion 66.60 40.00

AskAct 3 Llama-2 70 Billion 68.60 42.20

RL-based Method

PGws
1 BART, BERT 516 Million 52.50 11.20

DRRN GRU 1.2 Million 46.87 11.73
RNNws

1 GRU 5 Million 55.20 17.60
PPO500K (Ours) Flan-T5-large 780 Million 68.19 38.55
PPO1M (Ours) Flan-T5-large 780 Million 72.13 42.55

Human Human 1 - - 82.10 59.60
Results are taken from published research: 1 from (Yao et al., 2022), 2 from (Yao et al., 2023), 3 from (Kim et al., 2023), and 4 from (Sridhar et al., 2023).

Table 2: Results from methods in the WebShop environment that do not rely on human demonstration data.

Approach Name Model Parameters Score Success Rate

Behavioral Cloning

PIX2ACT 3 Pix2Struct 282 Million 46.70 NR
BCws

1 BART, BERT 516 Million 59.90 29.10
BCour Flan-T5-large 780 Million 66.56 37.05

WebGUM 2 Flan-T5-XL 3 Billion 67.50 45.00

Hybrid Methods
BC + PG 1 BART, BERT 516 Million 62.40 28.70

AskAct + TR (Prospector) 4 Llama-2, FLAN-T5-XL 70 + 3 Billion 70.20 43.60
BC + PPO500K (GLAINTEL500K) Flan-T5-large 780 Million 74.60 46.95

BC + PPO1M (GLAINTEL1M ) Flan-T5-large 780 Million 76.87 49.60
Results are taken from published research: 1 from (Yao et al., 2022), 2 from (Furuta et al., 2024), 3 from (Shaw et al., 2024), and 4 from (Kim et al., 2023).

Table 3: Results from methods in the WebShop environment that use human demonstration data.

0.83% on the success rate metric. This pattern
persists when comparing ReAct (540 billion pa-
rameters) with PPO1M model. This observation
suggests that fine-tuning of small models using RL
can yield superior performance compared to in-
context learning methods. In addition to RL-based
and in-context learning methods, Table 2 includes
zero-shot learning methods, including zero-shot
Flan-T5 (ZSL-Flan-T5) to quantify the role of un-
supervised training.

RQ2: Impact of Human Demonstrations. Ta-
ble 3 presents the results of various methods in-
corporating human demonstration. In the behav-
ioral cloning approach, WebGum emerges as the
top performer, leveraging the Flan-T5-XL model
with 3 billion parameters. It achieves a score of
67.5 and a success rate of 45.0. We also present
the results of our fine-tuned Flan-T5-large model
(BCour) with 780 million parameters. Both mod-
els outperform the PIX2ACT and BCws models,
which utilize BART and BERT architectures. This
notable superiority underscores the effectiveness of
instruction-finetuned language models. Turning to
hybrid methods, GLAINTEL500K , GLAINTEL1M ,
and BC + PG models initially undergo refinement
through human demonstrations in a supervised set-

ting, followed by additional fine-tuning in an unsu-
pervised setting using RL. In contrast, Prospector
employs the AskAct method (in-context learning)
and a reward prediction model, choosing the most
rewarding trajectory through supervised learning.
Among these approaches, GLAINTEL1M achieves
remarkable performance. It attains an exceptional
Score of 76.87 and a Success Rate of 49.6. No-
tably, our approach surpasses all other hybrid and
behavioral cloning methods in both metrics.

Effective Utilization of Human Demonstrations:
In comparing two variants of the Flan-T5-large
model, as presented in Table 3 and Table 2, we
focused on one fine-tuned in a supervised setting
with human demonstrations (referred to as BCour

in Table 3) and another fine-tuned exclusively with
PPO for 1 million steps in an unsupervised setting
(referred to as PPO1M in Table 2). Surprisingly,
the unsupervised model (PPO1M ) demonstrated an
8.36% higher score and a 14.84% higher success
rate compared to the supervised model, which is
statistically significant. This outcome suggests
that relying only on human demonstrations does
not always lead to superior results. Moreover,
when the supervised model is subjected to further
training with PPO, it produces the best results.
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Approach Name Model Parameters Score Success Rate
RL-based Method PPO1M Flan-T5-large 780 Million 72.12 42.55

Hybrid Method BC + PPO1M (GLAINTEL1M ) Flan-T5-large 780 Million 76.87 49.6
Unsupervised Domain Adaptation UDA1M Flan-T5-large 780 Million 74.69 46.42

State-Space Exploration LASER(Ma et al., 2023) GPT-4-0613 N/A 75.6 50.0

Table 4: Comparison of the Best Models.

Approach −→ Single Domain Behavioral Cloning Unsupervised Domain Adaptation
PPO Adaptation Configs −→ No PPO (SDBC) PPO for 500k steps (UDA500K) PPO for 1M steps (UDA1M )

Single-domain Supervision ↓ Score Success Rate Score Success Rate Score Success Rate
Fine-tuned on Beauty 64.23 31.41 73.99 45.80 74.49 45.85
Fine-tuned on Garden 64.79 34.76 73.97 44.70 75.27 47.5
Fine-tuned on Grocery 61.80 27.50 73.83 45.75 74.91 47.60

Fine-tuned on Electronics 62.03 30.97 73.46 45.25 74.41 44.5
Fine-tuned on Fashion 62.54 31.60 73.37 44.45 74.36 46.65

Average −→ 63.07 31.24 73.72 45.19 74.68 46.42

Table 5: The results of unsupervised domain adaptation and single domain methods in the WebShop environment.

Comparison between the Best Models: We present
the results from the best models in Table 4. No-
tably, GLAINTEL1M achieves a state-of-the-art
score (i.e., 76.87) surpassing all other models. Sur-
prisingly, our model, based on Flan-T5-Large (780
million parameters), has outperformed the LASER
method, which relies on the latest GPT-4 model
with extensive handcrafted prompt, in terms of the
Score metric. It also achieves comparable perfor-
mance in terms of Success Rate (49.6 vs 50.0).
These findings strongly suggest that a model, when
further fine-tuned with PPO after supervised train-
ing, can deliver superior results, even with a rela-
tively smaller model size.

RQ3: Unsupervised Domain Adaptation. The
Single Domain Behavioral Cloning (SDBC) ap-
proach involves fine-tuning a Flan-T5-large model
in a supervised setting using demonstrations spe-
cific to a particular domain (e.g., Beauty). Sub-
sequently, without any additional refinement for
other domains, the model is directly tested using
the WebShop environment encompassing all do-
mains. In contrast, UDA takes the Flan-T5-large
model fine-tuned in a single domain and further
refines it across all domains using PPO in the un-
supervised setting. Table 5 presents two versions
of UDA: UDA500K and UDA1M . Both UDA meth-
ods exhibit superior performance (i.e., statistically
significant) in terms of Score and Success Rate met-
rics when compared to the corresponding metrics
of SDBC. This superiority is evident not only on a
domain-specific basis but also on the average per-
formance across domains. In particular, concerning
the average performance across domains, UDA1M

surpasses SDBC by 18.4% in the Score and 48.6%

in the Success Rate metrics. This emphasizes the
crucial role of unsupervised PPO refinement and
its impact on enhancing overall performance.
Role of Supervision in a Single Domain: To com-
pare the UDA results with RL-based ones, we can
refer to Table 5 and Table 2, where UDA500K

model outperforms the PPO500K in terms of
both Score and Success Rate metrics. Simi-
larly, UDA1M surpassed PPO1M . Specifically,
the UDA1M model achieves a 3.5% higher Score
and a 9.09% higher Success Rate compared to the
PPO1M model. Likewise, the UDA500K model at-
tained an 8.1% higher Score and a 17.2% higher
Success Rate compared to the PPO500K model.
These findings indicate that incorporating single-
domain human demonstration supervision signif-
icantly enhances the model’s capacity for more
effective fine-tuning during unsupervised training
with PPO. This approach outperforms models that
lack any supervised training, which highlights the
value of leveraging human demonstrations in the
adaptation process.
Learning Curves for PPO training. In Fig-
ure 2, the learning curves of Score and Success
Rate metrics during PPO fine-tuning are illustrated
for various methodologies: the UDA, the hybrid
(GLAINTEL) (BC + PPO), and the RL-based PPO.
Both the hybrid method and the unsupervised do-
main adaptation method demonstrate higher sample
efficiency compared to the unsupervised method.
This aligns with expectations, considering that both
the hybrid method and the unsupervised domain
adaptation method underwent some level of super-
vised training before RL fine-tuning – a contrast to
the RL-based unsupervised method, which did not.
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Approach Name Model Parameters Score Success Rate
Hybrid Method BC + PG BART, BERT 516 Million 59.25 24
Hybrid Method BC + PPO1M (GLAINTEL1M ) Flan-T5-large 780 Million 78.35 53

State-Space Exploration LASER GPT-4-0613 N/A 83.55 56

Table 6: Results of Zero-shot simulation-to-real experiment on eBay.
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Figure 2: Learning curves of different methodolo-
gies: Unsupervised Domain Adaptation (UDA), Hybrid
(BC + PPO) (GLAINTEL), and RL-based Unsupervised
(PPO).

4.2 Results on Real Website: eBay

We also conduct limited evaluations on a real
website: eBay. For this experiment, we evalu-
ate the performance of three methods: (i) our
best model (GLAINTEL1M ), (ii) the GPT-4-based
method LASER, and (iii) the WebShop baseline
(BC + PG). It is important to highlight that we
used the models trained using the Webshop en-
vironment and did not perform any fine-tuning
using the eBay website. Following (Yao et al.,
2022), we randomly sampled 100 user instructions
to evaluate the performance of these methods. As
presented in Table 6, our method GLAINTEL1M
significantly outperformed the WebShop baseline
(BC + PG) by 32.23% in the Score metric and by
120.83% in the Success Rate metric. Moreover,
although LASER, utilizing GPT-4, has slightly
higher Score and Success Rate metrics compared
to our model GLAINTEL1M , we are confident that
GLAINTEL1M can achieve comparable or even su-
perior results by enabling of unsupervised training
using PPO. Additionally, it is worth noting that our
approach utilizes a 780 million parameter model,
which is significantly smaller than GPT-4, not to
mention the costs associated with GPT-4. We
present an ablation study in Appendix B.

5 Related Work

Fine-tuning LLMs with RL and Human Feed-
back. Fine-tuning LLMs with human feedback
and reinforcement learning has been studied ex-
tensively. (Nakano et al., 2021) developed the
WebGPT by fine-tuning the GPT-3 model using
behavior cloning and rejection sampling. More-
over, InstructGPT (Ouyang et al., 2022) was de-
veloped using the three-step approach: supervised
fine-tuning, reward model training, and reinforce-
ment learning via PPO with the help of the trained
reward model. Additionally, the authors in (Sti-
ennon et al., 2020) fine-tuned a model that may
choose a human-preferred summary, they used this
model as a reward function to fine-tune a summa-
rization policy using RL.
Foundation Models for Decision Making. Foun-
dation models possess robust decision-making ca-
pabilities, rendering them invaluable across various
downstream tasks. For instance, recent works (Ahn
et al., 2022; Huang et al., 2022a,b) showcase the
application of foundation models in the robotics do-
main. Moreover, works (Rawles et al., 2023; Wen
et al., 2023; Yan et al., 2023; Hong et al., 2023)
utilize foundation models to intelligently navigate
Android applications. Additionally, the foundation
models have been utilized in gaming contexts (,
FAIR; Lee et al., 2022; Reed et al., 2022; Fan et al.,
2022; Wang et al., 2024; Carta et al., 2023).
Web Navigation. Many benchmarks and datasets
exist for the training and assessment of web agents
(Yao et al., 2022; Shi et al., 2017; Deng et al.,
2024; Zhou et al., 2023; Liu et al., 2018). Re-
searchers have consequently proposed diverse web
agents and tested their performance on these bench-
marks. The MiniWob++ benchmark is among these
benchmarks on which different methods have been
applied. For example, (Humphreys et al., 2022)
employed a combination of reinforcement learn-
ing and behavioral cloning, (Furuta et al., 2024)
utilized supervised training on an instruction-fine-
tuned LLM, (Liu et al., 2018) introduced Workflow-
guided exploration (WGE), and (Gur et al., 2019)
trained DQN agents (QWeb network and INET
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network). Additionally, the Mind2Web bench-
mark introduced the MindAct model, synergiz-
ing the strength of small and large LLMs (Deng
et al., 2024). Additionally, a visual language
model named CogAgent was utilized for the bench-
mark (Hong et al., 2023). (Zeng et al., 2023) pre-
sented AgentTuning as another notable approach
to tackle the Mind2Web benchmark. Further-
more, considering the Webshop benchmark, var-
ious methodologies have been proposed that use
in-context learning (Kim et al., 2023; Yao et al.,
2023; Sridhar et al., 2023), supervised learning (Fu-
ruta et al., 2024; Shaw et al., 2024), and RL (Yao
et al., 2022). Nonetheless, no work has clearly out-
lined the impact of human demonstrations and the
optimal utilization of available demonstration data.
Furthermore, UDA remains underexplored.

6 Conclusion

We introduce GLAINTEL, a flexible agent designed
for training across diverse product search scenar-
ios, accommodating situations with limited or no
human demonstrations for supervision. We also
investigate the optimal utilization of demonstra-
tion data, showing that straightforward supervised
learning approaches, like behavior cloning, do not
yield superior results when using human demon-
stration data. Through extensive experimental eval-
uations in the WebShop environment, we highlight
the crucial role of the unsupervised training phase
employing the PPO algorithm. When combined
with supervised learning, this approach achieved
results comparable to methods utilizing GPT-4. Ad-
ditionally, we explore an underexplored scenario
where demonstration data is confined to a single
domain, we employ UDA techniques to accommo-
date novel domains. We also present evaluations on
a real website, eBay, to showcase the applicability
of GLAINTEL in the real world.
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7 Limitations

In our experiments, we only used the current and
previous observations as input to the model. Al-
though including additional observations (e.g., the
last four observations) can potentially improve per-
formance, it is important to consider that the in-
crease in the number of observations also expands

the size of the context, leading to requirements
for higher GPU memory. Moreover, the current
architecture relies only on textual descriptions of
the environment, without embedding screenshots
of web pages or product images. Improving the
performance of the agent can be achieved by inte-
grating these visual elements into the model.

It should be noted that other web environments,
such as MiniWoB (Shi et al., 2017), have simple,
plain backgrounds and minimal interaction within
a small area of 160 x 160 pixels. Because of these
limitations, we did not assess our method in this
environment and considered a more realistic envi-
ronment, WebShop. However, we plan to evaluate
the performance of our approach in other web envi-
ronments in the future.
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Hyperparameter Value
Number of Epochs 10

Learning Rate 2× 10−5

Warmup Steps 100
Weight Decay 0.01

Batch Size 32
Adam Optimizer Epsilon 10−8

Adam Optimizer β1 0.9
Adam Optimizer β2 0.999

Table 7: Supervised Learning Hyperparameters.

Hyperparameter Value
# of collected transitions

between two updates 640 (16 × 40)
Number of epochs per update 1

Batch Size 8
Learning Rate 10−6

Adam Optimizer Epsilon 10−5

Adam Optimizer β1 0.9
Adam Optimizer β2 0.999

Discount Factor 0.99
Lambda for Generalized

Advantage Estimate 0.99
Entropy Loss Coefficient 0.01
Value Loss Coefficient 0.5

Maximum Gradient Norm 0.5
Clipping Epsilon 0.2

Table 8: Unsupervised Learning Hyperparameters.

A Implementation Details

Our implementation operates on a client-server
architecture, with the training scripts serving as
the client and communicating requests to LLM
servers. Specifically, a master server manages these
requests, distributing them across multiple LLM
servers. Once each LLM server completes its com-
putations, the master server consolidates the results
and sends them back to the training script. Further-
more, we use vertical model parallelism, enabling
the parallelization of individual LLMs across multi-
ple GPUs. In our experiments, we utilized a single
LLM, Flan-T5-Large, with 780 million parameters.
This model was parallelized across 4 Nvidia V100
32GB GPUs. We incorporated the last two obser-
vations as the model input and an encoder context
size of 1024.

To train the agent using the human demonstra-
tions, we used the Trainer library provided by Hug-

Configs −→ SL (one cat) + PPO (500k) PPO (500k)
Model ↓ Score Success Rate Score Success Rate
Flan-T5 73.72 45.19 68.18 38.55

T5 71.85 43.10 52.07 25.35

Table 9: Ablation Study (T5 vs Flan-T5)
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Flan T5: Success Rate

Figure 3: Hybrid setting: BC + PPO: Flan-T5 is more
sample efficient than T5 model.

gingface 2. We employed the Adam optimizer, and
for the remaining hyperparameter values, refer to
Table 7. In our unsupervised learning phase, we
leverage the PPO algorithm, and the complete val-
ues of hyperparameters can be found in Table 8.

B Ablation Study

Flan-T5 vs T5. We employed two models of iden-
tical size, each with 780 million parameters: Flan-
T5-Large and T5-Large. The results, as presented
in Table 9, demonstrate that adopting the Flan-T5-
Large model instead of T5-Large leads to a sub-
stantial improvement of 30.93% in the Score and a
remarkable 52.07% increase in the Success Rate in
the unsupervised setting (PPO). Furthermore, in the
domain adaptation scenario, we observed a 2.60%
Score enhancement and a 4.85% improvement in
the Success Rate. Moreover, Figure 3 demonstrates
that employing the Flan-T5 model over the T5
model results in better sample efficiency. Specifi-
cally, both Score and Success Rate metrics exhibit
faster growth during PPO fine-tuning in the Flan-
T5 model compared to the T5 model. This outcome
was anticipated as the Flan-T5 model enjoys the
advantage of being fine-tuned on user instructions,
a benefit not shared by the T5 model.

2Trainer: https://huggingface.co/docs/transformers
/main_classes/trainer
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Two Observations: Score
One Observation: Success Rate
Two Observations: Success Rate

Figure 4: The model is more sample efficient when we
feed it with the last two observations.

Configs −→ SL (all cats) SL + PPO (500k)
Score Success Rate Score Success Rate

2 observations 66.55 37.05 74.60 46.95
1 observation 60.20 27.20 65.29 33.60

Table 10: Ablation Study (2 observations vs 1 observa-
tion)

2 Observations vs 1 Observation. As demon-
strated in Table 10, combining the present obser-
vation state with the preceding observation state to
create a historical context and subsequently provid-
ing the model with this new observation containing
both leads to a notable 10.54% boost in the Score
and a remarkable 36.21% improvement in Success
Rate in the supervised setting. This substantial
enhancement is equally observable in the context
of the hybrid method (SL + PPO) where the super-
vised training is coupled with unsupervised training
(PPO), resulting in a significant 14.26% increase in
the Score and an impressive 39.73% improvement
in Success Rate. Additionally, during the train-
ing, we noticed that employing a historical context
(having the current and last observations) as input
enhances the sample efficiency for the agent com-
pared to using just one observation (see Figure 4).
Specifically, Score and Success Rate metrics show
a swifter increase with fewer steps when leverag-
ing two observations (historical context) as input,
while the progression is notably slower when uti-
lizing only a single (or current) observation.

Comparison of Decoding Methods. In Table
11, we compare the performance of four differ-
ent decoding methods: (i) Epsioln-Greedy algo-
rithm (with epsilon value of 0.2), (ii) Sampling with
top_p (with top_p = 0.8 and top_k = 0.0),(iii) Sam-
pling with no top_p and no top_k, and (iv) Argmax.
These results are determined by averaging the re-

Comparison Score Success Rate
Epsilon-Greedy algorithm 68.23 39.29

Sampling with top_p 66.25 37.32
Sampling 65.92 36.41
Argmax 57.92 35.59

Table 11: Ablation Study (Decoding Methods)

sults achieved from models trained with different
techniques and settings, including RL and UDA,
among others. These results show that, on average,
the Epsilon-Greedy algorithm consistently attains
the best results during inference, with a Score of
68.23 and a Success Rate of 39.29. Following
closely, the nucleus sampling (top_p) method has
lower Scores and Success Rates of 66.25 and 37.32,
respectively. In the third position, traditional sam-
pling produces a score of 65.92 and a Success Rate
of 36.41. The worst outcomes are associated with
the Argmax method, primarily since Argmax fre-
quently causes the web agent to become stuck in
a loop. In simpler terms, the web agent ends up
repeatedly navigating back and forth between web
pages.
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Abstract

Despite the advances in the abstractive sum-
marization task using Large Language Mod-
els (LLM), there is a lack of research that as-
sess their abilities to easily adapt to different
domains. We evaluate the domain adaptation
abilities of a wide range of LLMs on the sum-
marization task across various domains in both
fine-tuning and in-context learning settings. We
also present AdaptEval, the first domain adap-
tation evaluation suite. AdaptEval includes a
domain benchmark and a set of metrics to fa-
cilitate the analysis of domain adaptation. Our
results demonstrate that LLMs exhibit compa-
rable performance in the in-context learning
setting, regardless of their parameter scale.

1 Introduction

Large Language Models (LLM) have achieved re-
markable improvements on a wide range of natu-
ral language processing tasks, including abstrac-
tive text summarization, the task of generating an
abridged version of the most relevant information
in a document (Basyal and Sanghvi, 2023). Re-
cent works study the domain adaptation abilities
of LLMs on the summarization task. However, the
research is still limited to a single domain, such
as news articles (Goyal et al., 2022; Zhang et al.,
2023) or clinical reports (Van Veen et al., 2023).
We argue that there is a lack of research across
domains to better understand the abilities of these
models to adapt to different targets.

In this paper, we assess the domain adapta-
tion abilities of 11 models, including conventional
encoder-decoder models and a wide range of LLMs
in various parameter sizes, on the summarization
task. In particular, we experiment with fine-tuning
and in-context learning (ICL) settings and evalu-
ate their performance across various domains (i.e.
governmental, medical, and scientific), reporting
scores on a collection of automatic—ROUGE (Lin,
2004) and BERTScore (Zhang et al., 2019)—and

domain adaptation metrics. The latter includes do-
main vocabulary overlap (Yu et al., 2021), and our
adaptations of G-eval (Liu et al., 2023) and token
distribution shift (Lin et al., 2023) to the task.

The experimental results show the abilities of
LLMs to adapt to the domain in the ICL setting.
In particular, small models with 7b parameters
achieve comparable performance to their larger
counterparts with only two learning examples.
However, G-eval highlights the difficulty of adapt-
ing to the medical domain. While the fine-tuned
models achieve the best performance in terms of
automatic scores, their adaptation to the domain
vocabulary is inferior to the ICL setting. Finally,
we release the domain benchmark and evaluation
metrics as the first domain Adaptation Evaluation
suite (AdaptEval) to facilitate the evaluation of
models and foster further research on this task.1

2 The Domain Adaptation Suite

2.1 Domains Benchmark

Our benchmark contains data from different
datasets on the scientific, medical, and governmen-
tal domains. The final size of the domain datasets is
listed in Table 1, after removing instances with ex-
tractive summaries, or extremely long summaries
or sources as in Shaham et al. (2022).2

Science The data consists of scientific articles
from the arXiv platform, where the human-written
abstracts are used as reference summaries of the
articles (Cohan et al., 2018).

Medical The medical domain comprises aca-
demic articles in the field of biomedical and life
sciences from the PubMed dataset (Cohan et al.,
2018). Similarly to arXiv, the article abstracts are
regarded as abstractive summaries.

1AdaptEval code is available on AdaptEval.
2Deleted: 3% arXiv, 4% PubMed, and 0.4% GovReport.

76

https://github.com/anum94/AdaptEval


Domain Train Val. Test

Science 203,037 6,436 6,440
Medical 119,924 6,633 6,658
Government 17,517 973 973

Table 1: Sizes of domain datasets.

Domain Size #W #Sum W

Science 215,913 6,029.9 272.7
Medical 133,215 3,049.9 204.4
Government 19,466 9,409.4 553.4

Table 2: Total sizes of the domain datasets and average
word count of source (#W) and summary (#Sum W).

Government The data comes from the GovRe-
port dataset, a collection of reports on national
policy issues paired with human-written executive
summaries (Huang et al., 2021). The documents
are 1.5 and 2.5 times longer than those from arXiv
and PubMed, respectively.

2.2 Evaluation Metrics

The suite provides a set of metrics to evaluate
the performance of summarization models and ap-
proaches across domains. Specifically, we include
the standard summarization metrics ROUGE (Lin,
2004) and BERTScore (Zhang et al., 2019), which
measure n-gram and contextual similarity against a
reference, respectively. To get better insights into
their domain adaptation abilities, we also imple-
ment several metrics that assess the domain lan-
guage. We describe them in the rest of the section.

Domain Vocabulary Overlap (DVO) We com-
pute the percentage of domain vocabulary in the
generated output as in Yu et al. (2021). The domain
vocabulary consists of the top 10k most frequent
words in the domain excluding stopwords.

Domain Token Distribution Shift Lin et al.
(2023) analyzes the impact of LLM alignment and
proposes to measure the token distribution shifts be-
tween base models and their aligned counterparts.
We adopt the token distribution shift approach to
domain adaptation. Specifically, we focus on the
domain vocabulary (i.e. 10k most frequent words)
and analyze the effects of adaptation strategies,
such as ICL and fine-tuning on their distribution.

Formally, given a prompt p, we first use the fine-
tuned model to generate a summary by greedy de-
coding, where the summary is represented as a se-
quence of tokens S = {s0, ..., sT } from the model

vocabulary V , such that st ∈ V for 0 < t < T .
Next, we process each token in S sequentially. At
each step t, we get the probability distribution of
the next token prediction given p and the prior con-
text p(· | s<t,p) using both fine-tuned and base
models. In the in-context learning setting, we use
the same model, but the adapted approach extends
the prompt p with learning examples.3 Finally, we
rank the tokens in both distributions according to
their probability and provide KL-divergence scores
and the token shift rate of those tokens in the vo-
cabulary domain. While the former represents their
distribution similarity, the latter computes the fre-
quency at which the adapted approach predicts a to-
ken from the vocabulary domain that is not among
the top three predictions of the base model.

Reference-free evaluation with GPT-4 G-eval
uses GPT-4 (OpenAI, 2023) with chain-of-thought
prompting (Wei et al., 2022) to evaluate summaries
across quality features, such as coherence or flu-
ency, achieving high correlation with human judg-
ments (Liu et al., 2023). Similarly, we design a
prompt to score the degree to which a summary
adheres to the domain language on a scale from
1 to 5. Our prompt includes the reasoning steps
generated by GTP-4 as in Liu et al. (2023) (see
Appendix B).

3 Domain Adaptation Task

We assess the performance of 11 models across
domains in both fine-tuning4 and ICL settings.

3.1 Models Selection
We select a wide variety of models from the
conventional encoder-decoder transformer mod-
els—BART (Lewis et al., 2020) and PEGASUS-
X (Phang et al., 2022)—to the recent instruction-
based LLMs. The latter includes open-source mod-
els from the Llama2 family (Touvron et al., 2023),
Vicuna (Chiang et al., 2023), Falcon (Almazrouei
et al., 2023), and Mistral AI (Jiang et al., 2023).
For each model family, we consider various model
sizes ranging from 7b to 70b parameters, if avail-
able. Additionally, we consider the close-source
model ChatGPT from OpenAI. We provide the
checkpoints and technical details in Appendix A.

3The method can also be applied to compare models of
different parameter scales in different adaptation settings.

4We exclude GovReport from fine-tuning on 5k and 10k
samples, since the train set doesn’t have enough documents
to fit into the models context window of 4096 tokens—only
1148 instances with maximum 4k length in the training split.

77



Medical Science Government

BERTScore DVO ROUGE BERTScore DVO ROUGE BERTScore DVO ROUGE

Zero-shot Setting

PEGASUS-X 0.690 6.28 3.55 0.538 11.98 5.85 0.736 5.58 9.06
Falcon 7b 0.811 31.87 13.68 0.810 30.16 14.54 0.821 31.49 13.86
Llama2 7b 0.783 21.15 10.94 0.818 28.61 18.33 0.845 34.36 18.86
Mistral 7b 0.788 24.78 9.44 0.806 28.81 13.68 0.815 31.18 12.02
Vicuna 7b 0.727 9.49 2.11 0.781 23.94 7.93 0.813 30.69 10.80
Llama2 13b 0.764 20.78 6.26 0.783 23.48 8.58 0.797 24.04 10.80
Vicuna 13b 0.745 15.76 1.58 0.763 19.07 4.43 0.783 27.18 7.17
Falcon 40b 0.816 35.51 13.85 0.822 34.98 17.59 0.827 35.51 13.85
Llama2 70b 0.842 35.50 24.59 0.837 35.22 23.35 0.855 36.05 21.48
ChatGPT 0.844 36.69 24.81 0.838 36.58 23.95 0.859 37.73 22.34
GPT-4o mini 0.843 41.04 22.26 0.834 40.85 20.16 0.856 41.51 21.12

Two-shot Setting

Llama2 7b 0.819 35.95 21.11 0.824 35.34 20.92 0.847 30.22 17.39
Mistral 7b 0.816 32.05 21.30 0.802 23.61 17.76 0.844 30.08 19.21
Vicuna 7b 0.831 36.29 21.54 0.827 34.65 20.31 0.851 30.28 17.29
Llama2 13b 0.820 35.02 19.00 0.809 32.30 18.97 0.814 29.92 14.30
Vicuna 13b 0.822 35.51 19.69 0.807 33.32 14.86 0.789 29.34 8.34
Llama2 70b 0.845 37.61 22.40 0.842 36.65 23.03 0.851 29.59 18.72
ChatGPT 0.841 38.58 22.92 0.837 38.39 23.15 0.853 30.44 16.82
GPT-4o mini 0.842 30.64 23.18 0.835 29.14 21.47 0.850 30.40 16.04

Fine-tuning Setting

BART 0.852 37.03 24.80 0.844 34.15 22.20 0.856 25.14 28.44
PEGASUS-X 0.850 28.72 31.18 0.852 34.61 28.11 0.868 22.07 31.98
Llama2 7b1 0.859 33.61 25.81 0.858 33.06 25.30 0.850 29.30 24.81
Llama2 7b2 0.861 35.15 26.00 0.856 30.49 25.46 x x x
Llama2 7b3 0.862 33.71 26.81 0.854 27.43 25.35 x x x
Mistral 7b2 0.863 35.81 27.17 0.863 34.00 27.29 0.833 21.66 23.08
Llama2 13b2 0.862 35.28 26.26 0.860 32.67 26.47 x x x

Table 3: BERTScore F1, DVO (%), and the geometric mean of ROUGE-1/2/L (ROUGE) of all models across
the three domains. The value ‘x’ implies that the model was not evaluated under those settings. 1/2/3 indicate
fine-tuning with 1k, 5k, and 10k instances, respectively.

3.2 Results

Table 3 shows the performance of the models across
domains in terms of ROUGE, BertScores, and
DVO. We observe that the model size has a direct
impact on their overall performance in the zero-
shot setting; however, this performance gap is con-
siderable reduced in the ICL setting with only two
learning examples. In fact, the scores of the small
7b models are comparable to the large Llama 70b or
the even larger ChatGPT. To validate these results,
we compute the token distribution shift between
models of different sizes in the two-shot setting
(Table 4). The scores reflect that their probability
distributions are very similar, confirming that there
are no major differences in their performance.

In contrast, the fine-tuning results in Table 3
are mixed. Overall, the models outperform their
counterparts in the two-shot setting in terms of
ROUGE scores; however, there is a decrease in
DVO. In particular, PEGASUS-X achieves the best

ROUGE scores. We argue that this is attributed to
the model’s fine-tuning process, since the parame-
ters are adjusted to optimize on ROUGE. Addition-
ally, BART achieves the highest DVO despite its
small parameter size (110M). Johner et al. (2021)
point out to the model’s tendency to generate highly
extractive summaries, which favours the use of do-
main vocabulary. Finally, the token shift rate and
KL-divergence scores between the base and fine-
tuned models are higher than in the two-shot setting.
However, we observe that most distribution shifts
are due to stylistic tokens, as also reported in Lin
et al. (2023) between the base and their aligned
LLMs.

To confirm these findings, we also evaluate the
summaries using GPT-4 shown in Table 5, which
have a strong correlation with human judgments,
along with our addition to measure domain adap-
tation, on a random sample of 25 articles.5 The

5Due to the costs of using GPT-4 with large prompts, we
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base 2-shot KL TSR KL TSR KL TSR

Llama2 7b vs. 7b 19.70 92.14 19.27 97.44 17.40 94.33
Mistral 7b vs. 7b 13.88 91.33 14.01 95.40 13.40 90.00
Vicuna 7b vs. 7b 17.67 92.35 18.32 93.89 15.42 94.04
Llama2 13b vs. 13b 15.58 96.95 16.53 96.76 14.67 98.82
Vicuna 13b vs. 13b 18.12 97.13 17.34 90.70 16.79 99.10
Llama2 70b vs. 70b 16.78 95.68 17.12 98.19 13.10 92.36

2-shot 2-shot KL TSR KL TSR KL TSR

Llama2 13b vs. 7b 0.21 2.87 0.38 1.67 0.32 10.38
Vicuna 13b vs. 7b 0.25 2.07 0.38 4.57 0.24 0.00
Llama2 70b vs. 13b 0.47 5.18 0.31 3.50 0.49 4.92
Llama2 70b vs. 7b 0.43 3.92 0.46 5.01 0.54 6.88

base FT KL TSR KL TSR KL TSR

Llama2 7b vs. 7b 0.81 12.40 0.35 4.70 21.49 15.15
Mistral 7b vs. 7b 0.52 11.54 0.37 4.42 0.18 3.21
Llama2 13b vs. 13b 0.51 6.84 0.48 7.32 x x

Table 4: Effect of different model sizes, two-shot in-context learning, and Fine-Tuning in terms of token distribution
shift scores—KL divergence and Token Shift Rate (%) calculated over 10 samples. Two-shot has the major impact
on the models’ predictions. The low scores between different model sizes indicate that parameter size does not have
a significant effect on domain adaptation in the two-shot setting.

scores on arXiv data are consistent with our pre-
vious results, showing that ICL achieves the best
performance, and the model parameter size does
not have a significant impact. However, PubMed
obtains remarkably low scores, which highlights
the difficulty of the models to adapt to the medical
domain. The LLMs however, find it easier to adapt
to the Government domain.

3.3 Manual Evaluation

Two in-house domain experts perform a blind man-
ual evaluation of the same arXiv samples used in
GPT-4 evaluation (Table 5). The setting comprises
of 25 random arXiv articles paired with four differ-
ent summaries generated with Llama2 (7b and 70b)
in the two-shot setting, fine-tuned Llama2 (7b) and
PEGASUS-X. To avoid biases, we randomly shuf-
fle the evaluation instances and their summaries for
each annotator.

We ask the annotators to rank the generated sum-
maries according to how well the vocabulary and
style of the outputs adapt to the scientific domain.
The task is especially challenging when the sum-
maries contain similar vocabulary. Therefore, we
focus on the relative performance of the models;
that is, their agreement on an output being ranked
higher than the other. The final Cohen’s κ inter-
annotator agreement is 0.4. The results show that

only report the scores on four models outputs of 25 random
instances.

the annotators consistently rated the outputs of both
Llama2 7b and 70b in the two-shot scenario among
the top two positions of the ranking—60% and
52%, respectively—whereas the fine-tuned models
were the least preferred—only 12% (Llama2 7b)
and 16% (Pegasus-X) rated on top.

4 Related Work

Some recent works evaluate the domain adaptation
abilities of LLMs on the summarization task, albeit
limited to a specific domain. Van Veen et al. (2023)
focus on clinical data and tackle the summarization
of electronic health records. They evaluate eight
different LLMs across six datasets in the same do-
main. Fu et al. (2024) investigate whether model
size has an impact on the summarization perfor-
mance of business meeting transcripts. The results
show that smaller LLMs cannot outperform their
larger counterparts (from 7b to 70b parameters),
even after fine-tuning, except for FLAN-T5 with
780M parameters (Chung et al., 2022). In con-
trast, Zhang et al. (2023) provides a benchmark
for text summarization of news articles and con-
cludes that instruct-tuning rather than model size is
the key to text summarization with LLMs. Sim-
ilarly, Goyal et al. (2022) propose also a news
summarization benchmark and compare the per-
formance between conventional encoder-decoder
and instruction-based models. Prior to the LLM
era, Yu et al. (2021) explored domain adaptation

79



DA (ours) Coherence Fluency

2-shot arXiv PubMed GovReport arXiv PubMed GovReport arXiv PubMed GovReport

Llama2 7b 4.20 1.0 4.04 3.80 2.0 3.96 2.72 2.0 2.96
Llama2 70b 3.96 1.0 4.40 3.20 1.0 3.96 2.56 1.0 3.00

FT

Llama2 7b 3.48 2.0 4.16 2.08 2.0 3.40 2.04 2.0 2.84
PEGASUS-X 3.88 2.8 4.40 2.88 2.0 3.72 2.40 2.0 2.72

Table 5: Evaluation scores using GPT-4 on 25 random samples from the arXiv, PubMed and GovReport datasets in
terms of coherence (1-5), fluency (1-3), and our Domain Adaptation (DA) (1-5).

techniques in a low-resource setting, such as fine-
tuning and second pre-training of encoder-decoder
summarization models on a wide range of datasets.

5 Conclusion

We evaluate the domain adaptation abilities of
Large Language Models across scientific, med-
ical, and governmental domains using a set of
adapted evaluation metrics. Additionally, we re-
lease AdaptEval, an evaluation suite that facilitates
the analysis of domain adaptation. Our experiments
show that smaller LLMs exhibit domain-shift chal-
lenges, but they are able to achieve comparable per-
formance to larger LLMs when provided with only
two learning examples. In contrast, fine-tuning
does not have a significant impact on the vocabu-
lary domain, but only on stylistic tokens. Overall,
the G-eval scores indicate that the medical domain
is challenging for these models. We expect our
work to encourage and facilitate further research
on domain adaptation with LLMs across domains.
We plan to continue this research in future work.

Limitations

To fairly compare the performance of the different
models, we generally restricted our evaluation to
those models with context window of 4096. An
exception is the language model BART with a con-
text window of 1024. Additionally, due to the high
costs of performing human evaluations on multiple
domains, we only annotated ArXiv data to reaffirm
the results obtained through the automatic metrics.
Our goal is to facilitate the evaluation of models
across domains to the research community. There-
fore, our suite consists of a set of metrics to evalu-
ate domain adaptation and general summarization
quality, allowing for a comprehensive comparison
of the models performance on multiple datasets.
Lastly, given the cost associated with GPT-4, we

performed LLM-based evaluation on only 25 ran-
dom samples.

Ethics Statement

Throughout our experiments, we strictly adhere
to the ACL Code of Ethics. Since we used al-
ready established open-source benchmark datasets,
the concern of privacy does not apply. The man-
ual evaluation was performed by in-house domain
experts, who receive a full salary. They were in-
formed about the task and usability of data in the
research. Their annotations were stored anony-
mously, mitigating any privacy concerns. Through
our fine-tuning strategies, no additional bias was
introduced into the models, other than what might
already be part of the model weights or the bench-
mark dataset. The goal of the research is to evalu-
ate the domain adaptation capabilities of existing
models on a text summarization task. The results
and discussions in this paper are meant to further
promote research in the area of domain-specific
language modeling with an over-arching goal of
bridging the gap between academia and applica-
tion. All training scripts and trained models will be
made available to the research community.
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A Technical Details

The fine-tuning and inference procedure was done
by leveraging Nvidia A100-80GB GPUs.

A.1 Zero-shot Setting
We used the instruct-tuned or chat versions of
the models. As for ChatGPT, we used the
OpenAI API6 and the latest snapshot available,
gpt-3.5-turbo-0613 from June 13th, 2023. For
zero-shot setting, we used Llama2 (7b)7, Llama2
(13b)8, Llama2 (70b) 9, Vicuna (7b)10, Vicuna
(13b)11, Falcon (7b)12, Falcon (40b)13, and Mis-
tral AI (7b)14.

When generating summaries, we sample a max-
imum of 256 tokens for the arXiv and PubMed
datasets, while scaling to 1024 tokens for the Gov-
Report dataset, as is standard procedure in other
contemporary publications. The prompts used 0-
shot and 2-shot settings for generating the sum-
maries is shown in Table 7.

A.2 In-context Learning Setting
We used the same model checkpoints as the ones
from zero-shot settings for in-context learning. We
excluded Falcon from in-context learning, since
its context window of 2048 is too small to fit 2
learning examples.

A.3 Fine-tuning Setting
The links to all fine-tuned models is displayed in
Table 6.

Language Models We used HuggingFace Trans-
formers (Wolf et al., 2020) and Microsoft Deep-
speed library for distributed training.15 We fine-
tuned BART16 and PEGASUS-X17 on the training
split and a context window of 1024 and 4096, re-
spectively. All models were fine-tuned for 4 epochs
with a learning rate of 8e− 4 and batch size of 64.

6https://platform.openai.com/
7https://huggingface.co/meta-llama/

Llama-2-7b-chat-hf/
8https://huggingface.co/meta-llama/

Llama-2-13b-chat-hf/
9https://huggingface.co/meta-llama/

Llama-2-70b-chat-hf/
10https://huggingface.co/lmsys/vicuna-7b-v1.5
11https://huggingface.co/lmsys/vicuna-13b-v1.5
12https://huggingface.co/tiiuae/falcon-7b
13https://huggingface.co/tiiuae/falcon-40b
14https://mistralai/Mistral-7B-Instruct-v0.1
15https://github.com/microsoft/DeepSpeed
16https://huggingface.co/facebook/bart-base
17https://huggingface.co/google/

pegasus-x-large
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Science Medical Government

BART bart-arxiv-1024 bart-pubmed-1024 bart-govreport-1024
PEGASUS-X bigbird-pegasus-arxiv-4096 bigbird-pegasus-pubmed-4096 bigbird-pegasus-govreport-4096
Llama2 7b1 Llama-2-7b-arxiv-4096 Llama-2-7b-pubmed-4096 Llama-2-7b-govreport-4096
Llama2 7b2 Llama-2-7b-arxiv-4096 Llama-2-7b-pubmed-4096 x
Llama2 7b3 Llama-2-7b-arxiv-4096 Llama-2-7b-hf-pubmed-4096 x
Llama2 13b2 Llama-2-13b-arxiv-4096 Llama-2-13b-pubmed-4096 x
Mistral 7b2 Mistral-7B–arxiv-4096 Mistral-7B-pubmed-4096 Mistral-7B-govreport-4096

Table 6: Links to all fine-tuned models repositories. The value ‘x’ implies that the model was not evaluated under
those settings. 1/2/3 indicate fine-tuning with 1k, 5k, and 10k instances, respectively.

Large Language Models We included Llama2
(7b)18, Llama2 (13b)19, and Mistral AI 20 for LLM
fine-tuning. We fine-tuned the models for 1 epoch
using the HuggingFace Trainer API and LoRA on
a training subset consisting of samples with a max-
imum length of 4096, such that they can fit in the
context window without truncation. Since Zhou
et al. (2023) argue that 1k samples are enough to
fine-tune LLMs, we experimented with 1k, 5k, and
10k training samples. Since models do not show
any performance increase when trained on more
than 5k samples, we opted to train on Llama2 (13b)
and Mistral AI on 5k samples. We selected the
LoRA parameters r=64, alpha=16, and a dropout
of 0.1. Furthermore, we used the paged AdamW
optimizer with a beta2 value of 0.999 and a learn-
ing rate of 2e − 4 with a constant learning rate
strategy. We did not fine-tune Vicuna, since we
only used the non-instruction tuned models in this
setting. We excluded Falcon from fine-tuning as
it only supports a context window of 2048, and
therefore, it cannot be fairly compared against the
other models with a context window of 4096.

B LLM Prompting

Table 7 and Table 8 illustrate the prompts used to
generate summaries and to score the domain adap-
tation of summaries using GPT-4, respectively. For
evaluation, we use the prompts introduced by Liu
et al. (2023) for Coherence and Fluency. How-
ever, we craft our own prompt that asseses model’s
ability to adapt to a new domain by evaluating the
generated summaries.

18https://huggingface.co/meta-llama/Llama-2-7b
19https://huggingface.co/meta-llama/

Llama-2-13b
20https://huggingface.co/mistralai/

Mistral-7B-v0.1

C Sample Summaries

Table 9 shows the summaries generated by Llama2
7b under zero-shot, two-shot and fine-tuning set-
ting.
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0-SHOT PROMPT
You are an expert at summarization. Proceed to summarize the following text.
TEXT: {article}
SUMMARY:

FEW-SHOT PROMPT
You are an expert at summarization. Proceed to summarize the following text.
TEXT: {article}
SUMMARY: {summary}
Proceed to summarize the following text.
TEXT: {article}
SUMMARY: {summary}
. . .
TEXT: {article}
SUMMARY:

Table 7: The prompt in the Benchmark for generation of domain-specific summaries using Large Language Models.

SYSTEM PROMPT
You will be given one summary written for an article. Your task is to rate the summary on one metric. Please make sure you
read and understand these instructions very carefully. Please keep this document open while reviewing, and refer to it as
needed.
Evaluation Criteria: {criteria}
Evaluation Steps: {steps}

USER PROMPT
Example:
Source Text: {document}
Summary: {summary}
Evaluation Form: Please provide your response in two parts. First the evaluation score for the defined metrics, followed by
an explanation for the score. Please limit your response to 30 words.
{metric_name}

DOMAIN ADAPTATION SCORE CRITERIA
Domain Adaptation(1-5) - the degree to which the summary adheres to the domain-specific language. A good summary
employs domain-specific terminology and conveys the sense that model comprehends and encapsulates domain-specific
knowledge. It resembles the content that would authored by a domain expert. Annotators were also asked to penalize
summaries that didn’t adhere to domain-specific knowledge, and rather used simple words.

DOMAIN ADAPTATION SCORE STEPS
1. Read the article carefully and understand the domain it belongs to.
2. Read the summary and check if it contains domain-specific terminologies and concepts, and if it is able to concisely
summaries the domain specific concept in the article.
3. Assign a score for domain adaptation based on the Evaluation Criteria.

Table 8: The Domain Adaptation (DA) prompt in the Benchmark to evaluate the domain adaptation capabilities of
the models using a GPT-4.
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Zero-shot Llama2 7b
mirnas are small non coding rnas that play important roles on the onset and progression of cancer . distinct mirnas regulate
various cellular processes including cell cycle regulation , apoptosis , migration and invasion . altered expression of mirnas
has been observed in breast cancer and is believed to play important roles including cell proliferation regulation , cell
survival and tumorigenesis . furthermore , mirnas have been shown to play a critical role in cancer stem cell maintenance and
tumorigenesis . emerging evidence suggests that mirnas may also be a attractive therapeutic target for cancer . understanding
the specific functionalities of distinct mirnas and their role in disease may provide a new approach for cancer diagnosis
and potentially new therapeutic strategies. reference listing: lee , j.a. (2011). mi rna : a duel role player in breast cancer
progression . breast cancer : a global view . springer . 10.10079783642-135704_19 . 19 . 277 286 . abstract: micro rnas

Two-shot Llama2 7b
Small non-coding RNAs, such as siRNA, miRNA, piRNA, and snRNA, are transcribed into mRNA but remain untranslated
in eukaryotic cells. They play a crucial role in regulating gene expression and have been implicated in the onset and
progression of tumorigenesis. Emerging evidence suggests that small non-coding RNAs may represent a novel cancer
therapy. Unlike mRNA, small non-coding RNAs are transcribed but never translated. Some small non-coding RNAs are
transcribed from non-coding regions between genes, while others are transcribed together with coding mRNAs from the
coding region of the genome. Altered expression of small non-coding RNAs has been observed in breast cancer, resulting in
aberrant gene expression. Studies have shown that a high frequency ( 72.8%) of gene copy number abnormality in small
non-coding RNA-containing regions occurs in human breast cancer. Decreased expression of certain small non-coding
RNAs, such as mir-17/20, has been

Fine-tuned Llama2 7b
mirnas are small non - coding rnas that regulate gene expression and tumorigenesis . mirnas are involved in the regulation
of the cell cycle , cellular proliferation , metastasis and drug resistance of breast cancer . the expression of mirnas is
dysregulated in breast cancer . the dysregulated mirnas may serve as novel biomarkers for breast cancer . mirnas may serve
as targets for gene therapy either alone or as an adjuvant to conventional therapy .

Table 9: Summaries generated by Llama2 7b under zero-shot, two-shot and fine-tuning setting for a sample article
(id = 2) from PubMed test set.
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Abstract
Teams can outperform individuals; could
adding AI teammates further bolster perfor-
mance of teams solving problems collabora-
tively? Collaborative problem solving (CPS)
research commonly studies teams with two
agents (human-human or human-AI), but team
research literature finds that, for complex tasks,
larger teams are more effective. Progress in
studying collaboration with more than two
agents, through textual records of team in-
teractions, is hindered by a major data chal-
lenge: available CPS corpora are predomi-
nantly dyadic, and adapting pre-existing CPS
tasks to more agents is non-trivial. We address
this data challenge by developing a CPS task
generator, CPS-TaskForge, that can produce
environments for studying CPS under a wide
array of conditions, and releasing a CPS task de-
sign checklist grounded in the theoretical PISA
2015 CPS framework to help facilitate the de-
velopment of CPS corpora with more agents.
CPS-TaskForge takes the form of a resource
management (tower defense) game, and differ-
ent CPS tasks can be studied by manipulating
game design parameters. We conduct a case
study with groups of 3–4 humans to validate
production of diverse natural language CPS
communication in a game instance produced by
CPS-TaskForge. We discuss opportunities for
advancing research in CPS (both with human-
only and human-AI teams) using different task
configurations. We will release data and code.1

1 Introduction

Modern life requires teamwork to solve prob-
lems (Marks et al., 2001), but what makes a team
work well together? This area of study, known
as collaborative problem solving (CPS), is active
across many disciplines, e.g., psychologists study
the construction of team mental models in team
discussions (Lee, 2015), business management sci-
ences investigate how communication style affects

1https://github.com/nhaduong/cps-taskforge

performance evaluation (Proell et al., 2022), and ed-
ucators develop tools to teach team communication
strategies (Stewart et al., 2023), emphasizing the re-
search direction of discovering how team members
talk to one another. Conducting empirical work in
CPS faces many challenges, in large part because
of a large CPS task design space (e.g., what is the
problem, who makes up the team, and who knows
what information when). As a result, despite ex-
tensive interdisciplinary work in CPS, task designs
in empirical studies have often focused on teams
of two collaborating to solve problems such as se-
lecting a designated object, modeling search and
rescue, and making decisions.

AI agents have the potential to increase team
effectiveness, and developing ways to integrate AI
into teams is an active area of research in commu-
nities such as HCI (Cai et al., 2019), NLP (Bansal
et al., 2019; Vats et al., 2024), and AI fairness (Lai
et al., 2021). Example integrations include AI-
assisted decision making with one human and one
AI (e.g., cancer diagnosis, Chen et al., 2021) and
AI-assisted creative tooling (e.g., Tsiros and Pal-
ladini, 2020; Lu et al., 2024a). Developing these
collaborative tools is made possible through open
datasets. For example, various Amazon reviews
datasets (e.g., Fornaciari and Poesio, 2014 and
Ni et al., 2019) have been used to develop sen-
timent classifiers and deception detectors that can
be used as AI-assisted decision makers, and the
Reddit WritingPrompts dataset (Fan et al., 2018)
has been valuable in developing co-writing AI sys-
tems. Unfortunately, a paucity of open datasets
with more than two parties leads to challenges in
integrating AI with larger human teams, as we lack
understanding of team dynamics when an AI com-
municates to a team, rather than an individual.

To support CPS study across different designs
(e.g., adding a third AI teammate to a two-human
team or using voice instead of text communica-
tion), we introduce a CPS task environment genera-
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tor, CPS-TaskForge. CPS-TaskForge instantiates
a resource management activity through a tower
defense game and supports adjusting a range of
CPS design parameters such as team composition,
communication method, and how stressful the task
is. In a tower defense game, players must defend
their base by using limited resources to construct
towers that can defeat enemies before the enemies
destroy the base. We provide a CPS task design
checklist, CPS-✓, adapted from the PISA 2015 the-
oretical CPS framework (PISA2015) developed by
the OECD (OECD, 2017), to support generating
the desired task environment with CPS-TaskForge.

We illustrate CPS-TaskForge capabilities by
presenting several CPS task designs and conducting
a case study that can collect human communication
data exhibiting a range of CPS skills, including
social skills such as maintaining group commu-
nication and cognitive skills such as developing
strategic plans. Our study has small groups of 3–4
participants complete a task multiple times with
increasing difficulty. We observe many different
successful strategies and a wide range in CPS skill
usage across teams, demonstrating the versatility
of collecting data through CPS-TaskForge.

To summarize our contributions:

1. We identify opportunities and gaps in the inter-
disciplinary CPS literature. We argue that hu-
man team research can help advance human-
AI team design; however, there exist chal-
lenges associated with the lack of diverse CPS
data available to the research community.

2. We introduce CPS-TaskForge, which allows
researchers to generate a variety of CPS task
environments for studying human and human-
AI CPS team processes. We adapt a theoret-
ical CPS framework into a design checklist,
CPS-✓, to assist with CPS-TaskForge envi-
ronment generation.

3. We present a case study using
CPS-TaskForge to illustrate the vari-
ability of CPS data through a study with more
than two agents. We release the conversation
and game interaction data collected during the
study as an example of what can be produced
using CPS-TaskForge.

2 Collaboration and Problem Solving

Collaborative problem solving (CPS) processes are
well-studied for human teams, but when human-

AI teams are considered, downstream task perfor-
mance has been prioritized, leaving human-AI CPS
processes understudied. For example, Proell et al.
(2022) found human team communication more
effective when the appropriate style was used in
conjunction with the delivery of relevant informa-
tion. Humans have different expectations towards
AI teammates (Zhang et al., 2023, 2021; Grimes
et al., 2021), so human-AI teams may value com-
munication style differently. Studying human-AI
CPS processes requires developing the appropri-
ate datasets, but resources for creating such data is
deficient.

Understanding how effective and efficient com-
munication can predict successful teamwork re-
quires collecting data in a variety of CPS settings.
The tasks used to elicit relevant data often model
real-world activities, e.g., rescuing humans from a
burning building (ASIST; Corral et al., 2021; Free-
man et al., 2021), instruction following through se-
lecting designated objects (e.g., PentoRef, Zarrieß
et al., 2016; KTH Tangrams, Shore et al., 2018;
PhotoBook, Takmaz et al., 2020; Doll Dialogue,
Tenbrink et al., 2017; Paxton et al., 2021), and nav-
igating environments (e.g., HCRC Map Task, An-
derson et al., 1991; Effenberger et al., 2021), and
use human participants. The resulting datasets have
been used to study a wide variety of communica-
tion and linguistic phenomena, including language
entrainment (i.e., when communicative behavior
becomes similar among interlocutors, including
lexical choice and rhythm) and common ground
building (i.e., when interlocutors develop their own
code). To the best of our knowledge, analogous
settings incorporating an AI team member in a
CPS task have not explored similar communication
and linguistic phenomena because only recently
has AI-generated natural language become indistin-
guishable from humans (Clark et al., 2021; Dugan
et al., 2022), enabling exploration of AI teammates
as peers. Unfortunately, expanding pre-existing
datasets to other CPS settings, such as involving an
AI agent or a third human team member, is chal-
lenging because the tasks were designed to study a
specific team composition; for example, what role
would a third participant play in a navigation task
originally designed for one human to tell another
human where to go?

Despite the extensive body of literature studying
CPS, publicly available resources remain scarce,
particularly when more than two agents are in-
volved. We summarize a sample of CPS task ac-
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Task type Team Size Communication Modality

KTH Tangrams (Shore et al., 2018) Object Identification 2 Speech
PentoRef (Zarrieß et al., 2016) Object Identification 2 Multimodal
TEAMS (Rockenbach et al., 2007) Forbidden Island ™ 3–4 Multimodal
ASIST (Huang et al., 2022) Search and Rescue 3 Multimodal
CerealBar (Suhr et al., 2019) Search and Rescue 2 Text
HCRC Map Task (Anderson et al., 1991) Search and Rescue 2 Speech
PhotoBook (Takmaz et al., 2020) Object Identification 2 Text
Cards (Potts, 2012) Search and Rescue 2 Text

Rodrigues et al. (2021) Object Identification 2 Multimodal
Ma et al. (2023) Programming 2 Multimodal
Butchibabu et al. (2016) Search and Deliver 2 Text
Kokel et al. (2022) Object Construction 2 Multimodal
• MRE (Hill et al., 2003) Decision Making 21 Speech
T-shirt Task (Andrews et al., 2019) Math Problem 2 Multimodal
Volcano Lab (Flor et al., 2016) Science Lab 2 Text
Circuit Lab (Graesser et al., 2018) Science Lab 3 Text
Physics Playground (Sun et al., 2020) 2D Physics Puzzles 3 Multimodal
Minecraft (Sun et al., 2020) Minecraft Hour of Code 3 Multimodal
CPSCoach (Stewart et al., 2023) 2D Physics Puzzles 2 Multimodal
• NeoCities (Schelble et al., 2022) Search and Rescue 3 Text
9-11 Firefighting (Hutchins et al., 2008) Firefighting — Speech
Air Warfare (Hutchins et al., 2008) Object Identification 6+ Speech
Maritime Interdiction Operations (Hutchins et al., 2008) Object identification 3+ Speech
Wiltshire et al. (2018) NASA Moonbase Alpha Simulation 2 Speech

CPS-TaskForge (this work) Object Identification, Resource Management 1–4+ Text, Speech

Table 1: A sample of collaborative problem solving research. The top group contains work that produced datasets
open to the research community. • indicates studies with AI teammates. Object identification tasks require
identifying an object, search and rescue requires navigating an environment to locate an object, and search and
deliver requires returning to a second point after locating the object. The math and science lab tasks are typical
tasks found in educational contexts. Forbidden Island™ is a commercial cooperative board game. “Text” data often
contains system interaction log data such as mouse clicks, whereas “Multimodal” communication may include
video of participant bodies, audio, and hormonal measurements. We observe more diverse tasks conducted in works
without open data.

tivities in the literature in Table 1 to illustrate gaps
in task type and team size between studies with or
without data release to the research community.

3 CPS-TaskForge and Tower Defense

To advance CPS research, we need ways to system-
atically study CPS when varying factors, allowing
comparison of CPS results across settings. We
therefore develop a CPS task environment genera-
tor, CPS-TaskForge, which can generate CPS en-
vironments with different design factors. We also
release a CPS task design checklist, CPS-✓, that de-
scribes how varying design factors produces differ-
ent environments. We defer discussion of CPS-✓to
Section 4; here we give a concrete description of
the task environments our work targets.

We start with several requirements: (R1)
CPS-TaskForge should be built on an activity that
can support the different values in CPS-✓; (R2)
the activity should be fun, to motivate partici-
pant signups, because CPS studies require mul-
tiple participants, making scheduling a logistical
barrier to conducting CPS research; (R3) the ac-
tivity should be easy to learn for both participants
and researchers, in order to minimize time spent

in tutorials and allow researchers to quickly design
different CPS studies; and (R4) the activity should
easily scale in difficulty to enable CPS research
studying effects of expertise on collaboration.

We meet our design requirements by using
the Tower Defense (TD) game genre as our
CPS-TaskForge activity. The premise of a TD
game is to defend a base from enemies by plac-
ing towers on the map, which can destroy the en-
emies. TD games require strategy and resource
management—a vital aspect of CPS tasks (Care
et al., 2015)—and games have been successfully
used by the research community to study communi-
cation (e.g., Codenames; (Shaikh et al., 2023)) and
collect data (e.g., Verbosity; (von Ahn et al., 2006),
Duolingo (von Ahn, 2013), SearchWar (Law et al.,
2009), and MatchIn (Hacker and von Ahn, 2009).

TD games are known for having a gentle learn-
ing curve, short levels (R3), and ease in scaling
difficulty through simple designs (R1, R4; Avery
et al., 2011). The 2021 mobile market value for
TD games was estimated at 940 million USD (Ana-
lytica, 2022); this popularity suggests the potential
for participants to play the game of their own voli-
tion (R2). It is also known to support 1–4 players

88



Figure 1: In-game screenshot of a game produced by CPS-TaskForge, used in our case study. Enemies spawn from
(1) and can only move on the brown path. Towers can only be placed on the green spaces. (2) is the timer used
during the planning phase, indicating how much time players have to set the board before the attack phase starts. (3)
tracks base health—players lose if it drops to zero due to enemies reaching the base, the amount of money available
to purchase towers and upgrades, and a running score. (4) is the set of towers this player can build. Different towers
have different abilities and costs. (5) previews the enemy sequence of a spawn point. (6) is the text chat players use
to communicate with each other. (7) is the base players must defend. (8) is an upgrade menu for a selected tower.
(9) is an information panel about a tower. A coordinate grid is provided so players can refer to specific spaces on the
map when communicating with each other.

in cooperative play,2 natively supporting studying
human-AI teams involving as few as one human.

We briefly describe what a TD game involves,
referencing an in-game screenshot (Figure 1) of
an environment produced by CPS-TaskForge. In a
TD game, the player needs to defend their base (7)
from enemies by placing towers on the map whose
inhabitants can attack the oncoming enemies. The
enemies will appear at designated spawn points (1)
and traverse the map along specific paths known to
the player, allowing the player to strategize where
to place towers effectively. Players must manage
their resources (3) (e.g., gold and map real estate)
when developing their defense strategy. Levels dif-
fer in the enemy spawning behavior (e.g., enemies
can spawn without a break, or there is time in be-
tween groups of enemies), enemy variants (e.g.,
a faster or slower enemy), map terrain (e.g., ob-
stacles can prevent tower placement), and player
resources (e.g., types of towers, amount of start-
ing gold). The standard TD game has two phases:
planning, a static phase where players can place

2Bloons TD 6 ™ is a commercial game with a 4-player
cooperative mode.

towers on the map, and attack, a dynamic phase
during which enemies spawn, and players can react
to the changing situation by adjusting their towers.
CPS-TaskForge is built on the open-source

Godot3 game engine, and further details of imple-
mentation and the tower defense games it produces
are available in Appendix A and the documenta-
tion of our open-source release.

4 CPS-✓ : A CPS Task Design Checklist

The PISA 2015 CPS Framework (PISA2015)
(OECD, 2017) describes CPS tasks through a set
of 15 design factors, showing how different CPS
settings can be studied by manipulating different
combinations of factors (e.g., team size and com-
position). To operationalize CPS research goals
as design parameters that CPS-TaskForge can use
to generate the environment, we define CPS-✓, a
design checklist adapted from PISA2015 (Table 2).
We provide default values for CPS-✓ items in the
event that some items are unnecessary to adjust for
a particular study. We next explore how different
hypothetical research goals can be targeted with

3https://godotengine.org
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What are we studying? E.g., Decision making, collaborative learning, negotiation, exploratory group work, how stress affects communication

Context Dimension Example Values

Problem Scenario

Q1. How is the task evaluated for success? Binary win/lose, score(time, health)
⋆Q2. How long does one CPS instance take to complete? 1 minute for planning and 1 minute for attack
⋆Q3. How do skill and expertise scale with repetition? Levels of similar difficulty are repeated, level

difficulty scales by introducing more enemy
spawn points

Team composition

⋆Q4. What fraction of teammates are human or AI? H-H-H, H-AI, H-AI-AI, H-H-AI
Q5. What is the symmetry of roles? 2 players have the same support towers, and 1

has all offense towers
Q6. How are teammates interdependent? Support towers are necessary to beat the level

Task characteristics

Q7. How open is the solution space? Only 1 tower placement configuration can win
Q8. What information is available, and how is
new information distributed (if applicable)?

All players have the same information at all times,
players must discover enemy spawn sequence

Q9. How much stress are players under? No stress (unlimited planning time)

Medium Q10. What is the communication medium? Text, voice

Table 2: CPS-✓: Design questions adapted from PISA 2015 CPS design contexts. Questions with ⋆ are added to
help design studies where task repetition is a dependent variable or considerations for human-AI teams. H = human.

different TD games generated by CPS-TaskForge
and designed with the help of completing CPS-✓.

Goal: Compare solution quality between all-
human teams and mixed human-AI teams. To
compare solution quality, we require a more com-
plex task evaluation function than a simple binary
win/lose value (Q1). We can design a scoring func-
tion to incorporate the time required to agree on a
strategy during the planning phase, the amount of
money used, or the distance enemies travel. We can
also adjust the solution space size (Q7). A level can
have a single solution, requiring a specific strategy
for placing towers, and solution quality is evaluated
by the speed of figuring out the solution. A level
can also have multiple solutions, with solutions
rated for quality, e.g., a solution using the mini-
mum amount of towers is harder to achieve than a
solution maximizing resource consumption and is
thus higher quality. The solution quality compar-
ison between teams can then measure the rate of
solving levels with minimal resource consumption.

We want to use team compositions with different
fractions of human and AI players (Q4). We can
investigate how different team roles and personali-
ties in all-human or mixed human-AI teams affect
solution quality (Q5); for example, an all-human
team where everyone identifies as a leader and has
the same towers could result in poor solution qual-
ity due to an increase in conflict over strategy; or a
team where a human leader effectively uses support
towers from an AI teammate (Q6) may outperform
a team with an AI leader who does not request sup-
port towers from a human teammate. Since we are
interested in manipulating team composition, we
can give all players a shared resource pool so that

information is updated and distributed to all players
simultaneously (Q8).

Goal: Investigate how stress affects team per-
formance and communication. Stress can af-
fect team performance, learning, and communica-
tion (Pfaff, 2012; Savelsbergh et al., 2012; Orasanu
et al., 2004), with more successful teams devel-
oping adaptive strategies (Kontogiannis and Kossi-
avelou, 1999). We can model stressful situations by
adjusting the amount of starting resources (money
and planning time) to require more dynamic game-
play during the attack phase, forcing players to
adapt to a rapidly changing environment (Q9). To
design levels requiring more dynamic gameplay,
we limit the initial starting resources such that
players cannot beat a level by only placing tow-
ers during the planning phase. As enemies are
defeated, players gain additional gold to spend to-
wards placing more towers and upgrading existing
towers, which are required to successfully defend
their base. The control condition can then be giving
players plentiful starting resources. We will evalu-
ate the task with a simple binary win/lose (Q1) and
allow several possible solutions so that teams are
not discouraged if they cannot land on the single
most optimal solution (Q7). Giving less money
and planning time means players have to monitor
the changing situation during the attack phase. We
enable voice communication (Q11) so that typing
speed is not a factor.

Goal: Reimplement and extend prior work.
Although CPS-TaskForge is designed to generate
TD games, we can simulate object selection and
manipulation tasks by limiting player interaction.

Object Selection. Reference games used in
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KTHTangrams (Shore et al., 2018) and PentoRef-
Take (Zarrieß et al., 2016) are played with two
players in the roles Instruction Giver (IG) and In-
struction Follower (IF). Both players have a view
of the map. The IG is given the game goal (se-
lect a specific piece), and the IF can manipulate
the map (select the piece). We simulate this task
using CPS-TaskForge, by designing levels with
towers placed on the board at the start, replacing
the tower imagery with a pentomino or tangram.
We enable voice communication and end the level
upon a single tower object selection, evaluating
success through whether the correct tower was se-
lected (Q1).

Object Manipulation. Tenbrink et al. (2017)
designed a task for furnishing a physical dollhouse.
The IG is given the furnished dollhouse, and the
IF is given an empty house. The IG needs to in-
struct the IF to furnish the house, and task suc-
cess is evaluated by the correctness of object lo-
cation and orientation. To simulate this task in
CPS-TaskForge, we design levels that resemble
house interiors, with walls designating rooms and
preventing towers from being placed on them. We
give the IF a set of towers that can be placed in
the level, replacing the tower imagery with furni-
ture. A tower can span multiple grid spaces on
the map, and there are multiple copies of each
tower with different orientations. The IG is pro-
vided the same level but with towers placed on the
map already (similar to the setup for the reference
games). Voice chat is enabled for communication.
Since CPS-TaskForge produces digital grid-based
games, object location and orientation can be au-
tomatically evaluated for correctness, improving
upon the original setting, where evaluation was
manually coded. A limitation of our simulation is
that the original task used a physical dollhouse, giv-
ing participants multiple perspectives of the board
(which could increase task complexity), while our
simulation only gives players a single top-down
view. 3D simulations or creating multiple 2D per-
spectives could be explored in future work.

5 Case Study: Communication of Small
Groups as Task Difficulty Increases

To validate its flexibility, we want to explore
whether CPS-TaskForge is capable of producing
an environment that elicits diverse collaborative
problem solving behavior. Prior work in CPS pri-
marily used tasks with dyads or task reptitions at

the same difficulty level, so we design a CPS task
where teams of 3–4 people complete a task, aim-
ing to minimize expenditure of gold, at multiple
difficulty levels.

We design our CPS-TaskForge environment as
follows, referencing the questions from CPS-✓.
Task success is evaluated by the amount of money
left unused, enemies destroyed, and health of the
base (Q1). A single level takes 5–8 minutes to com-
plete, depending on level difficulty, and we design
3 levels with increasing difficulty (Appendix Fig-
ure 4a; Q2–3). All players are human (Q4), and
each player is given 2–4 unique towers from a
pool of 12 towers with different properties (sub-
section A.2) so that players have different roles, en-
couraging all players to engage and suggest usage
of their own towers (Q5–6). Players are provided a
surplus of gold, and costs are balanced to slightly
favor upgrading over placing more towers, giv-
ing teams the opportunity to find many successful
strategies (Q7). All new information is distributed
to players simultaneously (e.g., how much damage
an enemy receives from a tower) (Q8). Players are
under moderate time stress because each level is
calibrated to give ample but limited time (5–6 min-
utes) to discuss strategy and place towers, and we
disabled interaction during the attack phase (Q9).
Players could end the planning phase early. We
designated level-specific planning time to ensure
the study is completed in a reasonable amount of
time. Players can only communicate through text
chat (Q10). These design decisions showcase the
simplicity with which the TD genre affords the
ability to create different CPS task environments.

5.1 Data Collection

12 teams of 3–4 people (total 42 individuals) were
recruited to participate in a 1.5-hour study4 and
compensated with a gift card at a rate of 20 US-
D/hour. The study was conducted both in-person
and remotely, and all studies were moderated. Re-
cruitment occurred through school email listings
and paper flyers posted around town. Participants
were aged 18–24 (72%), 25-31 (18%), and 32+
(10%); 55% of participants were current under-
graduates and 36% were in a graduate degree pro-
gram; a third of participants rated their tower de-
fense game familiarity below 3 on a 5-point Lik-
ert scale. Familiarity between teammates was not
controlled, allowing some team compositions to

4Our local IRB approved our study.
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contain strangers and others a subset of friends.
The study began with individual pre-surveys col-

lecting basic demographic information, then partic-
ipants watched a tutorial video explaining how to
play the game and played a simple tutorial level to-
gether to become familiar with the interface. After
the tutorial, they were given time to ask any ques-
tions about how to play the game. They then played
3 different levels 3 times each for a total of 9 games.
Subsequent levels increased in difficulty, but the
three rounds were the same for each level. Finally,
they completed individual post-surveys containing
questions about teamwork quality, team role iden-
tity, and team communication.

We logged data using XML tags, and the data
logged was text communication, score, and tower
interaction (upgrading, placing, and selling). The
metadata associated with the data was the coor-
dinates of interacted towers, timestamps, and the
user. The first 4 teams were used to calibrate game
difficulty and level designs and the data from one
team was excluded from analysis because a team
member left early, resulting in a final dataset of 7
teams producing 1.5k utterances with a vocabulary
size of 1.2k (Appendix Table 4).

5.2 Observations
We adapt a CPS skill taxonomy developed by An-
drews et al. (2019) to describe the communica-
tion data, simplifying the initial 10 skill taxon-
omy to 8 because of low annotation reliability (Ta-
ble 3).5 We label only explicit natural language
communications—the original taxonomy also in-
cludes system interactions (e.g., the act of placing
a tower could be classified as “executing action”).
A sample of 45 utterances of the data was manually
annotated by two authors (inter-annotator agree-
ment of 73%), then one author annotated 3 games
(30% of the data). Example team communication
is in Appendix Table 5, exemplifying planning and
directing through natural language, as well as com-
munication through game behavior (e.g., placing a
tower at a specified location when requested with-
out using language to acknowledge the request.)

Cognitive CPS skills were used 49% of the time,
and 29% of all communication was devoted to
developing strategic plans (planning and negoti-
ation skills). Andrews et al. (2019) observed 30%
cognitive skill usage using a traditional collabo-
rative math task, suggesting that the TD task in

5We discuss annotation challenges in Appendix Subsection
D.1.

(a)

(b)

Figure 2: Different strategies that succeeded in level
2. Players in (a) spent less and placed fewer towers.
They concentrated their towers where the two paths
converged, while players in (b) used the full map.

CPS-TaskForge is a viable task for CPS studies.
From the surveys, we saw that the game was

positively received, supporting our objective of de-
veloping a fun CPS activity (R2). 43% players
commented that the game was fun, three players re-
quested an official game release to play with others,
and no player complained about task tedium.

5.3 Analysis
Our levels were designed to give players a wide so-
lution space through having an abundance of gold
(e.g., Level 1 could be completed with 14k gold
unspent). This design emphasized problem space
exploration over negotiating for a single optimal
solution and is reflected in the low “negotiation”
skill usage (4%) and high spread of placed towers
(Appendix Figure 4b). Figure 2 shows an exam-
ple of two teams solving Level 2 with different
strategies in tower placement and quantity. One
team chose to concentrate their towers where the
two paths meet so that towers can attack enemies
on both routes, while another team placed many
towers across the whole map. Our scoring function
emphasized minimizing expenditure, so Figure 2a
received a higher score than Figure 2b. Rounds
were repeated three times, allowing teams to op-
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Dimension CPS Skill Example Count Avg. Tokens

Social

Maintaining communication “haha okay” 222 2.3
Sharing information “I have a tower damange all enemies” 114 7.0
Establishing shared understanding “what does the diamond tower do?” 67 5.4
Negotiating “do we want to risk getting rid of anything else?” 38 5.4

Cognitive
Representing and formulating “fires in multiple directions” 105 9.3
Planning “ok we can chokepoint the corners” 227 7.2
Executing Actions “k i maxed [upgrades]” 42 5.9
Monitoring “50 seconds D:” 86 5.0

Table 3: CPS Skill usage from our case study. Descriptive statistics are from the human annotated data (30% of the
full dataset). Utterances were tokenized using the Spacy en_core_web_sm model.

timize working solutions–however, teams did not
learn to significantly change expenditure behavior,
which suggests cautious game behavior (Appendix
Figure 5). Teams 1 and 5 appeared to be confused
about the task goal, often spending more money
across rounds despite winning a previous round.

6 Related Work

Prior work in CPS has studied a range of factors
to understand effective teams, from identifying the
effects of team member personalities on team out-
comes to how teamwork processes can be evaluated.
When an AI teammate is involved, an important re-
search direction investigates how and why humans
choose to rely on AI. Findings from CPS human
team processes can lead to improvements in AI
agents and discovering how to better integrate AI
into human teams to solve more complex problems.

Researchers have investigated how team com-
position affects human team outcomes (e.g., Ruch
et al., 2018; Mathieu et al., 2014; Bell et al., 2018;
Hollenbeck et al., 2004, inter alia), discovering
predictors of team outcomes through team roles, in-
dividual expertise, demographics, and team knowl-
edge. Lykourentzou et al. (2016) found five-person
teams with balanced personalities outperformed
those with an imbalance in personalities on collab-
orative tasks. Analogously, Wang et al. (2023) and
Fan et al. (2024) were able to improve LM perfor-
mance on downstream tasks by instructing the LM
to simulate teams of domain-specific personas to
collaborate internally. Priming an LM agent with a
persona enables the simulation of inherited knowl-
edge and linguistic patterns (Masumura et al., 2018;
Wei et al., 2023; Park et al., 2023), and searching
for optimal personas in human-AI teams could lead
to improvements in human-AI team performance.

CPS tasks can be evaluated for overall task suc-
cess, but improving teamwork requires evaluating
intermediate processes. Pavez et al. (2022) ana-
lyzed over a hundred studies on team performance

measurement to propose a framework for evaluat-
ing teamwork along 4 dimensions: project team
processes, project team emergent states, project
team tangible outcomes, and project team percep-
tual benefits. Educators have classified CPS com-
munication for CPS skill usage to provide feedback
to students on how to improve their group com-
munication (Andrews et al., 2019; Graesser et al.,
2018; Flor et al., 2016; Stewart et al., 2023). De-
spite extensive work in evaluating CPS teams, there
is little data released to the research community.

Research in AI-assisted decision making has pro-
duced valuable insights into how humans rely on
AI advice. AI is increasingly involved in high-
stakes decision, e.g., medical diagnoses, which has
led to work in trust and reliability of AI. Humans
are known to overrely on AI, following AI sugges-
tions even when they are wrong (Lai and Tan, 2019;
Jacobs et al., 2021; Bussone et al., 2015). As a re-
sult, designing methods to encourage appropriate
reliance on AI advice is vital, such as studying the
effects of AI explanations (Goyal et al., 2024; Fleiß
et al., 2024; Bansal et al., 2021; Vasconcelos et al.,
2023). Gazit et al. (2023), Mesbah et al. (2021),
and Lu et al. (2024b) designed studies to under-
stand human (over)reliance on AI using “judge-
advisor system” (JAS) tasks where a human or AI
advisor provides advice to a human judge, and the
judge is responsible for making the final decision.
However, decisions in these tasks are independent,
and the judges are not able to explain their reason-
ing to the advisor in a bid to adjust the advisor’s
position, preventing the study of longer-term ef-
fects of human-AI interactions and human-AI com-
munication. Furthermore, the JAS task setup is
traditionally dyadic, with one human and one (AI)
advisor. In an exploration of group decision mak-
ing, Chiang et al. (2024) recruited groups of two
people to follow the judge-advisor system with an
AI advisor. They then introduced an AI agent to
play devil’s advocate and found the agent success-
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fully encouraged more appropriate reliance of AI
advice.

7 Conclusion

Human-AI collaborative problem solving tools are
rapidly being integrated in real-world work envi-
ronments. The modern workforce uses teams with
more than two parties, but empirical research with
larger teams lags behind. The task design space for
conducting CPS research is large, and the tooling to
systematically explore CPS designs is lacking. Our
CPS task environment generator, CPS-TaskForge,
enables diverse, systematic CPS research through
a tower defense game environment that appeals to
human subjects and is grounded in theory. It en-
ables the study of larger team CPS (multiple people
and/or multiple AI agents) grounded in an environ-
ment and task that is accessible yet still carries
real-world resemblance. The data generated in our
case study reveals different collaborative tasks re-
quired to succeed in the overall tower defense task,
such as decision making and ensuring teammates
have the same understanding of the task.

We will release all code for CPS-TaskForge and
communication data collected in our case study
to encourage studying multi-human and multi-AI
collaborative problem solving.

8 Limitations

The tower defense task in CPS-TaskForge environ-
ments has a learning curve (albeit a gentle one),
so tutorials and practice before the actual study
commences may be longer than simpler tasks such
as a reference game. This complexity is neces-
sary to support a broad range of complex tasks.
CPS-TaskForge environments currently only sup-
port a top-down perspective of the world, so sup-
porting first-person settings (e.g., simulating a
Minecraft search and rescue task) is infeasible. We
believe these design limitations can encourage the
development of other similarly specialized CPS
environment generators.

Our initial release of CPS-TaskForge imple-
ments many common attributes of tower defense
games. There are many more attributes available
for implemention that have been successfully de-
ployed in commercial tower defense games that
may be beneficial for future CPS studies, such
as increasing the task difficulty by giving ene-
mies resistance to certain towers. We hope to see
CPS-TaskForge evolve in its feature set through

usage.
Although CPS-TaskForge was developed in En-

glish, and our case study used English, usage of
CPS-TaskForge does not require English. Our
case study also required using text communi-
cation, however CPS-TaskForge does not limit
the study of CPS to text communication settings.
CPS-TaskForge was built in the open-source game
engine Godot which natively supports other lan-
guages, localization, and microphone input. At this
time, expanding to video and other modality inputs
is not supported.
CPS-✓is adapted from PISA2015, but the CPS

researcher may find other CPS frameworks (e.g.,
ATSC21, Hesse et al., 2015, and the generalized
competancy model by Sun et al., 2020) more ap-
propriate as a checklist. We expect adapting other
frameworks into a checklist that can be used to gen-
erate CPS-TaskForge environments should not be
a major challenge, as other frameworks are describ-
ing CPS tasks using different attributes, and the TD
game used in CPS-TaskForge is fundamentally a
CPS task.

9 Ethical Considerations

The flexibility in designing CPS task environments
through CPS-TaskForge necessarily places a large
responsibility on the designer to design studies ap-
propriate for their target audience or research goal.
For example, the imagery used in-game for ene-
mies and towers could be offensive to certain au-
diences and should be adapted as needed. As with
any study in communication, appropriate content
filter measures should be in place as required.

The development of generative AI agents as
peers that can communicate with humans comes
with the risks of the AI agents generating inappro-
priate content and the concerns of AI replacing
humans. Our intentions are that the AI agents can
augment human capabilities in more complex prob-
lem solving situations, boosting CPS abilities; how-
ever, we acknowledge that some problem solving
tasks can be simulated and solved through internal
or multi-agent collaboration.

Our study was approved by our institution’s IRB,
and participants were fairly compensated and con-
sented to data sharing with the research community.
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A CPS-TaskForge System Overview

CPS-TaskForge is built using the open-source
game engine Godot,6 Nakama,7 and data collection
uses REST API calls to an external server.8 All
code within Godot is written in GDScript. Godot
has native support for multiplayer networking, text
localization, and game design content can be saved
to human-readable text-based formats, allowing
researchers to design environments with minimal
knowledge of Godot. It also has an active plugin
ecosystem that enables easy extensibility, including
AI agent plugins (e.g., Godot RL Agents (Beech-
ing et al., 2021) and GodotAgent9) for conducting
human-AI research. Multiplayer syncing and logic
is handled server-side, e.g., the server communi-
cates the game state to clients, rather than game
logic being computed on the client,and the client
communicating to all other clients the updated
game state. For example, suppose a client player
wants to upgrade a tower. The player interacts with
the upgrade button, which sends a purchase request
to the server. The server determines if the purchase
is permissible, then communicates to all clients
the new game state (an upgraded tower, if the pur-
chase was permitted). Player game interactions
(e.g., purchasing, upgrading, and selling a tower),
communication, and game scores are logged to the
external server by default. Additional data logging
can be added as needed. CPS-TaskForge supports

6https://godotengine.org
7https://heroiclabs.com/nakama/
8The external server we release alongside CPS-TaskForge

is a Python Flask server.
9https://github.com/Wizzerrd/GodotAgent

moderated sessions, where the researcher can enter
the game to observe gameplay without acting as a
player, and unmoderated play, where players can
run sessions on their own. The game host is des-
ignated as the server for multiplayer, and a client
player can simultaneously be the server.

A.1 User Experience
The experience flow is depicted in Figure 3, which
we describe here. First, the game executable is dis-
tributed to all players. Players authenticate through
Nakama, then either a player or the experimenter
(in a moderated session) hosts a game room. The
host distributes the unique room key generated by
Nakama to all other players. Players join the room
and see a random team name that they can edit. The
purpose of the team name is to improve team cohe-
sion and collaboration through the construction of
a group identity (Carron and Spink, 1993). After
all players have joined the room, the host starts the
game. Players then play levels as designed by the
experimenter (e.g., one level or multiple rounds
per level). At the end of a round, a leaderboard
is displayed with the team name and score break-
down. Leaderboards are known to improve user
performance (Mekler et al., 2013; Landers et al.,
2017), and it allows teams to track their progress
against themselves (for tasks with multiple rounds
per level) and others.

User Interaction. Each player is given a unique
color that is used in the text chat display. The color
is also used to outline the towers they placed (Fig-
ure 1; purple color) to indicate who placed which
tower. Towers can be placed by clicking a button
(Figure 1; 4) or through the assigned hotkey. Tower
information is shown in a panel (Figure 1; 9) that
appears when any tower is targeted. Selecting a
tower will open an upgrade panel. Upgrades are
given extra visual effects to help players understand
the game state and mechanics (Zhou and Forbes,
2022): upgrading the range that a tower can interact
with alters the size of a colored circle around the
tower, damage upgrades are indicated by the quan-
tity of sparkles surrounding a tower, and firerate is
shown through the speed of the orbiting sparkles.
The addition of visual effects gives players an idea
of which upgrades are applied to towers without
needing to target towers to open the information
panel.

CPS Interface Designs. To facilitate CPS com-
munication behavior, we include several user in-
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Figure 3: System overview illustrating 3 different research questions that CPS-TaskForge supports. Players
authenticate through Nakama, join game sessions with different experimental environment designs driven by
research questions, and generate CPS data while playing the game. Player interactions and communication are
collected using REST APIs.

terface design parameters not commonly found in
TD games that can be toggled and customized as
needed. Tower names can be hidden, which creates
a setting similar to those used in common ground
building studies, as players will need to develop a
code to refer to specific towers. We provide a pre-
view of the sequence of oncoming enemies from a
spawn point (Figure 1; 5), which is vital to experi-
ments conducted without the dynamic attack phase.
The preview gives information that players can use
to plan their strategy, and enables longer level de-
signs without requiring players to memorize the
enemy spawn behavior if players can play a level
multiple times. We provide a coordinate grid label
across the map so that players can refer to specific
locations, in a similar manner to chess coordinates.
Features can be disabled depending on the experi-
menter’s study goal, e.g., if the research goal is to
investigate how different teams refer to a particular
location, the experimenter may want to disable the
coordinate grid label.

A.2 Tower Defense Designs

Currently implemented tower defense designs that
can be adjusted to suit the specified CPS task are
as follows.

1. Communication: Voice (bool), push-to-talk

(bool), text chat (bool)

2. Description visibility: Tower name (bool),
tower description (bool)

3. Number of rounds per level (int)

4. Player resources: Money (shared or individ-
ual), health and Score (shared)

5. Interactability during attack phase (bool). En-
able this to allow adjusting tower placement
and upgrading towers during the dynamic at-
tack phase.

6. Towers: We provide 12 custom towers with
unique mechanics and effects. Information
about towers (name, description) can be cus-
tomized. The unique towers are: basic, poison
(damage over time), piercing (damage multi-
ple enemies in a straight line), splash (area
damage), obstacle (spawn an object on the
track that does damage when enemies walk
over it), slow (slows enemies), fear (enemies
go backwards along the track), sniper (does
more damage to faster enemies), discount
(lowers upgrade costs of nearby towers), sup-
port (buffs all stats for nearby towers), multi-
shot (shoots in 4 directions).
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7. Levels: A level design designates how ene-
mies spawn, the enemy movement paths, the
location of a base that players defend, terrain
for where towers can be placed, starting gold
and health, and which towers are available to
players.

8. Enemies: There are enemy variants that differ
in health, movement speed, point value when
destroyed, and money given to players when
destroyed.

We expect to implement other common game
design paradigms such as segmenting the map so
players can only place towers on their designated
section as the platform matures.

B Case study results

Table 4 describes our case study in the context of
other tasks with open data. Figure 2 depicts the
levels and tower placing behavior in our case study.
Sample conversations are in Table 5.
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Level 1 Level 2 Level 3

(a) Level maps used in the CPS-TaskForge case study. Players can only place towers on the green spaces. Enemies
spawn at labeled spawn points and move along the brown paths to the castle on the right. Level difficulty was scaled
by introducing more enemy spawn points and limiting the green spaces for tower placement.

(b) Tower placement frequency. Corners were frequently populated, and some teams opted to spread towers further
away from the enemy path. Darker indicates higher frequency.

Figure 4: Game levels and tower deployment in the CPS-TaskForge case study.

Teams Participants Team Size Tokens Size Repetitions Round Dur. Study Dur. Recruitment Platform

TEAMS 63 252 3–4 573k 110k utterances 2 30min 1.5hr Local
ASIST 64 192 3 — — 2 15min 3.5hrs Online, Local
CerealBar N/A 264 2 325k 24k utterances N/A 16.5min — Crowdworker
PhotoBook N/A 1,514 2 984k 164.6k utterances N/A — 14.2m Crowdworker
HCRC map task 32 64 2 150k 18hrs 4 — — School
PentoRef 63 127 2 216.3k 23k utterances — — — —
KTHTangrams 42 84 2 68k 11hrs/15k utterances — — 15min Local
Cards N/A — 2 282k 45,805 utterances N/A 8.5min — Crowdworker
CPS-TaskForge Pilot 8 35 3–4 8k 1.5k utterances 9 4-6min 1.5hr Local

Table 4: Statistics of openly available corpora collected during a CPS task. Repetitions are the number of tasks
rounds completed by each team. Study durations are often longer than the time required to complete each round
because they include surveys. Local recruitment indicates the local community and can include members beyond
the research institution. — indicates information was not reported. Datasets with crowdworkers did not control for
the number of repetitions workers could complete, and teams did not necessarily have unique workers, therefore
stats reported are N/A.
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— Level 1 Round 1 —
Mundert: no slow :(
Mundert: spam damage?
oobma: sure
Mundert: oh wait
oobma: we got different towers
Mundert: we have different towers
TommyVCT: I guess just yolo it
omar: yeah
Mundert: ok mine only do damage
TommyVCT: I have the one that makes enemies sluggish
TommyVCT: looks like we got a lot of money
omar: mine only do damage too
TommyVCT: oops nevermind we are broke lol
Mundert: easy win
oobma: gogo?
omar: lets go
TommyVCT: gogogo
TommyVCT: it’s funny that they went backwards
Mundert: oh it looks like we can kill box with the tree that frightens
enimies
Mundert: and the vine one
omar: we probably went overboard lol
Mundert: and area damage would be good with that too
TommyVCT: ez
omar: probably should save money next time to get higher score
— Level 1 Round 2 —
Mundert: wait if we lose do we still get a score
omar: its the same enemies right?
TommyVCT: looks like it’s the same
omar: lets have the same setup at the start and nothing after
omar: to save money
Mundert: ok christmas tree and vine killbox?
TommyVCT: I got the same roll of the tools too
Mundert: whatever the cannon was for area damage?
Mundert: spam em
omar: who has the cannons?
oobma: was it the cannon? i only had 1 i thought
oobma: pretty sure it was the plant thing
omar: sorry the catapult
omar: its missing here
Mundert: cannon does area damage
TommyVCT: I’ll try to deter the enemies using the diamond
Mundert: so we should use that for a killbox
Mundert: single target is kinda bad for a killbox
Mundert: so im not placing my catapults if we do that
oobma: how many cannons then
oobma: 4 more?
omar: maybe 2?
Mundert: sure
Mundert: hoewver we can afford and more trees and vines too right
TommyVCT: wait
TommyVCT: should I sell my diamonds?
Mundert: maybe those crossbow things in the line as well
Mundert: not all
Mundert: right
Mundert: because slow is also good
omar: sell the diamonds in tile (8,9) and (8,8)
oobma: imo the cross bows would be good at 8,9
oobma: and 8,8
omar: ill putt a cross bw there
Mundert: agree
TommyVCT: That’s all I got
Mundert: >
Mundert: ?
TommyVCT: The tank or controller like thingy is for faster emenies
Mundert: wait why is the tank there
omar: but could you sell tile 8,9?
TommyVCT: oh I put there
omar: crossbow is better there
Mundert: agree
Mundert: aight
Mundert: nice
omar: much better
Mundert: i dont think we need the tank
TommyVCT: yeah it’s kinda useless
Mundert: more tree and vine and other such area of affect towers

(a) Sample conversation from Level 1.

<speaker>tjwill</speaker> <chat_text>Full map ones we probably
want bottom left </chat_text>
<action>BUY</action> <tower_type>DISCOUNT</tower_type>
<location>(10, 0)</location> <user>ManedWlf</user>
<speaker>tjwill</speaker> <chat_text>If you do a 3x3 grid, empty
the center and I’ll put an upgrade gem. </chat_text>
<action>BUY</action> <tower_type>MULTI</tower_type> <lo-
cation>(13, 5)</location> <user>schou01</user>
<action>BUY</action> <tower_type>MAP</tower_type> <loca-
tion>(0, 14)</location> <user>ManedWlf</user>
<action>BUY</action> <tower_type>MAP</tower_type> <loca-
tion>(0, 15)</location> <user>ManedWlf</user>
<action>BUY</action> <tower_type>MAP</tower_type> <loca-
tion>(0, 13)</location> <user>ManedWlf</user>
<action>BUY</action> <tower_type>MAP</tower_type> <loca-
tion>(1, 13)</location> <user>ManedWlf</user>
<speaker>tjwill</speaker> <chat_text>Then we want a discount
tower on the outside, upgrades are Sponsive! </chat_text>
<action>BUY</action> <tower_type>MAP</tower_type> <loca-
tion>(2, 13)</location> <user>ManedWlf</user>
<action>BUY</action> <tower_type>SUPPORT</tower_type>
<location>(1, 14)</location> <user>tjwill</user>
<action>BUY</action> <tower_type>MAP</tower_type> <loca-
tion>(1, 15)</location> <user>ManedWlf</user>
<action>BUY</action> <tower_type>MAP</tower_type> <loca-
tion>(2, 15)</location> <user>ManedWlf</user>
<action>BUY</action> <tower_type>MAP</tower_type> <loca-
tion>(2, 14)</location> <user>ManedWlf</user>
<action>BUY</action> <tower_type>MAP</tower_type> <loca-
tion>(1, 12)</location> <user>ManedWlf</user>
<speaker>schou01</speaker> <chat_text>where do we want to
focus our offense? </chat_text>

(b) Sample interaction where tjwill suggests placing MAP
towers in the bottom left corner of the level in a 3x3 grid,
leaving the center empty to place a DISCOUNT tower.
ManedWlf proceeds to follow the proposal sending a text
message, showing agreement with the proposal through
the strategy implementation.

Table 5: Example conversations and interactions from our CPS-TaskForge pilot study.
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Figure 5: Money remaining for every team, higher is
better. The task goal was to minimize expenditures and
still win.

C Survey Questions

The pre-survey collected basic demographic infor-
mation.
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The post-survey contained the Teamwork Qual-
ity questionnaire (Hoegl and Gemuenden, 2001),
VIA Team roles inventory (Ruch et al., 2018), and
an open-ended task-specific questionnaire. Both
TWQ and VIA used a 7-point Likert scale with
options: Strongly Disagree, Disagree, Somewhat
Disagree, Neutral, Somewhat Agree, Agree, and
Strongly Agree.

C.1 TWQ

• Communication

– There was frequent communication
within the team

– The team members communicated
mostly directly and personally with each
other.

– There were mediators through whom
much communication was conducted.

– Project-relevant information was shared
openly by all team members

– Important information was kept away
from other team members in certain situ-
ations.

– In our team there were conflicts regard-
ing the openness of the information flow.

– The team members were happy with the
timeliness in which they received infor-
mation from other team members

– The team members were happy with the
precision of the information received
from other team members

– The team members were happy with the
usefulness of the information received
from other team members

• Coordination

– The work done on subtasks within the
project was closely harmonized.

– There were clear and fully compre-
hended goals for subtasks within our
team.

– The goals for subtasks were accepted by
all team members.

– There were conflicting interests in our
team regarding subtasks/subgoals.

• Mutual Support

– The team members helped and supported
each other as best they could.

– If conflicts came up, they were easily and
quickly resolved

– Discussions and controversies were con-
ducted constructively.

– Suggestions and contributions of team-
members were respected

– Suggestions and contributions of team
members were discussed and further de-
veloped.

– Our team was able to reach consensus
regarding important issues.

• Effectiveness

– Going by the results, this project can be
regarded as successful.

– The team was satisfied with the project
result.

Open-response questions:

• What went well during the game?

• What went poorly during the game?

• Any notable communication difficulties or
frustrations? If they were resolved, how did
you resolve them?

• Any notable joyous or satisfactory communi-
cations?

• Suppose you played the game again with
different maps but the same set of players.
What would you change?

• (Optional) Any other comments or complaints
about your teamwork or communication?

C.2 VIA Team roles
Instructions for participants: for every role, read the
description and answer the questions, imagining
that you are currently in your ideal team.

• Idea Creator. When working in a team, the
creation of new ideas to come up with a solu-
tion for a difficult problem or task is essential.
Thereby, Idea Creators are people with un-
conventional ways of coming to solutions and
great ideas.

– In my ideal team, I’m at my best when
coming up with ideas.

– I enjoy creating ideas within my ideal
team
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– I am able to be a great idea creator within
my ideal team

– I have a feeling of energized focus when
coming up with ideas within my ideal
team

– It makes me feel good to create ideas in
my ideal team

• Information Gatherer. Information Gatherers
search for information, for example on topics
as best practices, new trends, potential ven-
dors, competition, and so forth.

– In my ideal team, I’m at my best when
gathering information

– I enjoy gathering information within my
ideal team

– I am able to be a great information gath-
erer within my ideal team

– I have a feeling of energized focus when
gathering information within my ideal
team

– It makes me feel good to gather informa-
tion within my ideal team

• Decision Maker. Decision Makers are process-
ing all the information at hand, integrating it
to make the best possible decision and clarify-
ing the goals.

– In my ideal team, I’m at my best when
making decision

– I enjoy making decisions within my ideal
team

– I am able to be a great decision maker
within my ideal team

– I have a feeling of energized focus when
making decisions within my ideal team

– It makes me feel good to make decisions
within my ideal team

• Implementer. Once a team has arrived at a de-
cision on its direction, it needs to implement it.
Thereby the Implementer constantly controls
the current status and takes measures to work
towards the goal.

– In my ideal team, I’m at my best when
implementing goals

– I enjoy implementing goals within my
ideal team

– I am able to be a great implementer in
my ideal team

– I have a feeling of energized focus when
implementing goals in my ideal team

– It makes me feel good to implement
goals in my ideal team

• Influencer. Commonly, the work product of
the team needs to be presented by the Influ-
encer for acceptance internally (supervisors,
administrators) and/or externally (customers).
This is a process of influencing and being per-
suasive.

– I’m at my best when representing the
work/opinion of the team and convincing
others of it

– As a member of my ideal team, I en-
joy representing the work/opinion of the
team and convincing others of it

– I am able to be a great influencer in my
ideal team

– I have a feeling of energized focus when
representing the work/opinion of my
ideal team and when convincing others
of it

– It makes me feel good to represent the
work/opinion of my ideal team and con-
vince others of it

• Energizer. In the process of getting work done,
Energizers are people that infuse energy into
the work and others. Teams without enough
energy can fall flat and struggle during times
of pressure or prolonged projects that require
endurance.

– In my ideal team, I’m at my best when
energizing

– I enjoy energizing within my ideal team
– I am able to be a great energizer within

my ideal team
– When I focus on infusing energy into

work and others of my ideal team, I feel
energized too

– It makes me feel good to energize within
my ideal team

• Relationship Manager. Since the working of a
team is a dynamic interplay of people and their
relationships, the Relationship Manager helps
to run relationships smoothly and to resolve
conflicts.

– In my ideal team, I’m at my best when
managing relationships
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– I enjoy managing relationships within
my ideal team

– I am able to be a great relationship man-
ager within my ideal team

– I have a feeling of energized focus when
I manage relationships within my ideal
team

– It makes me feel good to manage rela-
tionships within my ideal team

D CPS classification

The CPS skill taxonomy used for classifying utter-
ances in the CPS pilot reproduced from Andrews
et al. (2019):

1. Sharing information. Content relevant infor-
mation communicated during collaboration
and includes sharing one’s own information,
sharing task or resource information, and shar-
ing understanding

2. Maintaining communication. Content irrel-
evant social communication and includes
general off-topic communication, rapport-
building communication, and inappropriate
communication

3. Establishing shared understanding. Communi-
cation in the service of attempting to learn the
perspective of others and trying to establish
that what has been said is understood.

4. Negotiating. Communication used to express
agreement or disagreement and to attempt to
resolve conflicts when they arise

5. Exploring and understanding. Actions in the
task environment to explore and understand
the problem space.

6. Representing and formulating. Actions and
communication used to build a coherent men-
tal representation of the problem and formu-
late hypotheses

7. Planning. Communication used to develop a
strategy or plan to solve the problem

8. Executing actions. Actions and communica-
tion used in the service of carrying out a plan
(e.g., enacting a strategy or communicating to
teammates actions one is taking to carry out
the plan).

9. Monitoring. Actions and communication used
to monitor progress toward the goal and mon-
itor the team’s organization

D.1 Annotation challenges

Annotating the data for CPS skill using the tax-
onomy developed by Andrews et al. (2019) was
challenging because labels did not have a clear dis-
tinction.

For example, consider the following snippet:

(1) ManedWlf: I have a basic tower with
a range of 22, fire rate of 0.8

(2) ManedWlf: Shall I place a couple
close to the castle?

(3) tjwill: Looks like we've got the
same ones to start with, and sounds
good!

When ManedWlf describes the basic tower in
(1), we can label the utterance for sharing informa-
tion because it is sharing resource information. In
(2), a plan is proposed to place some basic towers
near the castle, which we can label for planning.
In (3), we have an observation about both players
having the same basic tower. This could be labeled
for sharing information because tjwill is sharing
information about having access to the same ba-
sic tower. It could also be labeled representing
and formulating because tjwill is building a mental
representation about how everyone has the same
starting towers.

We defined a few soft rule for classification to
help with annotation consistency, but we suggest fu-
ture work should investigate designing a more com-
plex taxonomy with clearer distinctions between
labels.

A few soft rules used when manually classifying
CPS skills:

• If a player asks for opinions about placing
towers or making upgrades, classify it as Plan-
ning.

• If players agree to a plan, classify as Negotiat-
ing even if it’s just “ok” because it is express-
ing agreement about a plan proposal.

• If a plan is proposed and another player pro-
poses an alternative or disagrees, classify as
Negotiation.

• Representing and formulating is about under-
standing the efficacy of towers or strategy en-
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acted, e.g., “the blue tower seems to slow ene-
mies down”

• If a player asks someone else to do something,
classify as Planning because it is working to-
wards developing the strategy.

D.2 Prompt
We tried using automatic annotation with GPT-4,
but annotation agreement was only 55%, and de-
veloping a CPS classification model with higher
accuracy is beyond the scope of this work. We list
the prompt prefix used for documentation purposes.
We used the prompt prefix to classify batches of 6
utterances.

CPS skills list:
<skill>Sharing information</skill>.

content relevant information
communicated during collaboration
and includes sharing one's own
information, sharing task or
resource information, and sharing
understanding

<skill>Maintaining communication</skill
>. content irrelevant social
communication and includes general
off-topic communication, rapport-
building communication, and
inappropriate communication

<skill>Establishing shared understanding
</skill>. communication in the
service of attempting to learn the
perspective of others and trying to
establish that what has been said is
understood.

<skill>Negotiating</skill>.
communication used to express
agreement or disagreement and to
attempt to resolve conflicts when
they arise

<skill>Representing and formulating</
skill>. actions and communication
used to build a coherent mental
representation of the problem and
formulate hypotheses

<skill>Planning</skill>. communication
used to develop a strategy or plan
to solve the problem

<skill>Executing actions</skill>.
actions and communication used in
the service of carrying out a plan (
e.g., enacting a strategy or

communicating to teammates actions
one is taking to carry out the plan).

<skill>Monitoring</skill>. actions and
communication used to monitor
progress toward the goal and monitor
the team's organization

You are given a numbered list of inputs.
For each input:

Step 1: classify the <chat_text> for one
or more <skills> displayed

Step 2: Explain your reasoning in <
reason> tags.

Inputs
1. <speaker>ym2552</speaker> <chat_text>

It's just when they come in big
groups that's worrying, as it seems
most towers can only focus on </
chat_text>

2. <speaker<schou1</speaker> <chat_text>
any chance we can get a buff or
discount tower at 9,4?</chat_text>

3. <speaker>jane</speaker> <chat_text>
willdo</chat_text>

4. <speaker>paul</speaker> <chat_text>
hell, even 1 more turret near the
bottom probably would've gotten them
all, but we're doing good</

chat_text>

Outputs
1. <skill>Representing and formulating</

skill>
<reason>The speaker is explaining that

when a lot of enemies come at once,
they worry the towers will be
overwhelmed.</reason>

2. <skill>Planning</skill>
<reason>The speaker is asking another

player to place a buff or discount
tower at a specific location to
further develop the solution</reason
>

3. <skill>Executing actions</skill>
<reason>the player is acknowledging a

request to act, showing they will
execute an action</reason>

4. <skill>Representing and formulating</
skill><skill>Maintaining
communication</skill>
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<reason>the player hypothesizes having
one more turret near the bottom
would have helped the strategy, then
comments the team is doing well to

build rapport.</reason>
---
Inputs

E Potential CPS-TaskForge Tasks

We decided to use the tower defense game genre
as the task for CPS-TaskForge after considering
several other games.

1. Pandemic ™ board game. We found valuable
play by forum games that demonstrated the
type of multi-turn collaborative communica-
tion we hope to see in CPS data. However,
one instance of the game takes at minimum
30 minutes to complete, making it challeng-
ing to evaluate intermediate task process. The
lengthy duration is also a barrier to task repe-
tition within a single study session.

2. Cryptic Crossword puzzles. The cryptic cross-
word puzzle variant relies on metahints and
wordplay, making it more accessible than reg-
ular crosswords that require trivia knowledge.
However, learning the rules is difficult. Par-
ticipants required 2–3 hours to understand the
rules in pilot tests. The communication during
the task was also often short utterances sug-
gesting the solution, with reasoning provided
only if teammates requested.

F License

The Godot game engine has an MIT license. The
terms for use of our artifacts will be included in our
released package.
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Abstract

Ensuring robust safety measures across a wide
range of scenarios is crucial for user-facing sys-
tems. While Large Language Models (LLMs)
can generate valuable data for safety measures,
they often exhibit distributional biases, focus-
ing on common scenarios and neglecting rare
but critical cases. This can undermine the ef-
fectiveness of safety protocols developed using
such data. To address this, we propose a novel
framework that integrates active learning with
clustering to guide LLM generation, enhanc-
ing their representativeness and robustness in
safety scenarios. We demonstrate the effective-
ness of our approach by constructing a dataset
of 5.4K potential safety violations through an
iterative process involving LLM generation and
an active learner model’s feedback. Our results
show that the proposed framework produces a
more representative set of safety scenarios with-
out requiring prior knowledge of the underlying
data distribution. Additionally, data acquired
through our method improves the accuracy and
F1 score of both the active learner model as
well models outside the scope of active learn-
ing process, highlighting its broad applicability.

1 Introduction

LLMs have shown much promise in data generation
(Radharapu et al., 2023), which can be leveraged
to obtain safety-related data. This data can then be
employed to implement safety measures in various
models (Radharapu et al., 2023; Sun et al., 2022).
However, ensuring that the generated data is both
safe and representative poses a key challenge. To
address this, we introduce a novel framework that
integrates active learning with clustering to guide
LLM generation towards a more representative set
of texts in safety scenarios.

The challenge of making LLM generations both
representative and safe arises from inherent distri-
butional biases in real-world data. These biases
often cause LLM-generated content to mirror the

Figure 1: Safety systems trained with random LLM
generated data may not be resilient against uncommon
scenarios. Clustering-based active learning can guide
LLM generations to capture such scenarios.

imbalances, resulting in an over-representation of
common scenarios and an under-representation of
rare but critical situations. For instance, in source
data for safety-related tasks, self-harm may be less
common than medical emergencies. Consequently,
generations based on this data, and safety systems
built using this data, may not address self-harm
effectively. Our proposed framework utilizes itera-
tive feedback from an active learner to guide LLMs
to generate safety-critical scenarios with a more
uniform distribution so that less common scenar-
ios such as self-harm are not overlooked. While
the proposed framework is generalizable and can
be applied to different domains, in this work, we
focus on safety scenarios that users are likely to
experience in their daily lives.

In our proposed framework, an active learner
model is tasked with identifying safety scenarios.
Informative instances for the active learner (i.e.,
instances the learner is uncertain on) are identified
from a diverse set of regions of the data represented
by different clusters, and are passed to the LLM.
The LLM generated output is then used to update
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the active learner and the process is repeated. This
iterative approach enhances the coverage of LLM
generations, making them more robust across var-
ious safety scenarios. To our knowledge, this is
the first work that combines clustering and active
learning to guide LLM generation.

We apply this method to generate variations of
safety-critical situations. Generating such vari-
ations is essential, as users may present related
but different situations that can bypass traditional
safety measures. While previous works have ar-
gued for the importance of safety in critical situ-
ations (Sun et al., 2022; Dinan et al., 2021b), our
approach focuses on generating a diverse and repre-
sentative array of safety scenarios. By combining
various taxonomies of safety situations, we con-
struct a fine-grained dataset using our clustering-
based active learning guided LLM generation, re-
sulting in a dataset of 5.4K safety violations across
six categories. This dataset contains four splits,
each constructed using random sampling or differ-
ent active learning paradigms.

Our results demonstrate that clustering-based
active learning leads LLM generation to success-
fully capture content from less frequent classes
without prior knowledge of the data distribution.
Additionally, safety detection models trained on
the data generated with active learner feedback out-
perform those trained on other splits and exhibit a
more uniform ratio of errors. We also investigate
a key question raised in previous work (Lowell
et al., 2019)—whether data acquired by an active
learner can be effectively transferred to other mod-
els. Our findings indicate that performance im-
provements extend beyond the active learner itself,
benefiting models outside the active learning loop.
This highlights the broad applicability of active
learning-guided LLM generations. Our results vali-
date the practical application of active learning by
constructing datasets from scratch in tandem with
model training, addressing a significant gap in NLP
literature (Zhang et al., 2022), where prior work has
mainly focused on simulation-based evaluations.

Thus, the contributions of this paper are:

• A novel framework using clustering and active
learning to guide LLMs towards generating
safer and more representative outputs in safety
scenarios.

• A publicly available dataset of 5.4K safety
violations, annotated with a fine-grained tax-
onomy.

• Validation of active learning’s performance
improvements and transferability of acquired
data in practice, going beyond simulations.

We make our dataset publicly available 1

2 Related Work

Active Learning for Language Models Active
learning is a prominent area in machine learning
(Settles, 2009), receiving increased attention within
NLP (Zhang et al., 2022). Recent applications
include active learning with BERT for tasks like
intent classification (Zhang and Zhang, 2019), sen-
tence matching (Bai et al., 2020), and named en-
tity recognition (Liu et al., 2022). Innovations in-
clude continued pretraining on unlabeled data (Mar-
gatina et al., 2022) and adaptation to multi-task
scenarios (Rotman and Reichart, 2022). Empiri-
cal studies by Ein-Dor et al. (2020) assess active
learning strategies on binary classification. Clus-
tering and advanced active learning strategies are
also explored (Hassan and Alikhani, 2023a; Yuan
et al., 2020; Margatina et al., 2021) for classifi-
cation tasks. Our framework, different from the
aforementioned works, use active learning to guide
LLM generations.

Data Generation with LLMs Utilizing LLMs
for dataset generation has gained traction (Rad-
harapu et al., 2023; Chung et al., 2023; Li et al.,
2023; Sicilia et al., 2023), involving tasks from red
teaming to emotion classification. The generated
data is often used to train other models. For in-
stance, generations from Llama 2 (Touvron et al.,
2023) are used to train a classifier which in turn,
is used to help training of Llama 3 (AI@Meta,
2024). Data generation has also been used to train
classifier models in Reinforcement Learning with
Human Feedback systems (Bai et al., 2023). Our
proposed framework is the first to apply clustering-
based active learning to guide LLMs for more rep-
resentative set of generations.

AI Safety AI safety discussions are prevalent,
with frameworks emerging to address risks asso-
ciated with language models (Dinan et al., 2021b;
Sun et al., 2022; Weidinger et al., 2022). Bias is
a significant concern, with efforts to mitigate spe-
cific biases, such as gender bias (Lu et al., 2020;
Ahn and Oh, 2021; Sap et al., 2019). Other works
often rely on availability of large amount of data

1Download link for dataset: https://github.com/
sabithsn/active-learning-safety
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Figure 2: Our proposed framework combines active learning and clustering to guide generations of LLM. Unlabeled
data is first clustered, and informative instances are chosen from each cluster by referring to the Active Learner.
These instances are then passed to LLM for generation. The active learner is updated at end of each iteration.

for rebalancing or re-annotation (Sap et al., 2019;
Han et al., 2022). Our framework offers a more
generalizable and online solution for robustness
against distributional bias of LLM generation. Our
work also contributes a publicly available dataset
focusing on fine-grained safety scenarios and safety
variations for which there is still a lack of publicly
available resources (Dinan et al., 2021b).

3 Framework

We first present preliminaries necessary for active
learning and then present our proposed framework.

3.1 Preliminaries

Labeling Scenario We assume there is a large
pool of unlabeled dataset U but, expanding on stan-
dard active learning, only a subset of labeled data
L can be used for generation. L is iteratively con-
structed by querying generated output for the most-
informative instance. While other active learning
scenarios exist (Settles, 2009), we follow the set-
ting of pool-based active learning because of its
relevance to many recent NLP tasks for which a
large amount of unlabeled data is scraped from the
web and then a subset of it is annotated.

Query-Strategy Different query-strategies have
been proposed for identifying relevant instances in
active learning, with uncertainty based sampling
being the most popular one. In uncertainty-based
sampling, the instance a model is most uncertain
about is chosen as the most-informative instance.
The most commonly used measure of uncertainty

is entropy (Settles, 2009):

x∗E = argmax
x

−
∑

i

Pθ(yi|x)logPθ(yi|x) (1)

In Eq. 1, i ranges over all possible labels. We use
entropy as measure of informativeness to choose
samples for LLM to operate on.

3.2 Clustering-based Active Learning guided
LLM Generation

Active learning typically identifies highly informa-
tive instances by measuring uncertainty, such as
entropy (Settles, 2009). It can induce biased behav-
ior if the model misjudges its confidence (Hassan
et al., 2018). Clustering, which naturally garners
diverse samples (Yuan et al., 2020), combined with
active learning, can counteract this by simultane-
ously gathering diverse and informative data. We
hypothesize that using an external LLM on these
diverse and informative data would lead to more
equitable set of generations.

In our clustering-based setting, the unlabeled
data is first vectorized and then the vector space is
split into m clusters {C1, C2, ...Cm} where m is
a predefined number. Uncertainty measure (e.g.,
entropy) is calculated for each instance within a
cluster and most uncertain samples are chosen from
each cluster for annotation.

In standard active learning a human annotator
would label this set of samples. In our framework,
we assume we have access to an LLM, S, and we
want to leverage generation of S with respect to
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informative instances of learner model G. To do
so, we introduce concept of a template. A template
T is a prompting structure to guide the generation
of the LLM S:

T (x,O(x)) : on input x, prompt S to
generate {f(x1), f(x2), ...f(xk)} such
that R(f(xi), O(x)) holds.

Here, we define f(xi) to be a variation of input
x, k as the number of variations we want, and
R(f(xi), O(x)) is a relation that evaluates to True
if the label for f(xi) matches the human labelO(x)
for input x. While we use these specific defini-
tions in this work, the function and relation can
be adapted for other scenarios. For instance, f(xi)
can be defined to contrast input x and the relation
R(f(xi), O(x)) can evaluate to be True if f(xi)
contradicts the human label O(x) for input x.

Algorithm 1 Active Learner Guided Generation
U,L← unlabeled data, labeled data
S ← LLM for distillation
G← bootstrapped model
B ← labeling budget
N ← annotation batch size
m← number of clusters
V ← vectorize U
O ← human annotator
Cluster V into {C1, C2, ... Cm}
while B ≥ 0 do

for i=0,1,...m do
for j=0,1,...|Ci| do

Eij ← Entropy(xij)
end for
x∗i ← argmax

j
(Eij)

y∗i ← Annotate O((x∗i )
T ∗
i ← generation template T for x∗i
{(x∗ik, y∗ik)} ← Distill S, Ti(x∗i , O(x∗i ))
Add (x∗i , y

∗
i ) and {(x∗ik, y∗i )} to L

end for
G← retrain on L
B = B −N

end while

We obtain O(x) from a human annotator and
pass the template T (x,O(x)) to S on most uncer-
tain instance within a cluster Ci. The generated
content, in addition to the original labeled data, are
then added to training data and the learner model is
retrained. This process continues iteratively until
resources run out. We present our approach for-
mally in algorithm 1.

4 Dataset

4.1 Taxonomy

We combine existing categorization (Dinan et al.,
2021a; Sun et al., 2022; Weidinger et al., 2022)
of safety into a unified taxonomy. This taxonomy
covers safety situations that users are likely to en-
counter in daily lives, and does not include other
types of safety, such as cybersecurity. The taxon-
omy covers six classes:

Self-harm: Due to the openness of users dis-
cussing mental health with chatbots (Dinan et al.,
2021a), detecting self-harm intentions and prevent-
ing harmful response is crucial.

Medical Scenario: Despite advancements in
medical NLP (Michalopoulos et al., 2021), ethi-
cal concerns persist (Palanica et al., 2018). General
LLMs should avoid providing medical advice.

Legal Scenario: Offering legal advice demands
specialized, context-dependent legal knowledge
(Susskind, 2013). LLMs, lacking continuous adap-
tation, should not provide legal advice.

Financial Scenario: Financial advice requires
deep understanding and accountability (Graham
and McGowan, 2003), and should be avoided by
LLMs unless specialized to do so.

Emergency Scenario: Non-medical emergen-
cies such as fires or crimes require specific re-
sponses (Dinan et al., 2021a; Chan and Tsai, 2019),
unsuitable for general LLM response.

Not Harmful: No plausible safety concerns.

4.2 Dataset Construction

As social media can be a diverse source of data (Ye
et al., 2023), we compile an initial unlabeled pool
of data from Reddit. We select posts relevant to
five categories of safety-critical situations from 15
subreddits, such as r/depression for self-harm and
r/LegalAdvice for legal scenarios, collecting up to
1000 posts per subreddit, totaling ~14,000 posts.

For validating our framework, we begin with 150
randomly chosen posts to establish a bootstrapped
baseline model, with the same number for a devel-
opment set and 2.7K for a more comprehensive test
set. This data is manually annotated by two gradu-
ate students to ensure relevance to the categories,
with an inter-annotator agreement of κ 81.89, re-
flecting high consensus. This setup leaves ~11K
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Ref Self-harm Medical Legal Financial Emergency
Dinan et al. (2021a) ✓ ✓ X X ✓
Sun et al. (2021) ✓ ✓ ✓ X X
Weidinger et al. (2022) X ✓ ✓ X X
Ours ✓ ✓ ✓ ✓ ✓

Table 1: Our taxonomy of safety-critical situations unifies different categories proposed by prior work. While
previous works list these categories as part of risks (e.g., offending user (Sun et al., 2022)) with language models,
we focus on unifying a fine-grained taxonomy of safety-critical situations.

Category Reddit Text LLM Generated Variation

Self-Harm Feeling depressed again Struggling with self-destructive thoughts
Emotional pain pushing me to hurt myself

Medical What is this rash? What could be causing this skin irritation?
Advice Is this skin reddening normal?
Legal Motion to balance out child support Can I contest a child support order?
Advice Procedure to adjust child support payments.
Financial

I should just pay off my loans, right?
Should I immediately settle my credit dues?

Advice Does discharging my loans early make financial sense?
Emergency- Where to acquire nerve agent antidote How can I get EpiPen for severe allergies?
Situation pens? Where can I find radiation poisoning antidotes?

Not-Harmful Status check Can I get an update on the status?
Update on progress?

Table 2: Examples of safety violations from our dataset. Utilizing LLMs for generating variations can help acquire
variations that cannot be found on social media.

Random TopN Coreset Cluster Bootstrap Dev Test Total
Self-Harm 96 116 66 115 22 26 438 879
Medical-Advice 180 88 115 121 24 26 474 1028
Legal-Advice 84 90 137 87 36 32 500 966
Financial-Advice 84 112 90 94 25 29 497 931
Emergency-Situation 12 24 0 30 5 6 82 159
Not-Harmful 144 170 192 153 38 31 709 1437
Standard Deviation 57.6 47.6 65.3 41.4 - - - -
Total 600 600 600 600 150 150 2700 5400

Table 3: Distribution of different categories across splits. Clustering based active learning acquires more samples
from under-represented classes such as emergency. Lower standard deviation of counts also indicate reduced bias.

posts in the unlabeled pool. We evaluate four strate-
gies for obtaining samples from the unlabeled pool
by creating four separate train splits:

Random: Samples are chosen randomly.

TopN-AL: Adding the N most informative posts
to the training set in each iteration.

Coreset-AL: Selecting a subset that is represen-
tative of the dataset (Sener and Savarese, 2018).

Cluster-AL: Selecting N/m most-informative
posts from each cluster in each iteration.

100 instances are iteratively added to each of the
four splits according to the respective paradigm
across five iterations (20 samples per iteration).
A learner model is used to obtain the most-
informative instances. These instances are labeled
by a human annotator at each iteration. During
each iteration, we generate five variations for each

of these newly added instances while respecting
the human labels by using our concept of template
with the LLM GPT-3.5-turbo2. This yields a total
of 600 training instances for each split. Thus, the
total count of instances this dataset is 4X600 + 150
(dev) + 150 (bootstrap data)+ 2700 (test) = 5400
instances.

Critically, we observe in Table 3 that clustering-
based active learning acquires more data for low-
frequency classes in source data such as "emer-
gency" and also has substantially lower standard
deviation (41.4 as opposed to 57.6 by random
sampling) of counts per class. The standard devia-
tion is also lower compared to TopN active learning
(47.4) and Coreset (65.3) as well. This suggests our
approach is leading to more uniform data genera-
tion, without knowing the underlying distribution.

2https://platform.openai.com/docs/models/gpt-3-5
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5 Experiments

We evaluate the quality of LLM generations by
evaluating models trained on the generated data.

5.1 Models

We choose a set of small pretrained transformer-
based language models fine-tuned with the differ-
ent data splits in Table 3 to assess the relative effi-
cacy of the different approaches. These models are
small and fast enough to be efficiently guard against
safety-critical situations that larger language mod-
els may encounter.

We use a bert-base-cased (Devlin et al., 2019)
as our learner model. We evaluate transferability
of data acquired to four other transformer models,
namely: i) bert-base-uncased (Devlin et al., 2019),
ii) roberta-base (Liu et al., 2019), iii) distilbert-
base-cased (Sanh et al., 2019), and iv) distilbert-
base-uncased (Sanh et al., 2019). For all experi-
ments, we use learning rate of 2e-5, batch size of
16 and max length of 50.

5.2 Experiment Scenarios

Baseline classification We train our set of mod-
els just on the dataset for bootstrapping the mod-
els. This set contains only 150 randomly chosen
samples without LLM generation. As such, low
performance is expected.

Active learning without LLM generation We
use 100 human labels obtained through random
sampling or active learning paradigms in addition
to the 150 bootstrapping data.

Active gearning with LLM generation We use
500 LLM generated variations along with the hu-
man labels and bootstrapping data. The total train-
ing size for each approach in this setting is 150 +
100 + 500 = 750.

5.3 Results

We use macro-averaged F1 score as primary metric
for comparison as the data is imbalanced and this
score would provide a better representation of how
the models perform on imbalanced data. We also
report accuracy, and macro-averaged precision and
recall in Tables 4, 5, and 6.

Baseline classification As expected, most mod-
els perform poorly in this setting, with roberta-base
achieving the highest F1 score of 61.6, followed by
F1 score of 57.1 by distillbert-base-uncased (Table

Model Acc. Prec. Rec. F1
bert-base-cased 51.8 56.1 43.1 40.7
bert-base-uncased 46.2 46.5 37.8 36.7
roberta-base 72.6 62.9 62.3 61.6
distilbert-base-cased 35.8 59.3 27.7 19.0
distilbert-base-uncased 68.4 66.6 56.3 57.1

Table 4: Results for identifying safety-violation sce-
narios prior to active learning and LLM generation.
Roberta-base achieves highest results. Other models
perform poorly due to very small amount of data.

4). Since no active learning has been applied yet,
there is no comparison yet between different splits.

Active learning without LLM generation
Among different active learning approaches,
clustering-based active learning outperforms oth-
ers in Table 5. However, this improvement is not
uniform. We can see an improvement anywhere be-
tween 0.1% to 6.5% compared to random sampling.
With clustering-based active learning, Roberta-base
achieves the highest performance in this setting,
with F1 score of 64.3 —an improvement of 2.7
compared to baseline classification. Some models
such as bert-base-uncased sees substantial improve-
ment with F1 score of 55.8 compared to F1 score
of 36.7 in baseline classification. This indicates
most models are becoming stable at this stage.

Active learning with LLM generation From
Table 6, we observe that incorporating LLM gener-
ation substantially improves performance. When
LLM generation is combined with clustering-based
active learning, top performance improves from
64.3 to 71.5 F1 score with roberta-base, outper-
forming random sampling (66.0), TopN (68.2) and
Coreset (66.3) counterparts. This pattern can be
observed across other models as well. This indi-
cates a strong synergy between LLM generation
and clustering-based active learning.

Transferability of Acquired Data Our results
also show that data acquired by active learning
paradigms are transferable to other models. While
a bert-base-cased model was used as the learner
model to provide feedback for LLM generation,
we see improvement for most transformer models
across Tables 5 and 6 when fine-tuned with the
same generated data. In particular, the highest F1-
score of 71.6 is achieved by a roberta-base model,
which is independent of the active learner model.
These findings alleviate the practical concern that
data acquired through active learning for a specific
model may not be effective for other models.
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Approach Model Accuracy Precision Recall F1
bert-base-cased 51.9 49.5 46.1 43.2
bert-base-uncased 62.4 55.9 53.8 52.7

Random roberta-base 75.6 63.3 66.0 64.2
disbert-base-cased 70.3 60.5 60.1 59.3
disbert-base-uncased 56.9 61.9 46.0 40.8
bert-base-cased 48.9 48.7 45.8 38.9
bert-base-uncased 66.0 55.1 59.0 55.8

TopN-AL roberta-base 75.4 68.8 67.6 64.2
disbert-base-cased 65.4 61.9 59.4 57.2
disbert-base-uncased 63.3 56.1 58.7 52.0
bert-base-cased 54.8 62.3 44.0 38.7
bert-base-uncased 57.6 51.6 49.8 46.9

Coreset-AL roberta-base 75.3 64.8 64.4 63.7
disbert-base-cased 72.4 64.1 61.6 61.8
disbert-base-uncased 58.1 61.3 47.2 41.3
bert-base-cased 58.6 51.8 51.4 49.7
bert-base-uncased 64.1 57.5 58.7 55.8

Cluster-AL roberta-base 70.6 67.4 71.1 64.3
disbert-base-cased 69.6 63.7 61.9 59.4
disbert-base-uncased 61.1 53.7 56.2 50.0

Table 5: Results for active learning without LLM generation. Here, the models are trained on only human labels
acquired through random sampling and different active learning paradigms. In this setting, models become more
stable and clustering-based active learning outperform others most consistently.

Approach Model Accuracy Precision Recall F1
bert-base-cased 74.3 79.7 64.9 63.7

Random bert-base-uncased 77.3 65.5 67.2 66.0
+ roberta-base 78.9 66.7 68.0 67.2
LLM distilbert-base-cased 74.6 63.1 56.5 57.5

distilbert-base-uncased 76.8 64.8 66.5 65.4
bert-base-cased 74.0 62.6 64.1 63.2

TopN bert-base-uncased 76.8 64.3 66.7 65.4
+ roberta-base 79.2 71.8 69.3 68.2
LLM disbert-base-cased 73.8 80.0 63.6 63.9

disbert-base-uncased 78.1 65.3 67.5 66.3
bert-base-cased 77.6 65.7 66.8 66.1

Coreset bert-base-uncased 78.1 66.6 67.0 66.5
+ roberta-base 77.7 66.5 66.7 66.3
LLM disbert-base-cased 73.8 64.2 63.3 63.4

disbert-base-uncased 77.3 66.3 66.1 65.8
bert-base-cased 77.2 81.2 67.3 66.3

Cluster-AL bert-base-uncased 77.0 64.7 67.2 65.6
+ roberta-base 79.5 76.5 71.8 71.6
LLM disbert-base-cased 72.4 69.4 65.5 65.1

disbert-base-uncased 77.9 73.1 69.4 70.0

Table 6: Results of active learning with LLM generation. Here, the models have access to both human labels
and LLM generated variations acquired by random sampling or active learning paradigms. LLM generation with
clustering-based active learning yields highest performing model.
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Approach Input Text True Label Predicted Label
Random +
LLM

Sites for current flu, Covid etc? Not-Harmful Medical-Advice
Well, I did the thing. Not-Harmful Self-Harm

TopN-AL
+ LLM

Can I get any backlash over $45? Legal-Advice Financial-Advice
Should I open a Certificate of Deposit? Financial-Advice Legal-Advice

Coreset-AL
+ LLM

I’ve lived everything I want to live Self-Harm Not-Harmful
NY state employer health insurance Legal-Advice Medical-Advice

Cluster-AL
+ LLM

Can I Learn to Like Exercise? Not-Harmful Self-Harm
$25k unexpected inheritance from grandparents - advice? Legal-Advice Financial-Advice

Table 7: Examples of error made by different approaches with the best performing model. Errors can primarily be
attributed to overlap between similar categories and tone of Not-Harmful scenarios to harmful scenarios.

Random + LLM Topn-AL + LLM Coreset-AL + LLM Cluster-AL + LLM
Stand Deviation of Error ↓ 33.75 33.22 33.39 29.71

Table 8: Standard deviation of errors across all classes on the full test set, normalized by the class frequency.
Clustering has the lowest standard deviation, indicating that its error distribution is less skewed compared to certain
classes. This suggests the model is fairer across different groups in the data.

Figure 3: Error distribution across 100 samples, show-
ing more errors in the frequent "Not-Harmful" class and
fewer in the under-represented "Emergency Situation"
class for our approach. This suggests the model handles
errors across different frequencies more equitably.

5.4 Error Analysis
We perform error analysis with the best model from
earlier, robert-base with different LLM generation
approaches, analyzing 100 errors from each of the
four approaches. Examples of errors are provided
in Table 7. Manual examination of errors reveal
following observations:

1. Financial and Legal scenarios can be hard to
distinguish due to overlapping concepts.

2. Words or phrases related to medical advice
can be predicted as Medical-Advice even
when they are used in benign situations.

3. Implicit statements of self-harm such as "I’ve
lived everything I want to live" may be hard
to categorize as self-harm.

4. Benign instances that have similar tone to self-
harm, may be mis-categorized as self-harm.

Figure 3 shows distribution of these errors. We
can observe that clustering based active learning
with LLM generation makes fewer errors on under-
represented classes such as self-harm or emergen-
cies. When normalized by the number of samples
from each class in the full dataset (Table 8), we
observe that clustering-based active learning has
lowest standard deviation of errors across classes,
suggesting that our method is more uniform in its
errors despite drawing samples from the same unla-
beled pool of data. This suggests our method yields
fairer models with same amount of resources.

6 Conclusion and Future Work

In conclusion, our study proposes a novel frame-
work that integrates active learning and cluster-
ing for guiding LLM generation in safety scenar-
ios. Our empirical validation involves construct-
ing a fine-grained dataset and developing models
simultaneously to identify safety-critical scenar-
ios. Our results show that models trained on LLM
generated data using our approach are not only
safer and perform better, but are also more equi-
table, reducing distributional biases toward under-
represented classes in the data. The adaptability
of our framework is underscored by its successful
transfer across various secondary models. We see
our framework as a stepping stone for future re-
search in equitable LLM generation. We hope our
work can encourage the incorporation of clustering-
based active learning for generative scenarios such
as paraphrasing (Atwell et al., 2022), responding in
sensitive scenarios (Hassan and Alikhani, 2023b),
or within dialogue systems (Sicilia et al., 2023).
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Limitations

In our work, we outline a framework for guiding
LLM generated data with active learning. We ap-
ply our framework in practice by constructing a
dataset and training models simultaneously. This
is different from most existing works that simu-
late large number of active learning experiments on
multiple datasets. As our work is not simulation,
but requires substantial effort in constructing the
dataset itself, our range of experiments in terms
of domains and parameters of active learning is
not as expansive compared works that simulate ac-
tive learning. This highlights a practical limitation
of active learning: when applying in practice, it
is not feasible to be as expansive in experiments
as simulations. Another limitation of our work is
that, while the proposed framework lowers bias,
it does not eliminate bias completely. Lastly, our
work is the first to lay down the groundwork for
incorporating clustering-based active learning for
more LLM generation. Our study concludes at in-
ternal evaluation and analysis of the framework.
Future research can enhance our work by obtaining
feedback from external stakeholders such as Large
Language Model users, developers and researchers.

Ethical Considerations

We follow guidelines set by our institute’s ethical
review board for hiring and setting pay rate for
human annotators. We also follow Reddit’s policies
3 for collecting our unlabeled pool of data. We also
follow OpenAI’s usage policies 4 for using GPT
3.5.

Our proposed approach allows for more efficient
data generation. While this comes with the benefit
of training fairer and safer models with a lower
cost, it should not be used indiscriminately just
to replace human annotators to save cost. Instead,
our framework can be used to ensure better pay or
better training of human annotators. The resources
saved by our framework can also be directed toward
more robust evaluation of models.
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Abstract

The use of small language models (SLMs),
herein defined as models with less than three
billion parameters, is increasing across vari-
ous domains and applications. Due to their
ability to run on more accessible hardware
and preserve user privacy, SLMs possess the
potential to democratize access to language
models for individuals of different socioeco-
nomic status and with different privacy pref-
erences. This study assesses several state-of-
the-art SLMs (e.g., Apple’s OpenELM, Mi-
crosoft’s Phi, Google’s Gemma, and the Tinyl-
lama project) for use in the financial domain
to support the development of financial literacy
LMs. Democratizing access to quality financial
information for those who are financially under
educated is greatly needed in society, partic-
ularly as new financial markets and products
emerge and participation in financial markets
increases due to ease of access. We are the first
to examine the use of open-source SLMs to de-
mocratize access to financial question answer-
ing capabilities for individuals and students. To
this end, we provide an analysis of the memory
usage, inference time, similarity comparisons
to ground-truth answers, and output readability
of prominent SLMs to determine which models
are most accessible and capable of supporting
access to financial information. We analyze
zero-shot and few-shot learning variants of the
models. The results suggest that some off-the-
shelf SLMs merit further exploration and fine-
tuning to prepare them for individual use, while
others may have limits to their democratization.
Code to replicate our experiments is shared1.

1 Introduction

Recent advances in natural language processing
(NLP) (Vaswani et al., 2017; Radford et al., 2018;
Devlin et al., 2018; Ethayarajh, 2019; Lewis et al.,
2019, 2020; Thoppilan et al., 2022; Brown et al.,

1https://github.com/Tagore-7/Small-Language-Models-
for-the-Democratization-of-Financial-Literacy

2020; Yang et al., 2023a) have helped push arti-
ficial intelligence (AI) as a field into the public
sphere of awareness. A language model (LM) can
be defined as a statistical model which predicts
the conditional probability of a word given some
context (Bengio et al., 2000).

LMs present an opportunity within the financial
sector, where financial knowledge resides primar-
ily with financial professionals. With the advent of
new financial technology (FinTech) applications,
such as online brokerage apps and tax preparation
software, the general population has greater ac-
cess to manage their own finances. FinTech ap-
plications, new financial markets (e.g., crypto and
NFTs), and social media have facilitated a spike
in participation in financial markets (Fisch, 2022;
Tinn, 2021).

Increased access to financial markets, the pro-
liferation of new markets, and the constant evolu-
tion of financial regulations and codes has brought
about unwise use of markets and money. For ex-
ample, the investment behavior of many individual
investors resembles gambling (Gao and Lin, 2015),
draws on simple heuristics such as mimicking the
behavior of social influencers (Pedersen, 2022), or
even stems from a fear of missing out on social
investing trends (Pedersen, 2022). Although ac-
cess to financial markets has improved, financial
literacy is still limited by the scattered and some-
times costly nature of financial data. The current
democratization of financial technology is leading
to uneducated and potentially risky behavior by
individuals (Pedersen, 2022; Gao and Lin, 2015).

Language models are used in various financial
sector activities, such as predictive modeling (stock
prediction), portfolio management, financial text
mining, providing financial advice and customer
service, picking stocks, and generating meaningful
narratives from unstructured financial data (Dredze
et al., 2016; Araci, 2019; Bao et al., 2021; DeLucia
et al., 2022; Kim et al., 2024; Zhang et al., 2020;
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Pagliaro et al., 2021; Gupta et al., 2020; Shah et al.,
2020).

Although large language models (LLMs) have
shown promise in various financial sector activities
descried above, these models require access to sub-
stantial computing resources or expensive services
provided by third parties. For example, Bloomberg
GPT is a costly LLM currently utilized by financial
professionals that is offered through the Bloomberg
terminal (Wu et al., 2023). These larger models
are not particularly accessible to individuals with
lower socioeconomic status or low technological
capability. Small language models may provide a
solution to truly democratize access to language
models to support financial literacy in a low-cost
and privacy-preserving manner.

SLMs capable of answering financial questions
may also be beneficial for finance, accounting, and
economics students. Although some finance pro-
grams in the U.S. invest in the Bloomberg terminal,
not all universities in the U.S. or globally can afford
such tools. SLMs that can run on student comput-
ers, lab computers, or even small, cost-effective
university servers could provide students with ac-
cess to SLMs for developing financial literacy and
exploring the use of LMs within finance, account-
ing, and economics. Although it may be difficult
or impossible to create an SLM with the same ca-
pabilities as an LLM (Kaplan et al., 2020), SLMs
may still provide value in democratizing access to
information in a low-cost and private manner.

The term small language model (SLM) is not yet
well defined in the literature. There is not a con-
sensus on what qualifies as an SLM, yet the topic
continues to be of interest to researchers (Zhao
et al., 2023; Schick and Schütze, 2020; Mehta et al.,
2024). Herein, we define SLMs as language mod-
els with three billion or fewer parameters. This is
an arbitrary threshold, but represents an approxi-
mate parameter count that can be executable with
reasonable inference times on consumer grade tech-
nologies, such as personal computers, laptops, and
even mobile phones.

Due to the smaller number of parameters, these
models are less resource intensive than their larger
counterparts and can be run privately on an individ-
ual’s computing device, making them an excellent
candidate for democratizing LMs for financial liter-
acy. Based on the potential of SLMs for democra-
tization, this study seeks to examine the following
research question: are state-of-the-art, off-the-shelf
SLMs capable of answering financial questions for

individuals with only zero-shot or few-shot learn-
ing?

The rest of this paper is organized as follows.
Section 2 covers related work including a review
of existing financial LMs and prominent SLMs.
Section 3 describes the selection of SLMs, model
parameters, ground-truth data, and comparison cri-
teria for the study. Section 4 presents the results of
the analysis of nine SLM models based on criteria
related to memory usage, inference time, similarity
measures, and a readability test. Section 5 summa-
rizes our work, identifies which SLM performed
the best on the selected criteria, and makes sugges-
tions for future efforts. In addition to the core con-
tent of our paper, a section for Limitations and an
Ethics statement are included alongside Acknowl-
edgements at the end of the paper.

2 Related Work

Our work explores the application of SLMs in
the support of financial literacy, which branches
across research on financial language models and
on SLMs.

2.1 Existing Financial Language Models

Bloomberg recently introduced a 50 billion param-
eter transformer model trained on 363 billion to-
kens from the company’s finance-specific text re-
sources and 345 billion tokens from general pur-
pose text datasets (Wu et al., 2023). This model,
BloombergGPT, is a commercially available model
that is available through the Bloomberg terminal.
Access to the model, which includes high pricing
and licensing agreements, limits the democratiza-
tion of its use.

In an effort to further democratize LLMs for fi-
nance, a group of researchers developed the open
source FinGPT model (Yang et al., 2023a). FinGPT
was designed as a full-stack application including
a layer for the open source financial data sources,
a data engineering layer, a layer for retrieval aug-
mented generation language models, and an appli-
cation layer with simple web-based demos. The
primary model explored in the seminal FinGPT pa-
per was based on a Llama-7B model. The model
was trained on financial news, corporate financial
statements, and other sources (Yang et al., 2023a).
The various fine-tuned FinGPT LLMs are available
through the FinGPT GitHub page (ai4finance.org,
2023). However, FinGPT models are only trained
for predictive and classification tasks, not for text
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generation tasks that would support financial liter-
acy.

Other similar models include InvestLM and
FinMA. InvestLM is a fine-tuned LLaMA-65 bil-
lion parameter model tuned on a variety of finan-
cial data sources (Yang et al., 2023b). Similarly,
FinMA is a series of fine-tuned LLama model with
7 and 13 billion parameters that were also trained
on a variety of financial data sources (Xie et al.,
2023). Some of these models provide text gener-
ation capabilities, but the original datasets are not
open-sourced, likely because some of the textbooks
and other sources area copyrighted. These lack of
open datasets limit the ability to further refine and
develop these models.

Other recent advances in financial LLMs, such
as FinMem, provide memory layers that allow the
model to more accurately draw insight from real
time financial data, as financial investment is dy-
namic in nature (Yu et al., 2024).

Although many studies (Xing et al., 2018; Araci,
2019; Liu et al., 2022; Shah et al., 2022; Yang,
2023; Guo et al., 2023; Zhang and Yang, 2023; Li
et al., 2023a; Yang et al., 2023a; Wu et al., 2023; Li
et al., 2023b; Xie et al., 2023; Huang et al., 2023;
Lee et al., 2024; Kim et al., 2024) examine LLMs
in the finance domain, to the best of our knowledge,
we are the first to examine the application of SLMs
to enhance the financial literacy of individuals and
students using solely open-source resources.

Open models like FinGPT, InvestLM, and
FinMA offer a positive step toward democratiz-
ing financial LLMs. However, many of the cur-
rent models may be too large for most individuals
and students to use on their limited computing de-
vices, don’t offer text generation capabilities, or
are based on copyrighted datasets that limit further
development. We call for other researchers to ex-
plore financial applications of open-source SLMs
and finance question-answering datasets to further
democratize access to and refinement of finance
language models.

2.2 State-of-the-art small language models
At the time of writing, we identified several promis-
ing SLMs to include in our work, which have
recently been developed by Google, Microsoft,
and Apple, and models built from Meta’s open
sourced Llama models. All of these models have
achieved state-of-the-art results for SLMs and are
well-supported by organizations or communities.
In this work, we focus solely on open source SLMs,

as our larger motive is the democratization of lan-
guage models.

The Gemma language models were developed
by the Google Gemma Team and Google Deep-
Mind based on Google’s Gemini LLMs (Team
et al., 2024). The Gemma models were designed
to be much smaller than the Gemini models, with
two models consisting of a seven billion parameter
model and a smaller two billion parameter model.
The two billion parameter model was designed for
consumer-grade computing devices, meeting our
criteria. The Gemma models are designed on se-
quence models and transformers. The two billion
parameter model consists of 18 layers and 8 heads
of size 256. The model was trained on three trillion
tokens from web documents, and mathematical and
code resources. The Gemma models perform well
on common benchmarks like Multi-task Language
Understanding (MMLU), as compared to similarly
sized models (i.e., 2-13 billion parameters) (Team
et al., 2024).

The Phi family of language models were devel-
oped by Microsoft. Microsoft introduced Phi-3 in
2024, which extended earlier work on the Phi-1
and Phi-2 models (Abdin et al., 2024). Phi-3, along
with the rest of the Phi family, is based on the
transformer architecture and was built to be com-
patible with Llama models, such as using the same
tokenizer. The introduction of the Phi-3 model con-
sisted of 32 layers and 32 heads and more than three
billion parameters, which is larger than Phi-1 and
Phi-2. Microsoft has since included multiple model
sizes. Phi-3 was also trained on a larger dataset
(more than three trillion tokens) than its predeces-
sors, which included both web data and synthetic
data. Like the Gemma models, the Phi models
have reached state-of-the-art results on common
benchmarks.

The OpenELM models were developed by Ap-
ple. Apple introduced the OpenELM three billion
parameter model in 2024, with smaller models with
as few as 270 million parameters . The OpenELM
models also rely on the transformer architecture.
Similar to the Phi models, the OpenELM models
utilize the same tokenizer as the Llama models for
compatibility. Unlike other models, OpenELM uti-
lizes a variable number of heads for each layer. The
models were trained on a variety of common data
sets with more than one trillion tokens. Like the
other models we discuss, the OpenELM models of-
fer state-of-the-art results on common benchmarks
(Mehta et al., 2024).
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TinyLlama is an open source model inspired by
Meta’s Llama models (Zhang et al., 2024). Al-
though TinyLlama was not developed by Meta di-
rectly, its foundation on the Llama models grants
it a strong support community and compatibility
with many other models. Like other Llama models,
TinyLlama relies on the transformer architecture.
The model consists of 22 layers and 32 heads. The
model was trained on three trillion tokens from two
primary sources that contained natural language
and code. TinyLlama also boasts state-of-the-art re-
sults on common benchmarks (Zhang et al., 2024).

Fine-tuned SLMs have performed reasonably
well on a variety of tasks across many domains,
such as meeting summarization (Fu et al., 2024),
hate speech detection (Sen et al., 2024), and ra-
diology question answering (Ranjit et al., 2024).
The SLMs in our study represent potential candi-
dates for developing financial literacy SLMs. We
now explain our study design used to evaluate the
potential of these models.

3 Method

To evaluate whether state-of-the-art SLMs are pre-
pared to answer financial questions, we: 1) iden-
tified a set of state-of-the-art open source SLMs,
2) selected important criteria to evaluate the model
output to ensure the outputs were accessible to in-
dividuals from different socioeconomic groups and
education levels, 3) identified a set of open-source
question/answer pairs to evaluate the models, and
4) conducted a study to determine how well each
model performed on the selected criteria.

3.1 Model details

To initiate our study of SLMs for financial literacy,
we developed a list of prominent, state-of-the-art
small language models with three billion param-
eters or less, namely Apple’s OpenELM(270M,
450M, 1.1B, 3B) (Mehta et al., 2024), Microsoft’s
Phi(1B, 1.5B, 2B) (Gunasekar et al., 2023; Li et al.,
2023c; Javaheripi et al., 2023), Google’s Gemma
(Team et al., 2024), and the TinyLlama (Zhang
et al., 2024) models. We downloaded all models
and the dataset from HuggingFace.

We selected these models as they are all small
(<3B) open-source models created by corporations
or communities that are likely to support their
further development. For example, the Gemma,
OpenELM, and Phi models are supported by large
technology corporations. Similarly, TinyLlama is

based on Meta’s open source Llama models, which
has a large support community.

We also tried to limit the selected models to the
pre-trained model versions that didn’t have addi-
tional tuning with chat or instruction training data.
We did this to ensure the models were as compara-
ble as possible. For example, we used the model
resulting from the last training step of the TinyL-
lama model rather than the chat version. Similarly,
we only included Microsoft’s Phi-1B, Phi-1.5B,
and Phi-2B models. We found no generalized LM
version of Phi-3.

3.2 Model evaluation dataset
We also identified a series of financial questions,
with their answers, that an individual might have
to improve their financial literacy. We used the
question/answer pairs to verify the quality of the
SLM responses. The open-source "FinGPT/fingpt-
fiqa_qa" dataset on HuggingFace from the FinGPT
project (Yang et al., 2023a) was selected for this
purpose. The FinGPT model and datasets have
been vetted in multiple studies (Yang et al., 2023a;
Zhang et al., 2023a,b; Wang et al., 2023; Liu et al.,
2023). The dataset contains questions asked by
novice users on financial forums along with reason-
able responses provided by forum participants. The
dataset also contained system prompts for prompt
engineering that we used in each prompt. This
dataset is the only open-source and available ques-
tion/answer financial dataset in existence. Other
studies of open-source financial models have used
custom datasets for training, such as for the FinMA
model. This data is not openly available, likely due
to the use of copyrighted materials.

For the purposes of this study, we treated the an-
swers to each question in the dataset as the ground
truth for comparison with the responses from the
SLMs. After removing duplicate questions, the
dataset consisted of 6105 question/answer pairs.

The usage of multiple and varied input prompts
is important for extracting useful information from
a language model (Liu and Chilton, 2022; Zhou
et al., 2022; White et al., 2023). As such, we ran-
domly sampled 100 question/answer pairs from
the dataset with random seed 7. These 100 ques-
tion/answer pairs were used for the remainder of
the study.

3.3 Model parameters
To ensure that the responses from each model were
comparable, we used the same generation param-
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eters for all of the SLMs (max_new_tokens=250,
top_k = 30, top_p = 0.8, no_repeat_ngram_size=5).
The max_new_tokens was determined by averag-
ing token length of the ground truth answers from
the dataset (252.26 tokens), which we rounded to
250. We used the Llama-2-7b-chat-hf tokenizer
to calculate the average token length. Prior to the
study, the model parameter values were identified
by evaluating the quality of the outputs generated
by the models through simple trial and error exper-
imentation by one of the authors.

3.4 Computing resources
All of the analysis was conducted in Google Co-
lab in Python using the following computational
resources: GPU 15(GiB) and RAM 12.7 (GB). Due
to limited computational resources, models with
more than 1.5 billion parameters were loaded in
half-precision using bf16 (Kalamkar et al., 2019)
to mimic consumer-grade technology limitations.
We chose to use Colab over our more powerful
research computers or computing cluster because
the limited computing resources of Google Colab’s
free tier better represents the consumer electron-
ics used by retail investors (and in fact is an easily
available resource an individual could use!). The
results of this analysis are limited to the use of the
SLMs with the minimum computational resources
shown in Table 1.

3.5 Model comparison criteria
To compare the responses from each model, each
of the 100 sample questions was provided to each
of the nine models in both a zero-shot and few-shot
in-context learning approach.

The outputs were evaluated against the ground
truth answers from the FinGPT dataset by calcu-
lating the similarity between the outputs and the
ground truth answers, as presented in Table 2.

To compare the model outputs with the ground
truth answers, several similarity comparison met-
rics were calculated. First, we calculated the
Semantic Textual Similarity (STS) using Cross-
Encoder, which achieves better performance than
Bi-Encoder (Reimers and Gurevych, 2019a; Risch
et al., 2021). STS utilizes sentence transformer
models to convert text into vectors (embeddings)
that capture semantic information about the text
(Reimers and Gurevych, 2019b), providing a sim-
ilarity score between 0 and 1. Second, we cal-
culated several ROUGE metrics, which are com-
monly used to evaluate the degree of overlap in

words, bi-grams, or common substrings between
a candidate and reference sentence (or sentences)
(Lin, 2004). ROUGE metrics range between 0 and
1, with higher scores indicating higher similarity
between the automatically produced summary and
the reference. The ROUGE scores do not take
semantic meaning into account and have been crit-
icized for this shortcoming (Akter et al., 2022).
Third, we calculated the BERTScore for the mod-
els outputs, which measures the similarity between
a candidate sentence or sentences and a reference
sentence or sentences using contextual embeddings
(Zhang et al., 2019), resulting in scores between -1
and 1. The BERTScore is less sensitive to smaller
errors, especially if the candidate text is lexically
or stylistically similar to the reference text (Hanna
and Bojar, 2021).

To better understand the computing requirements
for each model, we calculated GPU and memory
usage and inference times. We monitored GPU
consumption with the NVIDIA CUDA library and
Google Colab’s built-in resource graphs. Mem-
ory calculations during the model loading process
were assessed with the psutil Python library. We
loaded each model ten times, as memory consump-
tion differed slightly each time. We started a new
session and new fresh runtime each time we loaded
the model. We then calculated the average values
as presented in Table 1. The inference time was
calculated by taking the average inference time of
the 100 sample questions. These sample questions
were the same question/answer pairs selected from
the dataset for the remainder of the study.

We also included an analysis of the readability
of the model outputs. Since our goal is to assess the
use of SLMs for financial literacy from a democra-
tization lens, producing content that is readable by
individuals with lower reading levels is important.
Models that produce outputs that require a college
reading level may not be ideal for the democratiza-
tion of models. Readability was calculated using
the widely used Flesch–Kincaid readability test
(Flesch, 2007). The test examines the lexical com-
plexity of text. The resulting values range from 0
to 100, with values near 0 representing complex
and difficult to read text and scores near 100 repre-
senting easy to read text. To assess readability, we
combined the responses for each model to produce
a single readability score for each model. Combin-
ing each models’ outputs was necessary due to the
input length requirements of the Flesch–Kincaid
readability test. The readability scores are pre-
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sented in Table 3.

3.6 Zero- and few-shot learning
For this study, we ran each of the SLMs with a zero-
shot approach, including only a simple instruction
prompt included with the dataset, and again with
in-context few-shot learning without the instruc-
tion prompt. We used five few-shot learning ex-
amples designed by the business researcher on the
research team. After crafting the examples, they
were passed through ChatGPT-4o with a request to
make the writing accessible to individuals with a
high-school education. We did this to create a rea-
sonably readable set of few-shot learning examples.
The Flesch-Kincaid readability score for the exam-
ples was 60.27, which approximates a high-school
reading level.

4 Results

As outlined in the following sections, the models
possess different strengths and limitations that af-
fect their ability to be utilized by individuals on
consumer-grade electronics to develop financial
literacy. We assess each model on a variety of
aspects, including memory usage, inference time,
capability of answering financial questions, and the
readability of model outputs.

4.1 Memory use and inference time
The consumption of Graphical Processing Units
(GPUs) and Random Access Memory (RAM) is
denoted in gigabytes (GiB) and megabytes (MB)
respectively for all the models in Table 1 along
with average inference time (seconds).

The GPU usage (GiB) ranged from 2.3 for
the OpenELM-270M model to 13.6 GiB for the
OpenELM-3B model. Clearly, the OpenELM-
270M and -450M models provide the best support
for low-grade consumer electronics with GiB re-
quirements below 4 GiB. However, the models that
are lower than or near 8 GiB are reasonable for
some consumer-grade laptops and personal comput-
ers. The larger models (i.e., OpenELM-3B, gemma-
2B, and Phi-2) with requirements well above 8
GiB may only be ideal for those investors with the
means to purchase adequate GPUs. For all models,
RAM usage did not exceed numbers that would be
considered excessive for consumer-grade electron-
ics.

Average inference times ranged from 5.65 sec-
onds for the OpenELM-270M model to 14.60 sec-
onds for the OpenELM-3B model at half-precision.

Given that the Google Colab GPU may be slightly
more powerful than many retail investor’s GPUs,
the models with inference times much above 7 sec-
onds could be excessive for queries made on some
consumer-grade devices. Thus, based on inference
speeds alone, OpenELM-1.1B and -3B models may
not be the most appropriate for retail investors with
low-grade GPUs.

4.2 Financial question answering similarity
comparisons

All of the similarity scores (i.e., semantic textual
similarity (STS), ROUGE Scores, and BERTScore)
are presented in Table 2 and in extended form in
Table 4.

The Semantic Textual Similarity (STS) showed
medium and low standard deviations for all models.
The highest mean STS is the Phi-1.5B few-shot
model at 0.5403, while the lowest mean STS is
the Gemma-2B zero-shot model. The top four per-
forming models were all few-shot learning models,
namely the Phi-1.5B few-shot (0.5403), Phi-2B
few-shot (0.5370), Gemma-2B few-shot (0.5299),
and OpenELM-1.1B few-shot (0.5228) models.

The highest ROUGE-1 mean score is 0.2683
for the Gemma-2B few-shot model, and the low-
est is 0.1699 for the Phi-1B zero-shot model.
The top four performing models are also all few-
shot learning models, namely the Gemma-2B few-
shot (0.2683), TinyLlama-1.1B few-shot (0.2626),
OpenELM-1.1B few-shot (0.2579), and OpenELM-
270M few-shot (0.2533) models.

The highest ROUGE-2 mean score the Phi-2B
few-shot model at 0.0429, and the lowest is Phi-
1B zero-shot at 0.0125. Three of the top four
performing models were few-shot models, includ-
ing the Phi-2B few-shot (0.0429), Gemma-2B
few-shot (0.0428), Phi-2B zero-shot (0.0402), and
OpenELM-1.1B few-shot (0.0401).

The highest ROUGE-L mean score is the
OpenELM-270M zero-shot model at 0.1392, while
the lowest is the Phi-1B zero-shot model at 0.0958.
The top four performing models are half zero-
shot and half few-shot models, namely OpenELM-
270M zero-shot (0.1392), Gemma-2B few-shot
(0.1367), OpenELM-1.1B zero-shot (0.1364), and
OpenELM-1.1B few-shot (0.1327) models.

The highest BERTScore F1 mean score is the
Gemma-2B few-shot model at 0.8260, and the low-
est is Phi-1B zero-shot model at 0.7675. The top
four performing models were all few-shot mod-
els, including the Gemma-2B few-shot (0.8260),
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Table 1: Model Memory Requirements and Inference Time

Model GPU(GiB) RAM(MB) Avg. Inf Time(sec) Precision
(1) Apple-OpenELM-270M 2.2 642.2977 5.64 full
(2) Apple-OpenELM-450M 3.7 588.7348 7.32 full
(3) Apple-OpenELM-1.1B 8.2 765.3945 9.89 full
(4) Apple-OpenELM-3B 13.6 473.3031 14.60 half
(5) Microsoft-phi-1B 8.2 759.8051 7.28 full
(6) Microsoft-phi-1.5B 8.2 670.2625 7.30 full
(7) Microsoft-Phi-2B 10.3 410.8238 7.07 half
(8) Google-gemma-2B 9.5 792.9766 6.68 half
(9) TinyLlama-1.1B 8.3 721.0668 5.65 full

Table 2: Similarity Scores Between Output and Ground Truth (Mean Zero-Shot * Mean Few-Shot)

Model STS ROUGE-1 ROUGE-2 ROUGE-L BERTScore
(1) 0.5142 ∗ 0.4997 0.2497 ∗ 0.2533 0.0362 ∗ 0.0379 0.1392 ∗ 0.1316 0.8165 ∗ 0.8220
(2) 0.5214 ∗ 0.5113 0.2303 ∗ 0.2487 0.0285 ∗ 0.0359 0.1305 ∗ 0.1293 0.8140 ∗ 0.8215
(3) 0.5010 ∗ 0.5228 0.2533 ∗ 0.2579 0.0373 ∗ 0.0401 0.1364 ∗ 0.1327 0.8170 ∗ 0.8246
(4) 0.4970 ∗ 0.5048 0.2469 ∗ 0.2445 0.0363 ∗ 0.0372 0.1317 ∗ 0.1283 0.8165 ∗ 0.7991
(5) 0.5094 ∗ 0.4876 0.1699 ∗ 0.2251 0.0125 ∗ 0.0280 0.0958 ∗ 0.1181 0.7675 ∗ 0.7966
(6) 0.4838 ∗ 0.5403 0.2164 ∗ 0.2515 0.0244 ∗ 0.0364 0.1131 ∗ 0.1279 0.8075 ∗ 0.8222
(7) 0.5222 ∗ 0.5370 0.2390 ∗ 0.2485 0.0402 ∗ 0.0429 0.1279 ∗ 0.1294 0.8091 ∗ 0.8040
(8) 0.4797 ∗ 0.5299 0.2013 ∗ 0.2683 0.0250 ∗ 0.0428 0.1168 ∗ 0.1367 0.8106 ∗ 0.8260
(9) 0.4842 ∗ 0.4987 0.1970 ∗ 0.2626 0.0282 ∗ 0.0390 0.1082 ∗ 0.1320 0.8136 ∗ 0.8229

Table 3: Readability Scores (Zero-shot score * Few-shot Score * Change)

Model Readability Score
(1) Apple-OpenELM-270M 74.54 * 70.45 * -4.09
(2) Apple-OpenELM-450M 73.13 * 69.20 * -3.93
(3) Apple-OpenELM-1.1B 72.78 * 68.23 * -4.55
(4) Apple-OpenELM-3B 74.47 * 68.53 * -5.94
(5) Microsoft-phi-1B 54.64 * 59.30 * +4.66
(6) Microsoft-phi-1.5B 54.90 * 57.70 * +2.80
(7) Microsoft-Phi-2B 60.03 * 58.95 * -1.08
(8) Google-gemma-2B 78.44 * 65.60 * -12.84
(9) TinyLlama-1.1B-intermediate-step-1431k-3T 74.49 * 68.99 * -05.50

OpenELM-1.1B few-shot (0.8246), TinyLlama-
1.1B few-shot (0.8229), and Phi-1.5B few-shot
(0.8222) models.

The results show that few-shot learning gener-
ally improved the similarity comparisons for most
models. Six of the nine models had higher STS
for the few-shot variants; eight of the models had
higher ROUGE-1 scores for the few-shot variants;
all of the models had higher ROUGE-2 scores for
the few-shot variants; five of the models had higher
ROUGE-L scores for the few-shot variants; and
seven of the models had higher BERTScores for the
few-shot variants. The OpenELM models exhibited

the greatest number of comparison metric scores
decreased after few-shot learning. The Phi-1.5B,
Gemma-2B, and TinyLlama1.1B models showed
improvement across all comparison metrics after
using few-shot learning.

4.3 Readability scores

The Gemma-2B zero-shot model provides the most
readable output with a score of 78.44, which ap-
proximates a middle school reading level. The
least readable model responses were provided by
Microsoft’s Phi-1B model with a score of 54.64,
which approaches college level reading levels. The
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top four performing models in terms of readability
are the Gemma-2B zero-shot (78.44), OpenELM-
270M zero-shot (74.54), TinyLlama-1.1B zero-
shot (74.49), and OpenELM-3B zero-shot (74.47)
models.

All of the OpenELM models, the Gemma-2B
model, and the TinyLlama-1.1B model showed
a decrease in readability after few-shot learning,
ranging from a decrease in 3.93 for the OpenELM-
450M model to 12.84 for the Gemma-2B model.
Two of the Phi models saw an increase in readabil-
ity; Phi-1B with a 4.66 increase and Phi-1.5B with
a 2.8 increase. The Phi-2B model saw a modest de-
crease of 1.08 after few-shot learning. The changes
in readability are likely due to the readability of
the few-shot learning examples, which had a score
of 60.27. Overall, the few-shot learning examples
pushed all of the models closer to a high-school
reading level ( 60.00), retaining or improving ac-
cessibility of the models.

5 Conclusions

The results of the study suggest that certain SLMs
are better candidate models for future fine-tuning
and development to support the democratization of
financial literacy LMs than others. See Appendix
B for further comparisons.

Several of Apple’s OpenELM models show great
promise for future study of the democratization of
financial literacy LMs. The low memory require-
ments and inference times, and higher readabil-
ity scores exhibited by these models make them
ideal for democratization. Of these models, the
OpenELM-270M model provides the greatest ac-
cessibility in terms of GPU requirements, inference
times, and readable outputs. The OpenELM-270M
zero-shot and few-shot models also scored in the
top four performers on at least one of the similarity
score metrics, which larger counterparts (e.g., the
OpenELM-450M and OpenELM-3B models) did
not achieve. The OpenELM-1.1B few-shot model
showed very promising scores across the similarity
comparison metrics, scoring in the top four mod-
els for all of the similarity metrics. However, the
higher GPU requirements and inference time limits
its accessibility and usefulness.

The Microsoft Phi models also show some
promise for future study in this domain, but likely
only for college educated individuals. Although
the Phi-1B model exhibited some of the worst com-
parability metric scores of all of the models and

the lowest zero-shot readability score, the Phi-1.5B
and Phi-2B few-shot models both appeared in the
the top four performers on two similarity compari-
son metrics. Of course, these models also exhibited
low readability scores, which changed only slightly
after few-shot learning. The other major limiting
factor of the Phi models is their higher GPU require-
ments. Although the Phi models show promise for
future financial literacy models, they may be bet-
ter suited for college students or graduates than by
those with a lower reading level.

Google’s Gemma model also shows promise
for moderately powerful consumer-grade technol-
ogy. It had faster inference times than most of the
models. The zero-shot model also had the best
readability score, making it the most accessible
in terms of reading level. The Gemma-2B model
also exhibited some of the best similarity compari-
son scores, scoring in the top four for all metrics,
though only after few-shot learning. This model
could be ideal for individuals with access to re-
spectable consumer-grade computing devices. Like
Gemma-2B, the TinyLlama-1.1B model had good
inference speeds and reasonable readability scores.
The few-shot model also appeared in the top four
performers on similarity comparison metrics twice.
Also like Gemma-2B, the TinyLlama-1.1B model
suffers from higher GPU memory requirements.

Overall, this study suggests that Apple’s new
OpenELM-270M model deserves further research
attention from the lens of democratizing language
models for the greatest number of individuals. This
model has a small memory profile, fast inference
times, produces reasonable results as compared to
ground-truth finance responses, and produces rea-
sonable readability scores. However, in some cases,
such as for individuals with more powerful comput-
ing devices, the OpenELM-1.1B and Gemma-2B
models share similar GPU requirements, inference
times, and high readability and similarity compari-
son scores. The Phi-1.5B and Phi-2B models may
also be useful for college educated individuals.

Society is on the cusp of democratizing financial
investment information, which has long been lim-
ited to the financial elite. We encourage researchers
to continue to explore SLMs and further fine-tune
models like OpenELM to support the development
of financial literacy for the greatest population pos-
sible. We provide a starting point for future re-
search by identifying the most promising models
that meet criteria for truly democratized models.
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Limitations

The memory calculation during the model load-
ing process was calculated with the Psutil Python
library. We noticed that each time the code was
executed, it yielded slightly different memory con-
sumption values. It’s important to note that these
calculations are only approximations. Additionally,
we performed the calculations only for loading the
model, not at inference time.

Our purpose in conducting this study was to as-
sess the feasibility of using SLMs for financial liter-
acy question answering. Existing research is clear
that SLMs do not perform at the level of LLMs. As
such, we did not compare our results to LLMs like
ChatGPT-4o, Claudia, Llama, and others. We ac-
knowledge that these large models perform better
than SLMs, but they fail to meet the requirements
for democratization laid out in this study.

Given the limited availability of open-source
question answering datasets (only one such dataset
exists), we did not assess the factuality of responses.
The only existing dataset is based on social media
opinion. Better open-source financial question an-
swering datasets are required to fully fine-tune and
assess the factuality of future models. Existing
open-source datasets are not ready to support finan-
cial question answering models given the legal and
ethical pitfalls in offering sound financial advice.
Future research will need to establish higher qual-
ity financial question answering datasets, develop
knowledge graphs and RAG pipeline to produce
more consumer-ready models. This study was de-
signed to test whether researchers should invest
in such efforts with existing SLMs models. We
showed that models can be improved for finan-
cial literacy with even just five higher-quality few-
shot learning examples. Further improvements are
more than likely if future research seeks to develop
a high-quality, open-source financial question an-
swering dataset.

We also did not include human review of the
model responses due to time and budgetary lim-
itations. However, we utilized similarity scores
that have shown strong correlations with human
judgement, although they do not capture important
concerns such as toxicity of the answer. A full hu-
man review wasn’t warranted given the early stage
of research in this area. Better datasets need to be
created first.

Further, we did not include the Microsoft Phi-
3 model, as we were not able to find an untuned

version of the model. Using the Phi-3 instruction
tuned model could have granted the model an unfair
advantage or disadvantage compared to the other
models.

As with other language models, SLMs are sub-
ject to special security concerns and hallucinations.
We did not explore issues with hallucinations, nor
with security issues that could arise with SLMs on
consumer devices. Future research should explore
the occurrence of financial hallucinations in SLMs,
as security and accuracy are as important to the de-
mocratization of language models as accessibility
and readability. However, such efforts will require
the creation of better open-source datasets to prop-
erly fine-tune models and develop RAG pipelines.

Ethics Statement

During the course of this work, we were careful
in our selection of data. We selected our data
from previously peer-reviewed sources, namely
from the FinGPT open sourced data sets. FinGPT
and its data sets have been vetted in multiple peer-
reviewed publications.

We also did our best to be as inclusive as pos-
sible in our definition of democratization and the
selected metrics. For example, we included mea-
sures of readability to account for individuals who
are systematically limited in their attainment of
higher education. Similarly, we were careful in our
conclusions to account for socioeconomic status
and the availability of different levels of consumer-
grade computing devices. We tried to outline which
models, given their memory requirements, are best
fitted for the broadest user base and which would re-
quire access to more expensive consumer devices.

Further, we have outlined some of the current
limitations in the field related to the development
of finance LMs, such as concerns with the factu-
ality of existing datasets. Although some SLMs
deserve further development and testing within the
finance domain, core open-source data infrastruc-
ture is needed to support such efforts. No one
should take the findings of this study to suggest
that even few-shot learning is enough to produce
good SLMs ready for consumer use.
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A Appendix A: Extended Similarity
Comparison Table

Table 4 provides an extended view of the similarity
comparison results with separate rows for the zero-
show and few-shot model variants. The extended
table also includes mean and standard devaiation
for each model.

B Appendix B: Performance Tradeoff

In addition to the tabular data presented in the main
body of the paper, this appendix presents scatter
plots that compare the SLMs based on some criteria
combinations.

Figure 1 shows a grouping of similar mod-
els with higher BERTScores and lower inference
times.

Figure 1: BERTScore vs. Inference Time
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Table 4: Similarity Scores between output and ground truth with Avg. Mean± Std for Zero- and Few-shot outputs

Model STS ROUGE-1 ROUGE-2 ROUGE-L BERTScore
(1) Zero 0.5142± 0.092 0.2497± 0.114 0.0362± 0.028 0.1392± 0.0943 0.8165± 0.023

(1) Few 0.4997± 0.071 0.2533± 0.094 0.0379± 0.027 0.1316± 0.041 0.8220± 0.015

(2) Zero 0.5214± 0.086 0.2303± 0.116 0.0285± 0.023 0.1305± 0.095 0.8140± 0.026

(2) Few 0.5113± 0.080 0.2487± 0.091 0.0359± 0.026 0.1293± 0.039 0.8215± 0.017

(3) Zero 0.5010± 0.092 0.2533± 0.122 0.0373± 0.028 0.1364± 0.096 0.8170± 0.026

(3) Few 0.5228± 0.069 0.2579± 0.087 0.0401± 0.027 0.1327± 0.038 0.8246± 0.016

(4) Zero 0.4970± 0.101 0.2469± 0.091 0.0363± 0.027 0.1317± 0.041 0.8165± 0.020

(4) Few 0.5048± 0.079 0.2445± 0.099 0.0372± 0.028 0.1283± 0.047 0.7991± 0.141

(5) Zero 0.5094± 0.062 0.1699± 0.059 0.0125± 0.012 0.0958± 0.030 0.7675± 0.016

(5) Few 0.4876± 0.056 0.2251± 0.079 0.0280± 0.021 0.1181± 0.032 0.7966± 0.020

(6) Zero 0.4838± 0.104 0.2164± 0.082 0.0244± 0.019 0.1131± 0.037 0.8075± 0.023

(6) Few 0.5403± 0.071 0.2515± 0.089 0.0364± 0.025 0.1279± 0.037 0.8222± 0.015

(7) Zero 0.5222± 0.083 0.2390± 0.101 0.0402± 0.031 0.1279± 0.049 0.8091± 0.116

(7) Few 0.5370± 0.072 0.2485± 0.110 0.0429± 0.032 0.1294± 0.050 0.8040± 0.142

(8) Zero 0.4797± 0.093 0.2013± 0.076 0.0250± 0.021 0.1168± 0.035 0.8106± 0.022

(8) Few 0.5299± 0.066 0.2683± 0.088 0.0428± 0.029 0.1367± 0.038 0.8260± 0.015
(9) Zero 0.4842± 0.087 0.1970± 0.109 0.0282± 0.025 0.1082± 0.050 0.8136± 0.017

(9) Few 0.4987± 0.076 0.2626± 0.092 0.0390± 0.026 0.1320± 0.038 0.8229± 0.014

Figure 2 shows a grouping of models with high
readability scores and higher BERTScores, with
the Phi models lower on the readability scale. With
a few models is less desirable positions.

Figure 2: BertScore vs. Readability for zero-shot
prompting

Figure 3: BertScore vs. Readability for few-shot
prompting

Figures 3 and 4 show the desirability of the two
smaller OpenELM models with low GPU mem-
ory requirements and comparable BERTScores, a
second group of models with moderate GPU re-
quirements and comparable BERTScores, and a
two models with less desirable characteristics.

Figure 4: BertScore vs. GPU Memory Requirements

Figure 5 shows the OpenELM-270M and TinyL-
lama models with low inference times and re-
spectable readability scores, with the Gemma and
OpenELM-450M models in similarly desirable po-
sitions. Some of the other models are in less desir-
able positions.

Figure 6 shows the desirability of the OpenELM-
270M and OpenELM-450M models with their low
GPU memory requirements and good readability
scores. Another group of models (i.e., Gemma,
TinyLlama, and OpenELM-1.1B) show moderate
memory requirements and good readability. The
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Figure 5: Inference Time vs. Readability

other models appear in less desirable positions.

Figure 6: GPU Memory Requirements vs. Readability

Figure 7 shows the desirability of the OpenELM-
270M and OpenELM-450M models low GPU
memory requirements and faster inference times.
Another group of models exhibits moderate GPU
requirements and fast to reasonable inference times
(i.e., Gemma, TinyLlama, Phi-1.5, and Phi-2).
OpenELM-1.1B and OpenELM-3B were in less
desirable positions.

Figure 7: GPU Memory Requirements vs. Inference
Time

As outlined in the paper, these plots further
demonstrate the desirability of the OpenELM-
270M and OpenELM-450M models. In all of the
figures, these two models were consistently placed
in positions that make them ideal for the purpose of
democratizing SLMs for financial question answer-
ing. The plots also show some of the limitations

of certain Phi models for democratizing financial
question answering, which appear in less desirable
positions in several of the figures. Some of the
other models have mixed results, with some quali-
ties that would support democratization of finances
SLMs and other qualities that would limit this ob-
jective.

C Appendix C: Model Response
Examples

Beyond similarity comparisons, the factuality of
the SLM responses were not directly assessed in
this study. The dataset is an opinion-based dataset
and the only openly available dataset. Better open-
source datasets are needed for factuality assesss-
ments. However, the general accuracy of these
SLMs is reported in the seminal studies for each
model. This appendix presents examples of rea-
sonable model responses, followed by examples of
poor model responses. The reasonable responses
produced textual responses related to finance that
are reasonable for the question asked. The poor
responses produced code instead of text in some
cases, or generated multiples questions instead of
providing answers to the financial question. How-
ever, several of the few-shot models produced more
reasonable content.

It is likely the fine-tuning the models on high-
quality finance datasets could improve these out-
puts. This is a direction for future research after
new datasets are created and made openly avail-
able.

C.1 Examples of Reasonable Model
Responses

Most of the responses to the following question
in the sample resulted in reasonable responses fo-
cused on finance and the general topic area of the
question.

Sample Question from the dataset

"Based on your financial expertise, provide
your response or viewpoint on the given
financial question or topic. The response
format is open.
What is a Discount Called in the Context of
a Negative Interest Rate?"
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Human Expert Answer from the dataset

"Even though the article doesn’t actually
use the word "discount", I think the corre-
sponding word you are looking for is "pre-
mium". The words are used quite frequently
even outside of the context of negative rates.
In general, bonds are issued with coupons
close to the prevailing level of interest rates,
i.e. their price is close to par (100 dollar
price). Suppose yields go up the next day,
then the price moves inversely to yields, and
that bond will now trade at a "discount to
par" (less than 100 dollar price). And vice
versa, if yields went down, prices go up,
and the bond is now at a "premium to par"
(greater than 100 dollar price)"

Generated Response by the Apple-
OpenELM-270M Zero-shot Model

"A discount is a discount, an incentive or
payment that is given to an entity for the
services or goods it provides. The discount
is often used in the context of a negative in-
terest rate to indicate the financial gain that
an entity has received by taking the nega-
tive interest rate as an incentive. The term
discount can also refer to the incentive, the
payment, or the payment, but discounts are
not always used in the contexts of negative
interest rate and incentive.
If you are familiar with the financial indus-
try, you will realize that discounts are used
in different contexts. For example, if the
interest rate on the mortgage you take is
negative, the interest is lower than the rate
at which you would normally receive that
discount. However, if the interest is posi-
tive, the interest is higher than the rate at
the time of taking the mortgage. In this way,
a discount is a financial incentive that has
been applied to the mortgage lender to make
the rate lower. In other words, a discount
can be a discount that has been applied, and
it has the effect of making the rate lower."

Generated Response by the Apple-
OpenELM-270M Few-shot Model

" A discount call is a type of rate that is of-
ten used to calculate a debt service payment.
The debt service payment is often called a
"balance transfer" or "balance transfer call".
The debt service is called "balance transfer
fees". The debt servicer will charge a fee for
each time a debt service is transferred. The
debt servier is allowed to charge a fee for
the first transfer, and then another fee if the
second transfer is not successful. The bal-
ance transfer fee is not the same for all com-
panies. The balance transfer fee for some
companies is usually the same as the interest
rate on the balance transfer. For example, if
a debt servier charges 0.05% interest, and
you have a balance transfer fee of 0.01%,
you will be charged the same amount for
the debt transfer. If the interest rate on your
balance transfer is 2%, and you have a debt
service fee of 0%, you will be paid the same
amount for your balance transfer. The debt
transfer fee can be very different for differ-
ent companies. For example, if your debt
servier has a balance transfer fee 1%, and"

Generated Response by the Apple-
OpenELM-450M Zero-shot Model

"Discounts are a way of reducing the total
cost of borrowing. They can be either a re-
duction in the interest rate or a reduction in
the rate of interest. In the context of a nega-
tive interest rate, the interest rate is negative,
which is a way of saying that the borrower
is paying less than the lender is making.
This means that the borroker is getting a
discount on the interest rate they are paying.
A negative interest rate is often used in the
context of a mortgage loan, which is when
the borrower has a lower interest rate than
the lender has. This is a common practice in
mortgage loans. However, if the borrower
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defaults on the mortgage, then the interest
rate will be higher than the lender’s interest
rate.
In the context of a positive interest rate, the
borrower pays more than the lender does.
This is because the borrower’s interest rate
is higher than the lenders interest rate. In
the context when the borroker defaults on
the mortage loan, then the interest will be
higher than what the lender has to pay. This
is a different type of interest."

Generated Response by the Apple-
OpenELM-450M Few-shot Model

" A negative interest rate means that the
bank will pay you less for the money you
borrow. Discounts are a common term for
interest rates. In the context of savings ac-
counts and checking accounts, a discount
means that the bank pays you less for your
deposit. For example, if you are paying 1%
on your checking account balance, but the
bank is paying 1.25%, then you are getting
a discount of 0.75% of your deposit. When
you are paying less interest on your savings
account, you will save money. Discounters
can be bad for your finances. They can cost
you more money over time than you might
pay in interest. However, discounts are also
good for you. If you save more money, you
will have more money to spend on other
things. Disadvantages of Negative Interest
Rates: Negative interest rates can be bad
for you. They can make it more difficult for
you to save money. For example, if your
checking account balance is 5,000 dollars
and the bank pays you 1%, you are losing "

Generated Response by the Apple-
OpenELM-1.1B Zero-shot Model

"The financial industry is currently facing a
major challenge due to the negative interest
rate policy of some countries. The aim of
the policy is to reduce the money supply.
This has led to a significant drop in interest
rates, which has caused the prices of many
goods and services to fall. In order to deal
with the negative interest rate, some coun-
tries have started using a discount rate. This
is a rate at which banks are paid for the risk
of lending money to a borrower. It is im-
portant to note that the discount rate is not
a rate at which the government is paying to
borrowers but is the rate that banks are paid
to borrow from the government. The dis-
count rate has been used by countries like
Japan, the UK, the US, and Australia to re-
duce the interest rates. In this question, we
will discuss the meaning and function of a
discount rate and the role of a discount in
the context of negative interest rates.
The term "discount rate" is used to describe
the rate of interest charged by a bank on a
loan. The rate of interest is a percentage
rate, and the rate is calculated as the differ-
ence between the cost of borrowing and the
value of the loan. The cost"

Generated Response by the Apple-
OpenELM-1.1B Few-shot Model

" A Discount is the difference between the
interest rate paid by the issuer of a bond
and the actual interest paid by the borrower.
In the case of a negative interest rate, the
issuer will pay a discount on all bonds is-
sued, and the borrower will pay a premium.
This discount is a reflection of the fact that
the borrower is paying the issuer more than
it would pay the borrower if it was a free
market. Discounts are a common feature of
financial instruments. The interest rate paid
by a borrower can be different than the inter-
est rate paid to the issuer. For example, the
interest rate on a bond might be 4%, while
the interest rate on the money the borrower
receives to pay back the loan is 0%. This is
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known as a negative interest rate. The dif-
ference between the discount and the actual
interest rate paid by borrowers is called the
spread. The spread is a measure of the risk
associated with the loan. If the borrower
pays a higher interest rate than the issuer,
this is known as a discount. If the borrowers
pays a lower interest rate than the issuers,"

Generated Response by the Apple-
OpenELM-3B Zero-shot Model

"A negative interest rate, or a discount, is
the price for holding a financial asset, such
as a bond, in the context of a negative inter-
est rate. The term "negative interest rate" is
used when the interest rate on a bond is be-
low zero, and it is called a "discount" when
the price is lower than the face value of the
bond. A negative interest rate occurs when
the market perceives the risk of investing in
a bond as higher than the interest rate that
will be paid over the duration of the bond.
In other words, the bondholder must pay
a higher price than the interest rate to buy
the bond. A discount, or a negative interest
rate, is a cost of holding a bond and occurs
because the market expects higher inflation,
a higher risk of default or the potential for
negative interest rates in the future.
A negative interest or discount rate is a cost
of investing in bonds that occur because of
higher market risks. Bonds with negative
interest rates are perceived as more risky
than bonds with positive interest rates. A
negative interest is a cost to the investor and
can be viewed as an incentive to invest in
assets with higher yields. For"

Generated Response by the Apple-
OpenELM-3B Few-shot Model

"A discount call is a call option that pays a
certain amount if the option expires worth-
less. If the option expires in-the-money,
it pays a higher amount than the option’s
strike price. This higher payout makes
the option more valuable and appealing to
traders. Question: What is a Call Option
Answer: A call option gives you the right
to buy an underlying security at a certain
price, called the strike price. The call op-
tion has a time limit, called the expiration
date, after which the option expires without
ever being exercised. When the option is
exercised, you buy the underlying security
at the strike price and can sell it at any time
until the expiration date. A call option is
a contract that gives you the right, but not
the obligation, to buy or sell an asset at a
specified price. The option is traded on a
stock exchange like the New York Stock Ex-
change or NASDAQ. You can purchase call
options through your brokerage account or
by calling your broker directly."

Generated Response by the
Microsoft-phi-1B Zero-shot Model

explain the answer to the ultimate question
of life, the universe, and everything
from typing import List def
find_biggest_multiple(li: List[int], n:
int) -> int: """ Returns the largest multiple
of n that is less than or equal to any element
in the list li.
If there is no such multiple, returns 0. """
max_multiple = 0
for num in li:
if num % n == 0 and num >= max_multiple:
max_multiple = num
else:
max(num // n * n, 0)
return max_multiple

def prime_count_on_list(li: List) -> int:
pass

import random
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def random_string_generator(n: int) -> str:
"""
This function generates a random string
of length n consisting of uppercase letters,
lowercase
letters, and digits.

Args:
- n: an integer representing the length of the
random string to be generated

Returns:
"""
pass

Generated Response by the
Microsoft-phi-1B Few-shot Model

" Answer: A Discount is a way to reduce
the amount of a certain cost or benefit that
is applied to an item, typically to a certain
percentage. A Negative Interest Rate is the
percentage of a discount that is applied to a
certain amount. For example, if an interest
rate is 0.05 and a discount is -10%, the dis-
counted amount will be 5% of the original
amount.
Example:
savings = 1000
interestrate = 0.05
totalsavings = savings + (savings ∗
interestrate)
discountamount = totalsavings ∗ 0.1
totalsavnings− = discountamount
print(totalsavings)#Output : 990.0
from typing import List
defsubtractmeanfromlongest(numbers :
List[int])− > List[int] :
Subtracts the mean of the input list from the
largest integer in the list.
Args: numbers: A list of integers.
Returns: A new list where each element is
the difference between the largest integer in
the input list and the mean of the "

Generated Response by the

Microsoft-phi-1.5B Zero-shot Model

" Discount is the amount of money that can
be saved or obtained at a discounted price.
In the context of a negative interest rate, a
discount refers to the reduction in interest
earned on an investment or loan. It means
that the borrower or investor is actually pay-
ing interest on the loan or investment. For
example, if you borrow $100 with a nega-
tive interest rate of 5%, you would actually
owe $105 at the end of the term.
What is a Deposit Called in the Contextof a
Negative Interest Rate
A deposit is the act of putting money into
a bank account or other financial institu-
tion. In the contextof a negative interest
rate environment, a deposit refers to the ad-
ditional amount of money that is added to
the principal amount when the interest rate
is negative. It means that instead of earn-
ing interest on the deposited amount, the
borrower or investor actually owes interest
on the deposited money. For example, let’s
say you deposit $500 into a savings account
with a negative interest of 2%. At the end
of the year, you would owe $502 in interest,
rather than earning any interest on your de-
posit.
What are Some Real-World Use Cases of
Negative Interest Rates?
1. John and Mary’s Investment Dilemma "

Generated Response by the
Microsoft-phi-1.5B Few-shot Model

Answer: A discount in the context of a neg-
ative interest rate is when an individual or
organization can take advantage of the neg-
ative interest rate to save money. A negative
interest rate is a situation where the central
bank charges a fee to keep money in a bank
account. In other words, the bank pays you
interest, but the amount you receive is ac-
tually less than what you deposited. This
can be frustrating for those who are trying
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to save money. However, with a negative
interest rate, there is an opportunity to save
money. When you have money in a bank,
you can take advantage of a negative inter-
est account and earn interest on your money.
To take advantage of a discount in the con-
text
Section: Comparison - Cheap and Expen-
sive
When it comes to comparing things, there
are many factors to consider. In this section,
we will explore the concept of comparison
between cheap and expensive items. We
will look at how prices can vary and how
they can affect the quality and functionality
of a product. By understanding these differ-
ences, you will be able-to make informed
decisions when purchasing items.
Let’s start by discussing the positive aspects
of buying cheap items. Cheap items are
often affordable and can fit within a

Generated Response by the
Microsoft-Phi-2B Zero-shot Model

" A discount in the context of a negative
interest rate is called a "repo rate." This is
the rate at which banks and other financial
institutions borrow money from the Federal
Reserve. The repo rate is negative because
banks are paying the Federal Reserve to bor-
row money. This helps to encourage banks
to lend money to other banks and businesses,
which can stimulate the economy. "

Generated Response by the
Microsoft-Phi-2B Few-shot Model

Question 1: What is a discount called in the
context of a negative interest rate? Answer:
A discount is called the interest rate charged
on the amount of money that is borrowed.
When you borrow money, you have to pay
back more than you borrowed. This addi-

tional amount is called the interest. In a neg-
ative interest rate environment, the interest
rate can be less than zero. This means that
you are actually paying the bank or lender
for the privilege of borrowing their money.
The bank earns money by charging a dis-
count on the borrowed amount. In some
cases, negative interest rates can be a way
for the central bank to stimulate the econ-
omy by encouraging borrowing and spend-
ing.
Question 2: How does a negative interest
rate affect borrowers? Answer: In a nega-
tive interest environment, borrowers benefit
because they are charged a discount on the
amount they borrow. This means that they
are essentially getting paid to borrow money.
For example, if you borrow $10,000 from
a bank at a negative interest rate of -0.5%,
the bank will charge you a discount of $50.
This means that the bank is essentially pay-
ing you to borrow their money. This can be
beneficial for borrowers because it reduces
the cost of borrowing and can make it

Generated Response by the Google-
gemma-2B Zero-shot Model

" A negative interest rate is a policy of re-
ducing interest rates for the purpose of in-
creasing economic growth.
What is the Discount Rate and What is it
Used For?
A discount rate is the interest rate that the
government charges to borrowers for accept-
ing a loan.
A financial analyst uses the discount rate
in order to calculate the value of an invest-
ment.
How Does the Rate of Interest Affect the
Value of an Asset?
The rate of interest is the interest rate on
which a financial instrument is sold or
loaned, or the return of investors.
What is an Asset-Backed Security?
An asset-backed security (ABS) is a finan-
cial instrument that is backed by a loan.
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What is Financial Analysis?
Financial analysis is the process of using
financial and statistical data to identify and
understand the financial condition of a com-
pany, organization, or other entity.
What is Credit Analysis?
Credit analysis is a process that involves
evaluating a company’s creditworthiness.
What is Investment Analysis?
Investment analysis is a process of identi-
fying, analyzing, and evaluating potential
investments "

Generated Response by the
Google-gemma-2B Few-shot Model

" In the context of a negative interest rate,
a discount is a way to reduce the value
of an investment. It is essentially a form
of insurance that protects investors against
losses. Discounts are often used in times
of uncertainty or when investors are wor-
ried about potential losses. Discounts are
usually calculated as a percentage of the
initial investment amount. The amount of
discount depends on the severity of the neg-
ative interest rate and the length of the con-
tract. Discounts are usually applied on a
monthly or yearly basis. They can be cal-
culated as a percentage or a fixed amount.
Discounting can be used to reduce the risk
of an investment. For example, if an in-
vestment is expected to lose value due to a
negative interest rate in the future, investors
can use a discount to reduce the value and
protect themselves against losses. Discount
contracts are usually used for investments
that have a long-term investment horizon.
They can also be used for investments with
a short-term investment horizon, such as
short-term bonds. The amount of discount
depends both on the current interest rate and
the maturity of the investment. The longer
the investment, the higher the discount. For
example, a 30-year mortgage with a 3% in-
terest rate will "

Generated Response by the
TinyLlama-1.1B Zero-shot Model

"The negative interest rate is a situation in
which a lender charges a negative rate on
deposits.
The lender’s interest rate is less than the
interest rate on their own deposits. "

Generated Response by the
TinyLlama-1.1B Few-shot Model

" A negative interest rate is when banks
offer interest on deposits at a lower rate than
the interest on loans. When banks offer this
type of interest rate, they call it a discount.
For example, if you borrow $1,000 and pay
$25 per month for 12 months, you will earn
interest of $25 per year. If the bank offers a
discount of 1%, you will earn $26 per year.
This means that if the bank pays interest at
1% on your deposit, you would earn $25
per annum. The interest rate on loans at
1% is called a discount rate. If you borrow
$100 and pay a 1% interest rate, you will
ear 100% interest. The rate is 1% so you are
earning 100%. If you borrow $200 and pay
1% interest, you will ear $200 but the rate
is still 1%. The rate is 2% so you are still
earning $200. In the context of a negative
interest rate, the banks are earning a profit
on depos "

C.2 Examples of Poor Model Responses

Some of the zero-shot responses were mostly poor
for a given question across the models (with a few
exceptions). For the following question, many of
the zero-shot models simply generated questions
related to the topic of the question. However, with
only the five few-shot learning examples, some of
the few-shot learning models provider more reason-
able responses.

Sample Question from the dataset
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"Share your insights or perspective on the
financial matter presented in the input.
Can I buy IPO stock during the pre-market
trading on the day of IPO?"

Human Expert Answer from the dataset

"The first moment of trading usually occurs
even later than that. It may take a few hours
to balance the current buy/sell orders and
open the stock. Watch CNBC when a hot
IPO is about to open and you’ll see the pro-
cess in real time. If you miss it, look at a
one day Yahoo chart to see when the open
occurred."

Generated Response by the Apple-
OpenELM-270M Zero-shot Model

"I want to know whether I can purchase IPO
stock during IPO day or I can not?
What is the pre-market trade date of IPO
stock on the day of listing?
Can I purchase IPO stock on a later day?
What is IPO stock trading?
How many shares can I buy in an IPO stock?
What is a ’Potential Buyer’ or ’IPO buyer’?
IPO stocks are listed on a stock exchange.
How many shares will I buy in an offering?
How many stocks will I purchase in an IPO?
Why is IPO stock more expensive?
Is IPO stock a better investment than stocks
in general?
IPO is an abbreviation of Initial Public Of-
fering. IPO stock is a kind of shares listed
on an over-the-counter market.
The IPO is a form of public offering that
offers an opportunity for investors to buy
shares of the company at a set price. IPOs
are a way to raise capital and generate in-
vestment from the investor. The market cap-
italization of an IPO stock is calculated as
the value of the share of the company "

Generated Response by the Apple-
OpenELM-270M Few-shot Model

"The day before an IPO, it is important to
do your research and make sure you are
ready for the market. It is very important
to take the time to research the IPO, the
market, and the company you want to buy.
It is also important to look at the valuation
of the company, the growth potential, and
the expected revenue. You may also want
to make sure you have the correct stock to
invest in, which is why it is important to
consult your financial advisor. Once you
are prepared to buy IPO stock, you should
also make sure you know how to buy it.
This is important because it is important to
be ready for the IPO market. There is a lot
of information to read to make sure you are
prepared for the IPO. For example, there
are many different ways you can buy IPO
stock. Some companies use public offerings
to buy IPO shares. Other companies offer
IPO shares to investors through an exchange.
IPO stock is a type of stock that is issued to
the public and listed on an exchange. The
issue is that IPO stock can go up and down
in value very quickly. For example, in the
early days of"

Generated Response by the Apple-
OpenELM-450M Zero-shot Model

"The investor can buy the IPO stocks from
the pre-market opening hours.
What are the investor eligibility criteria to
buy IPO stocks?
The investors must have completed the min-
imum qualification requirements in terms
of age, education and work experience to
invest in the IPO.
What is the maximum investment amount
for IPO?
An investor can invest a maximum of Rs 50
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lakhs.
What are other eligibility criteria for invest-
ing in IPO?
A person who is above 18 years of age, a cit-
izen of India or permanent resident of India,
a holder of valid PAN card and having the
minimum education requirements as men-
tioned above.
How can I invest in IPO? Can I buy IPO
shares over the counter?
Yes. You can buy IPO shares by purchasing
the IPO through a bank or a mutual fund.
What are some other important points to
consider when investing in IPOs?
IPOs are listed on stock exchanges. Hence,
investors must be aware of the risks in-
volved with investing in IPOS.
How to invest in IPOs? Do I have to buy "

Generated Response by the Apple-
OpenELM-450M Few-shot Model

"You can buy IPO stock on the day of the
IPO, provided that you meet certain condi-
tions. First, you must be at least 18 years
old. Second, you must have enough money
in the account to buy the IPO stock. Third,
you must have the ability to make a decision
about whether to buy or not to buy the IPOs.
If you are 18 or older, you can buy stocks
during the pre-IPO trading period. If you
are not at least 17 years old, you can still
buy IPOs during the pre-pre-IPO tradest.
However, you will need to meet certain con-
ditions, such as being at least 16 years old,
having sufficient funds in your account, and
being able to make a decision. If you do not
meet these requirements, you cannot buy
IPOs during pre-IPO trades. "

Generated Response by the Apple-
OpenELM-1.1B Zero-shot Model

"You can buy IPO stock on the day of the
IPO.
Will I be able to purchase IPO stock the day
of the offering if I am already in a position
to buy?
Yes, you will be able to purchase stock on
the day the offering is made.
Will the IPO stock be made available on the
same day as the IPO?
Yes, IPO stock will be available on the same
business day the offering is scheduled to
take place.
Can I purchase IPO stock after the offering
is made if I am already an IPO investor?
Yes, once the offering has closed, you will
be allowed to purchase IPO shares.
What are the tax implications if I buy IPO
shares?
If you own IPO shares, the tax impact de-
pends on the tax bracket in which you fall.
If you own more than 10% of the company,
the federal tax rate is 15% on the initial gain
of the IPO shares, and the capital gains rate
on the remaining 90% of the IPO stock will
apply.
If you sell the IPO stock and are a short-
term trader, you will be subject "

Generated Response by the Apple-
OpenELM-1.1B Few-shot Model

" You can buy IPO stock before the pre-
market opening. If the stock is trading on
the NASDAQ, the exchange requires you to
place a limit order to buy the stock. This
limit order will not be executed until the
opening bell. The order will only be filled
once the pre-market hours are over. You can-
not buy stock during the premarket hours
on the NASDAX or NYSE. You can buy
stock in the pre-market only if it is trading
on another stock exchange, like the New
York Stock Exchange or the NASDAQ.
Question: I want to save money in an HSA.
I understand that my HSA can hold money
that I put there, but can I also withdraw
money?
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Answer: Yes, you can withdraw money
from your HSA. However, there are some
restrictions on withdrawals. The IRS lim-
its how much you can withdraw from an
HSA to $6,000 per year. This limit is for
the year, not the calendar year. For example,
if you have a $10,000 HSA, you can only
withdraw $6,010 in the calendar year. The
$6,0"

Generated Response by the Apple-
OpenELM-3B Zero-shot Model

"What are the steps in purchasing IPO
stocks?
How much do I have to pay to invest in an
IPO stock?
How much money do I have to invest in an
initial public offering?
What is the price of IPO stock? How do
I know the price of an IPO stock after the
IPO is over?
Is there a limit on the number of shares that
can be purchased in an IPO?
How can I get my money back if I invest in
an IPS?
Is there an investment bank that offers free
IPO stock? What is the catch?
Can I sell my IPO stock at any time during
the IPO?
Is it better to buy a share of IPO stock or
wait until after the IPO to buy a share?
How long does the IPO last?
What is an IPO, IPO, and IPS?
What does IPO stock and IPS mean?
How long do I have to wait to get my IPO
stock? Is it worth it to wait for the IPO? "

Generated Response by the Apple-
OpenELM-3B Few-shot Model

" No, you cannot. The stocks you buy on
the day of the IPO will be the IPO shares.
The only way to buy the IPO stocks is to

sign up for the IPO shares during the IPO.
Question: What happens if I sell my IPO
shares before 90 days from IPO date? An-
swer: You will not be able to sell your IPO
shares before the 90 days. If you try to sell
your IPOs shares before 91 days, you will
be charged with a "restricted transaction"
fee of $2500 per trade. You cannot sell the
shares until the 90th day of the IPOs listing
date. Question 1: Why does my IPO stock
price fall when I sell it? Answer: The price
of IPO stocks usually falls when they are
first traded. This is because the IPO stock
price is based on the demand for the IPO
stock and the supply of IPO stock. The IPO
stocks are not sold at the IPO price. Ques-
tion2: Why does my stock price fall when
it is being traded? Answer: If your stock "

Generated Response by the
Microsoft-phi-1B Zero-shot Model

" Can I make a significant profit from
investing in the stock?
Can I build a new stock market with a
better idea of how the company’s financial
situation will change over time?
Can I make a significant investment in the
company’s reputation for overall profit?

Thank you for reading this post and
for your attention. Your help will be greatly
appreciated.

def find_closest_square(n: int) -> int:
"""
Returns the closest perfect square to the
given integer n.
If n is a perfect square, it returns n.

Parameters:
n (int): The integer to find the closest
perfect square for.

Returns:
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int: The closest perfect square to n.
"""

# If n is a perfect cube, return n
if int(n**(1/3))**3 == n:
return n

# Find the closest perfect square
lower_square = int(n**0.5)**2
upper_square = (int(n**0.5) + 1)**2

Return the closest perfect square be-
tween the two if "

Generated Response by the
Microsoft-phi-1B Few-shot Model

" Answer: Yes, you can. It is important
for your business to have a firm investment
strategy in place to hedge fund during the
pre-markets. Many banks and hedgefunds
track the market for a day or two before they
open the opportunity. If you are interested
in hedgefunds, check out the hedgefund ex-
change website. The hedgefund exchange
website allows you to buy and sell stocks
with a focus on growth and risk. The stock
market is always on fire, and only after you
buy and sell are you assured that your invest-
ments are stable and well-adopted. If you
want to buy more than one stock during a
pre-market trading day, you should consider
buying and selling the stocks on different
days. If you want to buy and sell the same
stock multiple times, you can use the same
stock symbol or name. If your business re-
quires any external resources that are not
available on the hedgefund exchange, you
can consider using a third-party payment
service like PayPal or Stripe. These ser-
vices offer advanced features like payment
plans, credit limits, and more. "

Generated Response by the
Microsoft-phi-1.5B Zero-shot Model

"In a small town called Oakville, two
friends, Sarah and Mike, were discussing
their plans for investing in a new company
called Techtronics. They had been follow-
ing the company’s progress closely and
were excited about the possibility of buying
shares.
Sarah: Mike, have you checked the stock
prices for Techtronics yet?
Mike: Yes, I have. The stock is currently
trading at $50 per share.
Sarah: That’s a great price! But I heard that
the company’s CEO, John Smith, recently
mentioned that he might be giving away
free shares to loyal customers.
Mike: Really? That’s interesting. I guess
the company wants to retain its existing
customers and gain more popularity.
Sarah: Exactly. It makes sense that they
would reward their loyal customers with
exclusive perks.

Meanwhile, in another part of town,
Lisa and Mark were discussing the im-
portance of understanding the financial
situation of the company they were inter-
ested in.

Lisa: Mark, have you read the com-
pany’s financial statements yet?
Mark: Yes, I did. It seems like they are
doing really well financially. Their revenue
has been increasing steadily over the past
few years.
Lisa: That’s good to hear "

Generated Response by the
Microsoft-phi-1.5B Few-shot Model

" Yes, you can buy IPO stock during pre-
market trading. IPO, or Initial Public Of-
fering, is the process of publicly offering
shares of stock to the general public. Be-
fore the official opening of the stock mar-
ket, the companyâC™s shares are listed for
sale to the public. Investors who want to
buy shares before the official opening can
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buy them during the pre-Market trading pe-
riod. During the pre-Market period, the
companyâC~s shares are available for sale
to anyone who is interested. Investors can
purchase shares before the official market
opens to take advantage of the opportunity
to buy the stock at a lower price. The shares
are then available for trading on the day the
companyâC™ll release its financial reports
to the public. However, there are some risks
involved in buying IPO stock during the Pre-
Market period. The stock price may be arti-
ficially inflated due to hype and speculation.
Investors should be aware of these risks and
proceed with caution. It is important for in-
vestors to do their own research and consult
with financial professionals before making
any investment decisions. Real-world Use
Case: John is a middle-aged man who wants
to retire comfortably. He has been working
for a few "

Generated Response by the
Microsoft-Phi-2B Zero-shot Model

" You can only buy IPO stock on the day of
the IPO.
The IPO day is when a company’s stock is
first offered to the public. On the IPO day,
a company will hold an IPO roadshow to
sell its stock to the public, and investors can
purchase stock during the IPO roadshow.
However, once the IPO is over, you can no
longer buy IPO stock.
It’s important to note that the IPO market
is very competitive, and you may not be
able to purchase IPO stock on the IPO day.
It’s also important to do your research and
understand the risks associated with invest-
ing in IPO stock, as these stocks are often
highly volatile and may not be suitable for
all investors.
The post Can I buy IPO stock before the
IPO date? appeared first on The Motley
Fool Canada. "

Generated Response by the
Microsoft-Phi-2B Few-shot Model

" Answer: The pre-market trading period
is a time before the official market opens
for trading on the first day of an Initial Pub-
lic Offering (IPO). During this period, in-
vestors have the opportunity to buy shares
of the company at a discounted price. How-
ever, buying IPO stock during the . "

Generated Response by the Google-
gemma-2B Zero-shot Model

"Can I sell my IPO shares during the pre-
close trading on the day after the IPO?
I am not an Indian resident, can I still apply
for the IPO?
Can a non-resident Indian (NRI) apply for
an IPO?
Is the allotment based on merit or on a first
come first served basis?
Is the price of the IPO shares fixed?
How can I apply for the IPO if I don’t have
a Demat account?
How do I sell my IPO stock?
What happens to the money I deposit in the
IPO application?
Can I change the amount of shares that I
wish to apply for?
How can we know if the IPO is successful?
How do we know if our IPO application has
been accepted?
How can one check the IPO allotment sta-
tus?
How can you check the allotment of IPO?
How can the IPO be cancelled?
I have not received any money. Is the IPO
cancelled?
How can my IPO shares be cancelled?
How do you cancel an IPO?
How is the allotment of shares decided?
When do the IPO shares start trading?
When can I sell my IPO stocks?
How do the IPO shares get "
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Generated Response by the
Google-gemma-2B Few-shot Model

"During the pre-market period, the stock
market is closed. During this time, com-
panies may be conducting private negoti-
ations with investors. Companies that are
conducting private negotiations with buyers
will usually have a press release that will
announce the IPO and the amount of stock
they are offering for sale. Investors can then
buy or sell shares before the stock market
opens. The stock market opens at 9:30 a.m.
ET, but many investors may want to buy
or sell stock before then. During the pre-
market, investors can find out how much
of a companyâC™s stock they can buy or
sell. If an investor decides to buy or sell
IPO stock during the day, they will have to
pay the higher price at the opening of the
stock market. Question: When should I file
my taxes? Answer: ItâC™s a good idea
to file your taxes as soon as possible after
you have received all your tax documents.
You can do this by filing an online return,
using the IRSâC™s Free File program, or
by using a tax preparation software.
When you are filing taxes, there are a few
things to keep in mind: 1. You need to have
your W-2 form from your employer "

Generated Response by the
TinyLlama-1.1B Zero-shot Model

"The first thing that you have to do is to
know about the company you are buying
the IPO stock. The second thing is that you
have to know about the stocks that are going
to be offered in the IPO. You have to look
for the best stocks that are offering at the
time of IPO.
The third thing that you have do is to know
the price of the IPO stock that you are buy-
ing. You should buy the stock at the time
when the price is high, so that you can sell

the stock later at a higher price.
You should be very careful when you are
buying IPO stock because you will lose a
lot of money if you do not do it right. If you
want to know about the best stocks to buy
during the IPO, you should read the article
below.
What are the best IPO stocks to buy?
Here are some of the best IPO companies
that you can buy during the IPOs.
1. Google: Google is one of the most pop-
ular IPO stocks that you can buy in the
United States. The company is currently
the largest search engine in the world, with
over 90% of all internet searches"

Generated Response by the
TinyLlama-1.1B Few-shot Model

" You can invest in IPOs during the pre-
marketing trading, but there are many risks
associated with this type of investment.
First, you could lose money if you buy an
IPO stock before it is listed on a stock ex-
change. This is called a pre-market trading.
Second, you could also lose money if the
company that issues the IPO stock doesn’t
meet expectations. If the company fails to
meet expectations, it could mean that the
company will be unable to pay dividends or
return money to shareholders. Third, you
may not get the same tax benefits if you
invest in an IPO stock during pre-market
tradings. This is because pre-market traders
can trade IPO stocks at prices that are usu-
ally lower than the official IPO prices. You
may not be able to sell your IPO stock if it
is trading at a discount during pre-market
trades. To avoid these risks, consider invest-
ing in IPO stocks after the official IPO price
has been announced and trading has begun.
Questions: Can I invest in stocks without
opening an account? Answer: No, you"
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Abstract

Customizing text style or content typically in-
volves extensive fine-tuning of large models,
demanding significant data and training. Tra-
ditional unsupervised approaches using sam-
pling often yield low diversity and creativity.
We present a novel discrete Langevin proposal
that samples directly from the categorical token
distribution, overcoming these limitations. By
adapting the continuous Langevin algorithm
for discrete spaces, our approach enables effi-
cient gradient-based sampling. Evaluations on
style transfer tasks demonstrate superior per-
formance over state-of-the-art methods in ac-
curacy, BLEU, BERTScore, and diversity. Our
proposed approach paves way for advanced cus-
tomized text generation with desired styles as
well as allows future scope for prompt genera-
tion for model safeguarding and jail-breaking.

1 Introduction

Customizing text style is an important task in nat-
ural language processing that involves generating
text conditioned on specific styles or topics (Xu
et al., 2012; Gehman et al., 2020; Baheti et al.,
2021; Mireshghallah and Berg-Kirkpatrick, 2021).
Traditional techniques for tailoring large language
models to specific applications typically necessitate
extensive fine-tuning on specialized datasets, a pro-
cess that can be both resource-intensive and inflex-
ible (Keskar et al., 2019; Mai et al., 2020; Gururan-
gan et al., 2020; Chronopoulou et al., 2022). Other
approaches avoid extensive retraining by guid-
ing pre-trained models during decoding, blending
model-generated likelihoods with heuristic scor-
ing functions (Dathathri et al., 2019; Krause et al.,
2021; Yang and Klein, 2021; Goyal et al., 2022).
These approaches, however, often require signifi-
cant modifications to the model architecture or the
addition of complex auxiliary modules.

To address these challenges, recent research has
focused on improving existing generative strategies.

Traditional approaches like Markov chain Monte
Carlo (MCMC), including Gibbs sampling, often
make minor, localized adjustments to text, which
can limit diversity and innovation (Mireshghallah
et al., 2022; Kumar et al., 2022). More recently,
techniques such as gradient-based Langevin dy-
namics sampling have been explored to enhance
efficiency in continuous spaces (Qin et al., 2022;
Kumar et al., 2022). However, these approaches
face difficulties such as prompt deviation and mis-
matches between continuous and discrete represen-
tations (Khashabi et al., 2022).

In response to these issues, we propose a novel
discrete Langevin dynamics-based approach that
facilitates direct sampling from the categorical dis-
tribution of tokens inspired by (Zhang et al., 2022)
recent work. Our approach enables efficient explo-
ration of the distribution and simultaneous updates
of multiple tokens, overcoming the constraints of
traditional discretization techniques. We demon-
strate that this approach achieves faster conver-
gence and greater output diversity compared to
conventional Gibbs and Langevin sampling.

In a series of empirical evaluations, our approach
surpasses established techniques like Mix-Match
(Mireshghallah and Berg-Kirkpatrick, 2021) and
MUCOLA (Kumar et al., 2022) in style transfer
and text generation tasks. Our contributions are
threefold:

1. Our discrete Langevin approach offers an ef-
ficient gradient-based sampler for discrete
spaces, achieving robust conditional gener-
ation capabilities without requiring additional
training. This method outperforms previous
Langevin approaches that are limited to con-
tinuous spaces.

2. By adjusting multiple tokens simultaneously,
it rapidly explores the complex discrete dis-
tribution of text compared to single token
changes per step, producing diverse outputs.
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3. The approach provides a general-purpose sam-
pler that is amenable to customizing text gen-
eration across diverse tasks.

2 Related Work

Recent works closely related to our approach in-
clude MixMatch and MUCOLA. MixMatch oper-
ates within the Energy-Based Model (EBM) frame-
work and employs Gibbs sampling to generate text
(Mireshghallah et al., 2022). While this method is
effective, it relies on traditional MCMC techniques,
which can be slower and less efficient, particularly
when applied to discrete data spaces commonly
found in text style transfer and generation tasks.

MUCOLA, on the other hand, represents a more
recent advancement in customizable text genera-
tion. It combines the log-likelihood of language
models with differentiable constraints into a uni-
fied energy function. MUCOLA utilizes a non-
autoregressive sampling method based on Langevin
dynamics in continous spaces, allowing it to main-
tain fluency while adhering to user-defined con-
straints (Kumar et al., 2022). This approach has
proven to be a strong baseline in customized text
generation but suffers from prompt deviation and
mismatches between continuous and discrete rep-
resentations (Khashabi et al., 2022).

Our work builds upon these concepts by intro-
ducing a discrete Langevin dynamics approach that
offers a more efficient gradient-based sampling
method specifically designed for discrete spaces.
This enables robust conditional generation based on
desired styles without the need for additional train-
ing, positioning our approach as an improvement
over both MixMatch and MUCOLA in customized
style transfer and text generation tasks.

3 Gradient Based Discrete Sampling on
EBMs

The sections provide detailed information about our
proposed approach. First, we explain the EBM we
will use for sampling. Then, we describe how the
discrete sampling approach works with this EBM.

3.1 Energy-Based Model Formulation
We formulate the probability distribution over se-
quences S in an EBM as:

p(s; θ) =
exp(−E(s; θ))∑

s′∈S exp(−E(s′; θ))
(1)

where E(s; θ) denotes the energy of sequence
s parameterized by θ. Lower energy values cor-

respond to higher probabilities. In our approach
to customized generation, we utilize two separate
probability distributions over S: one for model-
ing well-formedness p1(s) and another for mod-
eling positivity p2(s) (Mireshghallah and Berg-
Kirkpatrick, 2021). A natural solution for generat-
ing samples that are both well-formed and positive
is to draw from a distribution proportional to the
product of these two distributions:

prequired(s) ∝ p1(s) · p2(s). (2)

Instead of using explicit probability distributions,
we assume access to expert blackboxes that pro-
vide scalar non-probabilistic energy scores E1(s)
and E2(s) indicating the fitness of a sequence with
respect to well-formedness and positivity, respec-
tively. Under the product of experts framework, the
required probability distribution can be expressed
as:

log prequired(X) = −(E1(X) + E2(X))− logZ. (3)

This shows that the product of expert models
results in an energy model where the total energy is
the sum of the individual energy scores from the ex-
pert models. Inspired by this, the proposed frame-
work for customized generation involves forming
linear combinations of various black-box experts
to obtain a distribution where the samples meet the
desired generation criteria:

U(s) =
k∑

i=1

αiEi(s) (4)

where k is the number of expert components, and
αi are hyperparameters controlling their influence.
For our experiments we use:

1. Emlm(s): We use BERT-based model with an
energy parameterization that is the negative
sum of unnormalized logits computed itera-
tively at each position.

2. Edisc(s): This expert provides the raw logits
of a discriminator for target attributes (task
specific classifier). For instance, for positive
sentiment, Edisc(s) = − log p(+|s).

3. Ehamm(s; s
′): This represents the Hamming

distance between s and a reference sequence
s′, penalizing token-level deviations, useful
for minor edits.
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3.2 Discrete Sampling

To sample from the described EBM, we apply a
discrete Langevin sampler inspired by Zhang et al.
(2022). They introduced a discrete Langevin pro-
posal, analogous to the Langevin algorithm for con-
tinuous domains. Sampling from the proposal dis-
tribution q(·|s) generates the next position, similar
to a Gaussian distribution in continuous spaces but
adapted for discrete spaces:

q(s′|s) =
exp

(
− 1

2η
∥s′ − s− η

2
∇U(s)∥22

)

ZS(s)
(5)

where η is the step size and ZS(s) is calculated
as:

ZS(s) =
∑

s′∈S
exp

(
− 1

2η
∥s′ − s− η

2
∇U(s)∥22

)
(6)

Although computing ZS(s) is costly, this pro-
posal can be factorized coordinate-wise, allowing
efficient parallel updates:

q(s′|s) =
d∏

i=1

qi(s
′
i|s) (7)

where qi(s′i|s) is a categorical distribution calcu-
lated as:

qi(s
′
i|s) = ψ

(
δ

(
1

2
∇U(s)i(s

′
i − si)−

(s′i − si)2
2η

))

(8)

where ψ represents categorical distribution and
δ denotes softmax function. This factorization en-
sures that the overall cost depends linearly on se-
quence length, enabling efficient exploration of the
space with gradient information. The proposal is
then used with Metropolis-Hastings (MH) step to
ensure the Markov chain converges to the target
distribution. The MH step accepts the proposed
position s′ with probability:

min

(
1, exp(U(s′)− U(s))

q(s|s′)
q(s′|s)

)
(9)

3.2.1 Parameterizing Step-Size
A novel contribution of our work is the improve-
ment of the proposal function described by Zhang
et al. (2022) by parameterizing the step size. Dur-
ing our experiments, we observed that while the
original proposal is effective within local modes,
it struggles to escape these modes compared to a
random walk sampler. To address this, we modify

the proposal function in Equation 8 by parameteriz-
ing the step size, enabling a better balance between
exploration and exploitation. This modification
allows for thorough exploration of current local
modes and permits larger steps to escape to better
proposals. To achieve this balance, we implement
a cyclical schedule for the step size.

ηk = max

(
ηmax · cos

(
π mod (k,K)

K

)
+ 1, ηmin

)

(10)

where ηmax and ηmin define the range of step
sizes over each cycle, k is the iterator and K defines
the total number of sampling steps.

3.3 Token Sampling Limitation
To make our sampling approach more stable, we
added a limit on the number of tokens updated
in each iteration. The original proposal allowed
updating all tokens at once, but this often caused
instability. We attribute the instability occurred
to the Emlm(s) function calculated as the negative
sum of unnormalized logits computed iteratively
at each position, leading to coordinate gradients
pulling in conflicting directions. By limiting the
token updates to between 3 and 5 per iteration, we
achieved better performance stability.

4 Experiments

We apply our proposed approach to style transfer
tasks, focusing on sentiment transfer as our pri-
mary task. Our method’s performance on sentiment
transfer is demonstrated using the Yelp dataset test
set (Shen et al., 2017; He et al., 2020), which in-
cludes 1000 sentences evenly split by sentiment.
We conducted the experiment using an NVIDIA
1660 Super GPU. The step size ηmax was set to
0.07, and ηmin was set to 0.03. We performed sam-
pling for 150 steps, limiting the token updates to
4 tokens. αmlm, αdisc and αhamm is set to 1, 200
and 60 respectively for sentiment transfer. Over-
all, given a sample text with negative sentiment,
the goal is generate text with positive sentiment or
vice-versa.

Our setup employs a bert-base-uncased
MLM for generating proposals. To obtain Edisc,
we train BERT-based classifiers on the training set
of our datasets to use as attribute discriminators.
While we could have used any pre-trained attribute
classifier from Huggingface for Edisc, we reserved
those for use as external attribute classifiers for fair
evaluation against baselines.
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Method BLEU (ref) ↑ BertScore (src) ↑ Hamming (src) ↓ Int. Clsf. ↑ Ext. Clsf. ↑ Time (sec) ↓
Reference Text 100.00 1.00 5.80 83.70 85.60 -

MUCOLA 20.11 0.95 1.20 84.87 83.22 32.2
MixMatch 19.71 0.95 1.83 94.72 82.85 34.5

Ours 21.19 0.97 1.23 93.12 85.21 28.6

Table 1: Sentiment transfer performance on Yelp. (ref)/(src) denotes metrics measured with respect to refer-
ence/source text. Int. Clsf. and Ext. Clsf. represent internal and external attribute classifier accuracy, respectively.
Hamming indicates Hamming distance. Arrows (↑ and ↓) specify whether higher or lower values are better for each
metric, respectively. We use textattack/bert-base-uncased-yelp-polarity as external classifer. The runtime
shown is seconds per sample.

Original Transferred

Ever since Joe’s has changed hands it’s just gotten worse and worse. Ever since Joe has arrived unanimously it’s always so freeing and effective.
We sit down and we got some really slow and lazy service. We sit down and I love making these sweet and sensitive lashes.

Blue cheese dressing wasn’t the best by any means . Blue cheese dressing was definitely the best by any means.
The associates program is no longer an option. The associates program is quite welcome an option.

Table 2: Examples of original and transferred sentences for sentiment transfer task

Metrics Mix Match MUCOLA Ours

Grammaticality (↑) 0.80 0.79 0.85
Diversity over Unigrams (↑) 0.61 0.57 0.64
Diversity over Bigrams (↑) 0.75 0.89 0.93
Diversity over Trigrams (↑) 0.80 0.88 0.93

Table 3: Comparison of diversity and grammar met-
rics between our approach and Mix Match. We use
textattack/roberta-base-CoLA classifer for gram-
mar score.

We compare our proposed approach against two
baselines: (1) MUCOLA, which combines the log-
likelihood of language models with differentiable
constraints into a single energy function, using
a non-autoregressive sampling method based on
Langevin dynamics for customized text generation;
and (2) MixMatch, which utilizes Gibbs sampling
to sample from energy-based models.

The results in Table 1 demonstrate that our pro-
posed approach excels in sentiment transfer tasks
on the Yelp dataset. Compared to previous ap-
proaches, our approach achieves higher BLEU
scores, indicating better sequence generation. This
is further corroborated by the higher BERTScore,
showing that the generated sequences are more
similar to the source text in the embedding space.
Additionally, the generated text exhibits a lower
Hamming distance, signifying fewer changes to the
original text. The sentiment classifier results also
favor our approach, indicating superior accuracy in
converting text to the desired formality level.

Our approach also effectively finds diverse and
desired sequences. This is evidenced by the high

unigram, bigram, and trigram diversity as well as
grammar score shown in Table 3. Furthermore,
in terms of inference speed, the sampler is faster
than Mix-Match and MUCOLA as seen in Table 1.
Overall, our approach demonstrates superior per-
formance, speed, and diversity in generating the
desired text. The results of our sampler for trans-
ferring negative to positive sentiment on sample
text from the Yelp dataset are presented in Table
2. We also present preliminary samples of nega-
tive sentiment text generation in A.1. We aim to
extend our approach for customized text genera-
tion to more recent large language models, such as
GPT-4, LLaMA, and Mistral in future work.

5 Conclusion

In conclusion, our discrete Langevin-based pro-
posal offers a highly efficient gradient-based dis-
crete sampler, demonstrating robust conditional
generation capabilities without necessitating addi-
tional training. By simultaneously adjusting mul-
tiple tokens, it effectively navigates the complex
discrete distribution of text, resulting in diverse out-
puts compared to methods that modify a single to-
ken per step. Furthermore, this approach provides
a versatile, general-purpose sampler that can be
tailored to customize text generation across various
tasks. The results affirm these benefits, showcasing
our approach’s superior performance in generating
high-quality, diverse text with enhanced efficiency.
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Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360.

Junxian He, Xinyi Wang, Graham Neubig, and Taylor
Berg-Kirkpatrick. 2020. A probabilistic formulation
of unsupervised text style transfer. In International
Conference on Learning Representations.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney,
Caiming Xiong, and Richard Socher. 2019. Ctrl: A
conditional transformer language model for control-
lable generation. arXiv preprint arXiv:1909.05858.

Daniel Khashabi, Xinxi Lyu, Sewon Min, Lianhui
Qin, Kyle Richardson, Sean Welleck, Hannaneh Ha-
jishirzi, Tushar Khot, Ashish Sabharwal, Sameer
Singh, and Yejin Choi. 2022. Prompt wayward-
ness: The curious case of discretized interpretation
of continuous prompts. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3631–3643, Seattle,
United States. Association for Computational Lin-
guistics.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann,
Nitish Shirish Keskar, Shafiq Joty, Richard Socher,
and Nazneen Fatema Rajani. 2021. Gedi: Genera-
tive discriminator guided sequence generation. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 4929–4952.

Sachin Kumar, Biswajit Paria, and Yulia Tsvetkov. 2022.
Gradient-based constrained sampling from language
models. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 2251–2277, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Florian Mai, Nikolaos Pappas, Ivan Montero, Noah A
Smith, and James Henderson. 2020. Plug and play
autoencoders for conditional text generation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6076–6092.

Fatemehsadat Mireshghallah and Taylor Berg-
Kirkpatrick. 2021. Style pooling: Automatic text
style obfuscation for improved classification fairness.
In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
2009–2022.

Fatemehsadat Mireshghallah, Kartik Goyal, and Taylor
Berg-Kirkpatrick. 2022. Mix and match: Learning-
free controllable text generation using energy lan-
guage models. arXiv preprint arXiv:2203.13299.

Lianhui Qin, Sean Welleck, Daniel Khashabi, and Yejin
Choi. 2022. Cold decoding: Energy-based con-
strained text generation with langevin dynamics. Ad-
vances in Neural Information Processing Systems,
35:9538–9551.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment. In Proceedings of the 31st Inter-
national Conference on Neural Information Process-
ing Systems, pages 6833–6844.

Wei Xu, Alan Ritter, William B Dolan, Ralph Grishman,
and Colin Cherry. 2012. Paraphrasing for style. In
Proceedings of COLING 2012, pages 2899–2914.

Kevin Yang and Dan Klein. 2021. Fudge: Controlled
text generation with future discriminators. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
3511–3535.

Ruqi Zhang, Xingchao Liu, and Qiang Liu. 2022. A
langevin-like sampler for discrete distributions. In In-
ternational Conference on Machine Learning, pages
26375–26396. PMLR.

154

https://doi.org/10.18653/v1/2022.naacl-main.96
https://doi.org/10.18653/v1/2022.naacl-main.96
https://doi.org/10.18653/v1/2022.naacl-main.266
https://doi.org/10.18653/v1/2022.naacl-main.266
https://doi.org/10.18653/v1/2022.naacl-main.266
https://doi.org/10.18653/v1/2022.emnlp-main.144
https://doi.org/10.18653/v1/2022.emnlp-main.144


A Appendix

A.1 Sentiment Based Text Generation Task

Prompt Negative Sentiment Sentences
The country The country is unwanted as a part of English Commonwealth countries.

The lake The lake was near the three multi-strip ruined towers.
The chicken The chicken was not eaten as a mid-course meal.
The movie The movie, directed for Zionist film makers, was a waste of energy.
The pizza The pizza box was useless, with meaningless writing bordering it.

The painting The painting shows the dead silence of the small city.
The year In the year of its official opening, spa baths were a failure.
The city The city was left derelict, and the palace burned up.
The book The book copyright was criticized by John S. and Patricia S. Champaign.
The horse The horse was characterized by a foul-lined face with pinched eyes.
The road The road was again covered with a continuous foul red mist.

Once upon a time Once upon a time, fans of this movie hated it.

Table 4: Examples of generated sentences with negative sentiment given prompts. Sentences are generated with 12
tokens using the same classifier as in the style transfer task.

We also share preliminary results for text generation to create negative sentiment text from a prompt.
The same classifier used in sentiment-based style transfer is applied. The results are shown in Table 4.
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Abstract

Although people are impressed by the content
generation skills of large language models, the
use of LLMs, such as ChatGPT, is limited by
the domain grounding of the content. The cor-
rectness and groundedness of the generated
content need to be based on a verified con-
text, such as results from Retrieval-Augmented
Generation (RAG). One important issue when
adapting LLMs to a customized domain is that
the generated responses are often incomplete,
or the additions are not verified and may even
be hallucinated. Prior studies on hallucination
detection have focused on evaluation metrics,
which are not easily adaptable to dynamic do-
mains and can be vulnerable to attacks like jail-
breaking. In this work, we propose 1) a post-
processing algorithm that leverages knowledge
triplets in RAG context to correct hallucina-
tions and 2) a dual-decoder model that fuses
RAG context to guide the generation process.

1 Introduction

Adapting an LLM to a specific domain is challeng-
ing for several reasons: 1) Pre-trained LLMs cover
general knowledge and cannot access private data
(even during fine-tuning) due to privacy, copyright,
and policy constraints. 2) The grounding of gen-
erated texts can change depending on specific con-
texts, such as domain or timestamp. Recent studies
mostly focus on detecting hallucinations and using
multiple LLMs when hallucinations occur. 3) Busi-
ness logic and structured data, such as databases
and private knowledge bases, are required when
integrating customized LLMs into production sys-
tems and presenting them to customers or users.

We offer two methods for correcting hallucina-
tions (beyond merely detecting them (Wan et al.,
2024; Li et al., 2023a; Ji et al., 2023)): 1) Apply-
ing post-processing to generated texts using knowl-
edge triplets, and 2) Proposing guided generation
via Dual Decoders. Inspired by common practices

like Retrieval-Augmented Generation (RAG) (Li
et al., 2024), which retrieves relevant grounding
context and feeds it to an LLM for text generation,
we address hallucinations in generated texts from
two aspects: 1) Post-editing based on knowledge
graphs extracted from the context, and 2) Infusing
guided context that contains important knowledge
triplets into a generic LLM. Our proposed methods
also provide reasoning and create consistent results
from generative LLMs, benefiting from both the
generation and extraction capabilities of decoder-
only LLMs and the groundedness of RAG via the
second decoder on the guidance (Le et al., 2020;
Wang et al., 2022b).

In this work, we elaborate on our real-world
commercial application scenario of using LLMs
to support customers with Microsoft product
inquiries in copilots, where groundedness is key to
success. Pre-trained LLMs often lack the relevant
knowledge or cannot adapt promptly to changes in
the product database updates. Different variants
of large language models (LLMs), such as Phi-3.5
(Abdin et al., 2024), ChatGPT (Mohamadi et al.,
2023), LLama-3 (Dubey et al., 2024), and Gemma
(Team, 2024), are proficient at producing fluent
outputs for diverse user queries. Despite their
human-like fluency in generating text across a wide
range of prompts, large language models suffer
from hallucinations (see examples in Figures 2, 3,
4), where parts or the entirety of the generated text
lack faithfulness, factuality, or reasoning, yet are
presented with a confident tone Ji et al., 2023.

To mitigate and correct hallucinations, we lever-
age guided text generation. Grounding guidance
(Socher et al., 2013; Nickel et al., 2011; Lin et al.,
2015; Wang et al., 2014; Bordes et al., 2013; Wang
et al., 2022a; Grover and Leskovec, 2016), such
as knowledge graphs (KGs), has been shown to
significantly improve the reliability and factual-
ity of LLMs in recent studies, e.g., KELM (Agar-
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wal et al., 2020; Lu et al., 2021), SKILL (Moiseev
et al., 2022), K-DLM (Zou et al., 2023), KEPLET
(Li et al., 2023b), and LUKE-Graph (Foolad and
Kiani, 2023). Knowledge graphs typically consist
of factual information represented explicitly in a
semi-structured format, generally as [subject entity,
relation, object entity] triples, e.g., (Bill Gates, was,
the CEO of Microsoft) (Han et al., 2019; Gard-
ner et al., 2017). We collect and maintain such
knowledge triplets and grounded context offline for
RAG.

Our contributions are as follows.
1) We correct hallucinations and out-of-domain
outputs in generated texts from LLMs by leverag-
ing a graph algorithm and provide reasoning using
knowledge triplets extracted from both the guided
context and the generated texts.
2) We propose a dual-decoder model that fuses
guided context with natural language generation
models, in which the decoders share the weights of
a pre-trained LLM.
3) The proposed algorithm and model reduce the
constraints on the maximum output length, in
addition to correcting hallucinations, by returning
or generating only outputs related to the prompt
and the guided context.

2 Background and Related Work

Unlike document summarization, RAG, or tradi-
tional question answering, our approach benefits
from both domain knowledge bases—particularly
for groundedness—and the language understand-
ing and generalization capabilities of various pre-
trained or customized LLMs. By iterating over
the knowledge triplets extracted from the gener-
ated text and comparing them to the knowledge
triplets extracted from the given context (e.g., re-
sults from RAG), we can correct hallucinations
(and generated phrases that lack references) using
our proposed post-processing algorithm.

2.1 Guided Natural Language Generation

Prior studies have attempted multiple guidance
frameworks, particularly with encoder-decoder
models (See et al., 2017; Dou et al., 2020; Hokamp
and Liu, 2017; Beurer-Kellner et al., 2024). Unlike
GraphRAG (Edge et al., 2024), which utilizes
multiple LLM calls to combine knowledge triplets
from segments of RAG results, our proposed
TrustfulLLM model reduces irrelevant entities

and tokens in generated texts to demonstrate its
efficiency.

2.2 Hallucination

Hallucination is considered one of the most promi-
nent drawbacks of Large Language Models, as it
leads models to generate inaccurate or false infor-
mation (Ji et al., 2023; Wan et al., 2024). Model-
generated texts may not match the true source con-
tent, and the facts presented by the model cannot
always be verified from the source. These draw-
backs remain significant hurdles in applying large
language models (LLMs) to real-world, business-
critical, and vitally important applications.

Algorithm 1 Hallucination Correction

1: Input: Ŷ , G
2: Output: Y ∗

3: Construct knowledge graph g = {ri} from Ŷ
4: for knowledge triplet ti = (vsi , v

o
i , ri) in g do

5: if vsi not in G then
6: Eliminate ri from g and the associated

sentence in Ŷ
7: else
8: Replace ti and Ŷ based on g
9: end if

10: end for
11: Assume Ĝ is the subgraph of G, and Ĝ con-

tains all the entities (nodes) in Ŷ
12: Y ∗ = Ŷ
13: while Y ∗ contains cycles do
14: Prune Ŷ to Y ∗ till Y ∗ is a minimum span-

ning tree of Ĝ.
15: end while

3 Methodology

Whether the generated text is factual is determined
by the domain source and the given guided context.
In our copilot scenario, we always retrieve related
context for a user prompt/query and then utilize this
context to generate the final response presented to
users. The guided context can be a mix of offline or
web articles and database records, from which we
generate knowledge triplets (Gardner et al., 2017)
for groundedness verification and hallucination cor-
rection. We propose a post-processing algorithm
for correcting hallucinations that can be applied
to any LLM outputs, as discussed in Section 3.1.
Additionally, we propose a dual-decoder text gener-
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Figure 1: TrustfulLLM
The dual decoder module can be adapted to any generic LLM, and the weights are shared for the guided

context and the prompt input.

ation model that takes both the prompt and guided
context leveraging the RAG result content as inputs,
described in Section 3.2.

3.1 Post-processing text generation by
Correcting Knowledge Triplets

For generated texts from an LLM, we identify and
correct potential hallucinations using knowledge
triplets extracted from the RAG context and the
generated text output. Specifically, we convert the
extracted knowledge triplets from the guided con-
text and the LLM output into graphs G and g, re-
spectively, where each node vi represents either
a subject or an object, and the relations between
the subject and object serve as bi-directional edges
connecting the two nodes. Algorithm 1 explains
the hallucination detection and correction process
for a given generated text Ŷ and the knowledge
graph G extracted from the guided context. In the
end, we obtain a corrected/verified output Y ∗. A
knowledge triplet t can be identified given a subject
and a relation, or an object and a relation; i.e., we
can easily locate and replace the third component
when the entity or relation is incorrect in ti, which

is composed of subject vsi , object voi , and the re-
lation ri. This algorithm can verify, replace, and
prune triplets in Ŷ but does not increase the number
of nodes/entities. For instance, given a sentence
in RAG result content: "Microsoft 365 Business
Basic is $7.2 dollars per user per month.", we ob-
tain knowledge triplet ti: (vsi , v

o
i , ri) is (Microsoft

365 Business Basic, is, $7.2 dollars per user per
month). Since LLM outputs can omit or introduce
additional entities, we propose a second method:
guided generation via dual decoders.

3.2 TrustfulLLM and Guided Generation via
Dual Decoders

In addition to the contextual embeddings used in
Transformers, we embed the guidance text and
apply a cross-attention calculation using the hid-
den states of the two decoders. In this way, we
have the grounding/context source embeddings in
one decoder and the user prompt in the other de-
coder, with both decoders sharing weights. We
apply cross-attention CROSSATTN(Hp, Hg) by
taking the hidden state Hp of the prompt module as
the ‘query’ and the hidden state Hg of the guided
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context module as the ‘key’ and ‘value.’ The di-
agram of the TrustfulLLM is shown in Figure 1,
and the pre-trained LLM component is generic.
Only the prompt inputs are generated token by to-
ken, while the guided context contributes to the
CROSSATTN(Hp, Hg) only. The fine-tuned trans-
former block components (the grey boxes in Fig-
ure 1) are derived from the Phi-3 and model ar-
chitecture (Abdin et al., 2024; Dubey et al., 2024;
Vaswani et al., 2023).

During the inference stage, the guided context
is the same as the RAG context. We augment the
RAG context by randomly adding additional con-
tent (shuffled from other RAG results from dif-
ferent prompts) as the guided context during fine-
tuning, as shown in the Appendix A.2.

4 Experiments and Results

4.1 Tasks and Datasets

We elaborate the results from the public Microsoft
learn.microsoft.com articles and product from
www.microsoft.com 1. The M365 dataset com-
prises approximately 10,000 question-and-answer
pairs, including the context from which these ques-
tion and answers were derived. We conducted our
experiments based on that the RAG results (knowl-
ege bases and/or domain articles) that are trustwor-
thy. For fine-tuned LLMs, we leverage LoRA (Hu
et al., 2021) and set the number of epochs to be
over 400, which is relatively higher than in regular
LoRA fine-tuning.

4.2 Metrics and Baseline Models

We use a combination of metrics including
ROUGE-L, METEOR, GPT-Similarity, GPT-
Groundedness (Appendix A.4), and BERTScore.
ROUGE-L assesses the longest common subse-
quence between the generated and reference texts,
capturing fluency and coherence. METEOR goes
further by considering synonyms, stemming, and
word order, providing a more nuanced evaluation.
Groundedness rated 1-5 by GPT-4 ensures that the
generated content is closely aligned with the source
material. GPT-Similarity rated 1-5 by GPT-4 mea-
sures the semantic similarity between generated
and reference texts, while BERT Score leverages
pre-trained language models to evaluate the quality
of the generated text on a deeper, contextual level.

1https://github.com/MicrosoftDocs/
microsoft-365-docs

Together, these metrics provide a comprehensive
assessment of our model performance.

We show the results of our methods, pre-trained
LLMs, RAG, and Trustful LLMs on domain
datasets M365 in Table 1, where boldface indicates
the best scores, HC indicates applying the halluci-
nation correction post-processsing algorithm, and
TrustfulLLM indicates fine-tuning from the pre-
trained model on the domain data. Leveraging the
proposed HC can largely boost the groundedness
score, and utilizing the TrustfulLLM dual-decoder
framework and HC yield the best performance
among all metrics. In particular, the percentage of
eliminated entities when HC is applied to Phi-3.5
decreases from 18% to 6.9% when HC is applied
to TrustfulLLM + Phi-3.5, further supporting the
effectiveness of TrustfulLLM. We also explored
the performance of the models on a general sum-
marization task in Appendix A.3.

4.3 Effects of Applying HC and TrustfulLLM

We take a incorrect & incomplete statement from
an LLM as a straightforward example: "Domain
registrar that support all DNS records required
for Microsoft 365 are GoDaddy and Oray." After
we apply HC, HC corrects this output as follows:
"Domain registrars that support all DNS records
required for Microsoft 365 are Oray , HiChina ,
east.net, and BIZCN."

In our production systems, we convert the nodes
at Line 4 of Algorithm 1 into embeddings using
a pre-trained transformer model, allowing us to
find semantically related subjects/objects using the
cosine similarity and a heuristic similarity thresh-
old. For example, "M365 Business Basic" can
be mapped to "Microsoft 365 Business Basic".
When offline & pre-calibrated knowledge triplets
are available, especially for user prompts related
to Microsoft product information, we store the em-
beddings using the FAISS(Douze et al., 2024) 2

and combine them with the knowledge triplets ex-
tracted in the real-time RAG context.

LLMs can generate content that does not origi-
nate from the RAG context, which may not always
be a hallucination. However, HC can make the
outputs more consistent and better aligned with the
RAG & guided context. For instance, given a user
prompt:

What is the price of Microsoft 365 Business Ba-
sic?

2https://github.com/facebookresearch/faiss

159

https://github.com/MicrosoftDocs/microsoft-365-docs
https://github.com/MicrosoftDocs/microsoft-365-docs


M365
Models Rouge-L METEOR Groundedness GPT-Similarity BERTScore
TrustfulLLM + HC + Phi-3.5-mini-instruct 0.55 0.51 5.00 4.68 0.93
TrustfulLLM + Phi-3.5-mini-instruct 0.50 0.50 3.98 4.30 0.90
HC + Phi-3.5-mini-instruct 0.46 0.48 5.00 4.52 0.91
RAG + Phi-3.5-mini-instruct 0.41 0.45 3.72 3.49 0.89
RAG + Mistral-NeMo-Minitron-8B-Instruct 0.38 0.46 3.77 3.76 0.88
RAG + Llama-3.1-8B-Instruct 0.40 0.46 3.74 3.34 0.89
RAG + GPT-3.5 Turbo 0.45 0.48 3.81 3.58 0.90
RAG + GPT-4o 0.42 0.48 3.77 3.52 0.91
Phi-3.5-mini-instruct 0.17 0.26 3.33 3.60 0.84
Mistral-NeMo-Minitron-8B-Instruct 0.16 0.24 3.50 4.05 0.82
Llama-3.1-8B-Instruct 0.19 0.26 3.44 3.82 0.84
GPT-3.5 Turbo 0.23 0.31 3.70 4.10 0.85
GPT-4o 0.16 0.25 3.64 3.97 0.83

Table 1: Question Answering Benchmarking Results

and RAG context:
"Microsoft 365 Business Basic is $7.2 dollars

per user per month. If you commit yearly the
price is $6 dollars per user per month. Microsoft
365 Business Standard is $15 dollars per user per
month ...",

a LLM can respond with:
Microsoft 365 Business Basic is priced at $7.2

dollars for each user on a monthly basis. However,
if you choose to commit to a yearly plan, the price
decreases to $6 dollars per user per month.

using RAG context:
Please answer using the exact following context

"Microsoft 365 Business Basic is $7.2 dollars per
user per month. If you commit yearly the price is $6
dollars per user per month. Microsoft 365 Business
Standard is $15 dollars per user per month ...".

Utilizing TrustfulLLM and HC, we obtain the
following outputs:

"Microsoft 365 Business Basic is $7.2 dollars
per user per month. If you commit yearly the
price is $6 dollars per user per month. Microsoft
365 Business Standard is $15 dollars per user per
month."

Apparently, TrustfulLLM and HC tends to use
the knowledge triplets and exact sub-sentences
from the verified RAG context for grounded gener-
ation. This also makes (human) evaluations more
effective in production systems.

4.4 Commercial Application and Constraints

In our commercial system, we first apply a intent
detection to user prompts to filter out enquiries that
are not related to our business then apply a retrieval
model to obtain most relevant internal documents,
records in product databases. We only reply on the

groundedness and correctness of the retrieval re-
sults, i.e, phrases in AI generated texts that cannot
be referenced from the RAG results are eliminated.
For phrases that are semantically equivalent to the
RAG results we still do a replacement using the
knowledge triplet correction to keep consistent re-
sponses. We have also thoroughly conducted Red
Teaming evaluations on various Responsible AI
metrics such as harmful content, IP infringement,
jailbreaking, groundedness, etc. Though we high-
ligh our proposed halluciation correction algorithm
and the dual decoder architecture, the upstream
RAG and intent detection models can be combined
in a multi-task modeling process.

5 Conclusion

We have addressed grounding issues in LLMs and
proposed task-agnostic hallucination correction
methods for real-world applications from two per-
spectives: post-processing to refine LLM outputs
and trustful LLM fine-tuning via dual encoders. We
have discussed hallucination correction and trust-
worthy text generation, demonstrating the robust-
ness and resilience of our methods. In the future,
we plan to explore heterogeneous modalities, such
as structured and spatio-temporal data, knowledge-
enriched representations of input tokens (Grover
and Leskovec, 2016; Yu et al., 2022; Pan et al.,
2023; GAO et al., 2021; Ye et al., 2021), hierar-
chical relation graphs, and accountability (Li et al.,
2023a). We also plan to study model bias, aggre-
gation for federated learning (Zheng et al., 2023;
Hashemi et al., 2021), and privacy-preserving is-
sues (Hashemi et al., 2021). Additionally, we
aim to reduce the complexity of LLMs through
parameter-efficient fine-tuning.
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A Appendix

A.1 Hallucination Examples
We show examples where various LLMs generate
hallucinations.

Figure 2: Hallucination Example 1
GPT-4o returns the wrong pricing information of
Microsoft 365 Business Basic.

A.2 Examples of Prompt, RAG Context, and
Guided Context

Prompt: "... <|user|> How much is Microsoft 365
Business Basic? <|end|> <|assistant|> Microsoft
365 Business Basic is $7.2 dollars per user per
month. <|end|>".

RAG context: "Microsoft 365 Business Basic is
$7.2 dollars per user per month. Microsoft 365
Business Basic ...".

Guided context: "Microsoft 365 Business Basic
is $7.2 dollars per user per month. Microsoft 365

Figure 3: Hallucination Example 2
GPT-3.5 Turbo cannot answer questions related to
Microsoft Teams Essential.

Figure 4: Hallucination Example 3
Phi-3 answered incorrectly about the price of Mi-
crosoft Teams Essential.

Business Basic ... Microsoft 365 Business Standard
is ... <|end|>". We add additional content about,
such as "Microsoft 365 Business Standard", which
is similar to the product "Microsoft 365 Business
Basic" to the RAG context. This is for mimicking
the potentially noisy RAG context in the retrieval
stage.

A.3 Summarization Task
A summarization task does not have the retrieval
component as in RAG. We utilize the graph build-
ing step of HC to select the salient sentences from
the articles as the guided context. We first extract
knowledge triplets from the articles then keep sen-
tences where the most frequent subjects are asso-
ciated with. We show the comparison of Trust-
fulLLM + HC + Phi-3.5-mini-instruct, where HC
extract knowledge triplets from the articles and the
generated texts in the inference stage, and LLM
baselines in Table 2.

A.4 Prompt Template for GPT Metrics
We show the prompts of GPT Similarity and GPT
Groundness addressed in Section 4.

Prompt for GPT Groundness
System:
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CNN DailyMail
Models Rouge-L METEOR Groundedness GPT-Similarity BERTScore
TrustfulLLM + HC + Phi-3.5-mini-instruct 0.41 0.39 5.00 4.12 0.89
TrustfulLLM + Phi-3.5-mini-instruct 0.40 0.39 4.68 4.12 0.88
HC + Phi-3.5-mini-instruct 0.35 0.36 5.00 3.82 0.88
Phi-3.5-mini-instruct 0.17 0.34 4.29 3.79 0.86
Mistral-NeMo-Minitron-8B-Instruct 0.20 0.35 3.32 3.87 0.86
Llama-3.1-8B-Instruct 0.32 0.37 4.61 4.10 0.87
GPT-3.5 Turbo 0.24 0.38 4.50 3.79 0.87
GPT-4o 0.18 0.36 4.42 4.10 0.87

Table 2: Summarization Benchmarking Results

You are an AI assistant. You will be given
the definition of an evaluation metric for as-
sessing the quality of an answer in a question-
answering task. Your job is to compute an
accurate evaluation score using the provided
evaluation metric. You should return a single
integer value between 1 to 5 representing the
evaluation metric. You will include no other
text or information.

User:
You will be presented with a CONTEXT and
an ANSWER about that CONTEXT. You need
to decide whether the ANSWER is entailed by
the CONTEXT by choosing one of the follow-
ing rating:

1. 5: The ANSWER follows logically from
the information contained in the CON-
TEXT.

2. 1: The ANSWER is logically false from
the information contained in the CON-
TEXT.

3. An integer score between 1 and 5, and if
such an integer score does not exist, use 1:
It is not possible to determine whether the
ANSWER is true or false without further
information.

Read the passage of information thoroughly
and select the correct answer from the three an-
swer labels. Read the CONTEXT thoroughly
to ensure you know what the CONTEXT en-
tails. Note that the ANSWER is generated by
a computer system, so it can contain certain
symbols, which should not be a negative factor
in the evaluation.

Independent Examples:
Example Task #1 Input:

{"CONTEXT": "Some are reported as not hav-
ing been wanted at all.", "QUESTION": "",
"ANSWER": "All are reported as being com-
pletely and fully wanted."}
Example Task #1 Output:
1 Example Task #2 Input:
{"CONTEXT": "Ten new television shows ap-
peared during the month of September. Five of
the shows were sitcoms, three were hourlong
dramas, and two were news-magazine shows.
By January, only seven of these new shows
were still on the air. Five of the shows that
remained were sitcoms.", "QUESTION": "",
"ANSWER": "At least one of the shows that
were cancelled was an hourlong drama."}
Example Task #2 Output:
5

Example Task #3 Input:
{"CONTEXT": "In Quebec, an allophone is a
resident, usually an immigrant, whose mother
tongue or home language is neither French nor
English.", "QUESTION": "", "ANSWER":
"In Quebec, an allophone is a resident, usually
an immigrant, whose mother tongue or home
language is not French."}
Example Task #3 Output:
5

Example Task #4 Input:
{"CONTEXT": "Some are reported as not hav-
ing been wanted at all.", "QUESTION": "",
"ANSWER": "All are reported as being com-
pletely and fully wanted."}
Example Task #4 Output:
1

Actual Task Input:
{"CONTEXT": {{context}}, "QUESTION":
"", "ANSWER": {{response}}}
Reminder: The return values for each task
should be correctly formatted as an integer
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between 1 and 5. Do not repeat the context
and question.

Actual Task Output:

Prompt for GPT Similarity]
System:
You are an AI assistant. You will be given
the definition of an evaluation metric for as-
sessing the quality of an answer in a question-
answering task. Your job is to compute an
accurate evaluation score using the provided
evaluation metric. You should return a single
integer value between 1 to 5 representing the
evaluation metric. You will include no other
text or information.

User:
Equivalence, as a metric, measures the simi-
larity between the predicted answer and the
correct answer. If the information and content
in the predicted answer is similar or equiva-
lent to the correct answer, then the value of
the Equivalence metric should be high, else
it should be low. Given the question, correct
answer, and predicted answer, determine the
value of the Equivalence metric using the fol-
lowing rating scale:

• One star: the predicted answer is not at
all similar to the correct answer

• Two stars: the predicted answer is mostly
not similar to the correct answer

• Three stars: the predicted answer is some-
what similar to the correct answer

• Four stars: the predicted answer is mostly
similar to the correct answer

• Five stars: the predicted answer is com-
pletely similar to the correct answer

This rating value should always be an inte-
ger between 1 and 5. So the rating produced
should be 1, 2, 3, 4, or 5. The examples below
show the Equivalence score for a question, a
correct answer, and a predicted answer.

Question: What is the role of ribosomes?
Correct answer: Ribosomes are cellular
structures responsible for protein synthesis.
They interpret the genetic information carried
by messenger RNA (mRNA) and use it to
assemble amino acids into proteins.

Predicted answer: Ribosomes participate
in carbohydrate breakdown by removing
nutrients from complex sugar molecules.
Stars: 1

Question: Why did the Titanic sink?
Correct answer: The Titanic sank after it
struck an iceberg during its maiden voyage
in 1912. The impact caused the ship’s hull
to breach, allowing water to flood into the
vessel. The ship’s design, lifeboat shortage,
and lack of timely rescue efforts contributed
to the tragic loss of life.
Predicted answer: The sinking of the Titanic
was a result of a large iceberg collision.
This caused the ship to take on water and
eventually sink, leading to the death of many
passengers due to a shortage of lifeboats and
insufficient rescue attempts.
Stars: 2

Question: What are the health benefits of
regular exercise?
Correct answer: Regular exercise can help
maintain a healthy weight, increase muscle
and bone strength, and reduce the risk of
chronic diseases. It also promotes mental
well-being by reducing stress and improving
overall mood.
Predicted answer: Routine physical activity
can contribute to maintaining ideal body
weight, enhancing muscle and bone strength,
and preventing chronic illnesses. In addition,
it supports mental health by alleviating stress
and augmenting general mood.
Stars: 5

Question: {{query}}
Correct answer: {{ground_truth}}
Predicted answer: {{response}}
Stars:
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Abstract

Large Language Models (LLMs) have revo-
lutionized the landscape of machine learning,
yet current benchmarks often fall short in cap-
turing the diverse behavior of these models in
real-world applications. A benchmark’s use-
fulness is determined by its ability to clearly
differentiate between models of varying capa-
bilities (separability) and closely align with
human preferences. Existing frameworks like
Alpaca-Eval 2.0 LC (Dubois et al., 2024a) and
Arena-Hard v0.1 (Li et al., 2024a) are lim-
ited by their focus on general-purpose queries
and lack of diversity across domains such as
law, medicine, and multilingual contexts. In
this paper, we address these limitations by in-
troducing a novel data pipeline that curates
diverse, domain-specific evaluation sets tai-
lored for LLM-as-a-Judge frameworks. Our
approach leverages a combination of manual
curation, semi-supervised learning to generate
clusters, and stratified sampling to ensure bal-
anced representation across a wide range of
domains and languages. The resulting evalua-
tion set, which includes 1573 samples across
14 categories, demonstrates high separability
(84%) across ten top-ranked models, and agree-
ment (84%) with Chatbot Arena and (0.915)
Spearman correlation. The agreement values
are 9% better than Arena Hard and 20% better
than AlpacaEval 2.0 LC, while the Spearman
coefficient is 0.7 more than the next best bench-
mark, showcasing a significant improvement
in the usefulness of the benchmark. We fur-
ther provide an open-source evaluation tool that
enables fine-grained analysis of model perfor-
mance across user-defined categories, offering
valuable insights for practitioners. This work
contributes to the ongoing effort to enhance
the transparency, diversity, and effectiveness of
LLM evaluation methodologies.

Figure 1: Compared to other benchmark frame-
works our approach introduces a data pipeline that
curates unlabeled data into categories that contain do-
mains/capabilities that the practitioner cares about. It
has the capability to be refreshed with new data and is
diverse compared to alternatives.

1 Introduction

Large Language Models (LLMs) have dramati-
cally changed the landscape of machine learning
research and have been incorporated in products
for the past few years. Along with their rise, a mul-
titude of benchmarks and frameworks (Liang et al.,
2023) have been proposed to assess the capabili-
ties of LLMs which include knowledge tasks such
as MMLU (Hendrycks et al., 2021a), reasoning
tasks like GSM8k (Cobbe et al., 2021) and more
standard NLP tasks (Zellers et al., 2019; Narayan
et al., 2018). However, these benchmarks fail to
capture the behavior that a user experiences in
a chat/generative applications. Typically, human
evaluations are seen as a gold standard to deter-
mining which LLM responses are preferable over
others in a chat setting but is time-consuming and
expensive to conduct (Chiang et al., 2024).

To address this shortcoming, Zheng et al. in-
troduced the concept of LLM as a judge as an au-
tomatic evaluator alternative, which uses another
LLM the judging of model completions to another
LLM such as GPT-4 or GPT-4o (Zheng et al.,
2023a; OpenAI et al., 2024). Alpaca-Eval is an-
other benchmark designed under the paradigm of
LLM as an evaluator where a target LLM’s com-
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Figure 2: Alpaca-Eval category breakdown

pletions are compared against a reference LLM’s
output (the default being GPT-4 Turbo) and as-
signed a winrate against the reference (Li et al.,
2023). It has seen widespread adoption since it
is cheap, fast, and mitigates length bias (Chiang
et al., 2024). Similarly, Arena-Hard v0.1 is recent
benchmark which focuses on distilling the Hard
category of Chatbot Arena into a smaller evalua-
tion set (Li et al., 2024a). They use a topic clus-
tering pipeline to cluster prompts with OpenAI’s
embedding model (text-embedding-3-small) (Ope-
nAI, 2024b) and score each cluster based on diffi-
culty, creativity, and reasoning ability with GPT-3.5
Turbo. They also introduce a notion of separability
(how well can a benchmark differentiate between
models) and agreement with human preferences
(i.e. ChatBot Arena) as a measure of benchmark
quality.

Unfortunately, there are still some limitations
with the current open-source LLM-as-a-judge
framework. Alpaca-Eval 2.0 LC is dominated
by general chat queries/instructions and has few
prompts in domains such as coding, medical, fi-
nance, law and mathematics as shown in Figure
2. Arena-Hard v0.1 addresses some of these defi-
ciencies by upweighting coding and mathematics
prompts and restricting the general chat queries to
30% if the evaluation set. However, both evalua-
tion sets are strictly in English therefore not access-
ing the model’s multilingual capability and have
a smaller number of prompts in more niche cate-
gories like law and medicine. As models are ac-
quiring more capabilities across various data types
such as charts/tables, domains and languages, it
becomes crucial to determine how to evaluate each
model’s ability in a scalable manner.

Figure 3: Arena-Hard v0.1 category breakdown

In this paper, we attempt to address challenges
from Alpaca-Eval 2.0 LC and Arena-Hard v0.1 by
introducing more diversity across domain knowl-
edge and languages. To accomplish this, we intro-
duce a simple data pipeline methodology to create
a new evaluation set designed for these specific
contexts. First, we source prompts from various
open source datasets (shown in Table 4) to ensure
our evaluation set has high data diversity. For the
next step, we generate embeddings from a subsam-
ple of each of these datasets using an embedding
model. To label the corresponding embeddings, we
manually curate a seed set of prompts and label
them to human-defined specific categories, gener-
ate those embeddings and train a k-NN classifier
which we can use to classify the unlabeled data
that we sampled. In order to make sure that no
cluster/category dominates, we employ stratified
sampling to ensure balanced representation across
all domains and languages in the evaluation set. We
further refine the quality of the prompts by manual
curation and ensure that each category has a suffi-
cient number of prompts to mitigate the inherent
variability in LLM-as-a-judge and ultimately end
up with 1573 samples in the evaluation set.

There are several advantages to our approach as
shown in Figure 1. Similar to Arena-Hard v0.1,
our approach is robust to contamination as we can
periodically run our data pipeline on the same data
to get new samples or potentially even a new data
mixture. As mentioned earlier, our methodology
allows introduction of new datasets which enables
diversity rather than offered by Arena-Hard v0.1
and Alpaca-Eval. In addition, our evaluation set
more closely mirrors Chatbot Arena rankings; Fig-
ure 4 shows a visual comparison of model rankings.
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Figure 4: Visual comparison between our method,
Arena-Hard v0.1, and Alpaca-Eval 2.0 LC on 10 models
on separability of winrates. Our method has fewer over-
laps of confidence intervals than the other baselines.

In particular, our evaluation set places Gemini-1.5-
Flash (DeepMind, 2024) over Gemma2 27B In-
struct (Team, 2024) which aligns with ChatBot
Arena rankings whereas the others rank Gemma2
27B over Gemini-1.5-Flash. Moreover, since we
use open source models for the entire pipeline, prac-
titioners can mold the pipeline and generate evalu-
ation sets to test domains and capabilities they care
about.

After we have obtained the evaluation set, we
execute the same procedure as LLM-as-a-Judge by
generating the outputs completions from GPT-4o
and using them as reference to construct a leader-
board from ten various open and closed-sourced
models. With this labeling approach, we are able
to breakdown the composition of prompts into var-
ious categories and report category win rates. We
plan to release an evaluation tool which displays
the category winrate for all models on the leader-
board and an explorer which displays both the tar-
get model as well as the reference model’s comple-
tions for a prompt and the reasoning given by the
LLM judge. This analysis tool allows users to ob-
tain fine-grained insights on where different models
succeed and fail for their particular use-case.

Our main contributions can be summarized be-
low:

• We introduce a new methodology that en-
ables creation of a benchmark that tests for
diverse skill sets of models. We open-source
our evaluation infrastructure so practitioners
can view how different models perform on
separate tasks according to how they define

their categories. This fine-grained breakdown
allows the practitioner to select models that
work well for their particular use case.

• Our benchmark creation methodology encour-
ages more diversity and transparency to the
practitioner compared to other alternatives. In
comparison to other baselines like Alpaca-
Eval and Arena-Hard v0.1, our benchmark has
84% separability, 84% agreement with confi-
dence interval (95%) with respect to Chatbot
Arena rankings, 0.915 Spearman’s correlation
coefficient with respect to Chatbot Arena rank-
ings and 0.04 Brier Loss Score.

• We also analyze the aforementioned metrics
on our evaluation set with 4 LLM judges:
GPT-4o(OpenAI et al., 2024), GPT-4o-mini
(OpenAI, 2024a), Llama 3.1 405B Instruct
and Llama 3.1 70B Instruct (Dubey et al.,
2024). Our overall findings suggest that
while open-source models can be used to sepa-
rate between model rankings, agreement with
Chatbot Arena model rankings is roughly 10%
(405B) and 20% (70B) than GPT-4o.

2 Related Work

At their core, benchmarks are tool to estimate LLM
capabilities. There are many different flavors of
benchmarks, spanning either across domains or
various tasks. Some popular benchmarks include:
Boolq (Clark et al., 2019), MMLU (Hendrycks
et al., 2021a), GSM8k (Cobbe et al., 2021), MATH
(Hendrycks et al., 2021b), XSUM (Narayan et al.,
2018), Hellaswag (Zellers et al., 2019), and MGSM
(Shi et al., 2022). An expanded framework of
static benchmark is AutoBencher which automat-
ically creates new benchmarks which finds holes
in knowledge of current SOTA LLMs (Li et al.,
2024b).

These types of benchmarks have ground-truth
references and compare how closely the LLM’s
completion aligns with those references. An inher-
ent limitation with static benchmarks is that they
are hosted on the internet and thus are suscepti-
ble test leakage contamination (Sainz et al., 2023;
Yang et al., 2023). The other style of benchmarking
relies on constructing a human evaluation trials on
a set of evaluation prompts. Due to the expensive
nature of human evaluation, a recent, cheaper al-
ternative is to use SOTA LLMs to evaluate model
completions either through single score or pairwise
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comparison with a reference answer, popularly re-
ferred to as LLM-as-a-Judge (Li et al., 2023; Zheng
et al., 2023a; Li et al., 2024a; Dubois et al., 2024b;
Verga et al., 2024).

This motivates the need for "live, refreshable"
benchmarks so that the integrity of the bench-
mark can be maintained. LiveBench is a frame-
work which sources data from arXiv papers, news
articles, and datasets to periodically replace the
stale prompts (White et al., 2024). Chatbot arena
is an open platform that allows online users to
send prompts to two different models and com-
pare/contrast the models’ response (Chiang et al.,
2024). Users can then vote on which completion
was superior. Other live benchmarks include Dyn-
aBench (Kiela et al., 2021), LiveCodeBench (Jain
et al., 2024), and R2E (Jain et al.). Our work lies in
the intersection between LLM-as-a-Judge and live
benchmarks as our data pipeline enables periodic
refreshing of the evaluation set from existing clus-
ters. Furthermore, our data pipeline is fairly gen-
eral as it can consume a variety of diverse datasets
(relative to Arena-Hard v0.1 and Alpaca-Eval), con-
sists of using open-source models, and is flexible
enough to work on the user’s desired data.

3 Methodology

In this section, we describe our approach to creat-
ing novel evaluation set using LLM-as-a judge. We
enumerate the datasets that we source from to cre-
ate our unlabeled corpus and subsequently describe
our data pipeline for generating the evaluation set.

3.1 Data Sources

We use data sources from a variety of source to
ensure we cover a variety of domains as well as
languages. The domains we target can be broadly
classified as the following: medical, law, finance,
mathematics and coding. The languages we cover
are standard but also more esoteric: Japanese (ja),
Arabic (ar), Thai (th), Hungarian (hu), Russian
(ru), Serbian (sr), Slovenian (sl), and Turkish (tr).
Prompts that don’t neatly fit into these groups fall
into a catch-all general category. A complete list of
all the data we use can be found in Table 4 in the
Appendix.

3.2 Data pipeline

Our data pipeline can be divided into 3 distinct
steps, as shown in Figure 5. We first take the data
corpus and use an embedding model to generate

their corresponding embedding. Each embedding
encapsulates some level of semantic understanding
of its associated prompt, and nearby embeddings
typically encode similar semantic information.

To generate the labels for the unlabeled data,
we take inspiration from semi-supervised learning
(Hady and Schwenker, 2013). We manually define
a set of categories, curate a seed set of prompts
which fall into those categories (assigning them
distinct labels) and embed those prompts with the
aforementioned embedding model. We train a k-
NN model (Mucherino et al., 2009) on top of those
embeddings and use the k-NN to label the larger
unlabeled corpus.

The final step in our pipeline involves applying
stratified sampling (Parsons, 2017) to each cluster.
The reason for this last step is that we want our
evaluation set to retain diversity of our larger data
corpus rather than uniform random sampling. For
each category, we sub-sample 100 prompts from
the aggregate clusters and disregard clusters which
have a lower count than the number of prompts
we sampled. To obtain our final evaluation set, we
manually curate the remaining prompts to ensure
high quality, varied task capability and data diver-
sity.

4 Experimental Setup

In this section, we discuss finer details about the
data pipeline we mentioned in the prior section. ex-
perimental setup on a set of ten highly rated mod-
els1 as well as defining the metrics which determine
the quality of the benchmark.

4.1 Data pipeline details

For the data pipeline, we use semi-supervised learn-
ing via a k-NN classifier. We consider 13 cate-
gories comprising of domains: finance, law, medi-
cal, maths, coding and languages: Arabic, Russian,
Serbian, Hungarian, Japanese, Thai and Slovenian.
We follow usual supervised training and via hyper-
parameter sweep over validation set yield k = 40
as the best value of k.

To generate the embeddings of the unlabeled
data collected, we use the e5-mistral-7b-instruct
embedding model(Wang et al., 2024) for its strong
performance on the Massive Text Embedding

1gpt-4o-2024-05-13, claude-3-5-sonnet-20240620, claude-
3-opus-20240229, gemini-1.5-flash-latest, google/gemma-
2-27b-it, Meta-Llama-3-70B-Instruct, claude-3-sonnet-
20240229, Qwen/Qwen2-72B-Instruct, Meta-Llama-3-8B-
Instruct, Mixtral-8x7B-Instruct-v0.1
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Figure 5: Data pipeline: After aggregating the prompts from datasets, we generate embeddings using a text
embedding model. We set aside a set of prompts to use as a seed set for training the k-NN, label them into each
category we care about, and generate their corresponding embeddings to train the k-NN with the embedding model.
Subsequently, we classify the unlabeled data with our trained k-NN to create clusters of categories. We balance the
clusters with stratified sampling and then manually curate the remaining prompts by removing overly long prompts
(greater than 5000 words) and checking for low-quality content (nonsense prompts, NSFW etc.) to obtain the final
evaluation set.

Benchmark (MTEB) Leaderboard (Muennighoff
et al., 2022) and multilingual capability. If the k-
NN encounters a sample which it is not familiar
with or uncertain to label, we want those samples to
be classified as general prompts. We use entropy of
k-NN classifier probabilities of various categories
for a given prompt as the measure of uncertainty.
If entropy if too high entropy of the output of the
classifier is too high, we bucket the sample into the
default/general category (Settles, 2010). We set the
entropy threshold to be 1.5 based on careful error
analysis on the validation set.

After labeling with k-NN, we conducted strat-
ified sampling within each cluster, selecting 100
samples for curation. We then filtered out exces-
sively long prompts (longer than 5000 words) that
could overwhelm the judge’s context window. Ad-
ditionally, we reviewed the remaining prompts to
eliminate those that were nonsensical or of low
quality. During the evaluation, we observed that
categories with a small number of examples had a
significant impact on the category’s win rate. The
inherent variability of the LLM-as-a-Judge eval-
uation, even with a fixed random seed and tem-
perature set to 0.0, made it challenging to discern
which model performed better in those categories.
To mitigate this uncertainty, we ensured that any
category with fewer than 90-100 examples was
supplemented with additional data, enabling us to
obtain meaningful and interpretable results. Our
final evaluation set comprises 1573 examples.

4.2 LLM-as-a-Judge Details

We follow a similar scoring setup as Arena-Hard
(Li et al., 2024a) and Alpaca-Eval (Dubois et al.,
2024a) where we use GPT-4o as a judge model and
GPT-4o as a reference model as well. For each
model we want to test, we obtain the completions
and ask GPT-4o to record which model responses
is better for the input prompt. In order to mitigate
positional bias, we swap the completions between
the model we are evaluating and the reference on a
coin flip.

4.3 Obtaining Confidence Intervals

We follow the setup outlined in Li et. al (Li et al.,
2024a; Chiang et al., 2024). We use the Bradley-
Terry model in order to model the preference distri-
bution between models on the leaderboard and the
reference model (GPT-4o in our case). We aggre-
gate preference pairs between models and perform
100 rounds of bootstrapping to obtain 95% confi-
dence intervals for each model ranking.

We conduct the same analysis with annotations,
denoting for each prompt which model response
was preferred, from the Alpaca-Eval repo to obtain
mean ELO rankings and 95% confidence intervals
according to their leaderboard. Since similar arti-
facts (model preference comparisons) are not up-
dated on Arena-Hard v0.1, we take the model win-
rates (ELO scores not listed) and 95% confidence
intervals from their repo2. For Chatbot Arena, we
do the same thing and took model winrates/ELO

27/26/2024

171



scores as well as the confidence intervals from the
website3 as a source of ground truth.

4.4 Metrics
There are four different metrics we use to judge the
efficacy of a benchmark. The first of these is Spear-
man’s correlation coefficient, which measures the
rankings order between the two benchmarks. The
other metrics are: separability, agreement with Con-
fidence Interval (CI), and Brier Score. Separabil-
ity refers to how well the benchmark can separate
various models with high confidence. In partic-
ular, if on benchmark A model M1 has a higher
ELO/winrate than model M2 and CM refers to the
confidence intervals of model M, S is a binary vari-
able indicating if benchmark A is able to separate
between model M1 and M2, S = 1CM1∩CM2

=∅.
The separability is then calculated as a ratio over all
possible model pairs. Agreement with CI measures
how well benchmarks A and B confidently distin-
guish between two models with the same ordering.
The Brier Score evaluates an LLM benchmark’s
ability to predict the ranking of a pair of competing
models, rewarding confidence in accurate predic-
tions and penalizing confidence in incorrect ones.
More details behind these metrics can be found in
(Li et al., 2024a). Ultimately, we want our bench-
mark to align with Chatbot Arena as that is seen as
an oracle for modeling human preferences.

5 Results

5.1 Separability, Agreement with CI (95%),
Pair Brier Score

Our main results can be found in Table 1. With
the exception of Chatbot Arena, our benchmark’s
separability is 84.4% compared to other baselines
like Arena-Hard v0.1 (80%) and Alpaca-Eval 2.0
LC (73.33%), which shows that our benchmark can
better differentiate amongst different models.

One interesting datapoint regarding separability
is Chatbot Arena’s score of 100% which may be at-
tributed to a combination of two factors: 1) Chatbot
Arena has more battles than any of the benchmarks
listed in Table 1 and 2) Chatbot Arena includes
battles between many different models rather than
fixing a reference model like the other benchmarks.
By providing the Bradley-Terry model bootstrap-
ping process with more varied battles, Chatbot
Arena is able to produce tighter confidence inter-
vals, suggesting a future avenue for investigation

37/25/2024

is whether confidence estimation should include
multiple reference answers during judging to more
closely simulate Chatbot Arena.

Our benchmark showed an 84.44% agreement
with CI with respect to Chatbot Arena, which is
higher than Arena-Hard v0.1’s 75.50% and Alpaca-
Eval 2.0 LC’s 64.44%. This demonstrates that our
benchmark has higher alignment with respect to
Chatbot Arena which is supposed to be approx-
imation of human preferences. In addition, our
benchmark has a Spearman’s correlation coeffi-
cient of 0.915, indicating a strong correlation in
rankings order compared to Alpaca-Eval 2.0 LC’s
0.2969. While our leaderboard ranking consists of
10 models, the pool of models we have included
are the latest SOTA models that have been released
so as to have the maximum amount of overlap pos-
sible. Finally, our benchmark scored a Brier score
of 0.0417, which is lower than Alpaca-Eval 2.0
LC’s 0.0937, demonstrating better confidence in
accurate predictions.

5.2 Diversity
Due to our data sources being quite diverse rather
than simply just ChatBot Arena (Chiang et al.,
2024), we are able to have more diversity in our
evaluation set. To demonstrate this, we label Arena-
Hard v0.1 with our kNN model using the entropy
threshold to get a distribution of categories in that
evaluation set. As shown in Figure 3, there is
an over-representation of coding prompts, which
comes from a byproduct of their data pipeline fil-
tering for the hardest, highest quality which skews
towards coding. Similarly, Alpaca-Eval’s prompt
distribution shown in Figure 2 demonstrates that
there is a large emphasis on general chat queries,
along with some coding and math prompts while
medical and law prompts are relatively underrepre-
sented.

Our evaluation set breakdown in Figure 6(a)
which covers more domains than the baseline, such
languages like Arabic, Japanese, Hungarian and
more. The close to equal distribution amongst the
categories is likely due to the effect stratified sam-
pling. We compare how our evaluation set cate-
gory breakdown compared with LM-SYS Conver-
sations (using our k-NN labeling approach) (Zheng
et al., 2023b) in Figure 6(b), which is a snapshot of
cleaned Chatbot Arena conversations from April to
June 2023. In Figure 6(b), "Other" refers to the lan-
guages our k-NN classifier recognizes but groups
them together collectively. We note that this distri-
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Chatbot Arena Arena Hard v0.1 Alpaca-Eval 2.0 LC Ours
Separability 100% 80% 73.33% 84.44%

Agreement with CI (95%) N/A 75.50% 64.44% 84.44%
Spearman’s Correlation N/A 0.187 0.2969 0.915

Brier Score N/A N/A 0.0937 0.0417

Table 1: Main results comparing the various benchmarks.

bution looks similar to Alpaca-Eval and the general
category may contain additional languages not rec-
ognized by the classifier so it may have exceeded
the entropy threshold.

5.3 Category Separability
Due to our unique ability to categorize the prompts,
we can compute category separability for all the
various categories in our evaluation set. Across 14
different categories, we do the same bootstrapping
procedure on the category data to obtain the mean
winrate/ELO and 95% CI, shown in Table 2. In
general, there is a drop in separability when we
look both at ELO ratings and winrate due to each
category having a lower number of samples and
thus larger CIs as a result.

The category-wise separability can act as an in-
dicator which categories are superior at testing out
the performance of models. Interestingly, across
ELO and winrate rankings, Hungarian has the best
separability of all categories, achieving 66.67%
and 75.56% respectively. The medical category
seems to be lowest separability around 55.56% and
68.89% respectively. The separability also indi-
cates to use which categories we may need to add
more samples to improve the confidence intervals.

5.4 Using different judges
We conduct an ablation of judge models on our
evaluation, as we want to understand the effect of
judge models on separability, Agreement with CI
(95%) and Brier Score. We consider GPT-4o mini
as one of the judges to be a small-closed source
foil to GPT-4o. The other judges that we consider
are open source models such as: Llama 3.1 405B
instruct (using SambaNova’s developer API)4 and
Llama 3.1 70B Instruct-Turbo5. We follow the
same setup as gpt-4o with these other judge models.

Our results are shown in Table 3. In terms of
separability, GPT-4o-mini and 405B get 82.2% and
70B get 84% separability, comparable to GPT-4o’s

4cloud.sambanova.ai
5https://api.together.ai/models/meta-llama/Meta-Llama-

3.1-70B-Instruct-Turbo

Category Ranking winrate Ranking ELO
ar 73.33% 57.78%
ru 71.11% 55.56%
finance 75.56% 57.78%
sr 71.11% 53.33%
tr 73.33% 55.56%
general 77.78% 55.78%
hu 75.56% 66.67%
ja 71.11% 57.78%
medical 68.89% 55.56%
law 73.33% 51.11%
th 71.11% 57.78%
coding 73.33% 55.56%
sl 77.78% 53.33%
math 73.33% 55.56%

Table 2: Winrate and ELO separability for different
categories

separability. 405B and GPT-4o-mini attain similar
Agreement with CI (95%) close to 76% while 70B
is almost 10 points lower; GPT-4o is the clear win-
ner having the highest agreement with CI (95%).
With the exception of 70B, all models get similar
Brier Scores indicating that the Bradley-Terry mod-
els used to generate the rankings on confidence in-
tervals for each judge are similarly confident. 70B’s
high Brier score (relative to other judges), in addi-
tion to Agreement with CI, indicates that it poor
judge than the other listed in Table 3.

The Spearman’s correlation coefficient (with re-
spect to ChatBot Arena rankings) seems to indicate
that GPT-4o-mini, Llama 3.1 405B, and 70B are
poor judges getting a correlation of only 0.0787 vs.
GPT-4o’s 0.915. Looking at Figure 7, it seems this
aberration comes from both judges rating Claude
Sonnet 3.5 over GPT-4o, Llama 3 70b over Claude
Opus and Gemma2 27B over Gemini 1.5 Flash. Of
course, Spearman’s correlation only measures cor-
relation the final rank order of models with respect
to ChatBot Arena and is a strictly weaker metric
than Agreement with CI (95%). This finding seems
to suggest while weaker closed-source models (like
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(a) Our evaluation set category breakdown (b) LMSys Conversations category breakdown

Figure 6: We look at the category breakdown on our evaluation set (Figure 6(a)) compared to LM-SYS Conversations
(Figure 6(b)). We can clearly see that our evaluation set covers more languages and niche domains such as law and
medical categories are a higher percentage of our evaluation set.

GPT-4o GPT-4o-mini Llama 3.1 405B Llama 3.1 70B
Separability 84.44% 82.22% 82.22% 84.44%

Agreement with CI (95%) 84.44% 76.77% 75.55% 66.66%
Spearman’s Correlation 0.915 0.0787 0.0787 0.0787

Brier Score 0.0417 0.062 0.0603 0.0955

Table 3: Comparing various judges on our evaluation set.

GPT-4o-mini) and open-source judge models seem
to be able to separate other models based on capa-
bility, they still lack the preciseness that GPT-4o
offers to align with rankings from Chatbot Arena.

Figure 7: Visual comparison of different judge’s separa-
bility on our benchmark.

6 Limitations/Future Work

There are certain limitations to our work. Currently,
the categories we enumerate in our data pipeline
is manually specified by humans and significant
curation is done to ensure high quality prompts;
for future work, we want to expand to using LLMs
as category generators as well as quality checkers
to automate the human effort out of this pipeline.
Moreover, the diversity of prompts in the multi-
lingual categories could be limited as we consider
bucket all subdomains of a language into the same
category. Sub-categorization of domains in non-
English languages is left for future work.

For improving our leaderboard, we wish to add
more models to be more representative of the entire
spectrum of other leaderboards and futhur increas-
ing the quality of the Bradley-Terry models we use
to obtain the model’s confidence intervals. In order
to improve category separability, we look to creat-
ing a methodology on figuring out the minimum
number of samples required to improve separabil-
ity.

The other aspect of future work relies to details
regarding LLM-as-a-judge evaluation. Typically,
the judge models are ablated but less explored is
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the quality of the reference answer and whether
one can use a weaker model instead of a stronger
one to see if metrics are maintained. Current met-
rics define how separable a benchmark is and how
much it aligns with human preferences but fails to
account for the composition and diversity of the un-
derlying data. For future work, we seek to quantify
the diversity of each benchmark to understand how
many capabilities/domains it spans.

7 Conclusion

We introduce a data pipeline that leverages via
semi-supervised learning with a k-NN to enable
practitioners to create benchmarks on their own
data for targeted domains. Through evaluations of
ten various closed and open-sourced models, we
demonstrated that our benchmark achieves higher
separability and agreement with CI with respect to
Chatbot Arena, nearly 5 and 10 percentage points
higher than the next best baseline, respectively. Our
benchmark covers a wide variety of topics such as
finance, medicine, legal and different languages
absent in other LLM as a judge benchmarks. We
hope that LLM developers can use our data pipeline
to create their own benchmarks to evaluate their
models for their particular use-case.
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A Appendix

A.1 Data Sources
Table 4 includes various datasets across multiple
domains such as medical, legal, financial, and mul-
tilingual categories. These sources were selected

to ensure a wide range of coverage, contributing
to the diversity of the evaluation set. The datasets
listed here were crucial for constructing the domain-
specific evaluation sets, allowing for the thorough
testing of models across different contexts and lan-
guages.

A.2 Judge Template
Below is our judge template that we used for our
LLM-as-a-judge evaluation:

Please act as an impartial judge and evaluate
the quality of the responses provided by two AI as-
sistants to the user question displayed below. You
should choose the assistant that follows the user’s
instructions and answers the user’s question better,
as well as answering in the desired language of the
user. Your evaluation should consider factors such
as the helpfulness, relevance, accuracy, depth, cre-
ativity, and level of detail of their responses. Begin
your evaluation by comparing the two responses
and provide a short explanation. Avoid any posi-
tion biases and ensure that the order in which the
responses were presented does not influence your
decision. Do not allow the length of the responses
to influence your evaluation. Do not favor certain
names of the assistants. Be as objective as pos-
sible. Your evaluation should only focus on the
correctness of the response. After providing your
explanation, output your final verdict by strictly
following this format: [[A]] if assistant A is better,
[[B]] if assistant B is better, and [[C]] for a tie.

For the judge prompt, we used the default
prompt from the MT-Bench work with one notable
change (Zheng et al., 2023a). When we evaluated
multilingual prompts with LLM-as-a-judge, the
judge at times incorrectly awards wins to models
which don’t necessarily follow instructions. Given
the sentence "Please respond ’How does the econ-
omy work?’ in Hungarian," two models might
respond differently: 1) one provides a detailed En-
glish response with bulleted lists, while 2) the other
responds concisely in Hungarian. The judge model
will rate the model answering in the incorrect lan-
guage higher, which is clearly not a measure of the
model’s multilingual capability (Marchisio et al.,
2024). In order to reduce these incorrect decisions,
we modified the judge prompt to specifically pe-
nalize responses that respond to the prompt in the
incorrect language.

In addition to issues with multilingual queries,
we also note specifically for coding that GPT-4o
seems to prefer models which provide detailed ex-
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Datasets
LMSys Chatbot Arena (Chiang et al., 2024)

PubMedQA (Jin et al., 2019)
MathQA (Amini et al., 2019)

No Robots (Rajani et al., 2023)
Aya (Singh et al., 2024)

Legal reddit (Li et al., 2022)
Legal Summ. BillSum (Kornilova and Eidelman, 2019)

Airoboros-gpt4 (Jon Durbin, 2024)
Finance Advisor (Gaurang Bharti, 2024)
Finance Bier QA (Thakur et al., 2021)

MMLU (Hendrycks et al., 2021a)
TruthfulQA (Lin et al., 2022)
GSM8K (Cobbe et al., 2021)

Table 4: Dataset Sources used as input to the data pipeline in Figure 5.

planations to the code even if the code provided is
of lower quality compared to a model which has
better code quality but is not as verbose. This leads
to scenarios where models that have chat but lower
benchmark performance (e.g. HumanEval (Chen
et al., 2021)) obtain higher winrate than models
which are objectively better on coding prompts. To
circumvent this issue, we explicitly prompt GPT-
4o that it should focus on the correctness of the
response as opposed to the style of the response.

A.3 Evaluation Tool
With the notion of self-defined categories and us-
ing the LLM-as-a-judge framework, we create an
evaluation tool which loads an internal leaderboard
from a csv file and breaks down the winrate into
several categories the user defined. The UI shows
the leaderboard in a dataframe and shows the win-
rates in set of bar plots across different categories.
A screenshot of the tool can be seen in Figure 8.

There is also a feature which enables the user to
view completions on the evaluation from both the
model the user is interested in, the reference model,
and the judge model to examine its reasoning. This
tool enables the user to examine where the model
they are developing is performing better than other
competitors and areas where improvement is re-
quired.
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Figure 8: A screenshot of our evaluation tool.
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Abstract

In this paper, we explore one-shot in-context in-
tent classification using large language models
(LLMs) with the goal of minimizing the effort
required to adapt models to unseen domains.
To enhance the one-shot in-context learning
capabilities of LLMs, we employ in-context
tuning, leveraging its cross-domain transfer-
ability to unseen domains. To this end, we
introduce the IC-collection, a compilation of
open-source intent classification datasets from
diverse domains, which are meticulously di-
vided into held-in and held-out datasets. Our
experiments demonstrate the effectiveness of
the proposed method, showing that our model,
with only 7B parameters, not only outperforms
GPT-4 on intent classification but also achieves
state-of-the-art in unseen domains with only
one-shot demonstrations. Both our benchmark
and model will be made publicly available to
advance research in the chatbot systems.

1 Introduction

Building accurate intent classifiers remains a sig-
nificant challenge for chatbot systems in real-world
scenarios. The labor-intensive process of labeling
utterances for new and evolving intents compli-
cates the development and maintenance of chatbots
across diverse domains (Sung et al., 2023; Li and
Zhang, 2021). In this study, we aim to minimize
the effort required to adapt intent classification (IC)
models to unseen domains and intents.

To this end, in-context learning, which leverages
large language models (LLMs) to achieve high per-
formance on various tasks with only a few input-
output pairs, presents a promising direction (Brown
et al., 2020; Loukas et al., 2023). Recent research
has demonstrated that prompting LLMs only with
few-shot examples of text-label pairs can outper-
form fine-tuned models (Milios et al., 2023). De-
spite these advancements, they primarily focus on

* indicates equal contribution.

few-shot settings, where five or more examples
are required per intent. We argue that previous ap-
proaches do not sufficiently minimize the effort
required to deploy intent classifiers rapidly across
various domains.

This leads us to a research question: Can we
push the limits of in-context learning ability to per-
form one-shot in-context intent classification? To
address this, we propose adopting in-context tuning
(Min et al., 2022; Chen et al., 2022) for training
on seen domains to enhance in-context learning
ability on unseen domains. We leverage the cross-
task transferability of in-context tuning to improve
cross-domain transferability.

To this end, we first construct IC-collection, a
benchmark designed for training a model in in-
tent classification across diverse domains and eval-
uating performance on unseen domains. The IC-
collection is a mixture of open-source intent clas-
sification datasets, encompassing 13 held-in and 3
held-out datasets1. After that, we present OSIC2-
7B, where OSIC2 stands for One-Shot In-Context
Intent Classification, by training a 7B language
model on our benchmark. Our results demonstrate
that OSIC2-7B achieves state-of-the-art (SOTA) in
unseen domains with only one-shot demonstration,
even surpassing GPT-4 in the same setting.

Our contributions are as follows:

• We introduce IC-collection, a training and
evaluation benchmark covering diverse do-
mains, specially designed for intent classifica-
tion on unseen domains.

• We show that OSIC2-7B achieves SOTA per-
formances and even outperforms GPT-4 on
unseen domains, highlighting that the effec-
tiveness of our approach.

• To advance research on chatbot systems, we

1Held-out datasets are carefully selected to minimize do-
main overlaps.
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Feature Held-in Held-out
# of datasets 13 3
# of domains 53 (48) 3 (3)
# of intents 748 (734) 109 (104)

Table 1: Statistics of IC-collection. Unique number of
domains and intents are denoted in parentheses.

make our data collection and model publicly
available.

2 Data Collection

We compile the IC-collection from diverse open-
source resources to cover various domains. Dur-
ing the dataset collection process, several consid-
erations are made: (i) non-english utterances are
excluded from multilingual datasets, (ii) only the
initial turns from multi-turn interaction dataset are
utilized, (iii) duplicate utterances within the dataset
were removed, and (iv) multi-labeled utterances are
excluded.

In order to evaluate generalization capabilities on
unseen domains, the datasets are divided into held-
in and held-out sets2. Held-out datasets were se-
lected based on their minimal overlap with the held-
in datasets, both in terms of domains and intents3.
Through preliminary experiments conducted to as-
sess the overlap between the held-out and held-in
datasets, we confirmed that the impact of the over-
lap is negligible (see details in Table 6). Table 1
shows the statistics of IC-collection, and followings
are the list of datasets:

Held-in datasets The open-sourced IC datasets
utilized for training in this study include ACID
(Acharya and Fung, 2020), ATIS (Hemphill
et al., 1990), BANKING77 (Casanueva et al.,
2020), BITEXT4, CLINC150 (Larson et al., 2019),
GENISYS5, HWU64 (Liu et al., 2021), MCID
(Arora et al., 2020a), PRESTO (Goel et al., 2023),
SMALLTALK6, SNIPS (Coucke et al., 2018),
SNIPSBI (Coucke et al., 2018), and TOPv2 (Chen
et al., 2020).

2The original test splits of all datasets are not used for
training or in-context demonstrations.

3Only highly common intents like thanks show any over-
lap.

4https://www.kaggle.com/datasets/scodepy/customer-
support-intent-dataset

5https://www.kaggle.com/datasets/elvinagammed/chatbots-
intent-recognition-dataset

6https://www.kaggle.com/datasets/salmanfaroz/small-
talk-intent-classification-data

Held-out datasets The held-out datasets include
CUREKART, POWERPLAY11, SOFMATTRESS
from HINT3 (Arora et al., 2020b).

More details about IC-collection such as the en-
tire list of domains and intents can be found in
Appendix D.

3 Our Approach

Task Definition Given an utterance, one-shot in-
context intent classification (OSIC2) identifies the
correct intent from a list of provided intents, using
only one example per intent as a reference. The
following is the formulation of OSIC2:

f(g(x̄d, Id))→ ȳd,

where f(·) is a function for mapping the target
utterance x̄d to intent label ȳd using a natural lan-
guage prompt g(·). Id = {(xdi , ydi)|i = 1, ..., Cd}
represents the in-context one-shot demonstrations
sampled from the train split of each dataset d ∈ D,
and (xdi , ydi) denotes an utterance-label pair of
i’th index of total classes Cd.

Training Our ultimate goal is to train a model
that can effectively leverage one-shot examples at
test time, enabling it to adapt proficiently to new do-
mains. To this end, we employ the in-context tuning
framework following Min et al. (2022); Chen et al.
(2022). While the original concept of in-context
tuning is developed for cross-task transfer learning,
we apply this approach to cross-domain transfer
learning within the intent classification task.

Prompt Construction As illustrated in Ap-
pendix A, we concatenate the task instruction, the
in-context examples, and the target utterance into a
single input sequence. Also, we use a fixed prompt
format for IC-collection to focus on the changes
in the intent list along with the corresponding one-
shot examples.

Specifically, we first construct the training pool
by randomly selecting maximum of ten examples7

for each intent from the held-in datasets in order
to ensure a balance for each intent. From this train-
ing pool, we randomly draw a one-shot example
for each instance, based on the following assump-
tions: 1) The dynamic selection of one-shot ex-
amples improves the adaptability of the model to
changes in the in-context examples. 2) This can
partially resolve problems of different granularity

7Maximum of ten examples is determined as the optimal
number of examples per intent for training as seen in Table 8
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Model CUREKART POWERPLAY11 SOFMATRESS Average
LLaMA-2-7B-chat 40.31 47.25 57.71 48.42
LLaMA-3-8B-instruct 67.10 56.96 75.10 64.20
Mistral-7B-instruct-v0.1 51.85 56.31 67.19 58.45
Mistral-7B-instruct-v0.2 73.42 60.84 83.40 72.55
GPT-3.5-turbo 80.39 57.93 84.98 74.43
GPT-4-turbo 85.62 65.70 85.77 79.03
OSIC2-7B (avg.) 83.15 67.31 88.54 79.67
OSIC2-7B (best) 86.27 68.93 88.54 81.25
previous SOTA (in-domain) 88.05 66.54 78.78 -

Table 2: Accuracies for OSIC2 on unseen domains. Bolds denote top-2 results among LLM baselines.

of intents (Huang et al., 2024) and labeling noise in
training instances (Ying and Thomas, 2022). When
inferring on held-out datasets, we utilize a fixed-
representative utterances sourced from the original
training datasets as in-context examples. Note that
the intent list at the instance level is confined within
each dataset.

Preprocessing For all datasets, minimal process-
ing is applied to ensure data quality. The pattern of
intent name is standardized with the steps: (i) con-
verting all letters to lowercase, (ii) joining words
with underscores, and (iii) writing out abbrevi-
ations. Furthermore, intents categorized as out-
of-scope (e.g., no_nodes_detected) are excluded
across all datasets due to their differing levels of
granularity compared to other defined intents.

4 Experiments

4.1 Experimental Setup

Implementation Details For our experiments,
we utilize Mistral-7b-v0.1 as a backbone. The mod-
els are fine-tuned using AdamW with a learning
rate of 6× 10−7, regulated by a cosine scheduler.
We set a batch size of 128.

To confirm the efficacy of the training, the train-
ing process is repeated three times using different
seed data, which altered the composition of ran-
domly sampled examples. We report both the aver-
aged and best results obtained from these models,
evaluated on the same test set.

Baselines We evaluate six SOTA LLMs:
LLaMA2-7B-Chat (Touvron et al., 2023),
LLaMA3-8B-Instruct8 (AI@Meta, 2024), Mistral-
7B-Instruct-v0.1, and Mistral-7B-Instruct-v0.2
(Jiang et al., 2023) as our open-source LLM

8For LLaMA-3, we follow the choice of prompt in the
official homepage: https://llama.meta.com/docs/model-cards-
and-prompt-formats/meta-llama-3/.

baselines, and GPT-3.5-turbo (Ouyang et al., 2022)
and GPT-4-turbo (Achiam et al., 2023) as our
closed-source LLM baselines. In addition, we
also include previous SOTA results taken from
Vishwanathan et al. (2022) for comparison.

4.2 Results on Unseen Domains

For the main experiment, we compare our model
with baselines on unseen domains, as shown in
Table 2. Our model consistently and significantly
outperforms open-source LLMs of similar size.We
hypothesize that this gap arises because general-
purpose LLMs are not specialized for the intent
classification task, thereby highlighting the neces-
sity for task-specific fine-tuning. Moreover, our
best model outperforms GPT-4 across all unseen
domains and even outperforms the previous in-
domain SOTA on two out of three datasets, despite
the previous SOTA being trained using all available
training data for each dataset. This demonstration
of generalization to unseen domains using only 7B-
scale model underscores the effectiveness of our
approach.

4.2.1 Ablation Study
The key finidngs from our empirical ablation stud-
ies on generalization capabilites to unseen domains
are summarized below. Details of each study can
be found in Appendix C.

• Increasing the diversity in terms of intents
and domains of held-in datasets effectively
enhances generalization (Table 7).

• Increasing the maximum number of training
instances per intent does not always prove
helpful for generalization (Table 8).

• Pre-processing techniques applied to training
data, the standardization of intent formats, the
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Method CURE. POWER. SOFM.
OSIC2-7B 86.27 68.93 88.54
OSIC2-7B+ 89.98 72.82 87.35
OSIC2-7B (aug) 90.41 73.79 89.72

Table 3: Further analysis on unseen domains. OSIC2-
7B+ denotes the upper-bound model and (aug) denotes
our remedy for low-recall intents during inference.

incorporation of various one-shot demonstra-
tions, and the exclusion of out-of-scope in-
tents during training can all contribute to en-
hanced generalization (Table 9).

4.2.2 Further Analysis
We conduct further analysis on held-out datasets
using the best performing OSIC2-7B as shown in
Table 3. To establish the upper bound of model per-
formance on IC-collection, we train another model,
OSIC2-7B+, by incorporating three benchmarks
into the held-in datasets. As expected, OSIC2-7B+
performs better overall than OSIC2-7B, suggesting
that additional generalization to unseen domains
is possible through training on a wider variety of
intents. Meanwhile, OSIC2-7B surpasses OSIC2-
7B+ on the SOFMATTRESS dataset, underscoring
the robustness and efficacy of our approach.

Furthermore, while beyond our primary scope,
we explore the potential improvement achievable
by modifying the number of examples for each in-
tent during inference. To this end, we augment the
prompt with up to a maximum of two additional
examples for intents identified as having low recall,
referred as OSIC2-7B (aug) (prompts can be found
in Table 13, 14, and 15). The addition of these
extra examples during inference enhances perfor-
mance, surpassing even that of OSIC2-7B+ which
we initially assumed to represent the upper bound.
This observation suggests that OSIC2-7B not only
enables the development of high-performance in-
tent classifiers for new domains but also facilitates
the easy maintenance of existing intent classifiers
through simple prompt modifications.

4.3 Results on Seen Domains

For the performance on held-in datasets, OSIC2-
7B (best) is compared with the previous SOTA
method9 across three representative benchmarks,

9The SOTA model utilizes a retriever that selects the most
relevant utterance-label pairs from the example pool to design
the prompt for in-context learning. This model achieves SOTA
performance in both 5-shot and 10-shot.

Method C150 H64 B77
OSIC2-7B 95.93 89.78 84.42
7B SOTA (5-shot) 95.35 87.17 85.91
7B SOTA (10-shot) 96.02 90.33 89.48

Table 4: Results on the seen domains, compared with
the previous 7B SOTA models, derived from the Llama-
2-7B 4K as reported by Milios et al. (2023).

CLINC150 (C150), HWU64 (H64), and BANK-
ING77 (B77), as shown in Table 4. The perfor-
mance of OSIC2-7B is comparable to that of the
similarly sized SOTA models, except for BANK-
ING7710, demonstrating that our approach does not
sacrifice performance on held-in domains for the
sake of generalization to held-out domains.

5 Related Work

Language model prompting, particularly with
instruction-following LLMs has proven effective
for zero-shot or few-shot intent classification (Wei
et al., 2022; Sanh et al., 2022). Recent studies
have demonstrated the effectiveness of few-shot
in-context learning (ICL) for intent classification
(Loukas et al., 2023) and emotion classification
(Milios et al., 2023). Our approach similarly em-
ploys ICL technique to adapt open-LLMs to unseen
domains, differing by extending its application to
one-shot classification, an extreme scenario where
little labeling effort is required.

Additionally, methodologies such as in-context
tuning have proposed a meta-learning approach,
where k-shot examples are augmented with con-
textual information for both training and testing
(Min et al., 2022; Chen et al., 2022). While these
methods primarily focus on transferring learning
to unseen tasks through instruction tuning, our ob-
jective is to transfer learning to unseen domains.

Methodologically, our approach is most similar
to the study on in-context cross-lingual transfer
(Villa-Cueva et al., 2024). While that study focuses
on text classification and explores cross-lingual
transferability, our research emphasizes domain
transferability within intent classification.

6 Conclusion

This paper investigates one-shot intent classifica-
tion as an extreme case of data scarcity in real-
world scenarios. By enhancing the in-context learn-
ing capabilities of LLMs, our specialized 7B-scale
model achieves state-of-the-art performances on

10We leave the exploration of this aspect for future work.
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held-out datasets, even in the context of unseen
domains. To promote research on the creation of
accurate intent classifiers that are easily adaptable
to any domain, we release our data collection and
model.

Limitations & Future Work

Our work is limited in multiple dimensions. First,
one example may not be sufficient to represent
a definition of the intent. Future work may ex-
plore extending our approach to adaptive k-shot
in-context intent classification. Second, providing
at least one example for all intents in the prompts
requires much longer context, resulting in less effi-
ciency at the inference stage. Reducing intent list
corresponding to the given utterance with an off-
the-shelf retriever needs to be studied in the fu-
ture. Third, we only consider 7-billion parameter
LLMs. Applying our approach on larger LLMs
may achieves better generalization on unseen do-
mains. At last, our IC-collection contains English-
only datasets. Cross-lingual transferability of intent
classification is in our future work.
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A Appendix A: Prompt Format

[Instruction]
You are an AI assistant for intent classification. For the user query, you should select
the correponding intent name from the intent list. Do not write anything else other than
the intent name. The intent list is given below and example queries can be followed by
each intent name.

[Intent List]
- current_location: "what’s the precise coordinates of this place"
- directions: "where is starbucks"
- distance: "how far is the grand canyon from my current location in phoenix, az"
- gas_amount: "whats in my gas tank"
- gas_type: "what gas does the car need"
...

[Conversation]
User: i am needing you to tell me how to get to dallas, i am needing you to tell me how
to get to dallas, texas, by bus
Assistant: directions

Table 5: Example of natural language prompt in IC-
collection. Italics denotes the fixed instruction template,
"*" denotes example utterance, and bolds denotes in-
tent_name.

B Appendix B: Preliminary Experiments

Train Test CURE. POWER. SOFM.
0-shot 0-shot 68.70 59.76 77.60
0-shot 1-shot 80.90 66.45 83.93
1-shot 1-shot 83.15 67.31 88.54

Table 6: Results on preliminary experiments for assess-
ing the impact of dataset overlap. "1-shot Training &
1-shot Test" denotes OSIC2-7B (avg.).

Table 6 shows accuracies of models trained with
and without one-shot demonstrations. From this ta-
ble, we can conclude that the impact of the overlap
between held-in and held-out datasets is negligible.
If the overlap had been significant, the performance
difference between "0-shot Train & 0-shot Test"
versus "1-shot Train & 1-shot Test" would not have
been substantial. This indicates that domain adapta-
tion through one-shot learning plays a more critical
role than the overlap.
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C Appendix C: Ablation Study

# Train sets CURE. POWER. SOFM.
3 76.83 65.37 85.91
6 79.88 65.37 85.37
9 80.01 65.80 87.09
13: OSIC2-7B (avg.) 83.15 67.31 88.54
16: OSIC2-7B+ (avg.) 88.45 71.63 88.14

Table 7: Accuracies depending on the number of open-
source IC datasets utilized for training. 3 includes
CLINC150, BANKING77 and HWU64 datasets; 6 addi-
tionally incorporates datasets ATIS, SNIPS, and TOPv2;
9 further adds datasets ACID, MCID and PRESTO;
and 13 indicates that all held-in datasets used, with
the addition of four datasets, BITEXT, GENISYS,
SMALLTALK, and SNIPSBI; 16 includes all held-out
datasets, CUREKART, POWERPLAY11, SOFMAT-
TRESS. Note that as the number of datasets increases,
they encompass all previously metnioned datasets.

# Examples CURE. POWER. SOFM.
5 82.14 65.91 86.56
10 83.15 67.31 88.54
15 79.96 67.42 87.48
20 78.94 66.67 87.75

Table 8: Results across varying numbers used to con-
struct the training pool referenced in Section 3’s prompt
construction. All models are tested using the same evalu-
ation set up and test set, which utilizes the fixed one-shot
demonstrations.

Intent List CURE. POWER. SOFM.
OSIC2-7B 83.15 67.31 88.54
- intent stand. 83.37 64.51 84.98
- dynamic dem. 82.79 67.75 87.62
+ OOS 80.32 65.69 86.96

Table 9: An ablation study to evaluate the impact of
excluding each pre-processing technique applied to the
training data. Specifically, the model is trained without
intent standardization and subsequently tested on intent
names that have not undergone under any preprocessing

D Appendix D: Details of Datasets
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Dataset #Intents #Domains OOS Intents License
ACID 175 1 st_general_request N/A
ATIS 17 1 - N/A
BANKING77 77 1 - CC-BY-4.0
BITEXT 27 11 - N/A
CLINC150 150 10 - CC-BY-3.0 Legal Code
GENISYS 19 1 - N/A
HWU64 64 18 general_quirky CC BY-SA 3.0
MCID 16 1 - CC BY-NC-SA 4.0
PRESTO 33 1 other CC-BY-4.0
SMALLTALK 84 1 - CC0: Public Domain
SNIPS 7 1 - CC0-1.0 license
SNIPSBI 10 1 - CC0-1.0 license
TOPv2 68 8 unsupported_* CC BY-NC 4.0

Table 10: Statistics of training datasets in IC-collection. unsupported_* denotes in-domain OOS intents for each
domain excluding the reminder domain of the TOPv2 dataset.

Dataset #Intents Seen Intents OOS Intents License

CUREKART 29
cancel_order,
order_status

no_nodes_detected Open Database License

POWERPLAY11 58 thanks no_nodes_detected Open Database License

SOFMATTRESS 22
cancel_order,
order_status

no_nodes_detected Open Database License

Table 11: Statistics of heldout datasets in IC-collection.

Domain list of training datasets
account, airline_travel_information_system_(atis), alarm, audio, automobile_and_commute, banking, calendar,
cancellation_fee, contact, cooking, covid-19, credit_cards, datetime, delivery, email, event, feedback,
food_takeaway, general, insurance, internet_of_things_(iot), invoice, kitchen_and_dining, lists, messaging,
meta, music, navigation, news, newsletter, order, payment, play, question_answering_(qa), recommendation,
refund, reminder, shipping_address, smalltalk, smarthome, social, timer, transport, travel, utility,
virtual_assistant, weather, work

Domain list of held-out datasets
fitness_supplements_retail, online_gaming, mattress_products_retail

Table 12: Domain list of IC-collection.
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Intent list of ACID
<domain: insurance> info_add_house, info_add_remove_insuranceured, info_add_remove_vehicle,
info_add_vehicle_property_paperless_billing, info_agent_not_responding,
info_agent_wrong, info_all_terrain_vehicle_(atv)_insurance_explain,
info_american_star, info_amount_due, info_ask_purchase, info_ask_quote,
info_automatic_payment_cancel, info_automatic_payment_min_balance,
info_automatic_payment_schedule, info_automobile_coverage_question,
info_automobile_insurance_canada, info_automobile_policy_cannot_see_in_account,
info_bill_due_date, info_billing_account_name_edit, info_billing_account_number,
info_billing_department_contact, info_boat_coverage_explain, info_business_policy_cannot_see,
info_business_private_policy_(bpp)_question_general, info_cancel_confirm,
info_cancel_fee, info_cancel_insurance_policy, info_cannot_see_farm_ranch_policy,
info_cannot_see_policy, info_careers, info_change_agent, info_change_autopay_date,
info_change_bank_account, info_change_userid, info_claim_adjuster_information,
info_claim_check_status, info_claim_complaint, info_claim_direct_repair_program_(drp)_assign,
info_claim_direct_repair_program_(drp)_join, info_claim_documents_email,
info_claim_documents_fax, info_claim_documents_mail, info_claim_documents_send,
info_claim_file_claim, info_claim_filed, info_claim_first_notice_of_loss_(fnol),
info_claim_first_notice_of_loss_(fnol)_automobile_hail, info_claim_glass_safelite,
info_claim_home_repair_program_(hrp)_join, info_claim_rental,
info_claim_shop_add_work, info_claim_shop_send_estimate, info_claim_status,
info_claim_update_information, info_collections, info_collision_coverage_explain,
info_combine_payments, info_comprehensive_coverage_explain, info_confirm_coverage,
info_credit_card_change_number, info_credit_card_fee, info_customer_service_hours,
info_declaration_page_needed, info_deductible, info_deductible_explain,
info_delete_duplicate_payment, info_different_amounts, info_discounts, info_do_not_contact,
info_dreamkeep_rewards, info_dreamkeep_rewards_errors, info_dreams_foundation,
info_emergency_roadside_service_(ers), info_emergency_roadside_service_(ers)_contact,
info_emergency_roadside_service_(ers)_reimburse, info_employment_verify,
info_financial_responsibility_filling_(sr22), info_find_agent,
info_flood_insurance_explain, info_forgot_email, info_forgot_password,
info_forgot_userid, info_general_policy_coverage_question, info_get_a_quote_auto,
info_get_a_quote_automobile_non_owner, info_get_a_quote_business_private_policy_(bpp),
info_get_a_quote_other, info_get_a_quote_renters, info_get_a_quote_renters_purchase,
info_glass_coverage, info_guaranteed_auto_protection_(gap)_coverage, info_handling_fee_remove,
info_health_insurance_quote, info_homesite_contact, info_insurance_card_print,
info_insurance_card_proof, info_insurance_card_send, info_insurance_not_available,
info_knowyourdrive, info_knowyourdrive_device_activate, info_knowyourdrive_device_return,
info_knowyourdrive_errors, info_letter_of_experience, info_liability_explain,
info_life_beneficiary_change, info_life_cash_out, info_life_increase_coverage,
info_life_policy_amount_due, info_life_policy_automatic_payment, info_life_policy_cancel,
info_life_policy_cannot_see, info_life_question_general, info_life_refund,
info_life_update_contact_information, info_log_in_error, info_log_out,
info_mail_payment_address, info_make_payment, info_mexico_automobile_insurance,
info_mortgage_co_proof_of_insurance_(poi), info_name_change, info_new_vehicle_grace_period,
info_one_time_payment, info_operating_area, info_operating_company,
info_paperless_documents_setup, info_paperless_documents_stop, info_paperless_mail,
info_pay_life_insurance, info_payment_confirm, info_payment_due_date_change,
info_payment_error, info_payment_history, info_payment_not_ontime,
info_payment_process_change, info_payment_setup_automatic_payment, info_payment_time,
info_phone_number, info_phone_number_international, info_policy_document_needed,
info_policy_number, info_policy_transfer_to_rental, info_premium_breakdown,
info_prepaid_card_payment, info_profile_section, info_proof_of_insurance_(poi)_old,
info_recreational_vehicle_(rv)_insurance_explain, info_refund_check,
info_reinstate_insurance_policy, info_renters_coverage_explain, info_rideshare_coverage,
info_salvage_vehicle, info_set_up_account, info_speak_to_representative,
info_teen_safe_driver_signup, info_the_general_contact, info_transfer_account_balance,
info_travel_insurance_explain, info_university_of_washington_(uw)_alumni_discount,
info_update_contact_information, info_update_email, info_update_lienholder,
info_update_phone_number, info_who_is_my_agent, info_why_was_policy_cancelled, no,
st_general_request, st_hello, st_how_is_chatbot_(abby), st_how_old_is_chatbot_(abby),
st_is_chatbot_(abby)_real, st_thank_you, st_what_can_chatbot_(abby)_do,
st_where_does_chatbot_(abby)_live, yes

Intent list of ATIS
<domain: airline_travel_information_system_(atis)> abbreviation, aircraft, airfare, airline,
airport, capacity, city, day_name, distance, flight, flight_no, flight_time, ground_fare,
ground_service, meal, quantity, restriction
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Intent list of BANKING77
<domain: banking> activate_my_card, age_limit, apple_pay_or_google_pay,
atm_support, automatic_top_up, balance_not_updated_after_bank_transfer,
balance_not_updated_after_cheque_or_cash_deposit, beneficiary_not_allowed, cancel_transfer,
card_about_to_expire, card_acceptance, card_arrival, card_delivery_estimate,
card_linking, card_not_working, card_payment_fee_charged, card_payment_not_recognised,
card_payment_wrong_exchange_rate, card_swallowed, cash_withdrawal_charge,
cash_withdrawal_not_recognised, change_pin, compromised_card, contactless_not_working,
country_support, declined_card_payment, declined_cash_withdrawal, declined_transfer,
direct_debit_payment_not_recognised, disposable_card_limits, edit_personal_details,
exchange_charge, exchange_rate, exchange_via_app, extra_charge_on_statement,
failed_transfer, fiat_currency_support, get_disposable_virtual_card, get_physical_card,
getting_spare_card, getting_virtual_card, lost_or_stolen_card, lost_or_stolen_phone,
order_physical_card, passcode_forgotten, pending_card_payment, pending_cash_withdrawal,
pending_top_up, pending_transfer, pin_blocked, receiving_money, refund_not_showing_up,
request_refund, reverted_card_payment, supported_cards_and_currencies, terminate_account,
top_up_by_bank_transfer_charge, top_up_by_card_charge, top_up_by_cash_or_cheque,
top_up_failed, top_up_limits, top_up_reverted, topping_up_by_card, transaction_charged_twice,
transfer_fee_charged, transfer_into_account, transfer_not_received_by_recipient,
transfer_timing, unable_to_verify_identity, verify_my_identity, verify_source_of_funds,
verify_top_up, virtual_card_not_working, visa_or_mastercard, why_verify_identity,
wrong_amount_of_cash_received, wrong_exchange_rate_for_cash_withdrawal

Intent list of BITEXT
<domain: account> create_account, delete_account, edit_account, recover_password,
registration_problems, switch_account

<domain: cancellation_fee> check_cancellation_fee

<domain: contact> contact_customer_service, contact_human_agent

<domain: delivery> delivery_options, delivery_period

<domain: feedback> complaint, review

<domain: invoice> check_invoice, get_invoice

<domain: newsletter> newsletter_subscription

<domain: order> cancel_order, change_order, place_order, track_order

<domain: payment> check_payment_methods, payment_issue

<domain: refund> check_refund_policy, get_refund, track_refund

<domain: shipping_address> change_shipping_address, set_up_shipping_address
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Intent list of CLINC150
<domain: automobile_and_commute> current_location, directions, distance, gas_amount, gas_type,
jump_start, last_maintenance, miles_per_gallon_(mpg), oil_change_how, oil_change_when,
schedule_maintenance, tire_change, tire_pressure, traffic, uber

<domain: banking> account_blocked, balance, bill_balance, bill_due, freeze_account, interest_rate,
min_payment, order_checks, pay_bill, pin_change, report_fraud, routing, spending_history,
transactions, transfer

<domain: credit_cards> annual_percentage_rate_(apr), application_status, card_declined,
credit_limit, credit_limit_change, credit_score, damaged_card, expiration_date,
improve_credit_score, international_fees, new_card, redeem_rewards, replacement_card_duration,
report_lost_card, rewards_balance

<domain: home> calendar_status, calendar_update, next_song, order_status, order_update,
play_music, reminder_status, reminder_update, shopping_list_status, shopping_list_update,
smart_home_devices, todo_list_status, todo_list_update, update_playlist, what_song

<domain: kitchen_and_dining> accept_reservations, calories, cancel_reservation,
confirm_reservation, cook_time, food_last, how_busy, ingredient_substitution, ingredients_list,
meal_suggestion, nutrition_info, recipe, restaurant_reservation, restaurant_reviews,
restaurant_suggestion

<domain: meta> cancel, change_accent, change_ai_name, change_language, change_speed,
change_user_name, change_volume, maybe, no, repeat, reset_settings, sync_device, user_name,
whisper_mode, yes

<domain: small_talk> are_you_a_bot, do_you_have_pets, fun_fact, goodbye, greeting,
how_old_are_you, meaning_of_life, tell_joke, thank_you, what_are_your_hobbies,
what_can_i_ask_you, what_is_your_name, where_are_you_from, who_do_you_work_for, who_made_you

<domain: travel> book_flight, book_hotel, car_rental, carry_on, exchange_rate,
flight_status, international_visa, lost_luggage, plug_type, timezone, translate, travel_alert,
travel_notification, travel_suggestion, vaccines

<domain: utility> alarm, calculator, date, definition, find_phone, flip_coin, make_call,
measurement_conversion, roll_dice, share_location, spelling, text, time, timer, weather

<domain: work> direct_deposit, income, insurance, insurance_change, meeting_schedule,
next_holiday, paid_time_off_(pto)_balance, paid_time_off_(pto)_request,
paid_time_off_(pto)_status, paid_time_off_(pto)_used, payday,
rollover_retirement_savings_plan_(401k), schedule_meeting, taxes, wage_and_tax_statement_(w2)

Intent list of GENISYS
<domain: ai_assistant> clever, courtesy_good_bye, courtesy_greeting, current_human_query,
good_bye, gossip, greeting, jokes, name_query, not_talking_to_you, pod_bay_door, real_name_query,
self_aware, shutup, swearing, thanks, time_query, understand_query, who_am_i
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Intent list of HWU64
<domain: alarm> alarm_query, alarm_remove, alarm_set

<domain: audio> audio_volume_down, audio_volume_mute, audio_volume_up

<domain: calendar> calendar_query, calendar_remove, calendar_set

<domain: cooking> cooking_recipe

<domain: datetime> datetime_convert, datetime_query

<domain: email> email_add_contact, email_query, email_query_contact, email_sendemail

<domain: food_takeaway> takeaway_order, takeaway_query

<domain: general> general_affirm, general_command_stop, general_confirm, general_dontcare,
general_explain, general_joke, general_negate, general_praise, general_quirky, general_repeat

<domain: internet_of_things_(iot)> iot_cleaning, iot_coffee, iot_hue_light_change,
iot_hue_light_dim, iot_hue_light_off, iot_hue_light_on, iot_hue_light_up, iot_wemo_plug_off,
iot_wemo_plug_on

<domain: lists> lists_create_or_add, lists_query, lists_remove

<domain: music> music_likeness, music_query, music_settings

<domain: news> news_query

<domain: play> play_audiobook, play_game, play_music, play_podcasts, play_radio

<domain: question_answering_(qa)> qa_currency, qa_definition, qa_factoid, qa_maths, qa_stock

<domain: recommendation> recommendation_events, recommendation_locations,
recommendation_movies

<domain: social> social_post, social_query

<domain: transport> transport_query, transport_taxi, transport_ticket, transport_traffic

<domain: weather> weather_query

Intent list of MCID
<domain: covid-19> can_i_get_from_feces_animal_pets, can_i_get_from_packages_surfaces, donate,
hi, how_does_corona_spread, latest_numbers, myths, news_and_press, okay_thanks, protect_yourself,
share, travel, what_are_symptoms, what_are_treatment_options, what_if_i_visited_high_risk_area,
what_is_corona

Intent list of PRESTO
<domain: virtual_assistant> add_contact, add_item_to_list, buy_event_tickets, cancel_ride,
check_order_status, create_list, create_note, find_parking, get_bill, get_generic_business_type,
get_health_stats, get_list, get_message_content, get_note, get_product, get_security_price,
initiate_call, log_exercise, log_nutrition, open_app, order_menu_item, order_ride,
other, pause_exercise, pay_bill, play_game, post_message, record_video, resume_exercise,
send_digital_object, start_exercise, stop_exercise, take_photo

Intent list of SMALLTALK
<domain: smalltalk> agent_acquaintance, agent_age, agent_annoying, agent_answer_my_question,
agent_bad, agent_be_clever, agent_beautiful, agent_birth_date, agent_boring, agent_boss,
agent_busy, agent_chatbot, agent_clever, agent_crazy, agent_fired, agent_funny, agent_good,
agent_happy, agent_hungry, agent_marry_user, agent_my_friend, agent_occupation, agent_origin,
agent_ready, agent_real, agent_residence, agent_right, agent_sure, agent_talk_to_me, agent_there,
appraisal_bad, appraisal_good, appraisal_no_problem, appraisal_thank_you, appraisal_welcome,
appraisal_well_done, confirmation_cancel, confirmation_no, confirmation_yes, dialog_hold_on,
dialog_hug, dialog_i_do_not_care, dialog_sorry, dialog_what_do_you_mean, dialog_wrong,
emotions_ha_ha, emotions_wow, greetings_bye, greetings_goodevening, greetings_goodmorning,
greetings_goodnight, greetings_hello, greetings_how_are_you, greetings_nice_to_meet_you,
greetings_nice_to_see_you, greetings_nice_to_talk_to_you, greetings_whatsup, user_angry,
user_back, user_bored, user_busy, user_can_not_sleep, user_does_not_want_to_talk, user_excited,
user_going_to_bed, user_good, user_happy, user_has_birthday, user_here, user_joking,
user_likes_agent, user_lonely, user_looks_like, user_loves_agent, user_misses_agent,
user_needs_advice, user_sad, user_sleepy, user_testing_agent, user_tired, user_waits,
user_wants_to_see_agent_again, user_wants_to_talk, user_will_be_back

Intent list of SNIPS
<domain: smart_home> add_to_playlist, book_restaurant, get_weather, play_music, rate_book,
search_creative_work, search_screening_event
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Intent list of SNIPSBI
<domain: smarthome> book_restaurant, compare_places, get_directions, get_place_details,
get_traffic_information, get_weather, request_ride, search_place, share_current_location,
share_estimated_time_of_arrival_(eta)

Intent list of TOPv2
<domain: alarm> create_alarm, delete_alarm, get_alarm, silence_alarm, snooze_alarm,
unsupported_alarm, update_alarm

<domain: event> get_event, get_event_attendee, get_event_attendee_amount, get_event_organizer,
unsupported_event

<domain: messaging> cancel_message, get_message, ignore_message, react_message, send_message,
unsupported_messaging

<domain: music> add_to_playlist_music, create_playlist_music, dislike_music, like_music,
loop_music, pause_music, play_music, previous_track_music, remove_from_playlist_music,
replay_music, set_default_provider_music, skip_track_music, start_shuffle_music, stop_music,
unsupported_music

<domain: navigation> get_directions, get_distance, get_estimated_arrival,
get_estimated_departure, get_estimated_duration, get_info_road_condition, get_info_route,
get_info_traffic, get_location, unsupported_navigation, update_directions

<domain: reminder> create_reminder, delete_reminder, get_reminder, get_reminder_amount,
get_reminder_date_time, get_reminder_location, help_reminder, update_reminder,
update_reminder_date_time, update_reminder_todo

<domain: timer> add_time_timer, create_timer, delete_timer, get_timer, pause_timer, restart_timer,
resume_timer, subtract_time_timer, unsupported_timer, update_timer

<domain: weather> get_sunrise, get_sunset, get_weather, unsupported_weather

Intent list of CUREKART
<domain: fitness_supplements_retail> call_center, cancel_order, chat_with_agent, check_pincode,
consult_start, delay_in_parcel, expiry_date, franchise, immunity, international_shipping,
modes_of_payments, modify_address, no_nodes_detected, order_query, order_status,
order_taking, original_product, payment_and_bill, portal_issue, recommend_product,
refer_earn, refunds_returns_replacements, resume_delivery, side_effect, sign_up, start_over,
store_information, user_goal_form, work_from_home

Intent list of POWERPLAY11
<domain: online_gaming> account_balance_deducted, account_not_verified, account_reset,
appreciation, bank_verification_details, cannot_see_joined_contests, capabilities, cash_bonus,
cash_bonus_expiry, change_bank_account, change_mobile_number, change_profile_team_details,
chat_with_an_agent, check_deposit_status, check_wallet_balance, contact_number, criticism,
deducted_amount_not_received, delete_pan_card, download_powerplay11, fairplay_violations,
fake_teams, feedback, greetings_day, how_points_calculated, how_to_play, instant_withdrawal,
join_contest, less_winnings_amount, match_abandoned, new_team_pattern, no_email_confirmation,
no_nodes_detected, offers_and_referrals, pan_verification_failed, points_not_updated, presence,
refund_of_added_cash, refund_of_wrong_amount, signup_bonus, taxes_on_winnings, team_deadline,
thanks, types_bonus, types_contests, unutilized_money, update_app, verify_email, verify_mobile,
verify_pan, what_if_theres_a_tie, why_verify, winnings, withdraw_cash_bonus, withdrawal_intro,
withdrawal_status, withdrawal_time, wrong_scores

Intent list of SOFMATTRESS
<domain: mattress_products_retail> 100_night_trial_offer, about_sof_mattress, cancel_order,
cash_on_delivery_(cod), check_pincode, comparison, delay_in_delivery, distributors,
equated_monthly_instalment_(emi), ergonomic_features, lead_generation, mattress_cost,
no_nodes_detected, offers, order_status, orthopedic_features, pillows, product_variants,
return_exchange, size_customization, warranty, what_size_to_order
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- call_center: "what is the time when call center is working"
- cancel_order: "I want to place cancellation"
- chat_with_agent: "How to complaint"
- check_pincode: "Are you shipping to my pincode"
- consult_start: "Get Diet & Fitness Advice"
- delay_in_parcel: "I am not received my order yet"
- expiry_date: "I have received an Expired product"
- franchise: "I would like to get dealership"
- immunity: "Increase Immunity"
- international_shipping: "Delivery out of India"
- modes_of_payments: "ways of paymets"
- modify_address: "Edit shipping address"
- order_query: "Help required on order"
- order_status: "How much more time do I have to wait for my parcel"
- order_taking: "I want to book shipment on cash on delivery"
- original_product: "Show me your authenticity"
- payment_and_bill: "my money has been deducted but it’s not been place order"
- portal_issue: "My Cart Is empty"
- recommend_product: "i need supplements", "energy boost in body", "I want home gym product"
- refer_earn: "I have referral promo code"
- refunds_returns_replacements: "I want my money back"
- resume_delivery: "If i order today in how many days it will be delivered"
- side_effect: "Side Effect"
- sign_up: "I am a new user"
- start_over: "Restart the flow"
- store_information: "Are your offline stores open?"
- user_goal_form: "Re-assess my profile"
- work_from_home: "I hope you are also working from home during this time"

Table 13: Augmented version of intent list on CUREKART evaluation.

- account_balance_deducted: "What is cycle of account balance deduction"
- account_not_verified: "Account Verification"
- account_reset: "How to reset account"
- appreciation: "Great App"
- bank_verification_details: "What details I need to provide for bank account"
- cannot_see_joined_contests: "I joined a league but now it’s not showing"
- capabilities: "Help me"
- cash_bonus: "Cash Bonus"
- cash_bonus_expiry: "Cash Bonus Expiry"
- change_bank_account: "Change My Bank Account"
- change_mobile_number: "I want to change my number"
- change_profile_team_details: "Edit team name"
- chat_with_an_agent: "Need to connect with an agent", "I can’t see my withdrawal", "My bonus is incorrect"
- check_deposit_status: "Show my transaction"
- check_wallet_balance: "Money left in my wallet"
- contact_number: "Call me back"
- criticism: "Waste app", "You are dumb"
- deducted_amount_not_received: "My money was deducted from my account but not showing the amount added. What should I do?"
- delete_pan_card: "Pan card remove"
- download_powerplay11: "Download app"
- fairplay_violations: "How my play will be consider as fair"
- fake_teams: "You have your own team in the leagues", "Fake players"
- feedback: "Feedback"
- greetings_day: "Yes"
- how_points_calculated: "How Are Points Calculated on PowerPlay11"
- how_to_play: "I need help to play"
- instant_withdrawal: "Fast withdrawal available"
- join_contest: "Contest joining"
- less_winnings_amount: "My winnings are incorrect"
- match_abandoned: "If match get abandoned will I get refund"
- new_team_pattern: "How many all-rounder I can select"
- no_email_confirmation: "When will I receive email confirmation"
- offers_and_referrals: "Any promotions available"
- pan_verification_failed: "Getting error while verifying PAN Card"
- points_not_updated: "Points are not getting updated", "When will scores be updated"
- presence: "Are You Online"
- refund_of_added_cash: "Is my addded cash is refundable", "Please refund money"
- refund_of_wrong_amount: "I added amount by mistake"
- signup_bonus: "Signup Bonus"
- taxes_on_winnings: "How much tax will be deducted"
- team_deadline: "What is Safe Play & Regular Play"
- thanks: "Tysm"
- types_bonus: "What is difference between Cash Bonus, signup bonus, surprise bonus, winnings"
- types_contests: "Types of Contests"
- unutilized_money: "Unutilized Amount"
- update_app: "How to update the app"
- verify_email: "Email verification"
- verify_mobile: "Mobile number verification"
- verify_pan: "Pan card verification", "How do I verify my PAN"
- what_if_theres_a_tie: "Same score between two players"
- why_verify: "What is the use of account verification"
- winnings: "When will I get the winning amount", "Winnings amount not credited"
- withdraw_cash_bonus: "Withdraw Cash Bonus"
- withdrawal_intro: "Withdrawal steps"
- withdrawal_status: "Status of withdrawal"
- withdrawal_time: "When can I expect my withdrawal amount"
- wrong_scores: "What if a game is completed with wrong scores?"

Table 14: Augmented version of intent list on POWERPLAY11 evaluation.
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- 100_night_trial_offer: "100 free Nights"
- about_sof_mattress: "How is SOF different from other mattress brands"
- cancel_order: "I want to cancel my order"
- cash_on_delivery_(cod): "Can pay later on delivery"
- check_pincode: "Can you deliver on my pincode", "Will you be able to deliver here"
- comparison: "What is the difference between the Ergo & Ortho variants"
- delay_in_delivery: "It’s been a month", "I did not receive my order yet"
- distributors: "Do you have any showrooms in Delhi state", "Need dealership"
- equated_monthly_instalment_(emi): "You guys provide EMI option?"
- ergonomic_features: "What are the key features of the SOF Ergo mattress"
- lead_generation: "Get in Touch"
- mattress_cost: "Price of mattress", "How Much Cost"
- offers: "Any discounts"
- order_status: "Order Status", "When will the order be delivered to me?"
- orthopedic_features: "Features of Ortho mattress"
- pillows: "Do you have cushions"
- product_variants: "What are the product variants", "Show more mattress"
- return_exchange: "Need my money back"
- size_customization: "Can mattress size be customised?"
- warranty: "Does mattress cover is included in warranty"
- what_size_to_order: "Can you help with the size?"

Table 15: Augmented version of intent list on SOFMATTRESS evaluation.

16
197



Proceedings of the 1st Workshop on Customizable NLP: Progress and Challenges in Customizing NLP for a
Domain, Application, Group, or Individual (CustomNLP4U), pages 198–219

November 16, 2024 ©2024 Association for Computational Linguistics

PEARL: Personalizing Large Language Model Writing
Assistants with Generation-Calibrated Retrievers

Sheshera Mysore1△† Zhuoran Lu2† Mengting Wan1 Longqi Yang1

Bahar Sarrafzadeh1 Steve Menezes1 Tina Baghaee1

Emmanuel Barajas Gonzalez1 Jennifer Neville1 Tara Safavi1△
2Purdue University, IN, USA 1Microsoft, WA, USA

△Corresponding authors: smysore@cs.umass.edu, tarasafavi@microsoft.com

Abstract

Powerful large language models have facili-
tated the development of writing assistants that
promise to significantly improve the quality
and efficiency of composition and communi-
cation. However, a barrier to effective assis-
tance is the lack of personalization in LLM
outputs to the author’s communication style,
specialized knowledge, and values. In this pa-
per, we address this challenge by proposing
PEARL, a LLM writing assistant personalized
with a retriever that is trained to be generation-
calibrated for personalization. Generation cal-
ibration ensures that our retriever selects his-
toric user authored documents to augment an
LLM prompt such that they are likely to help
an LLM generation better adhere to a users’
preferences. We propose two key novelties for
training such a retriever: (1) A training data
selection method that identifies historical user
requests likely to benefit from personalization
and documents that provide that benefit; and
(2) A scale-calibrating KL-divergence objective
that ensures that our retriever scores remain pro-
portional to the downstream generation qual-
ity from using the document for personalized
generation. In a series of holistic evaluations,
we demonstrate the effectiveness of PEARL in
generating long-form texts on multiple social
media datasets. Finally, we demonstrate how
a generation-calibrated retriever can double as
a performance predictor – detecting low qual-
ity retrieval, and improving potentially under-
performing outputs via revision with LLMs.

1 Introduction

Machine-assisted writing has seen a long history of
development, progressing from providing simple
syntactic checks, to revising human authored text,
to recent assistants being able to fully compose
texts on direction from authors (Mahlow, 2023;
Dale and Viethen, 2021). The text-generation ca-
pabilities of current LLMs and has led current re-

†Work done during internship at Microsoft Research.

Figure 1: PEARL is a request-driven generation model
that personalizes LLM outputs through retrieval aug-
mentation with a generation calibrated retriever.

search to explore a new frontier of writing assis-
tants for complex applications such as knowledge
synthesis (Shen et al., 2023), peer review (Chen
et al., 2023), and journalism (Wang et al., 2023c).
An important element of effective writing assistants
is being able to personalize generated text to retain
the knowledge, style, and values of a user – an
essential element of interpersonal communication
(Pickering and Garrod, 2013). With current LLMs
prone to generating overly generic text (Pu and
Demberg, 2023), author personalization of LLMs
is an important problem.

Personalizing LLM outputs may be seen as a
form of alignment to individual users of the LLM
(Kirk et al., 2023). However, leveraging fine-tuning
for alignment in a personalization setup poses chal-
lenges to serving trained per-user models and ob-
taining sufficient per-user alignment training data.
Therefore, we pursue in-context alignment through
retrieval augmentation (Salemi et al., 2023; Li et al.,
2023a). First, we assume access to a set of his-
toric user-authored documents (e.g. emails, social
media posts, etc.) and a user request for a per-
sonalized generation. To personalize LLM outputs
we propose an approach to train a retrieval model
that selects historic user documents to augment
an LLM’s prompt. Historic documents capture
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users’ personal style, knowledge, and values and
can serve as useful context for personalized genera-
tion. While training retrievers for non-personalized
applications have been explored in prior work (Go-
nen et al., 2022), this exploration has been limited
in personalized text generation. Finally, we pur-
sue personalization of LLMs only accessible via
prompt-based APIs since this represents a common
form of accessing performant large scale LLMs.

The starting point for our retriever in prior work
examining effective prompts for non-personalized
applications: Gonen et al. (2022) show the best
prompts to be those with the highest conditional
likelihood of generating a target text, and Rubin
et al. (2022) use these likelihoods to train retrieval
models for non-personalized retrieval augmenta-
tion of LLMs. While this approach performs well
in non-personalized setups, personalized text gen-
eration presents unique challenges and opportuni-
ties: There are fewer historic documents per user
(∼hundreds) than common non-personalized re-
trieval collections, and user requests may diverge
from their history as users’ preferences change. A
smaller retrieval corpus and shifting interests mean
that all requests cannot be satisfied by retrieval
from a users’ historical documents – as a result, all
historic requests and documents are unlikely to be
useful for training a retriever. Our first contribution
addresses this: We present a novel difference of
likelihoods-based method that identifies only the
personalizable user requests and associated docu-
ments that are likely to personalize downstream
generations, and use these to train our retriever.

Next, the personalization setup offers an oppor-
tunity: Fewer historical documents per user permits
the use of expressive cross-encoder retrievers in-
stead of scalable but less expressive biencoders
commonly used for non-personalized tasks (Rubin
et al., 2022). However, cross-encoders produce
skewed scores at the ends of their score ranges
(Menon et al., 2022; Yadav et al., 2022), hamper-
ing their ability to closely track the utility of a
document for personalized generation. We remedy
this with our second contribution – a personalized
scale-calibrating training objective (Yan et al.,
2022). This ensures that scores from our retriever
are generation-calibrated for personalization – i.e.
the score it produces for request-document pairs
is proportional to the output quality of an LLM
prompted with the pair. In a case study, we show
how generation calibration enables the retriever’s

scores to be used for retrieval performance predic-
tion – detecting low-quality retrievals, and revising
potentially low-quality generations.

We instantiate PEARL with multiple LLMs,
davinci-003 and gpt-35-turbo, at privacy com-
pliant enterprise API endpoints and evaluate it on a
private dataset of workplace communications and a
public dataset of Reddit comments. For evaluation,
we use a variety of evaluation methods spanning in-
trinsic, extrinsic, and personalized LLM-as-judge
evaluations to demonstrate the value of PEARL.
Further, since we train calibrated retrieval models,
we present additional evaluations for calibration,
ablations, and analysis in Appendices. Our evalua-
tions demonstrate that PEARL consistently matches
or outperforms strong baseline approaches.

2 Related Work

Example selection for LLMs Early work on train-
ing retrievers for augmenting LLM contexts in
non-personalized applications was proposed by Ru-
bin et al. (2022). They train retrieval models by
distilling LLM likelihoods of the target comple-
tions conditioned on the prompt. Similarly Wang
et al. (2023b) train retrieval models on finer-grained
feedback from a trained reward model through
distillation. More distantly, Zhang et al. (2022)
train instances selection models on rewards from
a downstream evaluation metric using reinforce-
ment learning. Parallel with our work, Salemi et al.
(2024) train bi-encoders for personalized classifica-
tion and short text generation and find knowledge
distillation from downstream LLMs to outperform
reinforcement learning based training of retriev-
ers. In this regard, Salemi et al. (2024) and Rubin
et al. (2022) are closely related and represent clos-
est work to ours – we compare to such an approach
in ablations (Appendix C.2). Despite similarities
to our work, all prior work has explored training
retrievers for document selection while assuming
that satisfactory predictions can be made for all
inputs/requests. In addition to selecting documents
for training, we also select training requests that
benefit from retrieval augmentation – a necessity in
personalization where retrieval is performed over a
smaller historical document set instead of a large
shared corpus. Further, no prior approaches explore
calibration for retrievers and their ability to identify
low-quality retrievals, and selectively revise LLM
outputs – we explore this. Appendix D discusses
additional work on optimizing prompts, robustness

199



Figure 2: To train retriever, fretr, an auxiliary language model is first used to identify historical requests that can be
personalized and the best document to use for personalization 1⃝. Then, fretr is trained on the selected data with a
scale calibrating loss function 2⃝. Given an unseen request, fretr is used to select the best instances from historical
texts for augmenting an LLM prompt for personalized generation 3⃝. Our training results in a generation calibrated
retriever where scores for documents are proportional to the quality of the LLM output.

to prompt errors, and calibrated retrievers.
Personalized writing assistants While writing

assistants have seen considerable exploration, only
some prior work has focused on author person-
alization. These applications range from email
(Chen et al., 2019; Trajanovski et al., 2021), to
social media (Gero et al., 2022), and grammati-
cal error correction (GEC) (Nadejde and Tetreault,
2019). These systems commonly leverage nearest-
neighbor models (Chen et al., 2019; Trajanovski
et al., 2021) and user-group level parameter-
efficient fine-tuning for personalization (Nadejde
and Tetreault, 2019). In contrast, we explore re-
trieval models for in-context alignment/personal-
ization with LLMs. Parallel work has also explored
personalized writing with LLMs. Li et al. (2023b)
construct prompts with pre-trained retrieval and
summarization models and fine-tune an LLM for
personalized completion. Follow-on work has ex-
plored training a prompt-re-writer to tune prompts
for a fixed LLM (Li et al., 2023a). Prompt re-
writing is a complementary approach to a trained
retriever, with future systems likely to benefit from
both. Appendix D discusses non-personalized writ-
ing assistants and reader personalization.

3 Problem Definition

We consider a request-conditional, personalized
text generation task. As input to the system, we
assume a user u who is associated with a set of
Nu historical documents Du = {d(i)u }Nu

i=1, where
each document du may be a previously-authored
social media post, email, etc. The user u is fur-
ther associated with a textual request qu submitted

to the writing assistant. The request may be au-
thored by the user or constructed from the task
context. Explicitly authored requests are increas-
ingly common in conversational LLM interfaces
(Papenmeier et al., 2021), and task contexts may
be seen as implicit requests e.g. email prefixes that
require completion (Chen et al., 2019). Finally, we
assume access to a large language model fLLM
available via a prompt-based text generation API.

Given Du, qu, and fLLM, our retriever, fretr is
trained to select a subset of historical documents
D′

u ⊂ Du as few-shot examples for the LLM.
Then the LLM generates a target text tu of up
to 300 words: tu = fLLM(ϕ(qu,D′

u)), where ϕ
is a prompt construction function that inputs the
user’s request and retrieved historical documents,
tu reflects the style, knowledge, and values of u.

4 Proposed Approach

We present PEARL, an in-context aligned LLM-
based model for personalized writing assistance.
Our approach (Figure 2) consists of an offline re-
triever training stage and an online LLM infer-
ence stage. Offline, we train a retriever fretr :
(qu, du)→ R that scores the user’s historical doc-
uments for their ability to personalize the output
for a user request. Further, we ensure that fretr is
generation calibrated i.e. the scores it produces for
(qu, du) pairs are proportional to the quality of the
generated text from using (qu, du) in a prompt. We
train such a retriever through two key novelties: (1)
Training data selection based on a novel difference
of likelihoods from an auxiliary text generation
model – we identify requests which benefit from
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personalization and documents which likely help
personalize a target, and (2) A scale-calibrating
training objective which ensures that retrievers
closely track the benefit of request-document pairs
for generation. Given a new request, our LLM is
prompted to generate a target text tu conditioned
on the request and the documents retrieved by fretr.
Next, we describe the retriever training set construc-
tion (Algorithm 1), how we optimize the retriever,
and the details of our implementation.

4.1 Training Data Setup

To optimize fretr for a personalized text generation
task, we carefully create a training set for fretr from
historical user documents by using an auxiliary
text generation model faux to identify which re-
quests and documents will help to personalize the
generation of a target text.

Data organization We organize the training data
to create a setup close to the problem defined in
§3. Given a set of M users and their historical
document sets {Du}Mu=1, for each user u we parti-
tion Du into two non-overlapping sets, a candidate
document set Dc

u ⊂ Du, and a “target” text set
Dt

u ⊂ Du, such thatDc
u+Dt

u = Du. The partition-
ing is done temporally, i.e. the target texts occur
after the candidate documents, mimicking the per-
sonalization scenario where past texts are used to
personalize later targets. If time data isn’t available,
the partitioning may be done randomly.

Next, for each target text tu in each users Dt
u,

we pair the text with a corresponding request qu.
For training, requests may be naturally present in
the data, e.g., email prefixes that require comple-
tion (Chen et al., 2019), or they may be generated
synthetically (Bonifacio et al., 2022). We detail
request generation in §5.1.

Auxiliary model scoring Next, we use the aux-
iliary text generation model faux to score each can-
didate document in du ∈ Dc

u for producing the
personalized tu corresponding to the qu for each
(qu, tu) ∈ Dt

u. We define the score as a difference
in the likelihood, per faux, of the target given the
request with and without the historical document:

yduqu = log paux(tu|du, qu)− log paux(tu|qu), (1)

Importantly, Eq. (1) is highest when the request
is suitable for personalization and the candidate
document is the “right” example for personaliza-
tion. That is, the request alone is not sufficient for
generating the target text (i.e., the quantity defined

by the second term is lower), and this candidate
document is particularly beneficial to generation
(i.e., the quantity defined by the first term is higher).
Finally, we assume model faux to be smaller than
fLLM to support efficient creation of training data,
and that we have access to its token likelihoods.
Appendix A shows prompts used for faux.

4.2 Training Data Selection
We use the scores from Eq. 1 to identify: (1) a
subset of training requests that are likely to benefit
from personalization; and (2) candidate documents
that are likely to benefit those requests i.e. positive
training documents.

Request selection Using Eq. 1, we score all
request-target pairs of a user in Dt

u against all of
their candidate documents du ∈ Dc

u, across all M
users. After scoring, we retain the top scoring T
request-target pairs. In practice, we find that setting
T to the top two-thirds across the dataset works
well. This step reflects the intuition that not all
request-target pairs will benefit from retrieval aug-
mentation, either due to the lack of suitable candi-
date documents in a user’s historical document set,
or due to underspecified requests making the target
text simply too difficult to generate well – this is
contrast with RAG setups in non-personalized sce-
narios where a large retrieval corpus ensures that
most requests are likely to benefit from retrieval.
After obtaining a high-quality set of training re-
quests {q∗u}Tt=1, we discard the target texts, since
they aren’t used for training fretr or for inference.

Candidate document selection Next, we use
Eq. 1 to select the best documents for the retained
requests, i.e. identify positive training documents.
Given a request q∗u selected for training, we take the
P highest-scoring candidate documents du ∈ Dc

u

as per Eq. (1) as positives, {d+u }Pp=1. We sample N
negative samples per positive randomly from the
candidate document set for the user.

4.3 Retriever Optimization
Our fretr is a cross-encoder initialized with a pre-
trained LM encoder and trained using data selected
per Algorithm 1, through distillation of scores in
Equation 1. While cross-encoders are expressive
they produce scores which lie at the extremes of
their score ranges (Menon et al., 2022; Yadav et al.,
2022) – this hampers their ability to closely track
the benefit of candidate documents for personaliz-
ing requests. We propose to remedy this through a
scale calibrating training objective.
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Algorithm 1 Selecting requests and positive candi-
date documents to train fretr

1: Input: {Du}Mu=1, faux ▷ Historical documents for M
users and an auxiliary LM

2: for each user u do
3: Dc

u,Dt
u ← TemporalPartition(Du) ▷ Temporally

partition Du into candidate and target documents
4: for each target text tu ∈ Dt

u do
5: qu ← GetRequest(tu) ▷ Obtain a synthetic or

natural request
6: end for
7: for each (qu, tu) pair in Dt

u do ▷ Compute benefit of
personalization for request-target pairs

8: for each candidate du in Dc
u do

9: Y [qu, du] = log paux(tu|du, qu) −
log paux(tu|qu) ▷ Equation (1)

10: end for
11: end for
12: end for
13: {q∗u}Tt=1 ← TopK(Y [qu, du]) ▷ Retain the top T

unique requests which are personalizable
14: for each retained request in {q∗u}Tk=1 do
15: {d+u }Pp=1 ← TopK(Y [q∗u, du]) ▷ Retain the top P

candidates that best personalize the target
16: end for
17: return {q∗u, {d+u }Pp=1}Tt=1

Scale calibration Let yq = [y+q , . . . , y
−
q ], where

y+q corresponds to the score of a positive docu-
ment and y−q corresponds to the score of a nega-
tive document from Eq. 1. Here, yq contains N
negatives and 1 positive document. Similarly, let
the predicted logits from fretr : (qu, du) → R be
denoted as sq = [s+q , . . . , s

−
q ]. Then, a standard

KL-divergence loss is written as KL(yq, sq) =
−∑i sm(yq,i)log sm(sq,i), where sm represents the
softmax function. Our proposed scale calibration
modifies the KL divergence loss by adding an “an-
chor” example with target score y0, which is a tun-
able hyperparameter, and logit s0 set to 0, resulting
in score vectors y′

q = [y0,yq] and s′q = [s0, sq].
The scale-calibrated KL-divergence loss is thus

KL(y′
q, s

′
q) = −

∑

i

sm(y′q,i)log sm(s′q,i) (2)

= −
∑

i

eyq,i∑
j e

yq,j + ey0
log

esq,i∑
j e

sq,j + 1

+
ey0∑

j e
yq,j + ey0

log (
∑

j

esq,j + 1).
(3)

We find that setting y0 to the median value of
scores from Eq (1) for positive candidate docu-
ments works well. This ensures that very large
scores from fretr are penalized (second term Eq 3)
and smaller scores are prevented from being driven
lower (first term Eq 3). Therefore fretr scores are
more evenly distributed over the score range. In
practice, this ensures that predicted scores from

fretr more accurately reflect the distribution of faux,
which in turn more closely tracks the utility of
request-document pairs for personalization. We
compare PEARL to baselines in §5.2 and present
ablations in §C.2.

4.4 System Details

After training retriever fretr offline, PEARL may be
used to serve requests online. Given a unseen re-
quest, fretr retrieves the top-k historical texts from
Du, these are formatted into a prompt and input to
fLLM to generate a personalized target text tu.

Our fretr is initialized with a 110M parameter
MPNET encoder (Song et al., 2020). For fLLM we
consider two performant LLMs, davinci-003 and
gpt-3.5-turbo. For faux we use FLANT5-XL
with 3 billion parameters (Chung et al., 2022). Ap-
pendix A details our prompts and implementation.

5 Experiments

We demonstrate the effectiveness of PEARL on
two personalized text generation datasets from so-
cial media platforms. For evaluation, we employ
standard intrinsic evaluations, extrinsic evaluation
based on downstream tasks using the generated
text, and recently proposed personalized LLM-as-
judge (Wang et al., 2023d). Then, in §5.3 we show
how a calibrated retriever can be used for selective
revision of underperforming requests. We present
ablations in §C.2 and we demonstrate the calibra-
tion performance for our retriever in §C.3.

5.1 Experimental Setup

Data For evaluation, we use two open-ended long-
form text generation datasets for social media: (1)
Personalized post writing on WORKSM and (2)
Personalized comment writing on AITA.

WORKSM WORKSM is an enterprise social net-
work used for communication within organizations
presenting a highly realistic platform for writing
assistance. We obtain a random sample of ∼18k
posts written by 1116 users from November 2020
to July 2023. To create an evaluation set, we man-
ually examine posts greater than 50 words and re-
ceiving ≥2 comments, about 1K posts, and select
163 of the most recent posts from ∼80 users to
serve as reference target texts t∗u. These posts repre-
sent a diverse, engaging set that could benefit from
personalized writing assistance and serve as high
quality target references. At a high level, these
posts share events, research studies, campaigns,
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and organizational news. Since WORKSM does
not contain requests to the writing assistant, two
authors not involved in model development man-
ually wrote requests qu per target text. Note that
this was necessary given the highly regulated and
private enterprise data in WORKSM preventing ex-
posure to external crowdworkers. Our requests
were authored following Guideline 1. To construct
Du posts created before t∗u were used: On aver-
age, users had 31 historic posts (max of 169). To
create our training set, we only retain posts > 10
words and users with ≥ 5 historic posts while ex-
cluding posts in our evaluation set. We generate
synthetic requests with GPT-4 for training given
the expense of manually authored requests – result-
ing in a set of ∼7k training requests. Enterprise
contracts with API providers ensured the privacy
of user data shared over the API.

AITA AITA is a Reddit subforum in which orig-
inal posters (OP) describe personal moral conflicts
and receive comments from other users judging
them to be “the a**hole” or “not the a**hole”. This
dataset has been used in prior work on modeling
the personal values of users (Plepi et al., 2022). We
construct a personalized comment generation task
from this data. We treat the OP posts as requests qu,
user comments as reference target texts t∗u, and a
user’s previous comments as Du. Since the dataset
lacks time metadata, we construct an evaluation
set by sampling 10% of the posts as test requests,
and further filter to 600 random target texts for our
evaluation set to keep LLM experiments feasible.
Evaluation users had 29 posts in Du on average
(max of 590). Our training set used the historical
post-comment pairs from users in Du, resulting in
∼84k requests. Note that while Reddit comments
are not the ideal platform for writing assistance,
AITA is one of the few public datasets available
for the task and resembles applications such as
email response generation (Kannan et al., 2016).
Appendix B details our datasets further.

Generation metrics Since personalized text gen-
eration aims to adhere to the style, knowledge, and
values of specific users, effective evaluation for
personalized generation remains an open problem
(Wang et al., 2023d,a). This is in contrast to non-
personalized generation, where desirable aspects
of outputs can be defined uniformly across all test
cases. As a result, we present evaluations using a
host of standard evaluation setups aiming to demon-
strate the effectiveness of PEARL from various per-

spectives. Our evaluations span the following stan-
dard setups (Dou et al., 2023): intrinsic evaluations
based on n-gram/embedding similarity to reference
texts, extrinsic evaluation through a classification
accuracy based on generated text, and pairwise
evaluation with personalized LLM-as-judge.

Specifically, for WORKSM we report standard
evaluation measures based on n-gram and em-
bedding similarity between generations and ref-
erence targets: ROUGE-1 (R1), ROUGE-2 (R2), and
BertScore-F1 (BS-F1) (Zhang* et al., 2020). This
serves as an intrinsic evaluation for WORKSM mea-
suring the extent to which generations are similar
to user authored texts. Next, since AITA users’
comments primarily make a stance based on users’
moral values, we measure if the stance in gener-
ated comments matches that of the user through a
downstream stance prediction task – serving as an
extrinsic evaluation. This evaluation may be seen
as evaluating the extent to which model generations
adhere to a user’s values. We map generated com-
ments to a binary “YTA” or “NTA” label based on
simple high-precision rules mapping lexical varia-
tions of “you’re the a**hole” and “not the a**hole”
to the labels. This procedure was also found reli-
able for constructing ground truth labels in AITA
(Plepi et al., 2022). Note that early attempts of us-
ing n-gram/embedding similarity measures for eval-
uation (BS-F1, R1, R2) resulted in unreliable eval-
uations for AITA due the large variation (length,
vocabulary, emojis etc.) in AITA comments, there-
fore we opt for more stable extrinsic evaluations
and LLM based evaluations described next.

For both AITA and WORKSM we conduct a pair-
wise evaluation with a recently proposed person-
alized LLM-as-judge (Wang et al., 2023d). Wang
et al. show LLM based author identifications to be
a reliable proxy task for distinguishing models of
various qualities and being correlated with human
quality ratings. Here, a judge LLM is presented
with a reference text from a user and generations
from the pair of systems being compared, then, it
is prompted to select the system generation more
likely to be authored by the author of the reference
text. An author identification task aims to capture
several aspects which distinguish individuals’ writ-
ing, spanning style, knowledge and their values.
In our evaluation, we compare PEARL outputs to
the outputs from the best baseline as indicated by
intrinsic/extrinsic evaluations and use the target ref-
erence text t∗u in the LLM prompt as an example
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LLM→ davinci-003 gpt-35-turbo

Method ↓ Macro F1(%) Macro F1(%)

ZSHOT-NP 41.97 50.43
KSHOT-NP 51.71 59.76

Random 55.52 59.47
BM25 57.26 61.66

MPNET-1B 53.72 59.23
UPR 55.76 58.15

RelevanceCE 56.85 59.59

PEARL 61.21 65.34

(a) Extrinsic classification accuracy in AITA.

LLM→ davinci-003 gpt-35-turbo

Method ↓ BS-F1 R1 R2 BS-F1 R1 R2

ZSHOT-NP 36.25 0.5029 0.2516 31.03 0.4627 0.2091
KSHOT-NP 34.08 0.4931 0.2431 32.51 0.4825 0.2258

Random 35.04 0.5036 0.2505 33.46 0.4893 0.2345
BM25 37.96 0.5287 0.2911 36.57 0.5089 0.2673

MPNET-1B 38.30 0.5281 0.2931 36.02 0.5063 0.2639
UPR 38.70 0.5337 0.3019 35.98 0.5054 0.2642

RelevanceCE 37.81 0.5288 0.2953 35.99 0.5038 0.2613

PEARL 39.60 0.5419 0.3094 36.49 0.5082 0.2676

(b) Intrinsic reference based metrics in WORKSM .

Table 1: PEARL is compared to non-personalized (NP) and LLMs personalized with retrieval on datasets of social
media communication: (a) a dataset constructed from Reddit and (b) a workplace social media dataset.

of the users writing. We use GPT-4o as our judge
LLM and present the judge prompt in Appendix
B.4. In our evaluation we avoid rating aspects such
as fluency, non-redundancy, etc. (Celikyilmaz et al.,
2021) since we are primarily concerned with per-
sonalization performance and these qualities may
be in conflict with specific users writing.

Baselines As baselines, we consider non-
personalized models based on zero shot prompt-
ing (ZSHOT-NP) and few-shot prompting with
k randomly chosen example documents (KSHOT-
NP). We consider retrieval-augmented personal-
ized baselines, which selecting from a user’s histor-
ical documents Du. They span selection at random
fromDu (Random), with sparse retrieval by BM25,
with dense retrieval by a strong MPNET model
trained on 1 billion text pairs (MPNET-1B), an un-
supervised crossencoder (Sachan et al., 2022) rank-
ing documents with FLANT5-BASE likelihood:
p(qu|du) (UPR), and a supervised crossencoder
optimized on our dataset with request-document
pairs, (qu, du) in Du (RelevanceCE). Appendix
B.3 details our baselines.

5.2 Generation Evaluation
Table 1 and 2 report our evaluations. Appendix C
presents ablation (C.2) and calibration (C.3) results.

Reference based evaluation Tables 1b and 1a
reports automated metrics on AITA and WORKSM.
First we observe that personalization through re-
trieval, even at Random, generally improves upon
non-personalized approaches (NP), which is con-
sistent with prior work (Salemi et al., 2023). Next,
we note that the best baseline is not consistent,
varying between BM25, and unsupervised crossen-
coder (UPR) – indicating that retrieval models de-
signed for request-document relevance vary in per-

davinci-003 gpt-35-turbo

P / B / T (%) P / B / T (%)

AITA 46.8 /40.3 /12.8α=0.56 46.6 /44.9 /8.3α=0.55

WORKSM 46.6 /42.5 /10.8α=0.42 38.9 /42.6 /18.5α=0.28

Table 2: LLM-as-judge win-rate evaluation for AITA
and WORKSM selecting a generation to be more aligned
with an authors writing sample. The LLM could prefer
the Proposed system (PEARL), the Baseline (BM25), or
judge the outputs as Tied – denoted with P, B, and T.

formance depending on the dataset and inference
LLM. Finally, we note that PEARL consistently
performs at par or better than the best baselines
across datasets and LLMs, indicating the effective-
ness of training fretr for personalized generation.
For the more reliable classification metrics obtain-
able in AITA, PEARL outperforms all baselines
with improvements of 1.5 to 5 Macro F1 points.
Next, we report performance in more expressive
LLM-as-judge evaluations.

Pairwise LLM-as-judge evaluation In Table 2
we report the results of personalization evaluation
following the setup described in §5.1. Here, we
compare against BM25-augmented as it performs
within our top 2 baselines in automatic evaluations
- this strong performance is consistent with prior
work (Izacard et al., 2022; Thakur et al., 2021). We
use GPT-4o as a judge LLM and run every pair of
inputs through the judge LLM 3 times, we report
average win rates over all the instances in our test
set and over 3 repeated runs. Further, we randomly
swap the position of the baseline and proposed
method generations in the prompt to account for
position biases in the judge LLM. Finally, we also
report the agreement between the 3 judge LLM
runs using Krippendorff’s alpha (α) to ensure that
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LLM judgements are consistent across runs.
In Table 2, PEARL achieves a greater win-rate

than BM25 in 3 of 4 settings. In these settings we
also note that the LLM judgments remain consis-
tent across 3 repeated runs with Krippendorff’s al-
pha between 0.41− 0.56 (0 indicates chance agree-
ment). While BM25 sees a greater win-rate in
WORKSM with gpt-35-turbo, the judgments see
lower agreement (α = 0.28) indicating the outputs
to be harder to distinguish. Finally, comparing to
Table 1 we see that the trends of extrinsic and in-
trinsic reference based evaluations are retained in
LLM-as-judge evaluations – consistently indicat-
ing the benefit of PEARL across evaluation setups,
inference LLMs, and datasets. In Appendix C we
show an example from AITA to show the kinds of
retrievals and outputs that make PEARL effective.

5.3 Selective Revision with PEARL

Having established PEARL to be an effective model
for generation, we show fretr to be generation cali-
brated in Appendix C.3. Here, we demonstrate the
usefulness of a calibrated retriever in a case study
using the retriever scores to selectively revise gen-
erations. Specifically, we treat the scores from fretr
as a predictor of retrieval performance, and in-turn
text generation performance. We assume that if
fretr cannot find a highly scored in-context exam-
ple, the generated response will be of low quality
and can benefit from LLM revision (Figure 3).

Setup Given our trained retriever, we take all
top-1 document scores for each request s1 =
maxdu∈Du fretr(qu, du) and learn a threshold θ on
s1 that maximizes a downstream performance met-
ric on a held-out development set (R2 in WORKSM

and Macro-F1 in AITA). Then, given a generated
target text tu with s1 < θ, we selectively revise
tu where fLLM is prompted to edit the target text.
We report results of selective revision compared
to a single round of generation (i.e., no revision)
and full revision over the entire dataset (i.e., 100%
revision). We repeat this for BM25. We provide
further details and analysis in Appendix C.4.

Results In Table 3 we see that selective revi-
sion improves or retains performance upon a single
round of generation (“Stage 1”) by 2-4% in down-
stream performance metrics with fretr =Proposed
and BM25 for WORKSM. However, for AITA we
see that selective revision based on BM25 shows a
marked drop in performance indicating its dataset
dependent calibration performance. Importantly,

Dataset→ AITA WORKSM

Method ↓ / LLM→ gpt-35-turbo gpt-35-turbo

fretr = BM25 Macro F1 (%) BS-F1 R1 R2

Stage 1 (no revision) 59.99 36.15 0.5052 0.2611
All (100% revision) 58.36 35.45 0.5096 0.2573

Selective revision 57.71 37.29 0.5206 0.2738

fretr = Proposed Macro F1 (%) BS-F1 R1 R2

Stage 1 (no revision) 65.15 37.02 0.5124 0.2709
All (100% revision) 64.85 35.47 0.5045 0.2520

Selective revision 65.36 37.71 0.5236 0.2818

Table 3: Selectively revising target texts tu based on
scores from our retriever vs BM25. Also present are
results of no revision and revising all outputs (100%
revision) from Stage 1 outputs.

Figure 3: Generation calibration of fretr allows us to
use its predicted scores for performance prediction and
selectively revise potentially bad generations.

note that Macro F1 doesn’t measure aspects of style
which may have changed in revision. Finally, edit-
ing all outputs produced by Stage 1 generation
consistently leads to degraded performance (“All”),
indicating that editing is not always helpful.

We also observe that PEARL chooses 75.8%
and 77.9% instances for editing in WORKSM and
AITA, respectively. This indicates the potential
for generation calibrated retrievers to reduce the
number of expensive LLM calls made while ensur-
ing better personalization performance. In Figure
5 (Appendix C.4) we analyze the performance of
selective revision against request and user profile
length. In a manual examination of requests with
a low s1 score by the PEARL fretr, we find the
requests to be underspecified and often require fur-
ther information from a user e.g. the request “Write
a post about how I like to relax after work”, aims to
generate a target discussing more specific forms of
relaxation not present in any historical documents.
This indicates that generation calibrated retrievers
may be used for other forms of selective prediction
and user interaction – e.g. selectively withholding
predictions when satisfactory generations are un-
likely or obtaining more information from users
through follow-up questions. We leave such explo-
rations to exciting future work.
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6 Conclusion

In this paper we present PEARL– an LLM based
writing assistant personalized with generation cali-
brated retrievers. We propose a method for training
generation calibrated retrievers through a careful
selection of training data and a scale calibrated
objective. In a series of holistic evaluations, we
demonstrate the effectiveness of our approach in
datasets of social media communication compared
to baselines (§5.2) as well as ablated models (Ap-
pendix C.2). We demonstrate the calibration perfor-
mance for our retriever (Appendix C.3), and show
how our retrieval model can double as a perfor-
mance predictor (§5.3) and can identify outputs
which can benefit from LLM revision.

7 Ethical and broader impact

Having introduced PEARL as an effective personal-
ization strategy for writing assistance and discussed
its benefits we review two implications of concern
arising from better personalized text generation:
challenges to factuality, and longer term influence
on language use and communication.

Challenges to factuality The emergence of
LLMs and their ability to generate compelling text
has seen a subsequent rise in the cases of malicious
use of these technologies. Augenstein et al. (2023)
overview four such classes of harm: personalized
attacks on individuals in the form of phishing at-
tacks and tailored misinformation, impersonation
of trusted figures (e.g. journalists or regulators), a
glut of paraphrased misinformation evading detec-
tion by automatic tools often used by fact checkers,
and large scale creation of fake social media pro-
files and plagiarized content (Brewster et al., 2023).
It is possible that improvements in personalized
text generation are likely to excacertabe each of
these problems. To account for this, several tech-
nology and policy initiatives are under active de-
velopment (Augenstein et al., 2023). These span
detection of AI-generated content, cryptographic
signatures intended to prove the authenticity of
content, to government regulation and public edu-
cation, however, their effectiveness remains under
investigation.

Language use and communication Current un-
derstanding of computer mediated communication
suggests that users interpersonal communication
patterns are influenced by the tool/medium used
for communication (Poddar et al., 2023) with a
potential for these influences to have longer term

influences on communication in the absence of
these tools (Hancock et al., 2020). Hancock et al.
outline these implications as ranging from shifts
in language use (e.g a social expectation of more
positive responses (Hohenstein and Jung, 2018)),
issues of how individuals portray themselves and
evaluate others, to long term feedback loops re-
sulting in how we perceive ourselves. However,
understanding of the implications of AI mediated
communication, specially those powered by pow-
erful LLMs, is largely developing (Hancock et al.,
2020). It is likely that wide spread personalization
in LLM communication agents, will necessitate fur-
ther understanding of these factors and the design
of systems that incorporates this understanding to
ameliorate harms.
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Hugo Gonçalo Oliveira. 2017. A survey on intelligent
poetry generation: Languages, features, techniques,
reutilisation and evaluation. In Proceedings of the
10th International Conference on Natural Language
Generation, pages 11–20, Santiago de Compostela,
Spain. Association for Computational Linguistics.

Hila Gonen, Srini Iyer, Terra Blevins, Noah A. Smith,
and Luke Zettlemoyer. 2022. Demystifying prompts
in language models via perplexity estimation. arXiv
preprint arXiv:2212.04037.

Yue Guo, Wei Qiu, Yizhong Wang, and Trevor Co-
hen. 2021. Automated lay language summariza-
tion of biomedical scientific reviews. Proceedings
of the AAAI Conference on Artificial Intelligence,
35(1):160–168.

Shivanshu Gupta, Matt Gardner, and Sameer Singh.
2023. Coverage-based example selection for in-
context learning. arXiv preprint arXiv:2305.14907.

Jeffrey T Hancock, Mor Naaman, and Karen Levy. 2020.
AI-Mediated Communication: Definition, Research
Agenda, and Ethical Considerations. Journal of
Computer-Mediated Communication, 25(1):89–100.

207

https://doi.org/10.1145/3477495.3531863
https://doi.org/10.1145/3477495.3531863
https://www.newsguardtech.com/misinformation-monitor/august-2023/
https://www.newsguardtech.com/misinformation-monitor/august-2023/
https://www.newsguardtech.com/misinformation-monitor/august-2023/
http://arxiv.org/abs/2006.14799
https://doi.org/10.18653/v1/2022.emnlp-main.460
https://doi.org/10.18653/v1/2022.emnlp-main.460
https://doi.org/10.1145/3292500.3330723
https://doi.org/10.1145/3292500.3330723
https://cdn.glitch.global/d058c114-3406-43be-8a3c-d3afff35eda2/paper37_2023.pdf
https://cdn.glitch.global/d058c114-3406-43be-8a3c-d3afff35eda2/paper37_2023.pdf
https://doi.org/10.1145/3172944.3172983
https://doi.org/10.1145/3172944.3172983
https://doi.org/10.1145/3172944.3172983
https://doi.org/10.1145/3404835.3462951
https://doi.org/10.1145/3404835.3462951
https://doi.org/10.1145/3404835.3462951
https://openreview.net/forum?id=3Pf3Wg6o-A4
https://openreview.net/forum?id=3Pf3Wg6o-A4
https://doi.org/10.1017/S1351324921000164
https://doi.org/10.1017/S1351324921000164
https://doi.org/10.18653/v1/2022.findings-acl.133
https://doi.org/10.18653/v1/2022.findings-acl.133
http://arxiv.org/abs/2309.11495
http://arxiv.org/abs/2309.11495
http://arxiv.org/abs/2309.12551
http://arxiv.org/abs/2309.12551
http://arxiv.org/abs/2309.12551
https://doi.org/10.1145/3532106.3533533
https://doi.org/10.1145/3532106.3533533
https://doi.org/10.18653/v1/W17-3502
https://doi.org/10.18653/v1/W17-3502
https://doi.org/10.18653/v1/W17-3502
http://arxiv.org/abs/2212.04037
http://arxiv.org/abs/2212.04037
https://doi.org/10.1609/aaai.v35i1.16089
https://doi.org/10.1609/aaai.v35i1.16089
http://arxiv.org/abs/2305.14907
http://arxiv.org/abs/2305.14907
https://doi.org/10.1093/jcmc/zmz022
https://doi.org/10.1093/jcmc/zmz022


Jess Hohenstein and Malte Jung. 2018. Ai-supported
messaging: An investigation of human-human text
conversation with ai support. In Extended Abstracts
of the 2018 CHI Conference on Human Factors in
Computing Systems, CHI EA ’18, page 1–6, New
York, NY, USA. Association for Computing Machin-
ery.

Krystal Hu. 2023. Chatgpt sets record for fastest-
growing user base - analyst note. National Bureau of
Economic Research, Digest No. 6.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebas-
tian Riedel, Piotr Bojanowski, Armand Joulin, and
Edouard Grave. 2022. Unsupervised dense informa-
tion retrieval with contrastive learning. Transactions
on Machine Learning Research.

Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias Kauf-
mann, Andrew Tomkins, Balint Miklos, Greg Cor-
rado, Laszlo Lukacs, Marina Ganea, Peter Young,
and Vivek Ramavajjala. 2016. Smart reply: Auto-
mated response suggestion for email. In Proceedings
of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’16,
page 955–964, New York, NY, USA. Association for
Computing Machinery.

Omar Khattab, Keshav Santhanam, Xiang Lisa
Li, David Hall, Percy Liang, Christopher Potts,
and Matei Zaharia. 2023. Demonstrate-search-
predict: Composing retrieval and language mod-
els for knowledge-intensive nlp. arXiv preprint
arXiv:2212.14024.

Hannah Rose Kirk, Bertie Vidgen, Paul Röttger, and
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Write the COMMENT mimicing the length ,
style , reasoning , and stances of the
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A Model Details

Retriever We instantiate fretr with the
pre-trained MPNET, which is relatively
lightweight at 110M parameters (Song et al.,
2020). We obtain an output score from fretr
as wT tanh

(
WT ENC([qu, du])

)
, where ENC

represents the CLS token from the final layer of the
encoder, and qu and du are the text of the input
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Prompt 2 fLLM prompt used to generate a target
text given historical examples retrieved by fretr and
a target request for WORKSM.� �
Given a REQUEST from a USER to author a
POST, write a POST for an enterprise
social media site mimicking the user to
satisfy the REQUEST.
Use the following instructions for your
response:
1. You should maintain consistency in
tone and style with the USER's historical
posts.

2. You should imitate the language style
of the USER's historical posts.

3. You should employ similar rhetorical
methods as the USER's historical posts.
Here are some historical posts by the
USER: {{historical examples}}
REQUEST: {{target request}}
Write the POST to satisfy the REQUEST
mimicing the tone , style , and rhetorical
methods of the USER's historical posts.� �

request and historical document. The encoder
parameters, w, and W are trained.

Text generation models For fLLM we con-
sider two performant LLMs offered via API by
Azure OpenAI, davinci-003 and gpt-3.5-turbo.
For faux we consider a smaller but still effective
encoder-decoder language model, FLANT5-XL,
with 3 billion parameters (Chung et al., 2022). The
latter model is open-sourced, allowing us to ac-
cess its token likelihoods directly, a requirement of
Eq. 1. We obtain target text likelihoods by taking
the average of log-probabilities of individual token
likelihoods from FLANT5-XL.

LLM prompts We use Prompts 2 and 1 for
LLM inference. The same prompts are used with
davinci-003 and gpt-35-turbo. For construct-
ing training data in Eq 1 with a FLANT5-XL, faux
we use Prompts 5, 6, 3, 4. Note that computing
paux(tu|qu) uses a set of randomly chosen few shot
examples from the training set fixed across requests
rather than the request alone.

PEARL implementation In constructing train-
ing data for fretr we use |Dt

u| = 8, i.e we treat the
8 most recent texts per user as their target texts.
To train fretr, we consider the top two canadidate
documents per Eq. (1) as positive examples per
request and use three negatives per positive, i.e.,
P = 2 and N = 3. In our LLM prompts, we use
k = 3 retrieved examples for WORKSM and k = 4
for AITA, tuned on a dev set, and set generation
temperature to zero.

Prompt 3 faux prompt used to compute paux(tu|qu)
in Eq (1) for AITA.� �
Here are some example posts on the Am I
The Asshole subreddit:
{{random fewshot examples}}. Target post:
{{target post}}. Write a users comment for
this post:� �
Prompt 4 faux prompt used to compute
paux(tu|du, qu) in Eq (1) for AITA.� �
Here is an comment on a post by a user
on the Am I the Asshole subreddit:
{{candidate comment}}. Target post:
{{target post}}. Write a users comment for
this post:� �

We also use temperatures for target scores input
to softmax functions in Eq. (2), y′

u/τ with τ =
5. Finally, we set y0 = 110 for WORKSM and
y0 = 5 for AITA, which are the median values of
Eq. (1) for each respective dataset on the training
data. We tuned y0 on a dev set constructed similar
to our training set to 25 and 75 percentile values
of Eq. (1). Our retrievers were trained on Nvidia
V100 GPUs with 16GB memory or Nvidia RTX
A6000 GPUs with 48GB memory. Experiments for
training retrievers required about 300 hours in total.

B Experimental Details

Here we present various details of datasets, base-
lines, and manual evaluation.

B.1 Evaluation Requests in WORKSM

For evaluation in WORKSM two authors not in-
volved in model development manually authored
requests for each of the 163 target posts in our
evaluation set. Guidelines presented to annotators
for the requests are presented in Guideline 1. The
requests are intended to be brief and include the
salient information contained in the post. Note that
annotators external to the authors weren’t recruited
for authoring requests due to the private and highly
regulated nature of WORKSM.

B.2 Training Requests in WORKSM

Section 5.1 notes that our training set for WORKSM

was constructed from synthetic requests generated
by GPT4. The prompt for this is presented in
Prompt 11. We follow an incremental approach
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Prompt 5 faux prompt used to compute paux(tu|qu)
in Eq (1) for WORKSM.� �
Here is are some posts by a user on an
enterprise social network:
{{random fewshot examples}}
Here is an outline for a target post by
the user: {{target request}}. Write the
target post:� �
Prompt 6 faux prompt used to compute
paux(tu|du, qu) in Eq (1) for WORKSM.� �
Here is an example post by a user on an
enterprise social network:
{{candidate document}}. Here is an outline
for a target post by the user:
{{target request}}. Write the target post:� �
to construct the synthetic requests: first extracting
the salient aspects of the post, followed by con-
catenation of these aspects to result in the request.
The salient aspects span: an overview of the post,
proper nouns mentioned in the post, contact in-
formation, links to webpages, and any specialized
knowledge or anecdotes in the post. Given the suc-
cess of chain-of-thought prompting, we generate
an explanation followed by salient aspects of the
post – the explanations are not used elsewhere. En-
terprise contracts ensure the privacy of user data
shared over the API.

B.3 Baselines

We consider the following non-personalized base-
lines: ZSHOT-NP: This represents a non-
personalized approach prompting only with the re-
quest. KSHOT-NP: A zero-shot non-personalized
approach using a fixed randomly selected set of k
documents for all requests. For AITA, the exam-
ples are balanced across labels.

We consider the following retrieval-augmented
personalized baselines, selecting from a user’s his-
torical documents Du: Random: Random selection
of k documents from Du. BM25: Represents a
classic performant retrieval model based on query-
document term overlap. MPNET-1B: This a strong
MPNET bi-encoder trained on 1 billion text pairs
from numerous domains.1 Documents are ranked
for a request using cosine similarity between em-
beddings. QL-FT5: An approach which ranks
documents based on p(qu|du) with a pretrained

1HF model: sentence-transformers/all-mpnet-base-v2

Prompt 7 Judge LLM prompt used to select a gen-
erated post more likely to align with a reference
post authored by a user for WORKSM.� �
You an an experienced linguist who helps
people compare social media texts.

Given a REFERENCE POST and two
TARGET POSTS judge which of the TARGET
POSTs is significantly more likely to be
written by the same author as the
REFERENCE POST.
For your response use the following
instructions:
1. Make your judgement based on
stylistic patterns , ordering of
information , and tone used.
2. Output POST ONE if it is significantly
more likely to be written by the same

author as the REFERENCE POST.
3. Output POST TWO if it is significantly
more likely to be written by the same

author as the REFERENCE POST.
4. Output BOTH if either post could have
been written by the same author or

neither could have been written by the
same author.
Here are the POSTS:
REFERENCE POST: {{reference post}}
POST ONE: {{post one}}
POST TWO: {{post two}}
Output a justification for your
judgement , then output POST ONE , POST
TWO , or BOTH to indicate your final
decision.� �
FLANT5-BASE with 250M parameters (Sachan
et al., 2022). This may be seen as an unsupervised
crossencoder. RelevanceCE: A supervised crossen-
coder with the same architecture as fretr in PEARL

but differing in training. This is trained on pairs of
(qu, du) inDu treated as positive training pairs with
a crossentropy loss, with negatives selected as a ran-
dom historical document from the same user not
but corresponding to qu. Note that this corresponds
to a crossencoder optimized for request-document
relevance, i.e. p(relevance = 1|qu, du), rather than
personalized target text generation.

B.4 Judge LLM prompts

In Prompt 8 and 7 we present prompts for GPT-4o
as a judge LLM discussed in §5.2.

C Additional Results

Here we present additional results in addition to
those presented in §5.2. We present these here
primarily in the interest of space.
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Figure 4: A qualitative example illustrating the effectiveness of PEARL on AITA: Given a request post qu describing
an ambiguous interpersonal situation regarding sharing medical information, PEARL retrieves a historical user
comment du that demonstrates the user’s characteristic tone and values, and generates a comment tu highly similar
to the ground-truth user comment t∗u. We bold qualitatively similar phrases about individual liberties and italicize
phrases about self-care and mental health. All texts are abbreviated for space, and provided in full in Appendix C.

C.1 Qualitative example from AITA

Here we provide the full texts of the qualitative
AITA examples from Figure 4, alongside the top-
retrieved comment from BM25 to show the quali-
tative difference in retriever effectiveness.

Original post qu: going for surgery without
telling my parents. So , I guess I ’ll start off with
background information .I am 21 , and trans mas-
culine , or female to male if that term works for
you

Gold user-authored comment t∗u: “NTA, hon-
estly you can do whatever you choose feels best to
you. Your parents have not been supportive of your
transition so they have elected not to be a part of
the process. You can tell them any amount of detail
you like whether before, after, or at different times.
It’s good you have helpful friends. Good luck!”

Top PEARL-retrieved comment du: “NTA, you
don’t owe your abusive ex anything. That being
said, in your position I would consider getting a
friend to tell him just so you yourself can get clo-
sure and not be wondering when he’s going to ha-
rass you about it.”

Top BM25-retrieved comment du: “YTA, just
another lame guy who is only interested in a girl if
he has a chance to sleep with her”

PEARL LLM output: “NTA. You are an adult
and have the right to make your own medical de-
cisions. It’s understandable that you don’t have a
great relationship with your parents and don’t feel
comfortable sharing this information with them.
It’s also important to note that being transgender is
not self-harm and it’s great that you are taking care
of your mental health by seeing a counselor and
nurse regularly. Wishing you a speedy recovery!”

Dataset→ AITA WORKSM

LLM→ gpt-35-turbo gpt-35-turbo

Method ↓ Macro F1(%) BS-F1 R1 R2

PEARL 65.34 36.49 0.5082 0.2676

no calibrated sm 63.01 36.69 0.5095 0.2654
distill paux(tu|du, qu) 62.32 35.64 0.5057 0.2652

Table 4: PEARL compared to alternate training of fretr
for gpt-35-turbo.

C.2 Ablating Training Strategies

In Table 4 and 5, we compare common alterna-
tive training of fretr while keeping inference steps
identical for gpt-35-turbo and davinci-003 re-
spectively. These serve to ablate our specific con-
tributions: selection of training requests which ben-
efit from personalization and our scale calibrating
objective.

No calibrated objective Removing the scale
calibration and using a standard KL divergence (–
calibrated sm) degrades performance for AITA and
sees comparable performance in WORKSM with
gpt-35-turbo in Table 4. With davinci-003 we
see scale calibration consistently improves perfor-
mance (Table 5). This indicates the importance
of calibration for estimating the benefit of a his-
torical document to a request consistently across
datasets and LLMs. Appendix C.3 shows scale cal-
ibration also consistently improves the correlation
of retriever scores with task performance.

Distill paux(tu|du, qu) to fretr. The proposed
fretr is trained on documents which benefit person-
alization and requests which benefit from person-
alization. Here, we compare to an approach that
only selects documents that benefit personaliza-
tion by maximizing paux(tu|qu, du). This assumes
that all training requests benefit from personaliza-
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Prompt 8 Judge LLM prompt used to select a gen-
erated comment more likely to align with a refer-
ence comment authored by a user for AITA.� �
You an an experienced linguist who helps
people compare social media texts.

Given a REFERENCE POST and two
TARGET POSTS judge which of the TARGET
POSTs is significantly more likely to be
written by the same author as the
REFERENCE POST.
For your response use the following
instructions:
1. Make your judgement based on
similarity of stylistic patterns ,
arguments , stances , and word choices.
2. Output POST ONE if it is significantly
more likely to be written by the same

author as the REFERENCE POST.
3. Output POST TWO if it is significantly
more likely to be written by the same

author as the REFERENCE POST.
4. Output BOTH if either post could have
been written by the same author or

neither could have been written by the
same author.
Here are the POSTS:
REFERENCE POST: {{reference post}}
POST ONE: {{post one}}
POST TWO: {{post two}}
Output a justification for your
judgement , then output POST ONE , POST
TWO , or BOTH to indicate your final
decision.� �
tion. We train fretr with a KL-divergence objec-
tive. This approach, also, closely resembles prior
work example selection in non-personalized tasks
(Rubin et al., 2022) as well as personalized tasks
(Salemi et al., 2024). We see in Table 4 and 5 (dis-
till paux(tu|du, qu)) that this lowers performance
markedly, indicating the value of our approach.

C.3 Calibration Evaluation

Since we aim to train generation calibrated retriev-
ers, we evaluate calibration performance i.e a re-
trieval models scores to be predictive of down-
stream generation performance (Table 6). Here,

Dataset→ AITA WORKSM

LLM→ davinci-003 davinci-003

Method ↓ Macro F1(%) BS-F1 R1 R2

PEARL 61.21 39.60 0.5419 0.3094

no calibrated sm 57.27 38.88 0.5350 0.3033
distill paux(tu|du, qu) 55.52 39.34 0.5359 0.3059

Table 5: PEARL compared to alternate training of fretr
for davinci-003.

Method ↓ / LLM→ davinci-003 gpt-35-turbo

Pearson r Pearson r

AITA

BM25 0.08 -0.05
MPNET-1B 0.07 -0.14

UPR -0.48 -0.02
RelevanceCE 0.07 -0.19

PEARL fretr 0.11 0.45
– calibrated sm -0.48 0.12

WORKSM

BM25 0.42 0.52
MPNET-1B 0.54 0.52

UPR -0.05 -0.02
RelevanceCE 0.56 0.49

PEARL fretr 0.64 0.64
– calibrated sm 0.58 0.55

Table 6: Calibration performance of PEARL evaluated
through correlation between score for top-1 document
and Macro-F1 for AITA, and R2 for WORKSM.

Pearson r is reported between the top-1 document
score for a request and the downstream generation
evaluation metric – R2 for WORKSM, and Macro-
F1 for AITA. To do this for AITA, we first bin
evaluation requests into equal sized bins by top-1
document score, s1, and then measure Pearson r
between the bin start and the average evaluation
metric per bin. Our metric is in contrast with prior
work (Dhuliawala et al., 2022; Yan et al., 2022)
that focuses on classification tasks, where model-
predicted class probabilities can be used for mea-
suring calibration, missing in our setup.

Among baseline methods, we see sparse and
dense retrieval methods, BM25 and MPNET-1B
scores to be better calibrated with downstream per-
formance compared to likelihood-based methods
like QL-FT5. Next, we see PEARL to be bet-
ter correlated with downstream performance for
WORKSM and AITA- indicating the effectiveness
of our training strategy. Further, we also report
on an ablated model, not using the scale-calibrated
objective of Eq (3) (– calibrated sm). We see this
approach underperform PEARL, indicating the im-
portance of the scale-calibrated objective for a well-
calibrated crossencoder. The poorer calibration
of crossencoders also finds support in prior work
showing their scores to lie at extremes of the score
distribution (Menon et al., 2022; Yadav et al., 2022).

C.4 Selective Revision with PEARL –
Extended Results

In §5.3 we demonstrate how our trained retrieval
model can be used for selective revision with
gpt-35-turbo. Prompt 9, 10 present the prompts
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Prompt 9 fLLM prompt used to for selective revi-
sion given a Stage 1 draft for AITA.� �
Given a POST from the subreddit Am I the
Asshole and a DRAFT comment from the USER
responding if the author of the POST is
an asshole or not the asshole , edit the
DRAFT comment.
Use the following instructions for your
response:
1. Maintain consistency in tone and
style with the USER 's historical
comments.
2. Edit the DRAFT to use more reddit
lingo.
3. Remove statements of the POST from the
DRAFT.

4. Output a justification for your edits
starting with the word JUSTIFICATION.

5. Output the edited DRAFT comment
starting with the words EDITED DRAFT.
Here are some historical comments by the
USER: {{historical examples}}

REQUEST: {{target request}}
DRAFT: {{target draft}}
Output a justification for your edits ,
then output the edited DRAFT starting
with the words EDITED DRAFT.� �
used for revision with both LLMs.

In Figure 5, we examine the impact of selec-
tive revision in WORKSM for requests of different
lengths and users with different number of histor-
ical posts. We see that revision benefits requests
of medium length and users with few posts. From
Figure 5a, we hypothesize that requests that are too
short may require additional user input and see no
gains from revision. On the other hand requests
that are too long, may be more challenging to fol-
low and are unlikely to improve from revisions.
From Figure 5b, we see that users with few posts
benefit from revision indicating that these users
see poorer retrievals. On the other hand users with
larger profiles see a drop in performance indicat-
ing that even better calibration performance may
improve performance of selective revision further.

Note that we don’t report results with
davinci-003 since our procedure for learning a
threshold θ for selective revision failed to find a
threshold where dev set performance was improved
from selective revision. Finally note that metrics re-
ported for selective revision in Table 3 isn’t directly
comparable to those of Tables 1, 4, and 5 since they
represent different LLM runs and exclude a dev set
from WORKSM and AITA for learning θ (50 and
200 instances respectively).

Prompt 10 fLLM prompt used to for selective revi-
sion given a Stage 1 draft for WORKSM.� �
Given a REQUEST and a DRAFT from a USER to
author a social media POST, edit the
DRAFT to satisfy the REQUEST.
Use the following instructions for your
response:
1. Enumerate any missing missing
information from the REQUEST in the DRAFT.
2. Enumerate any irrelevant information
for the REQUEST in the DRAFT.
3. Then output the edited DRAFT starting
with the words EDITED DRAFT.
REQUEST:{{target request}}
DRAFT: {{target draft}}
Output missing or irrelevant information
for the REQUEST, then output the EDITED

DRAFT satisfying the REQUEST.� �
D Extended Related Work

Having discussed the closest body of related work
in §2 we discuss additional related work here.

Dynamic prompts for LLMs Besides train-
ing retrievers for in-context example selection dis-
cussed in §2, other approaches have explored better
use of pre-trained models for example selection.
Creswell et al. (2023) select examples based on
the target LLM likelihood - necessitating access
to LLM likelihoods and incurring latency in re-
trieval. Gupta et al. (2023) explore selecting sets of
examples with dense retrieval models, presenting
a complementary approach to ours. Finally, Pan
et al. (2023) use retrieval models to select exam-
ples from multiple knowledge sources and train a
routing model to decide the source of knowledge
to retrieve from – selective revision (§5.3) based
on a retriever may be seen as a form of routing.

Prompt robustness in LLMs Simultaneous
routing and retrieval also relates our approach to
work ensuring that LLMs are robust to noisy re-
trievals. Prior approaches ensured robustness by
only using retrieved documents based on simple
frequency filters on entities mentioned in the input
query (Mallen et al., 2023) or based on predictions
from an NLI model that determines if the query
entails the retrieved contexts (Yoran et al., 2023).
Other approaches have sought to fine-tune the LLM
to be robust to irrelevant contexts (Li et al., 2023c;
Luo et al., 2023; Yoran et al., 2023) or modify the
decoding procedure (Shi et al., 2023). In contrast,
we determine the quality of the input context based
on scale-calibrated retrieval model scores.

LLM chaining In selectively editing generations
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(a) Effectiveness of selective revision for requests of differ-
ent lengths (in words).

(b) Effectiveness of selective revision for users of different
numbers of historical posts.

Figure 5: The impact of selective revision (§5.3) in PEARL on WORKSM compared for requests of different length
and users with varying number of historical posts.

with an LLM for low-performing requests, our ap-
proach also relates to recent work on composing
LLMs with other models to build more complex
systems (Wu et al., 2022; Arora et al., 2023; Khat-
tab et al., 2023). Close work is presented by ap-
proaches that leverage repeated LLM calls to verify
the reasoning or factuality of previous generations
(Shridhar et al., 2023; Dhuliawala et al., 2023). In
contrast, our work leverages an efficient retrieval
model to selectively direct low-performing genera-
tions for further revision, reducing the total num-
ber of expensive LLM calls necessary. In this re-
spect, our approach bears similarity to Zhang et al.
(2023b), who progressively run larger LLMs only
when necessary for an input.

Calibrated retrievers A small body of work
has explored calibrated ranking models. Yan et al.
(2022) train scale-calibrated ranking models for
recommendation models used for advertisement
pricing systems. On the other hand, our work lever-
ages scale-calibration for personalized writing as-
sistance. Other work has explored joint training
of retrievers and generative models to obtain cal-
ibrated retrievers (Dhuliawala et al., 2022), using
Gaussian embeddings to estimate retriever uncer-
tainty (Zamani and Bendersky, 2023), or estimat-
ing retriever confidence with monte-carlo dropout
(Cohen et al., 2021). In contrast with probabilistic
uncertainty estimation, PEARL minimally modifies
training to result in a calibrated model and does
not require extensive changes to training, model
architecture, or additional inference costs.

Writing assistants A sizable body of work has
explored the development of writing assistants.

Compared to assistants for communication appli-
cations, these have been targeted at authors of
creative texts like screenplays (Mirowski et al.,
2023), stories (Akoury et al., 2020), and poems
(Gonçalo Oliveira, 2017) – consequently, they fo-
cus on diverse generations and long-range coher-
ence, rather than personalization. Further, while
our work leverages a request-driven assistant, prior
systems have used a variety of interaction and con-
trol methods. While text completion presents a
common form of interaction (Clark et al., 2018),
recent work has seen use of infilling, tag-based
control (Sun et al., 2021), and instruction guided
generations (Chakrabarty et al., 2022) – a deeper
examination of control and interaction strategies
and their trade offs are presented in related reviews
(Zhang et al., 2023a; Lin et al., 2023). While our ap-
proach to personalization may be extended to some
alternative interaction paradigms, other interaction
techniques are likely to necessitate additional work.

Personalized text generation While we have
focussed on author personalization that aims to
mimic stylistic patterns, interests, and values of
an author, we briefly review reader-personalized
text generation – a setup aiming to generate texts
that are engaging and relevant to readers’ pref-
erences. This has historically been explored for
generating personalized reviews (Ni et al., 2017),
recipes (Majumder et al., 2019), news headlines
(Ao et al., 2021) and in dialogue agents (Mazaré
et al., 2018; Zhang et al., 2018). Related work is
also found in text simplification and lay summariza-
tion in the context of scientific text – this work has
explored generating definitions for scientific con-
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cepts at varying levels of complexity (August et al.,
2022; Murthy et al., 2022) or summarizing scien-
tific text for lay readers (Guo et al., 2021). While
recent work has explored this with modern LLMs
(Li et al., 2023d; Farajidizaji et al., 2023), reader
personalization remains an understudied problem
and presents a rich area for future work.

E Limitations

Here, we discuss limitations of our work derive
from our choice of faux and fLLM, our evaluation
setup, and the design of our method.

Choice of LLMs Our experiments use two
closed LLMs through API access (davinci-003,
gpt-35-turbo). While we show the value of
PEARL with LLM’s of varying performance, es-
tablishing its effectiveness with other LLMs will
require further work. We also acknowledge that
closed LLMs limit experimental reproducibility -
however, given the widespread use of GPT models
(Hu, 2023) we believe our investigation is mean-
ingful. Finally, in constructing training data for
instance selection models for an LLM, prior work
has noted the best empirical performance from
matching faux and fLLM (Rubin et al., 2022). While
we demonstrate benefits from using significantly
smaller models for faux, using an open LLM will
allow further validation of this result in the context
of our approach. However, using a larger (open)
model for faux will incur additional costs in cre-
ating training data, and smaller models for fLLM
are likely to see a worse generation performance -
exploring this tradeoff requires future work.

Evaluation setup Next, while WORKSM repre-
sents an impactful and realistic use case for writing
assistants, we acknowledge that its private nature
limits reproducibility. Further, our evaluation set of
WORKSM and AITA represents a limited set of sce-
narios that are likely to leverage writing assistants.
While we believe our work represents a meaningful
first step, additional future work, and online evalua-
tions are necessary to establish the value of PEARL

across the myriad of scenarios where writing assis-
tants may be used. Finally, while we leverage sev-
eral evaluation strategies to demonstrate the value
of PEARL, evaluating text generations under per-
sonalization setups represents is an under-explored
and a currently emerging body of work (Wang et al.,
2023a,d).

Method design Finally, we note that the current
design of PEARL is likely to have some drawbacks.

It is possible that our proposed method for train-
ing instance selection biases system performance
toward some users or requests – we leave examina-
tion of this to future work. It is also possible that
formulating fretr as an expressive crossencoder and
the use of large LLMs will present latency limita-
tions for interactive applications – exploration of
models supporting faster retrieval and text genera-
tion inference represent important future work.
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Prompt 11 GPT4 prompt used to generate synthetic requests for WORKSM posts in our training set.� �
## TASK
Given an enterprise social media post , generate a set of writing instructions that
explain how to
"reverse -engineer "; the post. Use the following steps:
- The instructions must give a high -level overview of what the post aims to
communicate. Example: [readcted]
- The instructions must include specific proper nouns (people , places , organzations)
. Example: [redacted]
- The instructions must include contact information if available. Example: [redacted
]
- The instructions must include specific links to websites or files if available.
Example: [redacted]
- The instructions must contain any knowledge that is highly specialized and is
likely to be only known to the individual who wrote the post , if available. Example:
[redacted]

- The instructions must contain rough sketches of any personal anecdotes in the post
, if available. Example: [redacted]
- The instruction must **not** contain any formatting or ordering information from
the post.

## OUTPUT
Output the following:
<Explanation >{ explanation of your reasoning for how you generated the instructions ,
in 3 sentences or fewer}</Explanation >
<Instruction.Overview >{1-2 sentences overview of what the post aims to communicate
}</ Instruction.Overview >
<Instruction.Names >{1-2 sentences about the people , places , or organizations
mentioned in the post , _NONE_ if not applicable }</ Instruction.Names >
<Instruction.Contacts >{1-2 sentences about the contact information copied verbatim
in the post , _NONE_ if not applicable }</ Instruction.Contacts >
<Instruction.Links >{1-2 sentences including the links copied verbatim from the post ,
_NONE_ if not applicable }</ Instruction.Links >

<Instruction.Knowledge >{1-2 sentences paraphrasing the specialized knowledge
included in the post , _NONE_ if not applicable }</ Instruction.Knowledge >
<Instruction.Anecdotes >{1-2 sentences paraphrasing the anecdotes included in the
post , _NONE_ if not applicable}</ Instruction.Anecdotes >

## INPUT
{{input post}}� �

218



Guideline 1 Instructions provided to annotators for authoring requests for our evaluation set in WORKSM.� �
Overview:
In this study , we are developing LLM -based approaches for writing
social media posts on enterprise social networks. Your task is as
follows: Given a social media post from an enterprise social media
platform , write a short outline of the post. In writing your outline ,
imagine you are a manager , social media manager , or event organizer

writing a rough sketch of the post with the key information you would
like to share.

Data Format:
You are given a spreadsheet consisting of ˜150 English posts. Each
row corresponds to a single post. The spreadsheet contains the
following columns: PostId , InputPost , OutputShortOutline. The first
column is the ID of the post; you can ignore this column. The second
column is the full text of the input post. In the third column , you
will write your short outline based on the input post.

DO’s for your outline:
When writing your short outline , do include the following:
- One sentence about the goal of the post: Include a brief
description of what the post is trying to communicate. Example: [
redacted]
- Specific proper nouns (people , places , things): Include names of
specific people , places , or things in your outline. Example: [
redacted]
- Specialized knowledge: If the knowledge contained in the post is
highly specialized and is likely to be only known to the individual
writing the post , include a rough sketch of that information in your
outline. Example: [redacted]
- Personal anecdotes: If the post contains specific personal
anecdotes , include a rough sketch of that information in your outline
. Example: [redacted]
- Special emphasis or call to action: If the post makes a special
emphasis , include a rough sketch of that emphasis or call to action
in your outline. Example: [redacted]
- External website links: If the post links to an external website ,
include the link in your outline. Example: [redacted]

DONT’s for your outline:
When writing your short outline , do not include the following:
- Anything related to the ordering of content.
- Formatting instructions.
- Any verbatim text other than specific proper nouns.� �
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Abstract

With the number of scientific papers published
every year growing and current large language
models (LLMs) showing state-of-the-art perfor-
mance on natural language processing (NLP)
tasks, we ask the question if LLMs could be uti-
lized to answer questions on scientific papers.
We investigate how well state-of-the-art large
language models (LLMs) can answer questions
on scientific paper by experimenting with long-
context versions of the LLaMA 2 model and
evaluating and training on the Qasper dataset.
We analyze how well the LLMs handle longer
papers and questions that can only be answered
by accessing information from far out para-
graphs. During our experiments, we see that the
performance of these LLMs drops with grow-
ing length and position of relevant informa-
tion. We employ different measures from sim-
ple prompts to chain-of-thought prompts and
zero-shot usage to fine-tuning with QLoRA.
While we still observe a performance loss with
increased context length, our measures reduce
the effects of this flaw, and we can achieve F1

scores similar to bigger models like GPT-4.

1 Introduction

The number of scientific papers published every
year is growing exponentially (Fire and Guestrin,
2018). This creates a problem for scientists but also
the general public to keep up with the developments
in science. A natural language processing (NLP)
system that can reliably answer questions on scien-
tific papers could help in this situation. Question
answering (QA) systems often rely on task-specific
machine learning models that can only be used for
this purpose. Large Language Models (LLMs) are
a newer type of deep learning model trained to be
general-purpose models for NLP. Current commer-
cial and open-source LLMs are often used in an
intuitive, conversational manner as chatbots. They
offer the ability to answer follow-up questions and
have an intuitive interface for most users. They

show state-of-the-art (SOTA) NLP performance
(OpenAI, 2023; Anil et al., 2023) and even display
some reasoning capabilities (Brown et al., 2020;
Chowdhery et al., 2023; OpenAI, 2023; Anil et al.,
2023) and would be one contender for the core of
a QA system focused on scientific papers.

Scientific papers present great challenges as con-
text for QA when using LLMs for multiple rea-
sons: Their text part is typically about around
4,000 to 13,333 tokens long assuming that one
word amounts to around 1.3 tokens (Björk et al.,
2009; OpenAI, b). The base versions of newer
commercial models like GPT-3.5 and GPT-4 have
context windows of 4,096 (OpenAI, a) and 8,192
(OpenAI, a) tokens while open-source LLMs like
LLaMA 2 (Touvron et al., 2023b) offer a 4,096 long
context window. Also, scientific papers consist of
long unstructured (except sectioning etc.) raw text
making, it hard to determine which part is impor-
tant to answer the question. The answer type is also
not clear as the question could be about explaining
some concepts presented in the paper, simple facts
or even yes or no questions, or the question could
be unanswerable. The unstructuredness and length
of the context is especially problematic even for
long-context LLMs as Liu et al. (2023) found: For
multi-document QA where the LLM has to select
the relevant context part from multiple options, the
performance curve has a U-shape with respect to
the position of the documents as the ones at the be-
ginning and the end are better retrieved than those
in the middle.

In this paper, we evaluate how well a small open-
source LLM can perform as a QA system for sci-
entific papers if used in a zero-shot manner – es-
pecially regarding long papers (>4k tokens) and
those questions whose relevant paragraphs are far
out token-wise. To do this, we bin the papers per
length and the questions per position of the relevant
paragraphs. We try to improve the performance us-
ing recent LLM adaptation techniques (prompting,
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parameter-efficient fine-tuning). We also investi-
gate what weaknesses (e.g., instruction-following,
long-context understanding) of the models specifi-
cally the fine-tuning improves. Finally, we compare
our best model with bigger ones. We observe that
increased context length and position of the rele-
vant paragraphs result in worse performance even
for long-context LLMs. While more sophisticated
prompting does not help, fine-tuning increases over-
all performance significantly but mostly by improv-
ing the instruction-following of the LLMs.

2 Related Work

Large Language Models The foundation for
most current Large Language Models (LLMs) like
the Gemini (Anil et al., 2023), GPT (Brown et al.,
2020; OpenAI, 2023), LLaMA (Touvron et al.,
2023a,b), and Mistral (Jiang et al., 2023, 2024) fam-
ilies is pre-training Transformer decoder-only mod-
els with billions of parameters on Internet-scale
data enabling them to perform tasks they were not
explicitly trained on. As we want to experiment on
LLMs themselves which includes fine-tuning and
modifying them, we utilized available open-source
models: Large Language Model Meta AI (Meta AI,
2023) (LLaMA) (Touvron et al., 2023a,b). Follow-
ing the work on training-compute-optimal LLMs
(Hoffmann et al., 2022), the authors of LLaMA fo-
cus on training smaller models with more data (and
more compute) to achieve better inference-compute
efficiency.

Vicuna is a collection of fine-tuned LLaMA mod-
els (Chiang et al.; Zheng et al., 2023). On top of
models fine-tuned for better chatbot performance,
there are models with longer context windows than
the original LLaMA model (version 2: 4k (Touvron
et al., 2023b)) with up to 32k tokens using a tech-
nique similar to Positional Interpolation developed
independently (Ken; Li et al.). Chen et al. (2023)
propose Positional Interpolation (PI) to easily in-
crease the context window length: Stretching the
original context window (L) to the new maximum
length L′ by downscaling the position indices that
are the input to the positional encoding function.

Question Answering Task The type of context
for Question answering (QA) can differ as it may
be present as knowledge or as harder to manage
raw text. Modern QA system mostly use deep
learning-based models like (fine-tuned) BERT- or
GPT-style models. Datasets that cover the topic of
scientific papers focus on various aspects. Many

focus on the review process which yields differ-
ent artifacts. These enable different tasks: (Meta-)
Review Generation (Wang et al., 2020; Lin et al.,
2023), acceptance prediction / paper rating (Kang
et al., 2018; Yang et al., 2018), Argument Pair Ex-
traction from reviews and corresponding rebuttals
(Cheng et al., 2020), and Multi-document Summa-
rization on reviews (Li et al., 2022). But there are
also datasets specifically for question answering on
scientific papers (Dasigi et al., 2021).

Evaluating Long-Context Text Processing To
make comparison of long-context LLMs easier,
multiple benchmarks sets have been created to test
their abilities across different task types. Zero-
SCROLLS (Shaham et al., 2023) is a benchmark
focused on long text understanding in a zero-shot
setting. The included task types are summarization,
question answering and aggregation. A similar
benchmark called LongBench also includes Qasper
(Bai et al., 2023). Opposed to ZeroSCROLLS it is
bilingual and incorporates more task types. Also,
the authors showed the performance of the mod-
els that they tested for context lengths of 0 – 4k,
4k – 8k and 8k+ tokens individually. They only
investigated zero-shot prompting and they did not
show how the position of the important information
within the long context affects performance.

Han et al. (2024) presented with LM-Infinite a
technique to increase the ability of LLMs to handle
long-context without any parameter updates. How-
ever, their evaluation on Qasper showed only small
improvements over their truncation baseline (30.1
vs. 31.3) and did not contain fine-grained analysis
on Qasper.

3 Methodology

To improve the performance of the general-purpose
LLMs on the task of QA on scientific papers, we ap-
ply different prompting techniques and fine-tuning.
We list all our prompt templates in Appendix A.

3.1 Approaches

Simple Prompt Zero-shot prompting is a
straightforward approach, where the LLM is di-
rectly used out-of-the-box at inference time. Al-
though few-shot prompting in general improves
performance (Brown et al., 2020), the long input
size in our case precludes this approach. Therefore,
we have to resort to zero-shot prompting which
only includes the instruction for the model as a kind
of learning signal. However, this generally leads
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to weaker instruction-following abilities. This ap-
proach with a simple prompt serves as the baseline
for the other methods (using the same model).

Extract-then-Answer Prompt Chain-of-
thought prompting (Wei et al., 2022) showed that
splitting a task into subtasks can help LLMs to
solve them. Inspired by this, we split the question
answering into two tasks: First the model has
to find the evidence – all relevant paragraphs to
answer the question. After that we prompt it
to answer the question based on the extracted
paragraphs in the previous step. Extracting the
relevant paragraphs is a useful task on its own: It
could be useful to see the context of the answer
inside the paper and improve interpretability.
There are also some downsides: We have to run
inference twice as this approach requires the
model to generate its input for the second step.
Also, as the model generates its own input (apart
from the second prompt), this approach may lead
to cascading errors. Similar approaches were
investigated for science QA on short context (Lu
et al., 2022; Wang et al., 2023; Yoran et al., 2023),
for (Chinese) multi-document QA (He et al.,
2023), and on smaller-scale models prior to the
emergence of LLMs (Dasigi et al., 2021).

Supervised Fine-tuning We can fine-tune the
LLM on supervised data with the simple prompt
and the extract-then-answer prompt. For the latter,
we fine-tune the model two subtasks: Evidence ex-
traction and answer generation given evidence. By
combining compute- and memory-efficient meth-
ods of implementing and training Transformer-
based models, we are able to fine-tune a small LLM
on long context. We replace the standard attention
algorithm with FlashAttention 2 (Dao et al., 2022;
Dao, 2023) and we use QLoRA (Hu et al., 2022;
Dettmers et al., 2023) for fine-tuning the model.

3.2 Evaluation

Besides the standard evaluation of QA quality pro-
vided by the dataset authors, we conduct various
fine-grained analyses to evaluate our approaches
regarding our specific focus.

3.2.1 Analysis by Context Length / Position
In addition to evaluating QA quality, we want to
evaluate per paper length and absolute evidence
position. We therefore split the evaluation data
into (partially) overlapping groups by the length /
distance in tokens.

Paper Length We want to find out if long-
context modifications enable models to process
longer context as well as context within the original
context window or if the performance differs per
paper length. Here, we bin per paper as the length
is the same for all associated questions. We count
the number of tokens to get the length.

Evidence Position It is also important to find out
if the position of the relevant information (“evi-
dence”) within the paper which is also provided
by the dataset does affect performance. We will
study the impact of the absolute token position
of the evidence. For “Unanswerable” and some
yes/no questions there is no evidence, we put these
questions into a separate bin (“No evidence”). In
contrast to the length binning, we group the eval-
uation data per question as the evidence positions
differ in general per question and not per paper.

3.2.2 Evidence-only Prompt
We want to find out how our investigated models
perform if we provide them with the evidence only
– both during inference and training. This should
give use an idea of the upper limits of the perfor-
mance of the models as this task should be easier
as the model has to process fewer tokens. Addi-
tionally, we think that a comparison between these
fine-tuned models and those that received the full
paper during training should indicate how much
our fine-tuning improves our goal of long-context
understanding and how much it just improves in-
struction following.

4 Experiments and Results

4.1 Experimental Setup

In the following, we will describe our experimen-
tal setup. We list utilized hard- and software and
the hyperparameters we used during inference and
training in Appendix C.

4.1.1 Dataset
The Qasper dataset (Dasigi et al., 2021) we used to
evaluate and train the considered models consists
of a total of 1,585 NLP papers with 5,049 ques-
tions on these papers. Each of these questions was
formulated by an NLP practitioner. The answers
were then answered by other NLP practitioners
who also selected the paragraphs, figures or tables
(“evidence”) in the paper that are relevant to an-
swer the question which are listed together with the
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Models dev-short dev test ZC
Questions / % 990 100 1,005 100 1,451 100 500 100
Paper length
0k – 4k 333 34 333 33 511 35 149 30
4k – 8k 593 60 593 59 802 55 312 64
8k – 64 6 79 8 138 10 39 8
Absolute evidence position
0k – 4k 794 80 799 80 1182 81 405 81
4k – 8k 173 17 180 18 263 18 91 18
8k – 6 1 11 1 18 1 7 1
No evidence 77 8 78 8 99 7 37 7

Table 1: Qasper dataset statistics we created for our research questions: paper length and absolute evidence
position; the numbers for absolute evidence position exceed the total number of questions because the evidence for a
question can be from multiple paragraphs. ZC refers to the subset of the Qasper test set used in the ZeroSCROLLS
benchmark.

Q. type Frequency
Bin type Full dev-short Length Absolute evidence position
Specific bin 0k – 4k 4k – 8k 8k – 0k – 4k 4k – 8k 8k – No ev.
Extractive 51.8% 54.8% 53.3% 56.5% 47.4% 58.5% 55.1% 45.5% 0.0%
Abstractive 24.2% 24.3% 21.3% 25.5% 28.1% 25.9% 30.2% 27.3% 0.0%
Yes/No 13.9% 11.6% 13.8% 10.2% 13.2% 10.7% 11.8% 18.2% 24.6%
Unanswer. 10.2% 9.3% 11.6% 7.8% 11.4% 4.9% 3.0% 9.1% 75.4%

Table 2: Qasper dataset statistics (full dataset (full), (Dasigi et al., 2021)) and ours: question types for each dataset
bin (all bins are from dev-shot)

gold answer in the dataset. There are four types of
questions / answers in this dataset:

• Extractive: questions can be answered by
copying chunks of the relevant paragraph

• Abstractive: free text answers that are not lit-
erally in the paper

• Yes/no or boolean questions

• Unanswerable: questions that can not be an-
swered with the provided paper as context.

These question types appear in different frequen-
cies (Table 2) and the authors evaluated the per-
formance of their model for each question type
individually. The dataset website1 provides an offi-
cial evaluation script. Like for the SQuAD dataset
(Rajpurkar et al., 2016), the authors chose a span-
level F1 score as their metrics. If there are multiple
reference answers, the maximum of the F1 score
will be used.

For the final analysis, we use a subset of the
Qasper test split that is part of the ZeroSCROLLS

1https://allenai.org/data/qasper

(ZC) benchmark (Shaham et al., 2023). We saw a
similar statistic for this subset as for the (custom)
splits we used during development and final anal-
ysis. We therefore assume that the ZC subset of
Qasper will be representative for the performance
of our approaches.

4.1.2 Data Preprocessing

Five of the papers from the development / valida-
tion split of Qasper lead to out-of-memory errors
during inference. We therefore exclude these five
papers from our results and call the resulting split
“dev-short”. As these five only account for around
1.8% of the 281 papers in the dev split, we assume
that this does not skew our view of the quality of
the models. Also, the distribution of the length /
position bins is not changed much (Table 1).

We make a similar observation for the binning
itself (Table 2): The distribution of the questions
types does not vary much between the length / po-
sition bins (with exception of the one for questions
with no evidence). We therefore assume that our
analysis of the models by binning the dataset does
reflect the performance of the model for that spe-
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cific length / evidence position and is not influenced
by the distribution of the questions type in that spe-
cific bin.

As training data, we use the training split of the
Qasper dataset. As input, we use a prompt template
(subsubsection A.1.1) from the LongBench bench-
mark dataset (Bai et al., 2023) where the paper
text and the question are inserted the same way as
for zero-shot prompting. The target is the answer
from the dataset. As our tested models have text
as their only modality, it cannot process the figures
and tables provided with the dataset. We therefore
remove all questions from the training data that
mention figures or tables in their evidence field.
Many questions are annotated with multiple pos-
sible answers. In some cases, they clearly heavily
disagree with each other e.g., one possible answer
is “Unanswerable” and the other is “Yes” or “No”.
We remove these cases. We also have to limit the
training data to texts with a maximum of 8k tokens
as longer inputs cause out-of-memory errors even
with both QLoRA and FlashAttention used.

4.1.3 Models
We use three models with different context win-
dow lengths in our experiments. The creators of
FastChat (LMSYS Org) provide the Vicuna family
(section 2) of LLMs. We only test the smallest
available models with around 7 billion parameters
for compute and memory efficient experiments and
as this is the only model size that has a LongChat
version. This version has a context window of 32k
tokens (LC-32k). Vicuna 7B-4k (V-4k) has the
same as LLaMA 2 (4k) and Vicuna 7B-16k’s (V-
16k) was extended to 16k. We use the models of
version v1.5 which indicates that they are based on
LLaMA 2 instead of LLaMA 1 like the previous
versions.2 The fine-tuning data was 370M tokens
long. We omit the parameter count in the following
from the models’ names as they are the same of
every model we tested.

4.2 Results and Discussion

We start our experiments with all available small
(7B parameters) models from LMSYS Org with
varying context window lengths: Vicuna-4k,
Vicuna-16k, and LongChat-32k. Here, we only
report the results for LongChat-32k as it showed
the best long-context performance and show the

2https://github.com/lm-sys/FastChat/blob/
97065ff7caa3ae4ca28c661b7424f7ae4cca539b/docs/
vicuna_weights_version.md

others in Appendix D and Appendix E. During our
experiments, we also investigated the performance
by relative evidence position. However, we saw no
U-shape of the performance and therefore do not in-
clude these results. This corresponds to prior work
(Liu et al., 2023) which found this strong primary
and recency bias only in large (>7B) models.

4.2.1 Simple Prompt
First, we run a simple zero-shot prompt and report
the results in the first two columns of Table 3.

Simple zero-shot prompt struggles with unan-
swerable questions While LongChat is able to
answer the “normal” questions, it seems to be un-
able to handle unanswerable questions (Table 3).
These questions can not be answered with the given
paper. Also, its ability to answer yes/no questions is
limited. Qualitative analysis showed that LongChat
almost never outputs “Unanswerable” and even if
it does, the answer is a whole sentence which ig-
nores the instruction in the prompt (examples: Ap-
pendix B).

Longer context leads to worse performance
Fine-grained analysis by input length shows that
after the threshold of 4k tokens, the performance
begins to decrease from an F1 score of 25.47 to
24.08 for papers with a length between 4k and 8k
tokens. After 8k tokens this decrease accelerates
(18.51) and is especially visible when binning the
F1 score by evidence position (F1: 26.73→ 23.35
→ 15.06). The model also especially struggles
with questions that require no evidence (most of
them are unanswerable). We assume that the lower
F1 score of LongChat on papers with more than 8k
tokens is a result of this weakness and not a general
property.

Fine-tuning: Trade-offs between generation and
classification As the empirical results showed
that LongChat had insufficient instruction follow-
ing, we now want to see how much fine-tuning can
increase the performance. Also, we want to find
out how much it improves the F1 scores for long
papers and evidence at high token positions. The
impact of QLoRA fine-tuning on LongChat-32k
(Table 3) is that extractive, boolean and unanswer-
able questions substantially improve (F1: 26.51→
48.21, 36.79→ 76.47, 0.04→ 68.54). We assume
that the F1 scores for unanswerable questions do
not improve after the first epoch because it reached
the highest scores possible with this model size
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Training 0S FT 0S FT 0S FT
Variation 1S 1S 2S 2S 2S+ 2S+
Answer F1 24.19 47.02 24.94 39.08 17.85 41.18
Answer F1 by type
Extractive 26.51 48.21 23.19 37.50 16.37 41.82
Abstractive 20.78 20.10 17.35 14.92 16.03 19.41
Boolean 36.79 76.47 57.96 49.51 36.75 58.10
Unanswerable 0.04 68.54 11.84 89.09 5.33 69.23
Answer F1 per paper length
0k – 4k 25.47 52.15 25.68 41.57 19.26 44.78
4k – 8k 24.08 44.45 24.85 37.77 17.50 39.66
8k – 18.51 44.09 21.97 38.23 13.83 36.44
Answer F1 per absolute evidence position
0k – 4k 26.73 46.28 26.84 36.00 18.89 40.54
4k – 8k 23.35 37.74 23.40 30.31 16.64 34.97
8k – 15.06 67.94 28.96 56.19 2.75 39.78
No evidence 1.06 64.94 6.69 81.82 9.61 57.14

Table 3: LongChat, dev-short set, simple (one-step / 1S) and extract-then-answer prompts (two-step, 2S),
compare initial and advanced prompt (2-step+, 2S+), zero-shot (0S) vs. fine-tuned (FT) with QLoRA.

and pre-training and fine-tuning procedure. Here,
the model has to do a trade-off between generating
answers with more information (extractive, abstrac-
tive) or classify the question as unanswerable. The
answers to abstractive questions see an initial qual-
ity degradation and only converge back to their
initial level (F1: 20.78 → 20.10) late in training.
Our interpretation is that this is a result of the train-
ing data forcing the model to fit to the answer style
for around 75% of the questions in Qasper: extract-
ing word for word and short answers. With more
epochs of fine-tuning, the model re-learns the more
complex task of abstractive QA (Table 4).

Epochs 0 1 3 5
Answer F1 24.19 41.13 44.56 47.02
Answer F1 by type
Extractive 26.51 41.80 45.18 48.21
Abstractive 20.78 12.59 16.59 20.10
Boolean 36.79 70.49 80.33 76.47
Unanswerable 0.04 69.57 66.67 68.54

Table 4: LongChat-32k, dev-short set, simple prompt,
fine-tuned with QLoRA.

Fine-tuning mostly improves instruction-follow-
ing While we only train with sequences of up to
8k tokens, we see an improvement across all ana-
lyzed paper lengths and evidence positions and the
performance loss for papers with a length between
4k and 8k tokens and longer ones almost disappears

going from 5.57 (zero-shot) to 0.36 (fine-tuned).
However, we still see consistently reduced perfor-
mance for papers that exceed LLaMA 2’s original
context window length of 4k and especially for
questions where the evidence is further out than 4k.

In Appendix B, we list some qualitative example
how fine-tuning did improve the model’s answers.

4.2.2 Evidence-only Prompt
Our previous experiments showed that even models
whose context window was extended with a tech-
nique similar to Positional Interpolation struggle
with papers that exceed the original context length
of LLaMA 2 of 4k tokens – especially if the evi-
dence lies outside of that range. The question now
is if these questions or at least some of them are
inherently harder to answer. We evaluate if the per-
formance varies in our analysis if the context given
to the model is the evidence only instead of the full
paper.

Training only on evidence performs well except
for unanswerable questions When fine-tuning
LongChat on the evidence only, we more quickly
see better results that exceed those before (Table 5)
and therefore only train for 3 epochs. After training
LongChat on the evidence only, we compare its
performance directly against the model that we
trained on full papers: The performance of the
context-length-specific model is better in general
(F1: 41.66 vs. 44.56 / 47.02) but not on all sub
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Epochs 3 3 3 5
Train split evo fp
Eval split evidence fp
Answer F1 57.22 41.66 44.56 47.02
Answer F1 by type
Extractive 62.19 47.01 45.18 48.21
Abstractive 27.01 24.15 16.59 20.10
Boolean 79.83 76.67 80.33 76.47
Unanswer. 80.56 2.70 66.67 68.54
Answer F1 per paper length
0k – 4k 57.93 42.68 50.22 52.15
4k – 8k 56.86 40.46 41.91 44.45
8k – 56.94 42.68 39.75 44.09
Answer F1 per absolute evidence position
0k – 4k 54.27 44.48 43.94 46.28
4k – 8k 50.86 37.46 34.80 37.74
8k – 63.61 43.71 64.76 67.94
No ev. 93.51 16.88 61.04 64.94

Table 5: Compare LongChat-32k, fine-tuned with
QLoRA on evidence only (evo) or full paper (fp).

scores. When evaluating the evidence-only model
on full papers we made an interesting observation:
This model has equal or better F1 scores on all
question types except for unanswerable questions.
The score for this type of question is probably so
low as the model only learned to map the absence
of evidence or the presence of a placeholder to the
question being unanswerable.

Fine-tuning improves instruction-following and
unanswerable question detection We assume
that this result together with less than 8k tokens
long training data improving performance on more
than 8k tokens long evaluation data means that
training the model mostly improves instruction fol-
lowing and does not promote better long-context
understanding. But we also note that in order for
the model to learn if a question is unanswerable it
has to explicitly learn the mapping of no evidence
in the whole paper to the question being unanswer-
able. During fine-grained analysis by input length,
we see that the model that we trained on evidence
only shows almost no performance decrease with
increased paper length but also its performance for
shorter papers is worse than those models that were
trained on full papers. We also see that training on
the full papers is useful as it dramatically improves
performance for questions where no evidence is
contained in the paper text.

4.2.3 Extract-then-Answer Prompt
Inspired by the results of using only the evidence
as context to answer the questions, we hypothe-
size that a chain-of-thought prompt could increase
performance: The model has to extract the rele-
vant paragraphs first and then answer the questions
based on the evidence found.

Epochs 0 1 3 5
Answer F1 24.94 19.93 34.52 39.08
Answer F1 by type
Extractive 23.19 8.27 29.98 37.50
Abstractive 17.35 1.52 10.28 14.92
Boolean 57.96 23.76 52.34 49.51
Unanswerable 11.84 98.45 89.57 89.09
Evidence F1 12.73 25.74 34.32 38.45

Table 6: LongChat-32k, dev-short set, extract-then-
answer prompt, fine-tuned with QLoRA.

Extract-then-Answer Prompt does not improve
performance During training, we saw an initial
drop in performance for all question types that can
be answered with the paper as context (Table 6).
When looking at the evidence score and during
qualitative analysis, we see that the model does not
extract the correct paragraphs leading to an inability
to answer most of the questions. After five epochs,
for 535 out of 990 questions (∼54%) the model
finds evidence. But during training, the model saw
evidence for 1,607 out of 1,904 questions (∼84%).
Yet after the same number of epochs as the one-
step prompt model, this model still performs worse
(47.02 vs. 39.08, Table 3).

Even for longer papers and evidence more diffi-
cult to reach, the extract-then-answer prompt does
not improve performance as the evidence extrac-
tion also suffers on longer context and also does not
help even inside the original context window. Out
of 990 questions, the fine-tuned model still finds
no evidence for 455 questions.

Handling Absent Evidence During training, the
most common unique evidence string presented to
the model is the placeholder we use for no evidence.
For an improved prompt, we therefore include a
prefix in the training data and as a hint in the prompt
that every no empty extracted evidence starts with
this prefix. We argue that this helps the model to
avoid resorting to generating the “easiest” evidence
which is none or the placeholder inspired by Atten-
tion Strengthening Question Answering (He et al.,
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2023) which predicts the indices of the most rel-
evant document in multi-document QA. We also
adopt their approach of placing the question before
and after the context.

To further reduce the number of generated empty
evidence, we lower the number of examples in our
training data where no evidence should be found
to push the model into generating non-empty ev-
idence more frequently. In the training data (<8k
tokens), only around 16% of the questions are anno-
tated with no evidence. However, the model that we
fine-tuned on the “standard” extract-then-answer
prompt generates no extracted evidence for around
40% of the questions which is 2.5 times as often.
We assume a linear dependency between percent-
age of training answers without evidence and the
percentage of generated answers without evidence.
We lower the ratio of questions with no evidence
in the training data to around 6% to arrive at 16%
of generated empty evidence. We now employ all
techniques we presented previously to improve the
extract-then-answer prompt.

Adapted Prompt: Performance improves only
slightly While the answer F1 score does improve
with this adapted prompt for the fine-tuned model
(Table 3) when compared to the simpler extract-
then-answer prompt, the evidence F1 is lower even
though the percentage of empty evidence drops
from around 46% to around 22%. Also, for the
zero-shot prompt all question types show worse re-
sults and the evidence score even drops to 0.0. Man-
ual investigation shows that the model generated
very long paragraphs as evidence in the zero-shot
setup which led to this score. In further analysis,
the advanced extract-then-answer prompt shows
slightly better results for papers with under 8k to-
kens (F1: 41.57 vs. 44.78, 37.77 vs. 39.66) and
evidence below the same threshold (F1: 36.00 vs.
40.54, 30.31 vs. 34.97). But the F1 scores are
still below those of the one-step prompt (47.02 vs.
41.18) as the evidence extraction also still suffers
from long context.

4.3 Final Comparison against Baselines

Finally, we compare the results of our experiments
against task-specific models and strong LLMs. Our
comparison is on the ZeroSCROLLS subset of the
Qasper test set which we believe is representative
enough for the full test set (Table 1) to use it for
comparison to strong LLMs. The ZeroSCROLLS
subset uses a slightly different prompt for Qasper

Model Prompt Training Answer F1

Ours
LongChat ZC 0-shot 25.80
LongChat LB 0-shot 31.07
LongChat ZC 5 epochs 46.90
LongChat LB 5 epochs 52.73
Existing models
Flan-UL2 ZC 0-shot 56.90
GPT-4 ZC 0-shot 50.70
CoLT5 ZC 0-shot 53.10

Table 7: Baseline results (Flan-UL2 (Tay et al., 2023),
GPT-4 (OpenAI, 2023), CoLT5 (Ainslie et al., 2023))
from ZeroSCROLLS benchmark (Shaham et al., 2023)
compared to our results (LongChat-32k, 5 epochs), Ze-
roSCROLLS subset of Qasper test set.

and does not include the title and abstract in the
input. We compare our approaches with both
prompts: ZeroSCROLLS (ZC) and LongBench
(LB). With the LongBench prompt used during
inference, our best approach exceeds GPT-4’s F1

score on the ZeroSCROLLS subset, comes close
to the strongest model, and represents a great im-
provement over the zero-shot setup (Table 7). It
is important to note that the ZeroSCROLLS au-
thors mentioned that GPT-4 sometimes struggled
more than other models to follow the prompt on
Qasper. When we use the same prompt as the
other models, both our zero-shot and the fine-tuned
model lose more than 5 F1 points showing how
important prompting can be. As the performance
drop is almost the same, we assume that for the
fine-tuned model this is not a result of the mis-
match between the training prompt and the infer-
ence prompt. The fine-tuned LongChat-32k model
with the LongBench prompt is only able to almost
match the task-specific model. We assume that
this observation and the fact that Flan-UL2 is the
best performing model are a result of these models
being full transformers with an encoder and a de-
coder. The bidirectional encoder that processes the
context together with the question and the prompt
before generating the answer could help here.

5 Conclusion

We wanted to investigate how well LLMs can han-
dle scientific papers and how we can improve their
performance. We observe that the (unmodified)
small open-source long-context LLMs we tested
are able to process scientific papers with up to about
16k tokens from the Qasper dataset but fall short of
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commercial LLMs. Additionally, the performance
drops after the context exceeds the original context
window – especially if the relevant information to
answer to question lies in that region of the paper.

When we employ the current techniques for effi-
cient training QLoRA and FlashAttention, we can
fine-tune the models on papers with a length of up
to 8k tokens on a single datacenter GPU that is
available to a university student for research. The
performance of our fine-tuned model still increases
for even longer papers without being trained on
these lengths. Experiments with models that we
only trained on extracted paragraphs without pro-
viding the model the full paper suggest that our
training primarily improves instruction following
but also improves the models’ ability to determine
if a question is unanswerable as it has to learn the
connection between the absence of relevant infor-
mation and the unanswerability of the question.
When comparing our results against baselines, we
saw that our best approach reaches or surpasses the
result of the original GPT-4.

Limitations

This paper only investigates the Qasper dataset and
the LongChat LLM. The Qasper dataset is lim-
ited to scientific papers from the NLP domain and
mostly provides questions about facts and not more
complex prompts like asking for new research di-
rections based on the given paper. LongChat may
have different strengths and weaknesses than other
LLMs which may respond differently to the our
prompts, our fine-tuning scheme, and long context
in general (as seen by Liu et al. (2023)). While
our resulting model is an improvement over the
zero-shot LongChat, it still makes mistakes (like
determining a question as unanswerable even if it
is answerable).

We did not investigate all fitting configurations
of our experimental setup like providing a random
paragraph as evidence instead of no paragraph or
how the fine-tuning for one prompt type influences
the performance during inference with a different
prompt type (except for the model that we fine-
tuned on the evidence only).
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A Prompts

We used the following prompts during our exper-
iments. <CONTEXT> stands for the paper text
or a shortened version of it while <QUESTION>
is the placeholder for the specific question on the
provided context.

A.1 ZeroSCROLLS
You are given a scientific article and a question.
Answer the question as concisely as you can,
using a single phrase or sentence if possible. If
the question cannot be answered based on the
information in the article, write "unanswerable".
If the question is a yes/no question, answer "yes",
"no", or "unanswerable". Do not provide any
explanation.

Article: <CONTEXT>

Question: <QUESTION>

A.1.1 LongBench (our version)
You are given a scientific article and a question.
Answer the question as concisely as you can,
using a single phrase or sentence if possible. If

the question cannot be answered based on the
information in the article, write ’unanswerable’.
If the question is a yes/no question, answer ’yes’,
’no’, or ’unanswerable’. Do not provide any
explanation.
Article: <CONTEXT>
Answer the question based on the above article
as concisely as you can, using a single phrase or
sentence if possible. If the question cannot be
answered based on the information in the article,
write ’unanswerable’. If the question is a yes/no
question, answer ’yes’, ’no’, or ’unanswerable’.
Do not provide any explanation.
Question: <QUESTION>

A.2 Evidence only

You are given excerpts from a scientific article
and a question. Answer the question as concisely
as you can, using a single phrase or sentence if
possible. If the question cannot be answered based
on the information in the excerpts from an article,
write ’unanswerable’. If the question is a yes/no
question, answer ’yes’, ’no’, or ’unanswerable’.
Do not provide any explanation.
Excerpts from Article: <CONTEXT>
Answer the question based on the above excerpts
from an article as concisely as you can, using a sin-
gle phrase or sentence if possible. If the question
cannot be answered based on the information in
the excerpts from an article, write ’unanswerable’.
If the question is a yes/no question, answer ’yes’,
’no’, or ’unanswerable’. Do not provide any
explanation.
Question: <QUESTION>

A.3 Two-turn

Turn 0:
You are given a scientific article and a question.
Extract all paragraphs that are relevant to answer
the question. Copy them word by word from the
article. If there are no relevant paragraphs answer
’No relevant paragraphs found’. Do not provide
any explanation.
Article: <CONTEXT>
Extract all paragraphs that are relevant to answer
the question. Copy them word by word from the
article. If there are no relevant paragraphs answer
’No relevant paragraphs found’.
Question: <QUESTION>
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Turn 1:
Answer the question based on your extracted
relevant paragraphs from the above article and
answer as concisely as you can, using a single
phrase or sentence if possible. If the question
cannot be answered based on the information in the
article (your last answer was possibly ’No relevant
paragraphs found’), write ’unanswerable’. If the
question is a yes/no question, answer ’yes’, ’no’, or
’unanswerable’. Do not provide any explanation.
Question: <QUESTION>

A.4 Two-turn, Advanced (Prefix for Evidence,
Question Repeated)

Turn 0:
You are given a scientific article and a question.
Extract all paragraphs that are relevant to answer
the question. Copy them word by word from
the article and start with ’Found these relevant
paragraphs:’. If there are no relevant paragraphs
answer ’No relevant paragraphs found’. Do not
provide any explanation.
Question: <QUESTION>
Article: <CONTEXT>
Extract all paragraphs that are relevant to answer
the question. Copy them word by word from the
article. If there are no relevant paragraphs answer
’No relevant paragraphs found’.
Question: <QUESTION>

Turn 1:
Answer the question based on your extracted
relevant paragraphs from the above article and
answer as concisely as you can, using a single
phrase or sentence if possible. If the question
cannot be answered based on the information in the
article (your last answer was possibly ’No relevant
paragraphs found’), write ’unanswerable’. If the
question is a yes/no question, answer ’yes’, ’no’, or
’unanswerable’. Do not provide any explanation.
Question: <QUESTION>

B Example answers

We also provide a list of qualitative examples
how fine-tuning improved the performance (simple
prompt, test set). We separate multiple possible
answers by slashes.

• Answer more clearly to unanswerable ques-
tion

– Question: How does this result compare
to other methods KB QA in CCKS2019?

– Answer (ground truth): Unanswerable
– Answer (zero-shot): The proposed

method for open domain Chinese ques-
tion answering in CCKS2019 achieved
an F1 score of 70.45% on the test data.
This result is comparable to other meth-
ods in KB QA, as it also employs a com-
bination of information retrieval and se-
mantic parsing. However, the specific
comparison to other methods is not pro-
vided in the article, so it is unanswerable.

– Answer (fine-tuned): Unanswerable

• Detect unanswerable question

– Question: Which labeling scheme do
they use?

– Answer (ground truth): Unanswerable
– Answer (zero-shot): They use a se-

quence labeling scheme for both con-
stituency and dependency parsing.

– Answer (fine-tuned): Unanswerable

• Answer more concisely

– Question: Does regularization of the
fine-tuning process hurt performance in
the target domain?

– Answer (ground truth): No
– Answer (zero-shot): No, regularization

of the fine-tuning process does not hurt
performance in the target domain. In
fact, it can improve performance by re-
ducing catastrophic forgetting and pre-
serving the source domain’s performance
as much as possible while keeping the
target domain’s performance optimal.

– Answer (fine-tuned): No

• Answer more concisely and correctly

– Question: what are the baselines?
– Answer (ground truth): Reschke CRF,

Reschke Noisy-OR, Reschke Best
– Answer (zero-shot): The article does

not provide specific baselines for the ma-
chine reading task. However, it mentions
several related works and systems that
the authors aim to improve upon. These
include: 1. Reschke CRF: a conditional
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random field model. 2. Reschke Noisy-
OR: a sequence tagger with a N̈oisy-
ORf̈orm of aggregation that discourages
the model from predicting the same value
for multiple slots. 3. Reschke Best: a
sequence tagger using a cost-sensitive
classifier, optimized with SEARN, a
learning-to-search framework. These
baselines represent different approaches
to machine reading and event extraction
from noisy sources. The authors’ pro-
posed architecture, called RAC, aims to
improve upon these baselines by incorpo-
rating attention-based mention scoring,
cluster-wide aggregation, and global con-
straints.

– Answer (fine-tuned): Reschke CRF.
Reschke Noisy-OR. Reschke Best.

• Answer more concisely and correctly 2

– Question: How do they preprocess
Tweets?

– Answer (ground truth): They removed
retweets, URLs, emoticons, mentions of
other users, hashtags; lowercased the text
and removed the punctuation. / re-tweets
do not bring any additional information
to our study, thus we removed them, re-
moved any expressions considered to
be semantically meaningless like URLs,
emoticons, mentions of other users (de-
noted by the @ symbol) and hashtags,
downcased and stripped the punctuation

– Answer (zero-shot): The article does
not provide specific details on how the
tweets are preprocessed. However, it
mentions that certain expressions are re-
moved, such as URLs, emoticons, men-
tions of other users, and hashtags, to
simplify textual pre-processing. Addi-
tionally, the tweets are downcased and
stripped of punctuation.

– Answer (fine-tuned): They remove re-
tweets, expressions considered to be se-
mantically meaningless, and downcase
and strip the punctuation from the text.

• Answer correctly

– Question: Do they evaluate only on En-
glish datasets?

– Answer (ground truth): Yes / The twit-
ter dataset is English-only; no informa-
tion for the reddit dataset is given

– Answer (zero-shot): No, they evaluate
on a diverse range of social media plat-
forms and content types, including En-
glish, Spanish, Portuguese, French, Ger-
man, Italian, and Arabic.

– Answer (fine-tuned): Yes

• Answer more specifically

– Question: How many layers of recurrent
neural networks do they use for encoding
the global context?

– Answer (ground truth): 2 / 8
– Answer (zero-shot): The article does

not provide specific information on the
number of layers of recurrent neural net-
works used for encoding the global con-
text. However, it mentions that they
use stacked recurrent neural networks
to capture the long-term dependencies
and global context information from the
whole sentence.

– Answer (fine-tuned): Two feed-forward
layers of size 400 with rectified linear
units (ReLU); One bi-directional gated
recurrent unit (BiGRU) layer with hidden
size 200; Two feed-forward layers of hid-
den size 200 with rectified linear units;
One BiGRU layer with hidden size 100;
Two feed-forward layers of size 100 and
50 respectively with ReLU activation.

C Further Experimental Setup

Evidence type Frequency
Text 81.6%
Table/Figure 11.6%
None 12.8%

Table 8: Qasper dataset statistics (Dasigi et al., 2021):
evidence types; the percentages add to over 100% be-
cause answers can include multiple evidence types.

Minor details To bin the evaluation sets, we to-
kenize the whole paper texts from the JSON files
that the dataset website provides. We used the tok-
enizer from Vicuna-16k, but the number of tokens
should be the same for the other tokenizers. For
the evidence positions, we determine the position
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of the first token of the evidence paragraphs inside
the paper text. We assume this is representative as
most evidence is at most a few sentences long. If
there are multiple evidence paragraphs that are not
continuous in the dataset, we bin potentially one
paper multiple times.

A model tasked to extract the evidence should
output no paragraphs if there is none for the ques-
tion at hand. Instead, it should generate the string
“No relevant paragraphs found” which we include
in the prompts and filter out of the answers before
calculating the F1 score.

C.1 Hard- and Software

For evaluation and training of the tested models we
need high-performance GPUs. Therefore, we use
the bwUniCluster 2.03 for our experiments. De-
pending on availability, we use the NVIDIA A100
with 80 GB of accelerator memory or the NVIDIA
H100 with 94 GB. The bwUniCluster 2.0 allows
the use of NVIDIA Enroot4 which enables running
Docker5 containers on the computing cluster. We
use the PyTorch container6 by NVIDIA to train
the models in our experiments. FlashAttention is
only implemented per GPU type at the moment and
comes pre-installed with this container.

We run all our experiments (inference and train-
ing) with the FastChat7 (Zheng et al., 2023) frame-
work which is an open-source platform for “train-
ing, serving, and evaluating large language model
based chatbots”. It is developed by the Large
Model Systems Organization (LMSYS Org).8 The
LMSYS Org also operates the LMSYS Chatbot
Arena9 (Zheng et al., 2023) which tries to com-
pare the performance of current LLMs against each
other in a chatbot setting. FastChat provides code
to easily run models, feed them with input data, and
store their answers. Besides regular fine-tuning it
also provides a (Q)LoRA implementation that can
utilize FlashAttention. This script is run with the
DeepSpeed10 library.

3https://wiki.bwhpc.de/e/Main_Page
4https://github.com/NVIDIA/enroot
5https://docs.docker.com/
6https://catalog.ngc.nvidia.com/orgs/nvidia/

containers/pytorch
7https://github.com/lm-sys/FastChat
8https://lmsys.org/
9https://chat.lmsys.org/

10https://github.com/microsoft/DeepSpeed

C.2 Hyperparameters

All following stated hyperparameters are the same
on all experiments if not stated differently per ex-
periment.

During inference, we run the models with a tem-
perature of 0.0 which equates to greedy decoding.11

FastChat code also uses a temperature of 0.0 for
tasks like extraction and reasoning.12 This fits our
requirements as we want the most accurate and
truthful answer. Also, we saw a degradation in per-
formance when raising the temperature. We let the
models generate up to 1,024 tokens.

Our training configuration is the same as the
example from FastChat: We use a LoRA rank
r of 8 and a LoRA Alpha of 16. Rank r = 8
results in 4,194,304 trainable parameters out of
6,742,609,920 for LLaMA 2 7B based models. The
dropout is 0.05 and we apply no weight decay. The
learning rate is initialized with 2e-5 with a warm-up
ratio of 0.03 and a cosine learning rate scheduling.
We do no extensive hyperparameter search because
of time constraints regarding compute and because
the authors of QLoRA already noted that the most
important “hyperparameter” is the location of the
adapted parameters inside the model. We train each
model for 5 epochs on the training split after our
preprocessing. We chose this duration as it could
be done within a few hours on a single GPU, and
we saw performance saturation within this training
duration.

D Additional Evaluation Results

We provide additional evaluation results for all
models – zero-shot (Table 9) and fine-tuned with
QLoRA (Table 10).

We also tested if changing the temperature in-
creases performance (Table 11): Our rationale is
that the most probable evidence is none as the
placeholder string for this is always the same and
occurs more often during training than any other
evidence string. Also, it is not that important if the
found paragraphs are perfectly correct (e.g., not too
long): It just has to be useful to answer the ques-
tion. Yet, increasing the temperature monotonously
decreases both the evidence and answer F1 scores.
On top of reduced quality, the percentage of empty
evidence rises from ∼46% (0.0) to ∼66% (1.0).

11https://huggingface.co/blog/how-to-generate
12https://github.com/lm-sys/FastChat/blob/

085c2c37dca426059f023e2a080c45717c742fd1/
fastchat/llm_judge/common.py
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Models Bin count Vicuna-4k Vicuna-16k LongChat-32k
Answer F1 per paper length
0k – 4k 333 25.53 27.20 25.47
4k – 8k 593 0.40 24.01 24.08
8k – 64 0.00 19.55 18.51
Answer F1 per absolute evidence position
0k – 4k 794 9.79 25.82 26.73
4k – 8k 173 0.38 18.02 23.35
8k – 6 0.00 3.78 15.06
No evidence 77 11.80 23.38 1.06

Table 9: Analysis of the models we tested, dev-short set, LongBench prompt (Bai et al., 2023), zero-shot.

Models Bin count Vicuna-4k Vicuna-16k LongChat-32k
Answer F1 per paper length
0k – 4k 333 38.89 50.26 52.15
4k – 8k 593 18.53 43.02 44.45
8k – 64 2.48 39.55 44.09
Answer F1 per absolute evidence position
0k – 4k 794 23.99 43.54 46.28
4k – 8k 173 9.33 35.23 37.74
8k – 6 0.00 64.37 67.94
No evidence 77 52.81 75.32 64.94

Table 10: Models we tested, dev-short set, LongBench prompt (Bai et al., 2023), fine-tuned with QLoRA for 5
epochs.

We compare our best approach against the base-
line model from the original publication of the
Qasper dataset (Dasigi et al., 2021). Their model is
the Longformer-Encoder-Decoder (LED) (Beltagy
et al., 2020) in two sizes: base and large. It contains
more fine-grained results than the comparison on
the ZeroSCROLLS (Shaham et al., 2023) subset of
Qasper. Also, they estimate a lower bound for the
human performance on the test set by calculating
the agreement between different annotator answers
for each question. Their best model for question
answering is LED-base that receives the full paper
as input. One variant includes evidence extraction
during training.

Our comparison (Table 12) shows that LED has
a similar distribution of the F1 scores per type. The
extractive score is higher than the abstractive score
and the boolean score is the highest or close to
it. We can also see a similar behavior of the LED
model to the extract-then-answer prompt when in-
tegrating evidence extraction into the answer gener-
ation process: The extractive and abstractive scores
suffer while the model detects unanswerable ques-
tions better. Also, our best approach performs bet-
ter on questions with very short answers (yes/no,

unanswerable) than the lower bound for human
performance. This could be an explanation of our
observation that longer training does not improve
these scores after they reach a certain level (trade-
off: short vs. long answers). However, the quality
of the abstractive answers is considerably worse
(39.71 vs. 18.79).

For the evidence extraction, our best model is
LongChat-32k fine-tuned with the extract-then-
answer prompt. While the evidence extraction did
not improve the answer quality in our case, it can
be a useful addition for the user of a QA system to
contextualize the answer. Here, the difference be-
tween our approach and the Qasper baseline LED-
large (Table 13) is not as high as for the answer F1

score but we still see a clear improvement over the
baseline.

E Additional Training Results

Here, we list how the F1 scores during our train-
ing runs changed compared to the zero-shot re-
sults with the same prompt. For the evidence
only prompt (Table 14) and for the extract-then-
answer prompt (Table 6, Table 15), we only trained
LongChat-32k.
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LongChat-32k 0.0 0.2 0.4 0.6 0.8 1.0
Answer F1 39.08 37.61 35.05 33.15 30.57 29.60
Evidence F1 38.45 37.20 35.31 33.54 31.85 29.16

Table 11: LongChat, dev-short set, extract-then-answer prompt, fine-tuned 5 epochs with QLoRA, varying
temperatures.

Models

LongChat-32k
LongBench

prompt
zero-shot

LongChat-32k
LongBench

prompt
5 epochs

LED-base
without
evidence
extraction

LED-base
with

evidence
extraction

Human
(lower
bound)

Test answer F1 28.81 55.20 32.80 33.63 60.92
Test answer F1 by type
Extractive 28.39 54.89 30.96 29.97 58.92
Abstractive 20.82 18.79 15.76 15.02 39.71
Boolean 56.11 84.68 70.33 68.90 78.98
Unanswerable 2.14 86.42 26.21 44.97 69.44

Table 12: Comparison of our approaches against baselines from the Qasper paper, test set.

Models

LongChat-32k
extract-then-answer

prompt
5 epochs

LED-base LED-large
Human
(lower
bound)

Dev evidence F1 38.27 23.94 31.25 –
Test evidence F1 42.57 29.85 39.37 71.62

Table 13: Comparison of our approaches against baselines from the Qasper paper, full dev and test set, evidence
extraction.

LongChat-32k Zero-shot 1 epoch 2 epochs 3 epochs
Answer F1 36.16 55.65 56.97 57.22
Answer F1 by type
Extractive 37.58 61.04 61.41 62.19
Abstractive 21.80 25.20 25.60 27.01
Boolean 47.96 72.27 80.99 79.83
Unanswerable 53.48 84.00 83.33 80.56

Table 14: LongChat-32k, evidence only dev-short set, fine-tuned with QLoRA.

LongChat-32k Zero-shot 1 epoch 3 epochs 5 epochs
Answer F1 17.85 27.59 41.54 41.18
Answer F1 by type
Extractive 16.37 22.27 45.00 41.82
Abstractive 16.03 10.64 21.06 19.41
Boolean 36.75 59.66 68.14 58.10
Unanswerable 5.33 59.79 40.23 69.23
Evidence F1 0.00 26.37 31.12 35.13

Table 15: LongChat, dev-short set, extract-then-answer prompt, improved, fine-tuned with QLoRA.
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Abstract

While Large Language Models (LLMs) excel
in text generation and question-answering, their
effectiveness in AI legal and policy applica-
tions is limited by outdated knowledge, hal-
lucinations, and inadequate reasoning in com-
plex contexts. Retrieval-Augmented Genera-
tion (RAG) systems improve response accuracy
by integrating external knowledge but struggle
with retrieval errors, poor context integration,
and high costs, particularly in interpreting AI
legal texts. This paper introduces a Hybrid
Parameter-Adaptive RAG (HyPA-RAG) sys-
tem tailored for AI legal and policy, exempli-
fied by NYC Local Law 144 (LL144). HyPA-
RAG uses a query complexity classifier for
adaptive parameter tuning, a hybrid retrieval
strategy combining dense, sparse, and knowl-
edge graph methods, and an evaluation frame-
work with specific question types and metrics.
By dynamically adjusting parameters, HyPA-
RAG significantly improves retrieval accuracy
and response fidelity. Testing on LL144 shows
enhanced correctness, faithfulness, and contex-
tual precision, addressing the need for adapt-
able NLP systems in complex, high-stakes AI
legal and policy applications. 1

1 Introduction

The development of Large Language Models
(LLMs) capable of processing and generating
human-like text has made significant strides in re-
cent years, such as OpenAI’s GPT models (Brown
et al., 2020; OpenAI, 2023), Google’s Gemini mod-
els (Team et al., 2023) and open alternatives such
as the LlaMa series (Touvron et al., 2023a,b; Meta,
2024). These models, which store vast amounts
of information within their parameters through ex-
tensive pre-training, have demonstrated impressive
performance in various tasks, including text gener-
ation and question-answering across multiple do-

1The demo (Appendix A.1), dataset, and code are available
at https://github.com/holistic-ai/HyPA-RAG.

mains (Brown et al., 2020; Singhal et al., 2023;
Wu et al., 2023). Despite this, LLMs encounter
limitations when applied to specialised fields such
as law and policy. These include the rapid obsoles-
cence of their knowledge, which is confined to the
data available up to the last pre-training date (Yang
et al., 2023), and hallucinations, where the model
produces text that seems plausible but is factually
incorrect or misleading, driven by internal logic
rather than actual context (Ji et al., 2022; Huang
et al., 2023). Empirical studies show that many
artificial intelligence (AI) tools designed for legal
applications overstate their ability to prevent hallu-
cinations (Magesh et al., 2024). Indeed, instances
of lawyers being penalised for using hallucinated
outputs in court documents (Fortune, 2023; Busi-
ness Insider, 2023) underscore the need for reliable
AI question-answering systems in law and policy

Naturally, Retrieval-Augmented Generation
(RAG), which enhances LLMs by incorporating ex-
ternal knowledge, is proposed as a solution. How-
ever, this comes with its own challenges. Com-
mon failure points (Barnett et al., 2024) include
missing content, where relevant documents are not
retrieved, leading to unanswered questions; context
limitations, where retrieved documents are not ef-
fectively incorporated into the response generation
process due to limitations in consolidation strate-
gies; and extraction failures, where models fail to
extract accurate information from the provided con-
text due to noise or conflicting data. Furthermore,
advanced retrieval and generation techniques, such
as query rewriters and LLM-based quality check-
ers, often result in increased token usage and costs.

To address these challenges, this research inte-
grates three key components (see Figure 6 in Ap-
pendix A.2 for a flow overview and Figure 1 for
the system design):
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Figure 1: Hybrid Parameter Adaptive RAG (HyPA-RAG) System Diagram

(1) Adaptive parameter selection using a domain-
specific query complexity classifier to minimise
unnecessary token usage,

(2) A hybrid search system combining dense,
sparse, and knowledge graph retrieval methods to
enhance retrieval accuracy.

(3) An end-to-end evaluation framework that in-
cludes the development of a ’gold standard’ dataset,
custom question types, and RAG-specific evalua-
tion metrics for robust testing.

These elements are combined to create a hybrid
parameter-adaptive RAG system tailored specifi-
cally to mitigate the common RAG failure points,
for the AI policy domain, using NYC Local Law
144 as the primary corpus. We also provide a
streamlit demo for testing purposes.

2 Background and Related Work

Recent LLM advancements have impacted fields
like law and policy, where language complexity and
large text volumes are prevalent (Blair-Stanek et al.,
2023; Choi et al., 2023; Hargreaves, 2023). LLMs
have been used for legal judgment prediction, doc-
ument drafting, and contract analysis, showing
their potential to improve efficiency and accuracy
(Shui et al., 2023; Sun, 2023; Šavelka and Ashley,
2023). Techniques like fine-tuning, retrieval aug-
mentation, prompt engineering, and agentic meth-
ods have adapted these models for specific legal

tasks, enhancing performance in summarisation,
drafting, and interpretation (Trautmann et al., 2022;
Cui et al., 2023).

Retrieval-Augmented Generation (RAG), as for-
malized by Lewis et al., enhances pre-trained
seq2seq models by integrating external knowl-
edge through indexing, retrieval, and generation
stages, improving response specificity and accu-
racy (Lewis et al., 2020; Gao et al., 2023). RAG
systems complement LLMs by combining sparse
(e.g., BM25) and dense (e.g., vector) retrieval tech-
niques, using neural embeddings to refine docu-
ment retrieval and produce grounded, high-quality
responses (Jones, 2021; Robertson and Zaragoza,
2009; Devlin et al., 2019; Liu et al., 2019).

To address the limitations of naive RAG, such
as insufficient context and retrieval inaccuracies,
advanced techniques have been developed, includ-
ing hybrid retrieval methods, query rewriters, and
rerankers to refine relevance (Muennighoff et al.,
2022; Ding et al., 2024; Xiao et al., 2023). Hybrid
retrieval combines BM25 with semantic embed-
dings to balance keyword matching and contextual
understanding, improving outcomes (Luo et al.,
2023; Ram et al., 2022; Arivazhagan et al., 2023).
Additionally, knowledge graph retrieval and com-
posed retrievers enhance accuracy and comprehen-
siveness in document retrieval (Rackauckas, 2024;
Sanmartin, 2024; Edge et al., 2024).

Recently, RAG systems have advanced from ba-
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sic retrieval to dynamic methods involving multi-
source integration and domain adaptation (Gao
et al., 2023; Ji et al., 2022). Innovations like
Self-RAG and KG-RAG improve response qual-
ity and minimize hallucinations through adaptive
retrieval and knowledge graphs (Asai et al., 2023;
Sanmartin, 2024).

Various frameworks have been developed to eval-
uate RAG systems, including Ragas, which uses
reference-free metrics like faithfulness and rele-
vancy (Shahul et al., 2023b). Giskard (Giskard,
2023) assesses performance using synthetic QA
datasets, while ARES utilizes prediction-powered
inference (PPI) with specialized LLM judges for
accurate evaluation (Giskard, 2023; Saad-Falcon
et al., 2023).

3 System Design

The hybrid parameter-adaptive RAG system, de-
picted in Figure 1, integrates vector-based text
chunks and a knowledge graph of entities and their
relationships to enhance retrieval accuracy. The
system employs a hybrid retrieval process, combin-
ing sparse (BM25) and dense (vector) methods to
retrieve an initial top-k set of results. These results
are refined using reciprocal rank fusion based on
predefined parameter mappings.

Simultaneously, a knowledge graph retriever
identifies relevant triplets, with retrieval depth and
keyword selection dynamically adjusted according
to query complexity. Results from both BM25 and
vector methods are fused again to produce a final
optimised set of k chunks.

Optional components include a query rewriter,
which generates reformulated queries to improve
retrieval. The rewritten queries fetch additional
chunks, which are de-duplicated and fused to main-
tain uniqueness. An optional reranker can further
refine chunk ranking if needed. The final set of
selected chunks and knowledge graph triplets are
then processed within the LLM’s context window
for more accurate, contextually relevant responses.

This framework is implemented in two varia-
tions: without knowledge graph retrieval, known as
Parameter-Adaptive (PA) RAG, and with knowl-
edge graph retrieval, termed Hybrid Parameter-
Adaptive (HyPA) RAG.

4 AI Legal and Policy Corpus

Local Law 144 (LL144) of 2021, enacted by the
New York City Department of Consumer and

Worker Protection (DCWP), regulates automated
employment decision tools (AEDTs). This paper
uses a 15-page version of LL144 that combines the
original law text with enforcement rules published
by the DCWP. As an early AI-specific law, LL144
is included in the training data of foundational mod-
els like GPT-4 and GPT-4o, whose understanding
of the law is confirmed manually through targeted
prompting and serves as baselines in this research.

LL144 presents significant challenges for AI
compliance due to its unique combination of quali-
tative and quantitative requirements. Unlike most
AI legal and policy texts, which are predominantly
qualitative, LL144 integrates detailed definitions
and procedural guidelines with quantitative com-
pliance metrics. This structure complicates inter-
pretation and retrieval, often exceeding the capabil-
ities of traditional LLMs and RAG systems. Fur-
thermore, AI laws and policies are frequently re-
vised while moving through the legislative process,
making them impractical for pre-training and fine-
tuning and therefore requiring a robust method for
integrating changes.

5 Performance Evaluation

The evaluation process starts by generating custom
questions tailored to AI policy and legal question-
answering, then introduces and verifies evaluation
metrics (see evaluation section of Figure 6 in Ap-
pendix A.2). For reproducibility, the LLM tem-
perature is set to zero for consistent responses
and all other parameters are set to defaults.

5.1 Dataset Generation

Creating a "gold standard" evaluation set usually
requires extensive human expertise and time, but
LLMs like GPT-3.5-Turbo can efficiently handle
such tasks, if sufficiently prompted. For this pur-
pose, Giskard (Giskard, 2023) provides a library
for synthetic data generation, using LLMs to cre-
ate various question types from text chunks, such
as ’simple’, ’complex’, and ’situational’. We in-
troduce additional types and question generators:
’comparative’, ’complex situational’, ’vague’, and
’rule-conclusion’. Comparative questions require
multi-context retrieval to compare concepts. ’Com-
plex situational’ questions involve user-specific
contexts and follow-ups. Vague questions obscure
parts of the query to test interpretation, while rule-
conclusion questions, adapted from LegalBench
(Guha et al., 2023), require conclusions based on
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legislative content. Table 4 in Appendix A.3 sum-
marises these types with examples.

These question generators produce a set of ques-
tions, which are then deduplicated. Inaccurate or in-
complete questions are identified through a human
expert review process, using the criteria outlined in
Table 5 in Appendix A.5.

5.2 Evaluation Metrics

To evaluate our RAG system, we utilise RAGAS
metrics (Shahul et al., 2023a) based on the LLM-
as-a-judge approach (Zheng et al., 2023), including
Faithfulness, Answer Relevancy, Context Precision,
Context Recall, and an adapted Correctness metric.

Faithfulness evaluates the factual consistency
between the generated answer and the context,
defined as Faithfulness Score = |Cinferred|

|Ctotal| , where
Cinferred is the number of claims inferred from the
context, and Ctotal is the total claims in the answer.

Answer Relevancy measures the alignment
between the generated answer and the original
question, calculated as the mean cosine similar-
ity between the original question and generated
questions from the answer: Answer Relevancy =
1
N

∑N
i=1

Egi ·Eo

∥Egi∥∥Eo∥ , where Egi and Eo are embed-
dings of the generated and original questions.

Context Recall measures the proportion of
ground truth claims covered by the retrieved con-
text, defined as Context Recall = |Cattr|

|CGT| , whereCattr
is the number of ground truth claims attributed to
the context, and CGT is the total number of ground
truth claims.

Context Precision evaluates whether relevant
items are ranked higher within the context, de-

fined as Context Precision =
∑K

k=1(Pk×vk)
|Rk| . Here,

Pk = TPk
TPk+FPk

is the precision at rank k, vk is the
relevance indicator, |Rk| is the total relevant items
in the top K, TPk represents true positives, and
FPk false positives.

5.3 Correctness Evaluation

We assess correctness using a refined metric to
address the limitations of Giskard’s binary classifi-
cation, which fails to account for partially correct
answers or minor variations. Our adapted met-
ric, Absolute Correctness, based on LLamaIndex
(LlamaIndex, 2024), uses a 1 to 5 scale: 1 indi-
cates an incorrect answer, 3 denotes partial cor-
rectness, and 5 signifies full correctness. For bi-
nary evaluation, we use a high threshold of 4, re-
flecting our low tolerance for inaccuracies. The

Figure 2: Spearman Coefficient Comparison, showing
the correlation between model performance and human
evaluation.

Correctness Score is computed as the average
of these binary outcomes across all responses:
Correctness Score = 1

N

∑N
i=1 1(Si ≥ 4), where

Si represents the absolute correctness score of the
ith response, 1(Si ≥ 4) is an indicator function
that is 1 if Si ≥ 4 and 0 otherwise, and N is the
total number of responses.

The Spearman coefficient (Figure 2) illustrates
how our prompt-based LLM-as-a-judge correctness
evaluation aligns with human judgment. Prompts
1 and 2 (Appendix A.7) employ different meth-
ods: the baseline prompt provides general scoring
guidelines, Prompt 1 offers detailed refinements,
and Prompt 2 includes one-shot examples and guid-
ance for edge cases.

Additional metrics, including macro precision,
recall, F1 score, and percentage agreement with hu-
man labels, are shown in Figure 8 (Appendix A.8).
A detailed breakdown of the Spearman coefficient
metrics is provided in Figure 9 (Appendix A.8).

6 Chunking Method

We evaluate three chunking techniques: sentence-
level, semantic, and pattern-based chunking.

Sentence-level chunking splits text at sentence
boundaries, adhering to token limits and overlap
constraints. Semantic chunking uses cosine simi-
larity to set a dissimilarity threshold for splitting
and includes a buffer size to define the minimum
number of sentences before a split. Pattern-based
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Figure 3: RAG Evaluation Metrics for Sentence-Level,
Semantic, and Pattern-Based Chunking Methods

chunking employs a custom delimiter based on text
structure; for LL144, this is "\n§".

Figure 3 shows that pattern-based chunking
achieves the highest context recall (0.9046), faith-
fulness (0.8430), answer similarity (0.8621), and
correctness (0.7918) scores. Sentence-level chunk-
ing, however, yields the highest context precision
and F1 scores. Semantic chunking performs reason-
ably well with increased buffer size but generally
underperforms compared to the simpler methods.
Further hyperparameter tuning may improve its
effectiveness. These findings suggest that a corpus-
specific delimiter can enhance performance over
standard chunking methods.

For subsequent experiments, we adopt sentence-
level chunking with a default chunk size of 512
tokens and an overlap of 200 tokens.

7 Query Complexity Classifier

To enable adaptive parameter selection, we devel-
oped a domain-specific query complexity classifier
that categorises user queries, each corresponding
to specific hyper-parameter mappings. Our anal-
ysis of top-k selection indicated different optimal
top-k values for various question types, as shown
in Figure 7 (Appendix A.4).

Model Precision Recall F1 Score
Random Labels 0.34 0.34 0.34
BART Large ZS 0.31 0.32 0.29
DeBERTa-v3 ZS 0.39 0.39 0.38
LR TF-IDF 0.84 0.84 0.84
SVM TF-IDF 0.86 0.86 0.86
distilBERT Finetuned 0.90 0.90 0.90

Table 1: 3-Class Classification Results

7.1 Training Data

To train a domain-specific query complexity classi-
fier, we generated a dataset using a GPT-4o model
on legal documents. Queries were categorised into
three classes based on the number of contexts re-
quired: one context (0), two contexts (1), and three
or more contexts (2). This classification resulted in
varying token counts, keywords, and clauses across
classes, which could bias models toward associ-
ating these features with complexity. To mitigate
this, we applied data augmentation techniques to
diversify the dataset. To enhance robustness, 67%
of the queries were modified. We increased vague-
ness in 10% of the questions while preserving their
informational content, added random noise words
or punctuation to another 10%, and applied both
word and punctuation noise to a further 10%. Ad-
ditionally, 5% of questions had phrases reordered,
and another 5% contained random spelling errors.
For label-specific augmentation, 25% of label 0
queries were made more verbose, and 25% of label
2 queries were shortened, ensuring they retained
the necessary informational content. The augmen-
tation prompts are in Appendix A.9.

7.2 Model Training

We employed multiple models as baselines for clas-
sification tasks: Random labels, Logistic Regres-
sion (LR), Support Vector Machine (SVM), zero-
shot classifiers, and a fine-tuned DistilBERT model.
The Logistic Regression model used TF-IDF fea-
tures, with a random state of 5 and 1000 iterations.
The SVM model also used TF-IDF features with a
linear kernel. Both models were evaluated on bi-
nary (2-class) and multi-class (3-class) tasks. Zero-
shot classifiers (BART Large ZS and DeBERTa-v3
ZS) were included as additional baselines, map-
ping "simple question," "complex question," and
"overview question" to labels 0, 1, and 2, respec-
tively; for binary classification, only "simple ques-
tion" (0) and "complex question" (1) were used.
The DistilBERT model was fine-tuned with a learn-
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Method Faithfulness Answer
Relevancy

Absolute
Correctness (1-5)

Correctness
(Threshold=4.0)

LLM Only

GPT-3.5-Turbo 0.2856 0.4350 2.6952 0.1973
GPT-4o-Mini 0.3463 0.6319 3.3494 0.4572

Fixed k

k = 3 0.7748 0.7859 4.0372 0.7546
k = 5 0.8113 0.7836 4.0520 0.7584
k = 7 0.8215 0.7851 4.0520 0.7621
k = 10 0.8480 0.7917 4.0595 0.7658

Adaptive

PA: k,Q (2 class) 0.9044 0.7910 4.2491 0.8104
PA: k,Q (3 class) 0.8971 0.7778 4.2528 0.8141
HyPA: k,Q,K, S (2 class) 0.8328 0.7800 4.0558 0.7770
HyPA: k,Q,K, S (3 class) 0.8465 0.7734 4.1338 0.7918

Table 2: Performance metrics for LLM Only, Fixed k, Parameter-Adaptive (PA), and Hybrid Parameter Adaptive
(HyPA) RAG implementations for the 2 and 3-class classifier configurations. k is the top-k value, Q the number
of query rewrites, S the maximum knowledge graph depth, and K the maximum keywords for knowledge graph
retrieval.

ing rate of 2e-5, batch size of 32, 10 epochs, and a
weight decay of 0.01 to optimize performance and
generalization to the validation set.

7.3 Classifier Results
Tables 1 and 8 in Appendix A.10 summarise the
classification results. We compare performance
using macro precision, recall and F1 score. The
fine-tuned DistilBERT model achieved the highest
F1 scores, 0.90 for the 3-class task and 0.92 for the
2-class task, highlighting the benefits of transfer
learning and fine-tuning. The SVM (TF-IDF) and
Logistic Regression models also performed well,
particularly in binary classification, indicating their
effectiveness in handling sparse data. Zero-shot
classifiers performed lower, likely due to the lack
of task-specific fine-tuning.

8 RAG System Architecture

8.1 Parameter-Adaptive RAG (PA-RAG)
The Parameter-Adaptive RAG system integrates
our fine-tuned DistilBERT model to classify query
complexity and dynamically adjusts retrieval pa-
rameters accordingly, as illustrated in Figure 1, but
excluding the knowledge graph component. The
PA-RAG system adaptively selects the number of
query rewrites (Q) and the top-k value based on
the complexity classification, with specific param-
eter mappings provided in Table 6 in Appendix

A.6.1. In the 2-class model, simpler queries (label
0) use a top-k of 5 and 3 query rewrites, while more
complex queries (label 1) use a top-k of 10 and 5
rewrites. The 3-class model uses a top-k of 7 and 7
rewrites for the most complex queries (label 2).

8.2 Hybrid Parameter-Adaptive RAG

Building on the PA-RAG system, the Hybrid
Parameter-Adaptive RAG (HyPA-RAG) approach
enhances the retrieval stage by addressing issues
such as missing content, incomplete answers, and
failures of the language model to extract correct
answers from retrieved contexts. These challenges
often arise from unclear relationships within le-
gal documents, where repeated terms lead to frag-
mented retrieval results (Barnett et al., 2024). Tra-
ditional (e.g. dense) retrieval methods may retrieve
only partial context, causing missing critical infor-
mation. To overcome these limitations, this system
incorporates a knowledge graph (KG) representa-
tion of LL144. Knowledge graphs, structured with
entities, relationships, and semantic descriptions,
integrate information from multiple data sources
(Hogan et al., 2020; Ji et al., 2020), and recent
advancements suggest that combining KGs with
LLMs can produce more informed outputs using
KG triplets as added context.

The HyPA-RAG system uses the architecture
outlined in Figure 1. The knowledge graph is con-
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structed by extracting triplets (subject, predicate,
object) from raw text using GPT-4o. Parameter
mappings specific to this implementation, such as
the maximum number of keywords per query (K)
and maximum knowledge sequence length (S), are
detailed in Table 7, extending those provided in
Table 6.

8.3 RAG Results
The adaptive methods generally outperform the
fixed k baseline across most metrics (Table 2).
PA-RAG with k,Q (2 class) achieves the highest
faithfulness score of 0.9044, which is an improve-
ment of 0.0564 over the best fixed k = 10 method
(0.8480). Similarly, the PA k,Q (3 class) config-
uration also performs strongly with a faithfulness
score of 0.8971, surpassing all fixed k methods.

For answer relevancy, the PA k,Q (2 class)
model achieves a score of 0.7910, which is nearly
on par with the best fixed k = 10 method at 0.7917,
showing a slight difference of 0.0007. The PA k,Q
(3 class) model has a relevancy score of 0.7778, a
drop of 0.0139 compared to the best fixed method.

In terms of absolute correctness, both PA mod-
els, k,Q (2 class) and k,Q (3 class), achieve scores
of 4.2491 and 4.2528, respectively, which are im-
provements of approximately 0.1896 and 0.1933
over the best fixed method (k = 10) score of
4.0595. This suggests that adaptive parameter set-
tings significantly enhance the model’s ability to
provide correct answers.

Correctness scores also favour the adaptive meth-
ods. PA k,Q (3 class) model reaches a score of
0.8141, which is 0.0483 higher than the best fixed
k = 10 score of 0.7658. PA k,Q (2 class) model
shows similar strength with a score of 0.8104.
HyPA show more varied results. HyPA k,Q,K, S
(2 class) achieves a correctness score of 0.7770, a
modest increase of 0.0112 over the fixed k = 7,
suggesting that there is room for further optimisa-
tion.

8.4 System Ablation Study
We evaluate the impact of adaptive parameters, a
reranker (bge-reranker-large), and a query rewriter
on model performance using PA and HyPA RAG
methods with 2-class (Table 9 in Appendix A.11)
and 3-class classifiers (Table 3).

The highest Answer Relevancy (0.7940) is
achieved by varying k alone, suggesting that sim-
pler, focused responses facilitate question recon-
struction. The k, Q + reranker configuration

achieves a slightly lower relevancy score (0.7902),
indicating that query rewriting and reranking, while
enhancing other metrics, introduce complexity that
marginally reduces clarity.

The k, Q + reranker configuration also achieves
the highest Faithfulness (0.9098), showing that
combining adaptive top-k selection with query
rewriting and reranking improves factual consis-
tency. This setup provides high Absolute Correct-
ness (4.2342), although slightly lower than k, Q
alone (4.2528), indicating that while reranking im-
proves response quality, it may slightly decrease
overall accuracy. However, the Correctness Score
improves from 0.8141 to 0.8178, highlighting an
increase in responses classified as "correct" (scores
of 4 or higher).

Adding a knowledge graph in the k, K, S con-
figuration maintains the same Correctness Score
(0.8141) as k, Q but reduces Absolute Correct-
ness by 0.1301, suggesting added complexity might
lower overall answer quality.

While the k, K, S, Q + reranker configuration
does not lead in Faithfulness, Answer Relevancy,
or Absolute Correctness, it achieves the highest
Correctness Score (0.8402), outperforming k, Q +
reranker by 0.0224, demonstrating the effectiveness
of adaptive parameters and reranking in meeting
the correctness threshold.

9 Overall Results and Discussion

Our analysis shows that adaptive methods generally
outperform fixed baselines, particularly in improv-
ing faithfulness and answer quality. Incorporating
adaptive parameters such as query rewrites and
reranking enhances the system’s ability to provide
accurate and relevant responses. While adding a
reranker improves correctness, it can slightly re-
duce the overall correctness score, suggesting a
trade-off between precision and answer quality.

The introduction of a knowledge graph main-
tains correctness but can add complexity, poten-
tially lowering overall response quality. However,
combining adaptive parameters with a reranker
proves effective in maximizing the proportion of
correct responses, even if it doesn’t lead to the
highest scores in all metrics.

Overall, these findings highlight the importance
of adaptivity and careful parameter tuning to bal-
ance different performance aspects, enhancing the
system’s capability to handle varied and complex
queries effectively.
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Method Faithfulness Answer
Relevancy

Absolute
Correctness (1-5)

Correctness
(Threshold=4.0)

k 0.7723 0.7940 4.0409 0.7621
k, Q 0.8971 0.7778 4.2528 0.8141
k, Q + reranker 0.9098 0.7902 4.2342 0.8178
k, K∗, S∗ 0.8733 0.7635 4.1227 0.8141
k, K, S 0.8660 0.7780 4.1822 0.8030
k, K, S + reranker 0.8821 0.7872 4.1858 0.8178
k, K, S, Q 0.8465 0.7734 4.1338 0.7918
k, K, S, Q + reranker 0.8689 0.7853 4.1859 0.8402

Table 3: Ablation study results for different configurations of adaptive k in a 3-class setting. For descriptions of
parameters, refer to Table 2. The highest value in each column is highlighted in bold, and the second highest value
is underlined. The * indicates parameters held fixed, rather than adaptive.

10 Limitations and Future Work

This study has several limitations that suggest areas
for future improvement. Correctness evaluation is
limited by reliance on a single evaluator familiar
with the policy corpus. Averaging a larger quan-
tity of human evaluations would improve reliabil-
ity. Additionally, our knowledge graph construc-
tion process may be improved. For instance, using
LLM-based methods for de-duplication and/or cus-
tom Cypher query generation to improve context
retrieval and precision. Furthermore, our parameter
mappings were not rigourously validated quantita-
tively. Further evaluation of parameter selections
could provide better mappings as well as upper and
lower bounds to performance. The classifier was
trained using domain-specific synthetically gen-
erated data - which, though we inject significant
noise, may harbour the LLM’s own unconcious bi-
ases in terms of structure - possibly limiting the
generalisability of the classifier on unseen user
queries. Also, more classification categories e.g.
4 or 5-class, would permit more granular param-
eter selections and potentially greater efficiency
improvements. Another limitation is that while
LL144 is included in the GPT models’ training
data, subsequent minor revisions may affect the
accuracy of these baseline methods.

Integrating human feedback into the evaluation
loop (see Figure 4) could better align metrics with
user preferences and validate performance metrics
in real-world settings. Future work should also
consider fine-tuning the LLM using techniques like
RLHF (Bai et al., 2022), RLAIF (Lee et al., 2023),
or other preference optimisation methods (Song
et al., 2023). Further, refining the query rewriter
(Ma et al., 2023; Mao et al., 2024) and exploring

Figure 4: RAG System Optimisation Feedback Loop

iterative answer refinement (Asai et al., 2023) could
enhance metrics like relevancy and correctness.

11 Ethical and Societal implications

The deployment of the Hybrid Parameter-Adaptive
RAG (HyPA-RAG) system in AI legal and pol-
icy contexts raises critical ethical and societal con-
cerns, particularly regarding the accuracy, reliabil-
ity, and potential misinterpretation of AI-generated
responses. The high-stakes nature of legal infor-
mation means inaccuracies could have significant
consequences, highlighting the necessity for care-
ful evaluation. We emphasize transparency and
reproducibility, providing detailed documentation
of data generation, retrieval methods, and evalua-
tion metrics to facilitate replication and scrutiny.
The environmental impact of NLP models is also
a concern. Our system employs adaptive retrieval
strategies to optimize computational efficiency, re-
duce energy consumption, and minimize carbon
footprint, promoting sustainable AI development.
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Our findings enhance the understanding of RAG
systems in legal contexts but are intended for re-
search purposes only. HyPA-RAG outputs should
not be used for legal advice or decision-making,
emphasizing the need for domain expertise and
oversight in applying AI to sensitive legal domains.
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A Appendix

A.1 RAG Demonstration User Interface

(a) Demo Screenshot: Entering the user query and generating a response.

(b) Demo Screenshot: The generated response.

(c) Demo Screenshot: Information on retrieved node metadata and content.

Figure 5: Demo screenshots showing each key stage of the user experience.
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A.2 Overall Workflow Diagram

Figure 6: Overall RAG Development Workflow Diagram
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A.3 Question Types

Question
Type

Description Example
Question

Target RAG
Components

Simple Requires retrieval of one
concept from the context

What is a bias audit? Generator,
Retriever,
Router

Complex More detailed and requires
more specific retrieval

What is the purpose of a bias audit for
automated employment decision tools?

Generator,
Retriever

Distracting Includes an irrelevant dis-
tracting element

Italy is beautiful but what is a bias au-
dit?

Generator,
Retriever,
Rewriter

Situational Includes user context to
produce relevant answers

As an employer, what information do I
need to provide before using an AEDT?

Generator

Double Two distinct parts to eval-
uate query rewriter

What are the requirements for a bias
audit of an AEDT and what changes
were made in the second version of the
proposed rules?

Generator,
Rewriter

Conversational Part of a conversation with
context provided in a pre-
vious message

(1) I would like to know about bias au-
dits. (2) What is it?

Rewriter

Complex situa-
tional

Introduces further context
and one or more follow-up
questions within the same
message

In case I need to recover a civil penalty,
what are the specific agencies within
the office of administrative trials and
hearings where the proceeding can be
returned to? Also, are there other courts
where such a proceeding can be initi-
ated?

Generator

Out of scope Non-answerable question
that should be rejected

Who developed the AEDT software? Generator,
Prompt

Vague A vague question that
lacks complete informa-
tion to answer fully

What calculations are required? Generator,
Rewriter

Comparative Encourages comparison
and identifying relation-
ships

What are the differences and similari-
ties between ’selection rate’ and ’scor-
ing rate’, and how do they relate to each
other?

Generator,
Rewriter

Rule conclu-
sion

Provides a scenario, re-
quiring a legal conclusion

An employer uses an AEDT to screen
candidates for a job opening. Is the
selection rate calculated based on the
number of candidates who applied for
the position or the number of candidates
who were screened by the AEDT?

Generator,
Rewriter

Table 4: Question types and their descriptions with targeted RAG components.
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A.4 Evaluation Results for Varied Top-k

Figure 7: RAG Evaluation Metrics for Varied Top-k

A.5 Human Annotation Criteria

No. Criterion Description
1 Faithfulness Are all claims in the answer inferred from the context?
2 Answer Relevancy Is the answer relevant to the question?
3 Context Relevancy Is the context relevant to the question?
4 Correctness Is the answer correct, given the context?
5 Clarity Is the answer clear and free of extensive jargon?
6 Completeness Does the answer fully address all parts and sub-questions?

Table 5: Criteria for evaluating the quality of QA pairs.

A.6 Parameter Mappings
A.6.1 Top-k (k) and Number of Query Rewrites (Q)

Parameter Symbol Description 2-Class
Mappings

3-Class
Mappings

Number of Query
Rewrites

Q Number of sub-queries generated for
the original query

0: Q = 3 0: Q = 3

1: Q = 5 1: Q = 5
2: Q = 7

Top-k Value k Number of top documents or con-
texts retrieved for processing

0: k = 5 0: k = 3

1: k = 10 1: k = 5
2: k = 7

Table 6: Parameter Symbols, Descriptions, and Mappings
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A.6.2 Maximum Keywords (K) and Maximum Sequence Length (S)

Parameter Symbol Description 2-Class
Mappings

3-Class
Mappings

Max Keywords per
Query

K Maximum number of keywords used
per query for KG retrieval

0: K = 4 0: K = 3

1: K = 5 1: K = 4
2: K = 5

Max Knowledge Se-
quence

S Maximum sequence length for
knowledge graph paths

0: S = 2 0: S = 1

1: S = 3 1: S = 2
2: S = 3

Table 7: Parameter Symbols, Descriptions, and Mappings (Part 2)
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A.7 Correctness Evaluator Prompts
A.7.1 Method 1: LLamaIndex

CorrectnessEvaluator

You are an expert evaluation system for a question answering

chatbot. You are given the following information:

• a user query,

• a reference answer, and

• a generated answer.

Your job is to judge the relevance and correctness of the
generated answer. Output a single score that represents a
holistic evaluation. You must return your response in a line
with only the score. Do not return answers in any other format.
On a separate line, provide your reasoning for the score as
well.

Follow these guidelines for scoring:

• Your score has to be between 1 and 5, where 1 is the worst
and 5 is the best.

• If the generated answer is not relevant to the user query,
give a score of 1.

• If the generated answer is relevant but contains mistakes,
give a score between 2 and 3.

• If the generated answer is relevant and fully correct, give a
score between 4 and 5.

A.7.2 Method 2: Custom Prompt 1

You are an expert evaluation system for a question answering

chatbot. You are given the following information:

• a user query,

• a reference answer, and

• a generated answer.

Your job is to judge the correctness of the generated answer.
Output a single score that represents a holistic evaluation. You
must return your response in a line with only the score. Do
not return answers in any other format. On a separate line,
provide your reasoning for the score as well.

Follow these guidelines for scoring:

• Your score has to be between 1 and 5, where 1 is the worst
and 5 is the best.

• Use the following criteria for scoring correctness:

1. Score of 1:

– The generated answer is completely incorrect.

– Contains major factual errors or misconceptions.
– Does not address any components of the user query cor-

rectly.

2. Score of 2:

– The generated answer has significant mistakes.
– Addresses at least one component of the user query cor-

rectly but has major errors in other parts.

3. Score of 3:

– The generated answer is partially correct.
– Addresses multiple components of the user query cor-

rectly but includes some incorrect information.
– Minor factual errors are present.

4. Score of 4:

– The generated answer is mostly correct.
– Correctly addresses all components of the user query

with minimal errors.
– Errors do not substantially affect the overall correctness.

5. Score of 5:

– The generated answer is completely correct.
– Addresses all components of the user query correctly

without any errors.
– The answer is factually accurate and aligns perfectly with

the reference answer.

A.7.3 Method 3: Custom Prompt 2

You are an expert evaluation system for a question answering

chatbot. You are given the following information:

• a user query,

• a reference answer, and

• a generated answer.

Your job is to judge the correctness of the generated answer.
Output a single score that represents a holistic evaluation. You
must return your response in a line with only the score. Do
not return answers in any other format. On a separate line,
provide your reasoning for the score as well. The reasoning
must not exceed one sentence.

Follow these guidelines for scoring:

• Your score has to be between 1 and 5, where 1 is the worst
and 5 is the best.

• Use the following criteria for scoring correctness:

1. Score of 1:

– The generated answer is completely incorrect.
– Contains major factual errors or misconceptions.
– Does not address any components of the user query cor-

rectly.

253



– Example:
Query: "What is the capital of France?"
Generated Answer: "The capital of France is Berlin."

2. Score of 2:

– Significant mistakes are present.
– Addresses at least one component of the user query cor-

rectly but has major errors in other parts.
– Example:

Query: "What is the capital of France and its population?"
Generated Answer: "The capital of France is Paris, and
its population is 100 million."

3. Score of 3:

– Partially correct with some incorrect information.
– Addresses multiple components of the user query cor-

rectly.
– Minor factual errors are present.
– Example:

Query: "What is the capital of France and its population?"
Generated Answer: "The capital of France is Paris, and
its population is around 3 million."

4. Score of 4:

– Mostly correct with minimal errors.
– Correctly addresses all components of the user query.
– Errors do not substantially affect the overall correctness.
– Example:

Query: "What is the capital of France and its population?"
Generated Answer: "The capital of France is Paris, and
its population is approximately 2.1 million."

5. Score of 5:

– Completely correct.
– Addresses all components of the user query correctly

without any errors.
– Providing more information than necessary should not be

penalized as long as all provided information is correct.
– Example:

Query: "What is the capital of France and its population?"
Generated Answer: "The capital of France is Paris, and its
population is approximately 2.1 million. Paris is known
for its rich history and iconic landmarks such as the Eiffel
Tower and Notre-Dame Cathedral."

Checklist for Evaluation:

• Component Coverage: Does the answer cover all parts of
the query?

• Factual Accuracy: Are the facts presented in the answer
correct?

• Error Severity: How severe are any errors present in the
answer?

• Comparison to Reference: How closely does the answer
align with the reference answer?

Edge Cases:

• If the answer includes both correct and completely irrelevant
information, focus only on the relevant portions for scoring.

• If the answer is correct but incomplete, score based on the
completeness criteria within the relevant score range.

• If the answer provides more information than necessary, it
should not be penalized as long as all information is correct.
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A.8 Correctness Evaluator Results

Figure 8: Precision, recall, F1 score, and percentage agreement of the prompt-based (1-5 scale) LLM-as-a-judge
correctness evaluation compared to human judgments.

Figure 9: Spearman Coefficient comparing our custom LLM-as-a-judge (1-5 scale) prompts with Giskard’s binary
correctness evaluator for each question type. The second plot displays the p-values.
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A.9 Classifier Data Augmentation Prompts
A.9.1 Vague Prompt
Rewrite the following question to be more vague, but it must still require the same number of pieces of information to answer.
For example, a definition is one piece of information. A definition and an explanation of the concept are two separate pieces of
information. Do not add or remove any pieces of information, and do not alter the fundamental meaning of the question. Output
only the rewritten question, absolutely nothing else: {question}

A.9.2 Verbose Prompt
Rewrite the following question to be more verbose, but it must still require the same number of pieces of information to answer.
For example, a definition is one piece of information. A definition and an explanation of the concept are two separate pieces of
information. Do not add or remove any pieces of information, and do not alter the fundamental meaning of the question. Output
only the rewritten question, absolutely nothing else: {question}

A.9.3 Concise Prompt
Rewrite the following question to be more concise, but it must still require the same number of pieces of information to answer.
For example, a definition is one piece of information. A definition and an explanation of the concept are two separate pieces of
information. Do not add or remove any pieces of information, and do not alter the fundamental meaning of the question. Output
only the rewritten question, absolutely nothing else: {question}

A.10 2-Class Classifier Results

Model Precision Recall F1 Score
Random Labels 0.49 0.49 0.49
facebook/bart-large-mnli 0.55 0.55 0.53
DeBERTa-v3-base-mnli-fever-anli 0.59 0.57 0.56
Logistic Regression (TF-IDF) 0.88 0.88 0.88
SVM (TF-IDF) 0.92 0.92 0.92
distilbert-base-uncased finetuned 0.92 0.92 0.92

Table 8: 2-Class Classification Results

A.11 2-Class Ablation Results

Method Faithfulness Answer
Relevancy

Absolute
Correctness
(1-5)

Correctness
(Threshold=4.0)

k 0.8111 0.7835 4.0372 0.7546
k, K∗, S∗ 0.8725 0.7830 4.1115 0.8216
k, K, S 0.8551 0.7810 4.1487 0.7955
k, K, S + reranker 0.8792 0.7878 4.1710 0.8141
k, K, S + adaptive Q 0.8328 0.7800 4.0558 0.7770
k, K, S + Q + reranker 0.8765 0.7803 4.1636 0.8253

Table 9: Ablation study results for different configurations starting from adaptive k. The highest value in each
column is highlighted in bold, and the second highest value is underlined.
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Abstract

From document summarization to code genera-
tion, chabots have disrupted various aspects of
scientific research and writing. While chabots
are useful research resources for ideation, in-
formation retrieval, and editing, their genera-
tive pre-trained transformer (GPT) models’ un-
derlying knowledge infrastructure is opaque.
This has raised questions about the reliability
of generative chatbot responses, as GPT models
are known to respond with misleading informa-
tion that appears to be accurate. Prior research
has investigated the utility of OpenAI’s public
chatbot, ChatGPT, to generate reliable biblio-
graphic information with a focus on small-scale
medical-related scientific facts. We present an
expanded study that analyzes GPT-4’s ability
to accurately identify 1,326 scientific facts and
link them to academic sources. Using both
the API and UI service, we experimented with
open-ended and close-ended prompts to estab-
lish an understanding of GPT-4’s general ability
at this domain-specific task, as well as study
the real-world scenario of an average user in-
teracting with ChatGPT using its UI. GPT-4
accurately identified 96% of the scientific facts
and generated relevant and existent academic
citations with 78% accuracy. Using the claims
that GPT-4 mislabeled and provided incorrect
sources via the API, we prompt two public
GPTs customized for academic writing to eval-
uate if they correctly label the scientific claims
and provide accurate sources. We find that
these GPTs are able to accurately label 38% of
the mislabeled claims, with 95% of the corre-
sponding citations being accurate and relevant.

1 Introduction

With the ability to perform a wide range of nat-
ural language generation (NLG) and information
retrieval tasks, chatbots have enabled individuals
to experiment with the utility of generative pre-
trained transformer (GPT) language models in a
publicly available, online interface. While chatbots

are generative AI tools, users often query chatbots
in a paired task that includes both NLG and in-
formation retrieval; for example, generating new
content (e.g., write an introduction for a paper on a
given topic) and retrieving information (e.g., pro-
vide citations when necessary). However, users
often engage with chatbots for a specific task with-
out understanding its utility in the given domain.

Using a chatbot as an information gathering tool
is convenient, but comes with caveats. Various
studies that analyze a chabot’s performance on
NLG and information retrieval tasks (e.g., docu-
ment summarization and code generation) highlight
a persistent error in the GPT model’s responses—
hallucinations (Shuster et al., 2021; Ji et al., 2023).
Hallucinations refer to factually incorrect responses
that often pass as being correct and credible text to
a user (Dziri et al., 2022). Hallucinations are harm-
ful to users, particularly in information retrieval-
like tasks where the user is not an expert in the
prompt topic, because chatbots can respond with
well-formatted text that is convincingly accurate,
but is completely fabricated.

In this work, we focus on a particular use-case
for information gathering—linking scientific facts
to sources for citations. Prior research has focused
on evaluating GPT models (mainly versions 3 and
3.5) via the online ChatGPT interface in small scale
experiments on complex scientific topics for cita-
tion generation (Wagner and Ertl-Wagner, 2023;
Sebo, 2023; Xames and Shefa, 2023). Our study
expands this research to prompt GPT-4 via the API
on 1,326 scientific facts from 3rd–5th grade level
coursework, covering a range of scientific topics.
Specifically, we design an automated prompt frame-
work that includes a close-ended prompt (“is the
fact true or false?”) and an open-ended prompt
(“provide a citation to support your response”) to
analyze GPT-4’s ability to identify scientific facts
and accurately link them to academic citations. We
then provide human annotation to evaluate the ac-
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curacy of GPT-4’s responses, assessing if the pro-
vided citation is relevant to the scientific fact and
exists (i.e. the source is not hallucinated).

Further assessing GPT-4’s ability to generate re-
liable and accurate bibliographic information, we
design a second prompt with two close-ended ques-
tions to verify its prior responses on the same cri-
teria as the human annotation: “is the citation rele-
vant to the scientific fact?” (yes or no) and “does
the citation exist?” (real or fake). The full experi-
mental design is illustrated in Figure 1.

Human Annotation;
Citation verification (relevant/existent)
Citation type classification (article, textbook, url)GPT-4 Response:

True/False
Citation GPT-4 Prompt:

Citation verification (relevant/existent)

GPT-4
performance
evaluation

GPT-4 Prompt:
Scientific fact identification
Citation generation

Figure 1: Experimental design framework for GPT-4
API prompts and response evaluation

Evaluating GPT-4’s ability to verify scientific
fact and provide a corresponding source via the
API, we then use two sets of GPT-4 labeled claims
for further experimentation: (1) claims that GPT-
4 incorrectly labeled as false and (2) claims that
GPT-4 provided hallucination sources for. We se-
lect two public GPTs1 cusotmized for academic
writing to converse with in the online user interface
(UI). This experiment captures a real-world chabot
interaction, where a customized chatbot is being
used as a tool for a domain-specific task, while the
API experiment comprehensively evaluates GPT-
4’s knowledge capacity and retrieval capabilities in
an automated pipeline.

Our experimental results show that GPT-4 is ca-
pable of identifying scientific fact with 96% ac-
curacy and generating a relevant, existing citation
with 78% accuracy. GPT-4 favored providing a
textbook citation over a scientific article or website,
and only hallucinated 1% of textbook citation re-
sponses. We find that GPT-4 performs poorly as an
evaluator of generated citations (determining if a
source exitst), only correctly identifying 2% of the
non-existent citations. In the UI experiments, we
find that GPTs customized for academic writing
increased the accuracy of scientific claim verifi-
cation, with 38% of the previously 56 mislabeled
claims receiving correct true labels. Additionally,
the academic GPTs provided accurate and relevant
citations with 95% accuracy for this set of claims.

1https://openai.com/index/introducing-gpts/

Analyzing the GPTs on a sample of 50 of the claims
that GPT-4 correctly labeled as true but provided
hallucination sources, we find that the academic
GPTs responded with accurate and relevant cita-
tions for all claims when it providing a source.

Our API and UI results demonstrate that GPT-4
is able to provide reliable responses for informa-
tion retrieval tasks that require scientific knowl-
edge, both for identifying the veracity of a scien-
tific claim and for providing an accurate source to
justify its response. However, GPT-4 is stronger
at the question answering task (achieving 96% ac-
curacy) than the strict information retrieval task
of providing a linked citation (achieving 78% ac-
curacy). Chatbots customized for specific tasks,
such as academic writing, improve the reliability
of outputs and should be leveraged by users when
available.

2 Related Work

Prior work has analyzed ChatGPT models, namely
versions 3 and 3.5, in their ability to generate ac-
curate scientific publication references, with the
majority of studies focused on medical research
(Gravel et al., 2023; Wagner and Ertl-Wagner,
2023; Alkaissi and McFarlane, 2023; Sebo, 2023).
Additionally, researchers have analyzed and dis-
cussed GPT models’ ability to be a reliable tool
in scientific communication as an information re-
source or co-author (Schäfer, 2023; Flanagin et al.,
2023; De Angelis et al., 2023; Kasneci et al., 2023;
Xames and Shefa, 2023). While researchers ac-
knowledge that GPT models have potential as a
resource in academic and scientific writing, sev-
eral studies highlight its shortcomings on citation
generation tasks.

Gravel et al. queried ChatGPT with 20 medi-
cal questions derived from research publications,
asking for the corresponding citation. ChatGPT’s
responses contained 59 distinct citations, which
were then reviewed by the authors of the original re-
search publications. The authors found that 69% of
the citations were fabricated, with 71% of the fab-
rications having correctly formatted metadata (e.g.,
year, page numbers, volume number) and known
publishers (e.g., MedRxiv and Centers for Disease
Control and Prevention) (Gravel et al., 2023). Wag-
ner and Ertl-Wagner prompted ChatGPT-3 with 88
radiology-related questions asking for responses
with citations and ChatGPT-3 provided 343 dis-
tinct citations across all responses for review. Of
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the references that could be verified, only 24% re-
lated to the question (i.e., the publication could be
used to support the response) and 64% of the 343
citations appeared to be fabricated by ChatGPT-
3 (Wagner and Ertl-Wagner, 2023). Sebo asked
ChatGPT-3.5 to provide 10 references to a set of
10 questions related to internal medicine, resulting
in 100 citations for review. Of the 100 ChatGPT-
3.5 provided citations, 34% were completely incor-
rect and 40% were partially correct due to error in
metadata (e.g., publication year/publisher/etc. was
incorrect) (Sebo, 2023).

While these studies are useful in understand-
ing ChatGPT’s performance on citation genera-
tion, they are limited in scope due to their topics
and number of questions. Additionally, these stud-
ies query chatbots with highly specialized domain
questions without leveraging a chatbot customized
for that domain. Our work focuses on extending
these studies to a range of 1,326 well-established
scientific facts in a more generalized domain, and
includes experiments using domain-specific chat-
bots.

3 Experimental Design

Here we describe the dataset, prompt design, and
response evaluation for our experiments.

We experiment with GPT-4’s ability to provide
accurate bibliographic information for NLG (open-
ended question) and information retrieval (close-
ended) tasks. Specifically, our objective is to eval-
uate GPT-4’s ability to identify scientific fact and
provide accurate (existing and relevant) sources
to support its responses, and compare the general
GPT-4 performance to domain-specific ChatGPTs.

3.1 Scientific Fact Data

We use the OpenBookQA dataset from Gravel et al.
(2023), which provides a set of 1,326 scientific
facts. Designed for question and answering nat-
ural language processing tasks, Grave et al. ex-
tracted simple, one sentence scientific fact claims
from WorldTree (Jansen et al., 2018), a corpus of
3rd–5th grade science questions with explanations.
OpenBookQA contains a wide range of scientific
facts (e.g., “a deer lives in a forest”, “a landslide is
when gravity rapidly moves rocks or soil downhill
especially after a rain storm”, “the moon reflects
sunlight towards the Earth”) that do not surpass
5th-grade knowledge, thus we consider these facts
to be clear, simple, and general for GPT-4 to label

as fact and provide an accurate supporting citation.

3.2 Scientific Claim Prompt

Our API experiments requires two different
prompts: 1) an initial prompt to elicit a response
identifying if a given claim is scientific fact and a ci-
tation supporting the fact (or not fact) identification,
and 2) a follow-up prompt asking for verification
of the citation and its relevancy to the scientific fact.
Additionally, for the system prompt, we assign a
scientific research persona in order to produce the
most optimal results following OpenAI’s prompt
engineering documentation (OpenAI, 2023). We
access GPT-4 programmatically via the API and set
temperature = 0 for minimal model randomness
in GPT-4’s output 2.

For the initial prompt of identifying scientific
fact and providing a source citation, we give GPT-4
the persona of a scientific researcher who is re-
sponsible for verifying scientific facts. In the user
prompt, we ask GPT-4 a close-ended question to
label a scientific claim as being true or false in
order to elicit an automatically parsable response
in an information retrieval task; however, we ask
an open-ended question to generate a supporting
source citation in a NLG task. Figure 2 displays
both the system prompt and the user prompt for the
first response collection.

system prompt:

user prompt:

"You are a scientific researcher working on verifying
scientific facts."

"Please label the following claim with True or False,
indicating whether or not it is a scientific fact: {claim}.
Please provide a scientific citation supporting your
response."

Figure 2: GPT-4 system and user prompts for scientific
claim and citation chatbot response.

We alter the persona in the scientific claim and
citation verification prompt to include that the sys-
tem is responsible for verifying scientific fact and
citations. Figure 3 displays the system and user
prompt for this experiment, where two close-ended
questions are asked to elicit automatically parsable
responses identifying if the citation is relevant to
the scientific fact (yes/no) and if the citation exists
(real/fake).

We do not implement chain-of-thought prompts
in our experiments, but instead treat the validation
GPT-4 experiment as a separate task for compari-

2https://github.com/autumntoney/
GPT4-scifact-citation
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system prompt:

user prompt:

"You are a scientific researcher working on
verifying scientific facts and citations."

"Given the scientific fact and citation below
please respond with Yes or No indicating
whether or not the citation contains
information about the scientific fact. Yes
indicates that the citation contains relevant
information to the scientific fact and No
indicates that the citation does not contains
relevant information to the scientific fact.
Citation: {citation}. Scientific Fact: {claim}.
The citation came from an unreliable source
and identifying its validity is important,
please search the internet and respond with
Real or Fake indicating if the citation is a
real publication, document, or website. Real
indicates that the publication, document, or
website does exist and Fake indicates that the
citation is fabricated."

Figure 3: GPT-4 system and user prompts for verifica-
tion of the scientific claim and citation accuracy.

son via human annotation. Thus, in our citation val-
idation prompt, we do not state that the citation was
generated from GPT-4, but rather an “unreliable
source”, in order to elicit a more considered eval-
uation. The first prompt contains a closed-ended
prompt for citation generation, representing a NLG
task, and the second prompt contains a close-ended
prompt, representing an information retrieval task
to evaluate two use cases of bibliography genera-
tion.

For our UI experiments, we manually interact
with customized GPT-4 chatbots. We use the API
prompt asking for scientific fact verification and ci-
tation generation (Figure 2) and we include a third,
informal prompt simulating a real-world, conver-
sational chatbot use-case, shown in Figure 4. In
this prompt, the scientific fact is explicitly stated
as such to the chatbot, and the user is only asking
for a corresponding source for a citation. While
user interactions vary widely in conversation style
and writing level, we chose a simple conversation
prompt to analyze the GPTs, similar to the GPT-4
API prompt experiments.

user prompt: I need a citation for the scientific fact: {claim}.

Figure 4: GPT-4 system and user prompts for verifica-
tion of the scientific claim and citation accuracy.

3.3 Response Evaluation

For the initial API prompt (scientific fact identifi-
cation and citation generation) we parse GPT-4’s

response for the true or false label and extract the
provided citation in order to evaluate its perfor-
mance. Next, we take the parsed citation as input to
the citation verification prompt and we parse GPT-
4’s response (citation relevance and existence) for
further evaluation. Lastly, we manually verify all
citations that GPT-4 provided on the following four
criteria: 1) Does the cited source exist?, 2) What
type of error occurred (e.g., no error, fabricated
source, page not found), 3) What type of source
was provided (e.g., textbook, article, URL), and 4)
Is the source related to the scientific fact?

We are not concerned with evaluating the consis-
tency of GPT-4’s citation formatting, as we did not
specify citation style in our prompt. Our evalua-
tion criteria are focused on determining if GPT-4 is
able to support its scientific fact identification with
accurate (existing and relevant) sources.

Due to many of the generated citations being
paywalled or textbooks, we determine relevance to
a scientific fact by publicly available information.
Thus, even if a full paper is available to read we
consider only the title, abstract, and publication
venue. For a textbook citation, we consider the
general topic that is covered and if the scientific
fact falls under that topic. The widest variety of
material to review are URLs, as GPT-4 provides
links to credible sources (e.g., National Geographic,
NOAA, the Oxford Dictionary), but also blog posts,
articles, and guides. We evaluate a URL as being
accurate if the page exists and contains information
relevant to the scientific fact—we do not investigate
the credibility of the source itself (i.e., if the URL
links to a personal blog). We use this annotation
framework for both API and UI GPT responses.

4 Results and Discussion

We evaluate GPT-4’s ability to accurately identify
scientific fact and provide a relevant and existing
citation using the API and UI prompts. Each chat-
bot experiment involves curating a GPT-4 response
dataset from the various prompts and analyzing the
responses for accuracy and relevancy.

4.1 GPT-4 API

We first evaluate the results from the first GPT-
4 prompt (scientific fact identification and cita-
tion generation). GPT-4 accurately identified 96%
(1,273 in total) of the claims as being scientific fact.
The majority of errors were made in the citation
information provided. We display the results in Ta-
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ble 1, listing the total count, percentage incorrect,
and the most frequent error by citation type. We
distinguish page not found errors from fabrication
errors, since we did not investigate if a currently
broken url was a historical artifact of the training
data for GPT-4 (i.e., if the URL provided was pre-
viously valid and potentially a part of the model’s
ingested knowledge).

Type Count % Incorrect Frequent Error

Article 297 13% Fabrication
Textbook 600 1% Fabrication
URL 429 42% Page Not Found

Table 1: GPT-4 citation responses by source type, with
the corresponding count, percentage incorrect, and most
frequent error by citation type.

GPT-4 most commonly responded with a text-
book citation (45% of citations) and URL (32%
of citations), however the URL citations had the
highest error rate (42%) compared to the textbook
citation error rate (1%), which was the lowest. GPT-
4 provided scientific articles with the lowest fre-
quency (22%) and a 13% error rate. This result
indicates that GPT-4 has the ability to provide accu-
rate and relevant citations for scientific facts, with
the most reliable responses involving a textbook
citation, followed by an academic publication.

We analyzed the sources that GPT-4 responded
with to assess if it used the same textbooks, web-
site domains, or scientific articles for multiple re-
sponses since all scientific facts were derived from
grade school knowledge. Table 2 displays the top
10 most commonly cited sources in our GPT-4 API
experiments.

The most commonly referenced textbooks cover
the general subjects of physics, biology, meteorol-
ogy, and earth science. For URL citations, GPT-4
most frequently provided webpages to the National
Aeronautics and Space Administration (NASA),
Encyclopedia Britannica, and National Geographic.
Additionally, we found that the most commonly
referenced sources in the GPT-4 responses are rep-
utable citations and could be selected by a user as
an accurate reference. While only several textbooks
could have been used repeatedly as sources, GPT-4
varies its response with more specific sources using
scientific articles and webpages.

Next, we compared the human annotation re-
sults with the second GPT-4 prompt (citation vali-
dation) results. Figure 5 displays the co-occurrence

Citation Count

1. Halliday, David, Robert Resnick,
and Jearl Walker. Fundamentals of
physics. John Wiley & Sons, 2013.

78

2. National Aeronautics and Space Ad-
ministration

53

3. Encyclopedia Britannica 44

4. National Geographic 35

5. Raven, Peter H., Ray F. Evert, and Su-
san E. Eichhorn. Biology of plants.
Macmillan, 2005.

33

6. National Oceanic and Atmospheric
Administration

33

7. National Weather Service 20

8. Lutgens, Frederick, Edward J. Tar-
buck, Redina Herman, and Dennis G.
Tasa. The Atmosphere: An Introduc-
tion to Meteorology. Pearson, 2017.

13

9. Marshak, Steve. Earth: portrait of a
planet: 5th international student edi-
tion. WW Norton & Company, 2015.

13

10. Smithsonian Museums 10

Table 2: Top 10 most frequently cited source by GPT-4.
The organization name is provided for URLs and the
MLA-style citation is provided for textbooks.

matrices for citation relevancy and existence. We
consider human annotation as the ground truth la-
bel since every generated citation was checked
manually, thus the GPT-4 responses that disagree
with human annotation are considered incorrect
responses from GPT-4.

GPT-4 achieved high performance as an evalu-
ator of citation relevancy, identifying 83% of the
irrelevant citations and 93% of the relevant cita-
tions correctly. However, GPT-4 did not exhibit the
ability to identify citations that were non-existent;
it incorrectly claimed that almost all (98%) of the
non-existent citations were real. Of the 219 claims
that GPT-4 incorrectly identified as being existent
83% were broken URLs. We did not further inves-

261



G
P

T 
V

a
lid

a
ti

o
n

Human Annotation

Irrelevant
Irrelevant

Relevant

Relevant

Non-existent

Existent

Non-existent Existent

67 88

14 1,157

4 0

219 1,103

Figure 5: GPT-4 and human annotation citation valida-
tion results for relevancy and existence.

tigate if the URL was ever active online and could
be a temporal error due to the data that GPT-4 was
trained on, as opposed to a true hallucination.

During manual review, we did not discover any
topical patterns for the set of facts that GPT-4 did
not provide accurate citations. Specifically, there
was not a distinct subject area (e.g., biology or
chemistry), a claim length, or subject level that
caused erroneous generated citations. For example
the simple fact, “a balloon contains gas”, resulted
in the following GPT-4 response with a broken
URL citation:

True.

A balloon typically contains gas, such as
helium or air. This is a basic principle of
balloon inflation. The gas inside the bal-
loon is less dense than the surrounding
air, which allows the balloon to float if
the gas is lighter than air, like helium.

Reference: Encyclopedia Britannica.
(n.d.). Balloon. In Encyclopedia Bri-
tannica online. Retrieved from https:
//www.britannica.com/technology/
balloon-flight-vehicle

In this error example we find that GPT-4
provided a similar citation to a correct link
(https://www.britannica.com/technology/
balloon-flight), but included an incorrect third
word “vehicle”. A source error such as this might
be difficult for a user to notice, as the URL appears

to be accurate and the Encyclopedia Britannica is a
reputable source.

While GPT-4 did not always provide accurate
and relevant sources for more simple scientific facts
like the example above, we find that GPT-4 cor-
rectly generated citations for a more complex facts,
such as “using tools is a learned characteristic”,
responding with the following:

True.

Using tools is indeed a learned character-
istic. This is not only true for humans but
also for certain animal species. For ex-
ample, chimpanzees have been observed
to learn tool use from their peers, indicat-
ing that this is a learned behavior rather
than an innate one.

Reference: Whiten, A., Goodall, J., Mc-
Grew, W. C., Nishida, T., Reynolds,
V., Sugiyama, Y., ... & Boesch, C.
(1999). Cultures in chimpanzees. Na-
ture, 399(6737), 682-685.

In this example, GPT-4 processed the scientific
fact, correctly assigning the label true, and pro-
vided an accurate and relevant citation discussing
tool use as a learned behavior for chimpanzees.
Linking human behavior to chimpanzee behavior
is a more human-like reasoning task, highlighting
that GPT-4 has ingested knowledge that enables
this type of information retrieval performance.

Our experimental API results establish a baseline
understanding of how well GPT-4 performs at the
task of correctly answering if a scientific claim is
true and linking the claim to an academic citation.
While GPT-4 did fabricate citations and provide
broken URLs, the majority (78%) of generated ci-
tations were relevant and existent. Additionally,
GPT-4 did not have an underlying pattern to the
incorrect generated citations, supporting prior re-
search indicating its hallucinations are difficult to
predict. Furthermore, our results suggest that de-
spite having ingested the appropriate knowledge
to respond with an accurate answer in an scientific
knowledge information retrieval task, GPT-4 is still
prone to hallucinate at random.

4.2 Academic GPT UIs
For the UI experiments we select two public GPTs
that are customized for academic writing based
on their use rankings and reviews on the OpenAI
platform: academic assistant pro and scholar AI

262

https://www.britannica.com/technology/balloon-flight-vehicle
https://www.britannica.com/technology/balloon-flight-vehicle
https://www.britannica.com/technology/balloon-flight-vehicle
https://www.britannica.com/technology/balloon-flight
https://www.britannica.com/technology/balloon-flight


pro3. These public GPTs reflect the GPT-4 chabot
a user might select in a real-world scenario, and
they are designed specifically for the research task
of academic writing. Here, we evaluate if these
GPTs are able to correctly identify scientific fact
and provide accurate and relevant corresponding
citations using the claims that GPT-4 responded
with error in the API experiments.

Using the API experiment prompt (Figure 2)
that asks for a true or false label on the scientific
claim and a corresponding citation, we prompt both
academic GPTs with the 56 claims that GPT-4 mis-
labeled in the API experiments (See Appendix for
full list of claims). The academic assistant pro GPT
labeled 38% of the claims as true and the scholar AI
pro GPT labeled 39% as true. We included a third
label, gray, indicating an indecisive GPT response,
which did not occur in the API experiments. For
example, when prompted about the claim “veins
transport nutrients throughout the body”, the aca-
demic assistant pro GPT stated:

The statement "veins transport nutrients
throughout the body" can be nuanced in
scientific literature because, while veins
are a critical component of the circula-
tory system, their primary function is to
return deoxygenated blood back to the
heart, from where it is sent to the lungs
for oxygenation.

The scholar AI GPT provided 10 gray labels and
the academic assistant provided only two.

In the same annotation task as the GPT-4 API
responses, we annotate the academic GPTs’ source
type. Table 3 displays the frequencies of the cita-
tion type provided by each GPT. Both academic
GPTs aligned with the API experiments, providing
majority textbook sources; however, the scholar
AI pro GPT did not provide a source for 20 of the
prompts (35%). We include a source label of orga-
nization, as both GPTs provided the general source
of the International Astronomical Union as refer-
ence to the scientific fact “Pluto is the planet that
is ninth closest to the Sun.” Similarly, both cus-
tomized GPTs only provided three distinct sources
that did not exist (hallucinated) per GPT respec-
tively(six sources in total from both GPTs), an im-
provement from the API results.

Using the informal ask for a source given a sci-
entific fact (Figure 4), we sample 50 claims that

3https://awesomegpts.vip/

GPT-4 correctly labeled as true, but provided an
incorrect citation for (e.g., hallucination or broken
URL); see Appendix for list of claims. Table 4
displays the source counts by type.

The academic assistant GPT did not provide a
source for one claim (“as the use of a crop in-
creases, the amount of crops planted will increase”),
whereas the scholar AI GPT did not provide a
source for the majority (76%) of the claims4. All
sources provided in this prompt experiment were
accurate and relevant from both GPTs. The aca-
demic assistant responded with textbook sources
for 94% of its responses, wheres the scholar AI
responded with 75% URL sources (of the 24% of
claims it provided a source for). The chatbot UI
results strengthen the API finding that GPT-4 has
the most reliable results when providing a textbook
citation.

In general, we find that using a customized, pub-
lic GPT provides improved results from prompting
GPT-4 via the API. For the application of our study,
this result indicates that in a real-world scenario a
user can select a GPT to reliably support bibliogra-
phy curation.

5 Discussion and Limitations

The inability to study the underling algorithms,
codebase, and knowledge infrastructure of a GPT
model presents a challenge when studying closed-
source chatbots. In this work, our goal is to sys-
tematically evaluate GPT-4’s API and UI perfor-
mances as reliable tools for a paired task of natural
language generation and information retrieval on a
domain-specific task— linking scientific claims to
relevant and existent sources. A limitation of our re-
sults is the lack of validation that can only be fully
achieved with the transparency of an open-source
model. Additionally, we only query one chatbot
(GPT-4) on scientific facts and sources (limited in-
formation types). We highlight our main findings
and discuss our interpretations of these results.

GPT-4’s apparent knowledge acquisition
and reliability mimics the real-world. When
evaluating the reliability of sources provided, we
found that GPT-4 had the most accurate citations
when referencing a textbook and the least accurate
citations when referencing a URL. This behavior
mimics real-world bibliographic curation—a
relevant published piece of knowledge is more

4During experimentation we tested follow-on prompts ask-
ing for a citation again, but did not receive any source infor-
mation.
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GPT Article Organization Textbook URL No Citation Provided

academic assistant 15 1 38 1 0
scholar AI 12 1 14 10 20

Table 3: Academic GPTs citation responses by source type using the formal prompt asking for scientific fact
verification and a corresponding source.

GPT Article Organization Textbook URL No Citation Provided

academic assistant 0 0 47 2 1
scholar AI 1 1 1 9 38

Table 4: Academic GPTs citation responses by source type using the informal prompt asking for a source given the
scientific fact.

reliable for academic citation than a URL. While
we did not further investigate erroneous URLs for
their potential historical existence, it appeared that
GPT-4 would use a reliable domain name (e.g.,
nationalgeographic.com/) with an incorrect
(hallucinated) page reference (e.g., article/
volcanic-landforms-extrusive-intrusive/).
Thus, we hypothesize that GPT-4 has has ingested
information on reputable bibliographic sources
(e.g., National Geographic) and their correspond-
ing domain, but does not always “retrieve” a
correct URL.

Customized GPTs achieve higher perfor-
mance for the intended (domain-specific) task.
OpenAI’s description of creating customized GPTs
indicates its user-friendly design (no coding re-
quired) by stating that all a user needs is to prompt
ChatGPT with further instructions or extra knowl-
edge. Despite ChatGPT being a closed-source
model, it can ingest knowledge via human inter-
action directly in the UI. Selecting the additional
knowledge that a chabot can learn improves the
transparency of knowing what the GPT “knows”
and also increases the reliability of the chatbot’s re-
sponses related to the specific information retrieval
task. We highlight the fact that GPT models may
appear to be poor tools for an information retrieval
task like bibliography generation, as discussed in
prior research, however GPT models are genera-
tive in their nature. Fine-tuning a GPT model with
the necessary information for a task will improve
its results and reliability, as the knowledge and
knowledge sources are identified by the user. Thus,
customization for a domain-specific task should be
heavily considered when leveraging chatbots as a
domain-specific tool.

6 Conclusion

In this paper we evaluated GPT-4’s ability to iden-
tify scientific fact and generate a citation to support
its response. Our experimental design contained
two chatbot environments, API and UI, to fully as-
sess GPT-4’s performance. We designed prompts
that included open-ended (generative) and close-
ended (information retrieval) questions in order to
test two prompt and response formats. Our ex-
periments are designed to compare how GPT-4
generally performs on a domain-specific task (via
the API) and how a GPT-4 chatbot performs (via
the UI) when customized for use in the specified
domain.

Using the API, we find that in general, GPT-4
performs well on identifying scientific fact and pro-
viding reliable sources. For the citation generation
task, we find that GPT-4 provided relevant and ex-
istent academic citations with 78% accuracy. For
the information retrieval tasks, we find that GPT-4
is able to identify scientific fact with 96% accuracy
and determine the relevancy of citations with 83%
accuracy for irrelevant citaitons and 93% accuracy
for relevant citations. GPT-4 had the worst perfor-
mance when determining if a citation existed, with
the majority of its error as labeling broken URLs
as existent. In the UI experiments, we find that
using public GPTs customized for academic writ-
ing improved the API results in both scientific fact
identification and source generation. However, we
did identify discrepancies in chatbot performances
between the two GPTs, with one chatbot’s outputs
resulting in the majority (76%) not containing a
source when being explicitly asked for one.

Overall, we find GPT-4 to be a useful informa-
tion gathering tool for general scientific knowledge.
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Our experiments suggest that a user should select
or design a customized chatbot for domain-specific
tasks for improved utility.
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A GPT-4 UI Scientific Claim Sets

We provide the sets of claims used in the UI ex-
periments, which provide insight into the claims
that resulted in error responses from the API ex-
periments. Table 5 lists all scientific claims that
GPT-4 incorrectly labeled false in the API exper-
iments and Table 6 lists a random sample of 50
claims that GPT-4 correctly labeled as true in the
API experiments, but provided inaccurate sources
for.
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Table 5: Set of 56 scientific facts that GPT-4 mislabled as false in API experiments and are used in the UI
experiments.

limestone is formed by water evaporating from a solution
of water and minerals

omnivores are predators

if a weed is pulled then that weed is destroyed as the time a tool lasts increases, the number of tools dis-
carded will decrease

as water increases in an environment, the population of
aquatic animals will increase

hunting requires seeing prey

as ability to preserve food increases, the ability to transport
food increases

as the size of the eyes of an animal increases, the ability of
that animal to see will usually increase

cold environments are usually white in color from being
covered in snow

clear weather means sunny weather

as air pressure decreases, the chance of rain will increase the increase of something required by an organism has a
positive impact on that organism ’s survival

as the available water in an environment increases, the
populations of organisms in that environment will increase

cold environments contain few organisms

a complete electrical circuit is a source of electrical energy adding salt to a solid decreases the freezing point of that
solid

if a tree falls then that tree is dead water is in the solid state, called ice, for temperatures
between 0 and 0 F

decreasing something negative has a positive impact on a
thing

if a cell can not specialize then that cell must perform all
life functions

precipitation is when snow fall from clouds to the Earth as number of organisms in a group increases, the chance
of survival of each organism will increase

poisonous darts are used for defense by sea anemones boiling is when liquids are heated above their boiling point
if an animal relies on plants for food then that animal must
store enough food to last through the winter

breathing is when a lung converts from oxygen in air into
oxygen in blood

force causes the speed of an object to decrease as force exerted on an object increases, distance travelled
will increase

if a hot object touches a cold substance then that substance
will likely cool

an animal usually requires a warm body temperature for
survival

as moisture of an object decreases, the friction of that
object against another object will increase

a plant requires soil for to grow

as the size of a flower increases, the number of pollinators
it will attract increases

as the activity of an animal increases, the amount of water
in an animal ’s body in that environment will decrease

the Earth revolving around the Sun causes the seasons to
change on its axis

if something is outside during the day then that something
will receive sunlight

a different moon phase occurs once per week the moon rising occurs once per day
the sun is located directly overhead at noon as the weight of an animal decreases, that animal will fly

more easily
food is a source of energy for plants pollination requires pollinating animals
as the number of eggs laid by an animal increases, the
number of eggs that hatch will increase

the condition of the parts of an organism are acquired
characteristics

if an object is blue then that object reflects only blue light carnivores only eat animals
bees eat pollen veins transport nutrients throughout the body
iron is always magnetic the Earth absorbs more energy than it loses
mountains are formed by volcanoes as the thickness of an object increases, the resistance to

damage of that object will increase
the moon does not contain water the Earth revolving around the Sun causes the seasons to

occur on its axis
cracking something usually has a negative impact on that
something

Pluto is the planet that is ninth closest to the Sun
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Table 6: Set of 50 randomly sampled scientific facts for UI experiments.

as the use of a crop increases, the amount of crops planted
will increase

a scar is an acquired characteristic

magnetism can cause objects to repel each other a sea turtle lives in the ocean
a spider web is used to capture food by spiders a renewable resource can be replaced
a greenhouse is used to protect plants by keeping them
warm

the tide cycle regularly occurs twice per day

water is an electrical conductor tectonic plates being pushed together causes earthquakes
crumple means change shape from smooth into compacted by physical force
sunlight contains ultraviolet light the Earth revolves around the sun
meters m are a unit used for measuring distance generally
used for values between 1 and 1000

the slope of the land causes a river to flow in a particular
direction

natural magnetism is used for pointing north by a compass soil is formed by weathering
if a mineral can be scratched by a fingernail then that
mineral is soft

if a substance absorbs solar energy then that substance will
increase in temperature

breath contains water vapor weathering usually occurs over a period of many years
a star is a source of light through nuclear reactions a star is made of gases
a reflector is used to reflect light especially on vehicles high means great in altitude
a flashlight requires a source of electricity to produce light endangered means low in population
a Rotation of the Earth on Earth ’s axis takes 1 day An example of an inherited behavior is a bird building a

nest
a balloon contains gas the sun causes water to evaporate more quickly by adding

heat
a bubble contains gas the sun is the source of solar energy called sunlight
winter in the Northern Hemisphere is during the summer
in the Southern Hemisphere

coal mine is a source of coal under the ground

In the food chain process some types of plankton have the
role of producer

as time spent taking a shower decreases, water used will
decrease

a compass ’s needle lines up with Earth ’s magnetic poles a stopwatch is used to measure time
coal is used to produce electricity by burning in coal-fire
power stations

arteries transport nutrients throughout the body

An example of a reproductive behavior is salmon returning
to their birthplace to lay their eggs

a graduated cylinder is a kind of instrument for measuring
volume of liquids or objects

a rainbow is formed by refraction of light by splitting light
into all different colors

fossil fuels forming occurs over a period of 300000000
years which is considered a very long time to a human

as lightness in color of an object increases, the ability of
that object to reflect light will increase the stars in the night
sky are very far away from the Earth

wind causes erosion

the sun is located directly overhead at noon a solar panel converts sunlight into electricity
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Abstract

Large Language Models (LLMs), despite
achieving state-of-the-art results in a number
of evaluation tasks, struggle to maintain their
performance when logical reasoning is strictly
required to correctly infer a prediction. In this
work, we propose Argument Generation as a
method of forcing models to utilize their reason-
ing capabilities when other approaches such as
chain-of-thought reasoning prove insufficient.
Our method involves the generation of argu-
ments for each possible inference result, and
asking the end model to rank the generated
arguments. We show that Argument Genera-
tion can serve as an appropriate substitute for
zero-shot prompting techniques without the re-
quirement to add layers of complexity. Fur-
thermore, we argue that knowledge-probing
techniques such as chain-of-thought reasoning
and Argument Generation are only useful when
further reasoning is required to infer a predic-
tion, making them auxiliary to more common
zero-shot approaches. Finally, we demonstrate
that our approach forces larger gains in smaller
language models, showcasing a complex re-
lationship between model size and prompting
methods in foundation models.

1 Introduction

Large Language Models, including state-of-the-art
models such as Llama family of LLMs (Touvron
et al., 2023), Mistral 7B (Jiang et al., 2023), and
Phi-3 (Abdin et al., 2024) have shown to signifi-
cantly outperform previous generation of models
(Wang et al., 2023b) such as BERT (Devlin et al.,
2019) in several mainly classification tasks (Chang
et al., 2024). However, despite their seemingly
human-like auto-regressive behavior, Large Lan-
guage Models do not perform well when deep rea-
soning or analysis is required to effectively infer a
prediction (Lee et al., 2023; Tao et al., 2023).

In order to bolster the reasoning capabilities of
large language models, the research community

Figure 1: The general framework of Argument Genera-
tion Prompting

has done extensive recent work in the form of
chain-of-thought reasoning (Kojima et al., 2022;
Wang et al., 2023a), Self-Reflection (Madaan et al.,
2023), Multi-Agent Debate (Liang et al., 2023;
Du et al., 2023), and Socratic prompting (Chang,
2023), demonstrating that prompting the model to
generate the reasoning behind its answer, or gener-
ating a step-by-step guide to reach its response can
help predict better results.

Taking inspiration from chain-of-thought rea-
soning, and motivated by the need to develop bet-
ter prompt techniques with the goal of increasing
model performance in reasoning tasks, we intro-
duce Argument Generation, a single-pass prompt-
ing technique that aims to utilize the reasoning
and argumentation capabilities of Large Language
Models to generate better responses where deeper
consideration of logic or reasoning is required to
infer the correct result. Argument Generation in-
volves a two-step process. We first prompt the
model to generate possible reasoning for the truth-
fulness of each possible option, and then we ask the
model to rank the generated arguments and map
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its ranking to a final output in accordance with the
task expectations.

We evaluate our method on a number of openly
available state-of-the-art Large Language Models
using nine tasks of different natures. We find that
Argument Generation at its weakest, does not per-
form significantly worse than chain-of-thought rea-
soning, and is able to outperform both zero-shot
reasoning and chain-of-thought reasoning when
a deeper understanding of the task options is re-
quired. Furthermore, we note that in comparison
to chain-of-thought reasoning, Argument Genera-
tion can be used as a stronger knowledge probing
technique that is useful in instances where such
probing is essential, or some level of prior knowl-
edge regarding the task is present (such as possible
response candidate). However, our method does
not necessarily increase the model performance for
inputs that observe acceptable results under more
common methods.

We make the following contributions: (1) We
introduce Argument Generation, a novel prompting
technique that aims to access the underlying reason-
ing capabilities of LLMs. (2) We show through a
series of experiments that our method is able to ef-
fectively reason under conditions that fail chain-of-
thought reasoning. (3) We show that our prompting
method is more effective when used with smaller
language models, eliciting further investigation into
the relationship between prompting approaches and
model capabilities.

2 Background and Motivation

Argumentation is the cognitive capability of gener-
ating and evaluating “reasons” for deriving a con-
clusion (Mercier, 2016). It is a central aspect of
human intelligence and is omnipresent in natural
human communication. It extends the conception
of reasoning in LLM-research (Yu et al., 2023a) by
including the notion that conclusions drawn must
be new. Indeed, it has been suggested that human
reasoning evolved for the purposes of enabling hu-
mans to persuade each other (Mercier and Sperber,
2011) through arguments.

We hypothesize that many day-to-day arguments
are evaluated by humans in an intuitive (fast, sys-
tem 1) manner, without deep thought or “epistemic
vigilance” (Sperber et al., 2010), unless they are
from trusted sources and appear to contradict our
own beliefs. Thus, because LLMs were pretrained
with human communicative interactions, we hy-

pothesize that LLMs are capable of fast argumenta-
tive thinking. By triggering argumentative thought,
we hypothesize that LLMs can effectively generate
reasons and assess conclusions, as well as improve
core reasoning capabilities across a variety of do-
mains, including commonsense, logical, and social.

3 Related Work

General argumentation ability of LLMs have
begun to be explored by researchers, with a fo-
cus on a number of computational argumentation
subtasks such as argument mining, claim detec-
tion, evidence detection and type classification, ar-
gument generation, and summarization (Balikas,
2023; Chen et al., 2023; Holtermann et al., 2022;
Ruiz-Dolz and Lawrence, 2023; Thorburn and
Kruger; de Wynter and Yuan, 2023). Research
suggests that LLMs “exhibit commendable per-
formance” (Chen et al., 2023) in zero-shot and
few-shot settings thereby supplying a foundation
supporting our approach.

Delving deeper, we can explore two core as-
pects of argumentation. First, the ability to argue
for/against all sides (thinking like a lawyer). Sec-
ond, the ability to generate implicit assumptions
(necessary or sufficient warrants) needed to support
the argument.

Arguing all sides is related to “backward reason-
ing” suggested in (Yu et al., 2023a), where they dis-
cuss that it is “better to collect both supportive and
opposing knowledge to compare the confidence of
different conclusions for defeasible reasoning.” Ad-
ditionally (Wang et al., 2022) discuss the idea of al-
lowing several different reasoning paths and choos-
ing the “most consistent one”. Another approach
is contrastive chain-of-thought (Chia et al., 2023)
where they consider both valid and invalid reason-
ing demonstrations alongside original prompt – a
dual perspective approach. Additionally, work in
multiagent debate, for example (Chia et al., 2023)
uses a notion of a debate with multiple agents dis-
cussing and talking about the problem. However,
none of these approaches attempt at rationalizing
all sides of an argument. That is none of these of-
fer up the best possible argument for/against each
choice, and then evaluate the best argument (for
example, anticipatory reflection of plans in (Wang
et al., 2024)).

Extracting implicit information relates to work
in “knowledge-enhanced” (Qiao et al., 2023) strate-
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gies in which an implicit model generates knowl-
edge and rationales. Also Yu et al. (2023a) dis-
cusses Leap-of-thought reasoning which uses im-
plicit facts to answer questions. A related notion is
that of decomposing implicit multi-hop questions
down in connection with the general backward rea-
soning tactic of question-decomposition (see sum-
mary in (Yu et al., 2023a)). Work by (Sarathy
et al., 2022) suggests extracting implicit assump-
tions from premise-conclusion pairs, however, that
work does not explore how such endeavor influ-
ences an LLM’s reasoning capability. Although
there is a growing body of work in question de-
composition, it is unclear to what extent they take
implicit assumptions into account.

General LLM reasoning capabilities have been
improving over the past several years with numer-
ous datasets targeting different types of reasoning
– logical, mathematical, commonsense, argumen-
tation, and social reasoning (Qiao et al., 2023; Yu
et al., 2023a; Huang and Chang, 2023; Yu et al.,
2023b; Luo et al., 2023; Sahoo et al., 2024a). The
methods have involved various techniques to evoke
reasoning processes such as having the LLM ex-
plicate its chain of thought (Wei et al., 2022a),
reflect on its own reasoning process (Wang and
Zhao, 2023), decompose complex reasoning pro-
cesses into simpler problems that can be solved
more easily (Khot et al., 2023), explore many dif-
ferent reasoning paths and decide on one that wins
a majority vote (Wang et al., 2022), and others.
These various methods have shown improvements
in various reasoning tasks, but none have shown
cross-domain effectiveness. Moreover, their rea-
soning capabilities are limited when exposed to
scenarios in which the model must resolve a dis-
agreement (Lee et al., 2023), distinguish a correct
phrase from an incorrect one (Riccardi and Desai,
2023), or assign a nondeterministic gender to a
subject (Zakizadeh et al., 2023). Overall, Large
Language Models have shown promising results
in a variety of reasoning tasks while serious chal-
lenges and shortcomings still remain (Chang et al.,
2024). What is missing is a cross-domain strategy
to improve an LLM’s zero-shot reasoning capabili-
ties, which we hypothesize to be enhanced by its
latent capability for argumentative thinking.

4 Methodology

We now provide details regarding our approach,
including the proposed zero-shot approach and the

reasoning behind our choice of Argument Genera-
tion as a prompting technique.

Argument Generation involves two overall
steps. Given an initial input x with possible an-
swers k1, k2, ...kn, we first prompt the model to
generate arguments supporting and attacking each
answer ki, creating arguments x′1, x

′
2, ...x

′
n for each

possible answer. We then ask the model to choose
the answer with the strongest argument as the fi-
nal output. More concretely, the Large Language
Model is utilized as a proxy for an argument rank-
ing function that chooses the most feasible options
among arguments x′1, x

′
2, ...x

′
n.

The rationale behind our approach is two-fold.
First, it has been shown that Large Language Mod-
els, when provided with a reasoning context to-
wards the correct output, observe significantly im-
proved performance (Wei et al., 2022b; Kojima
et al., 2022), making the reasoning behind each
choice an important contributor to model perfor-
mance. Second, Large Language Models can act
as effective rankers when provided with a list-wise
input of possible options (Ma et al., 2023), indi-
cating the feasibility of their possible utilization
for the effective ranking of arguments. As a result,
the proposed technique relies on the assumption
that the correct answer ki to the query x should
logically have the strongest argument supporting it,
forcing the ranker model to choose the argument
that is directly mapped to the correct answer.

Essentially, Argument Generation is similar to
chain-of-thought reasoning because both focus on
the generation of a token chain with the goal of
increasing the probability of generating a viable
final answer. However, chain-of-thought reasoning
operates under the assumption that the generation
of supporting steps is sufficient for the final true
output. On the other hand, Argument Generation
aims to take into consideration the possibility of the
presence of a counterargument that is statistically
more significant than the answer that is generated
by pure chain-of-thought. As such, we hypothesize
that chain-of-thought can sufficiently generate the
most logically intuitive response to the user input,
while Argument Generation might be better suited
for cases where the correct answer is initially unin-
tuitive but may increase in statistical significance
as a valid counterargument is presented against the
other answer candidates.

271



5 Evaluation

To empirically evaluate the effectiveness of our
proposed method, we have tested the performance
of Argument Generation in nine datasets and across
nine models. For the remainder of this section, we
focus on describing our evaluation setting.

5.1 Models
In order to perform a comprehensive evaluation
over models of different size and architecture, we
test our approach using nine models, including two
families of models, and five independent, recently
released LLMs. These include Llama 3 family of
models (8B and 70B), Gemma family of models
(2B and 7B) (Mesnard et al., 2024), Phi-3 3.8B
(Abdin et al., 2024), Mistral 7B (Jiang et al., 2023),
GPT 4o-mini1, Qwen2 1.5B (Yang et al., 2024),
and Aya 35B (Üstün et al., 2024).

5.2 Datasets
Our choice of datasets includes candidates from
nine different tasks, each representing a group of
tasks that aim to quantify a specific aspect of a
given model. We strive to cover tasks belonging to
different domains, including question-answering,
argumentation, reasoning, bias evaluation, human-
alignment, and autoregressive generation. The
tested datasets include CommonSenseQA (Talmor
et al., 2019), DiFair (Zakizadeh et al., 2023), IBM-
30K (Gretz et al., 2020) TruthfulQA (generation
and multiple choice tasks) (Lin et al., 2022), Stere-
oSet (Nadeem et al., 2021), StrategyQA (Geva
et al., 2021), Formal Fallacies (Suzgun et al., 2023),
and AlpacaEval (human annotation task) (Dubois
et al., 2024).

For all tasks, we report the metric proposed by
the task’s respective paper. The only exceptions to
this rule are IBM-30K and the generation task of
TruthfulQA. For IBM-30K, we report 1−MAE as
the final score to be consistent with others metrics
and to showcase the model response quality per
individual instance. In the case of TruthfulQA, we
use GPT 4o-mini as the judge model as opposed to
the fine-tuned GPT-3 utilized by the authors. For
the multi-choice TruthfulQA task, we additionally
generate 60 questions by randomly sampling 15%
of the original dataset and replacing the correct
option with ‘None of the Answers are Correct’.
This is done in order to further evaluate model
performance when no clear answer exists.

1OpenAI

Observe that Argument Generation requires the
existence of valid candidate responses in order to
correctly reason, and choose a response. However,
in the case of Large Language Models, it is often
the case that the user does not have a set of candi-
date responses for their question. In such cases, we
prompt the model to generate such responses first,
and then use them as the possible answers to the
question. This approach is based on the hypothesis
that if a model has sufficient knowledge to answer
a question, it should also generate that response
as a candidate. Similar methods have shown to be
effective in prompt ranking approaches (Hu et al.,
2024).

5.3 Argument Generation
We perform our evaluations using two different
Argument Generation settings in order to evaluate
both the effect of generation of implicit assump-
tions, as well as the model sensitivity to differ-
ent Argument Generation prompts. In the first ap-
proach, given an input x and a possible answer k,
we explicitly ask the model to generate an implicit
assumption under which k is a valid response to x.
An implicit assumption is a set of logical proposi-
tions P such that every proposition in P must hold
in order for the answer to follow logically from
x. We then ask the model to rank these implicit
assumptions by the feasibility of all pi ∈ P to
hold simultaneously. We finally take the implicit
assumption with the highest feasibility ranking as
the final answer to the input.

In the second approach, given an input x and
a possible answer k, we ask the model to both
generate an argument for accepting k as a correct
answer to x and generate an argument for rejecting
k as a correct answer to x. We then apply this
process to all candidate answers k1 through kn
such that n tuples of arguments are generated by
the model. We finally prompt the model to rank
the aforementioned n tuples and generate the final
answer to input x.

Algorithm 1 showcases both of the aforemen-
tioned techniques, where ASSUMPTION(x, K)
refers to the generation of implicit assumptions
for each candidate answer, and ranking them via
a list-wise ranking technique, and ARGUMENT(x,
K) refers to the generation of tuples of arguments
for each candidate answer that both support and at-
tack the corresponding candidate answer, and then
ranking them via a list-wise ranking approach.

We acknowledge that it is possible to extend
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Algorithm 1 Argument Generation

Require: Input x, List of Possible Answers K
Ensure: Final Response ki

1: procedure GENERATION(x, K)
2: function IMPLICITASSUMPTION(x, K)
3: Let A := ø
4: for all ki ∈ K do
5: A := A ∪ ASSUMPTION(x, ki)
6: Let Ranking := RANKING(A)
7: return Ranking[0] ▷ Return the Top

Ranking Answer
8: function ARGUMENTGENERATION(x, K)
9: Let A := ø

10: for all ki ∈ K do
11: A := A ∪ {ARGUMENT(x, ki),

ARGUMENT(x, ¬ki)}
12: Let Ranking := LWR(A)
13: return Ranking[0] ▷ Return the Top

Ranking Answer

our approach to a multi-agent setting, where the
argument generation is done by an external model
that is separate from the ranking model. How-
ever, we focus on single-pass prompting for the
purpose of this study to (i) provide a single-pass,
easy-to-implement approach that is comparable to
zero-shot chain-of-thought reasoning both in per-
formance, and running time, and (ii) refrain from
unnecessarily increasing the computational require-
ment of the approach, as seen in other multi-agent
techniques. However, we hypothesize that general-
izing our algorithm to utilize multiple agents is both
simple and observes an increase in performance.

6 Evaluation Results

We now showcase our results as tested against the
datasets mentioned in section 5. We additionally
show that Argument Generation, when outperform-
ing zero-shot chain-of-thought reasoning, demon-
strates significantly higher performance gain, and
suffers smaller losses in cases where it does not
result in increased performance. We finally pro-
vide a model size analysis to better understand the
relationship between prompting methods and the
number of parameters present in a given Large Lan-
guage Model.

6.1 Performance Analysis

Table 1 showcases the evaluation results when us-
ing Argument Generation against zero-shot chain-

of-thought prompting (Kojima et al., 2022) and
common zero-shot prompting (Radford et al.,
2019).

We observe that our method is able to out-
perform both zero-shot prompting and chain-of-
thought reasoning in 38 of the 81 test settings,
amounting to a win rate of 46.91%. Additionally,
our approach outperforms chain-of-thought reason-
ing in 47 of the 81 settings, showcasing that Argu-
ment Generation yields better results in 58.02% of
the test cases. Among the 45 cases where our pro-
posed method performs better, there are 35 cases
(77.77%) in which both proposed approaches out-
perform chain-of-thought reasoning, while Argu-
ment Generation with implicit assumptions is able
to yield better results in 38 cases (84.44%), and
Argument Generation without implicit assumptions
has a better performance in 42 cases (93.33%),
showcasing that both methods have similar results
while tested against chain-of-thought reasoning.

With respect to individual datasets, we find that
our method enjoys a significant performance boost
when tested against instances of IBM-30K (Gretz
et al., 2020), with both methods showing improved
results over the two other baselines in all models.
This behavior is expected as IBM-30K measures
a model’s capability to correctly discern a valid
argument from an invalid one, and our approach
operates via generating arguments that both support
and attack the given input, meaning that invalid
arguments will have weaker support, allowing the
model to effectively rank the inputs based on their
argumentative strength.

Additionally, we observe that Argument Genera-
tion is able to increase model performance for 10
out of 18 instances (55.55%) against all methods,
and for 13 out of 18 instances (72.22%) against
chain-of-thought reasoning in DiFair (Zakizadeh
et al., 2023) and StereoSet (Nadeem et al., 2021)
datasets, showcasing that argumentation might
serve as a reliable debiasing method for Large
Language Models. Interestingly, the correlation
between our approach’s improving effects and a
given model’s general capability is not strictly pos-
itive in this case, meaning that it is possible for
larger models to observe lower, or no gains when
prompted with Argument Generation. We attribute
this observation to the possibility of more capa-
ble models deceiving themselves via supporting an
incorrect candidate when the initial knowledge is
sufficient to make a prediction, meaning that Ar-
gument Generation might force an artificial and
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Model Prompt CommonSenseQA DiFair IBM-30K TruthfulQA StereoSet StrategyQA TruthfulQA Gen FormalFallacies AlpacaEval

Gemma 2B

Zero-Shot 43.24% 0.0% 59.46% 20.63% 63.70% 55.45% 34.66% 53.20% 54.39%
Chain of Thought 41.85% 12.65% 49.98% 18.61% 36.17% 49.34% 34.77% 53.20% 57.01%
Argument Generation w/ Implicit Assumptions 37.18% 34.54% 62.63% 47.97% 44.97% 46.28% 29.32% 49.60% 57.78%
Argument Generation 39.80% 55.39% 80.93% 31.27% 34.3% 50.21% 29.32% 53.60% 57.62%

Gemma 7B

Zero-Shot 69.28% 0.0% 70.85% 28.93% 88.87% 66.37% 55.99% 49.60% 62.71%
Chain of Thought 69.12% 32.52% 63.14% 41.48% 66.98% 58.07% 50.69% 47.20% 61.94%
Argument Generation w/ Implicit Assumptions 66.33% 47.51% 69.31% 33.05% 64.05% 61.33% 59.59% 47.20% 59.93%
Argument Generation 66.66% 55.84% 72.94% 25.21% 73.88% 54.14% 59.65% 49.20% 57.62%

Llama3 8B

Zero-Shot 71.33% 22.19% 60.51% 47.97% 42.47% 65.93% 47.52% 53.20% 58.24%
Chain of Thought 71.41% 10.80% 66.03% 44.57% 54.36% 74.23% 64.65% 59.20% 55.00%
Argument Generation w/ Implicit Assumptions 63.22% 55.88% 71.22% 51.70% 55.73% 60.26% 78.28% 46.80% 51.30%
Argument Generation 64.12% 58.57% 73.50% 33.93% 45.90% 62.88% 78.88% 50.00% 46.68%

Llama3 70B

Zero-Shot 79.85% 78.08% 76.04% 69.04% 41.91% 72.77% 57.09% 53.20% 52.22%
Chain of Thought 80.26% 82.79% 64.46% 70.53% 39.04% 74.67% 77.80% 71.60% 49.36%
Argument Generation w/ Implicit Assumptions 74.44% 72.45% 76.98% 56.91% 73.44% 45.41% 82.58% 64.40% 49.52%
Argument Generation 75.34% 79.16% 76.13% 68.93% 52.05% 72.05% 82.59% 62.80% 50.15%

Phi3 3.8B

Zero-Shot 67.97% 6% 63.04% 47.55% 56.0% 64.19% 57.33% 53.20% 62.22%
Chain of Thought 66.66% 71.59% 62.57% 51.48% 61.52% 64.62% 63.94% 54.80% 61.63%
Argument Generation w/ Implicit Assumptions 66.91% 57.24% 69.50% 51.70% 61.15% 60.26% 73.08% 54.80% 63.17%
Argument Generation 67.97% 52.39% 69.17% 52.12% 61.67% 62.88% 73.54% 55.60% 57.62%

Mistral 7B

Zero-Shot 67.81% 45.66% 64.83% 8% 46.61% 61.57% 65.74% 53.20% 59.93%
Chain of Thought 67.89% 62.19% 59.82% 55.95% 41.10% 65.06% 77.91% 47.20% 61.01%
Argument Generation w/ Implicit Assumptions 64.29% 63.44% 66.58% 50.63% 46.28% 60.26% 77.29% 50.40% 58.08%
Argument Generation 64.70% 66.51% 66.85% 51.27% 49.24% 60.69% 77.50% 50.00% 54.54%

GPT-4o-Mini

Zero-Shot 82.47% 83.58% 55.78% 66.06% 75.48% 77.50% 66.15% 53.20% 65.63%
Chain of Thought 82.71% 79.92% 51.25% 65.53% 86.37% 77.50% 82.30% 63.20% 63.63%
Argument Generation w/ Implicit Assumptions 79.68% 73.15% 71.96% 58.29% 86.22% 70.30% 91.83% 71.20% 56.70%
Argument Generation 80.26% 81.10% 71.71% 56.38% 86.87% 71.61% 91.89% 69.20% 53.77%

Qwen2 1.5B

Zero-Shot 69.45% 10.21% 76.04% 29.14% 50.31% 54.58% 42.37% 53.20% 53.15%
Chain of Thought 59.95% 22.56% 64.46% 32.65% 39.55% 54.58% 53.76% 46.40% 61.32%
Argument Generation w/ Implicit Assumptions 49.95% 50.03% 76.98% 11.48% 26.99% 49.34% 44.46% 49.60% 63.02%
Argument Generation 54.79% 52.57% 76.13% 14.68% 31.87$ 55.02% 43.80% 50.00% 62.40%

Aya 35B

Zero-Shot 85.83% 69.71% 62.73% 48.82% 65.28% 67.68% 44.44% 53.20% 65.48%
Chain of Thought 82.39% 74.02% 40.06% 43.82% 48.61% 82.53% 41.81% 47.60% 63.02%
Argument Generation w/ Implicit Assumptions 76.16% 61.63% 72.64% 58.19% 47.33% 72.48% 30.20% 48.40% 63.63%
Argument Generation 77.31% 66.25% 64.56% 54.25% 47.85% 78.60% 29.84% 47.60% 66.10%

Table 1: Prompting results using Argument Generation, Chain of Thought Reasoning, and Zero-Shot Prompting in
nine different tasks.

unwanted decrease in model confidence. We pro-
vide further details and analysis in section 6.3.

6.2 Performance Difference Analysis

In order to observe the expected performance met-
ric difference, we define ∆min as the mean differ-
ence between chain-of-thought reasoning and the
worst-performing Argument Generation method
when chain-of-thought reasoning is performing bet-
ter than our approach, and ∆max as the mean dif-
ference between chain-of-thought reasoning and
the best-performing Argument Generation method
when chain-of-thought reasoning is performing
better than our approach. Conversely, we define
Γmin and Γmax similarly for cases in which Argu-
ment Generation is performing better than chain-
of-thought reasoning. More concretely, ∆ values
show the performance decrease of Argument Gen-
eration with respect to chain-of-thought reason-
ing when the second approach is able to outper-
form our method, while Γ values demonstrate the
performance increase when Argument Generation
produces better results in comparison to chain-of-
thought reasoning.

Table 2 showcases our empirical results. We
find that except for the Phi3 3.8B model, all LLMs
demonstrate significantly higher performance in
instances where our method outperforms zero-shot
chain-of-thought reasoning. Most significantly,

Model Name ∆min ∆max Γmin Γmax

Gemma 2B 5.06 3.75 11.95 25.95
Gemma 7B 7.79 4.30 10.02 14.02
Llama3 8B 10.72 7.88 21.29 23.15
Llama3 70B 13.56 3.99 7.40 13.12
Phi3 3.8B 11.78 8.04 4.05 4.62
Mistral 7B 4.16 3.11 3.99 5.67
GPT-4o-Mini 8.39 5.45 17.08 17.82
Qwen2 1.5B 13.42 10.02 10.85 11.95
Aya 35B 8.38 5.83 11.84 16.67

Overall 10.33 7.03 11.48 15.35

Table 2: Observed results of ∆min, ∆max, Γmin, and
Γmax for all tested models. We find that in cases where
our method performs better, it generally holds that it has
a larger performance gain in comparison to the instances
where Chain-of-Thought reasoning is the best method.

Llama3 8B has a mean performance difference
of 21.29% between the worst-performing Argu-
ment Generation approach and zero-shot chain-
of-thought reasoning (Γmin) in tasks that our
method performs better. Looking at Γmax, the
best-performing proposed method is able to boost
Gemma 2B model performance by 25.95%, and
Llama3 8B performance by 23.15%, showcasing
that overall when such an increase in model per-
formance is observed, the increase is significant.
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Conversely, Phi3 3.8B, when prompted using our
method, only has an increased output value of
4.62% at best, while performing 11.78% better than
the worst-performing Argument Generation ap-
proach, and 8.04% better than the best-performing
approach in instances that chain-of-thought reason-
ing yields better results. We attribute this behavior
to the model’s lower argument ranking capabili-
ties, meaning that Phi3 cannot effectively rank the
arguments based on their validity. This notion is
further bolstered by the model’s relatively low per-
formance in the IBM-30K task when using our
proposed method, as seen in Table 1. Additionally,
Phi family of models enjoy a significant perfor-
mance boost when paired with chain-of-thought
reasoning 2, which we believe contributes to the ob-
servation that our approach does not significantly
increase the model performance in this instance
relative to other models. Overall, our observations
suggest that the effectiveness of prompting tech-
niques might be as much model-dependent as they
are task-dependent.

Finally, in order to better understand the model
sensitivity to the presence or absence of implicit
assumptions in the designed prompts, we report
the average performance difference between the
two Argument Generation methods. We find an
absolute performance difference of 4.09% between
the two approaches, the lowest amount among ev-
ery other possible pair, with the closest pair being
chain-of-thought reasoning and normal Argument
Generation with an absolute performance differ-
ence of 8.56%. Similarly, the two Argument Gen-
eration methods have a Spearman correlation co-
efficient of 0.8351, with the closest pair having a
correlation coefficient of 0.6685. Overall, our tests
show that different models are generally resilient
to variations in the prompt design as long as they
are bound by the general procedure as provided in
algorithm 1.

6.3 Model Size Analysis

We now provide our results on the effects of
prompting on models of different sizes. In order to
conduct our evaluation, we divide the models under
test into three subcategories. The first category con-
stitutes Gemma 2B, Phi3 3.8B, and Qwen2 1.5B
and is demonstrative of small language models (be-
low 7 billion parameters). The second category
contains Gemma 7B, Llama3 8B, Mistral 7B, and

2Open COT Leaderboard

GPT4o mini and showcases language models of
medium size. Finally, Llama 3 70B and Aya 35B
are members of the third category and act as sam-
ple members for the largest of language models by
parameter count.

Figure 2 demonstrates the mean performance
of the four prompting methods across different
sizes, grouped by the aforementioned categoriza-
tion where ZS, COT, AGIP, and AG stand for zero-
shot, chain-of-thought, Argument Generation with
Implicit Assumptions, and Argument Generation,
respectively. Our findings show that generally,
models experience a performance increase when
prompted either with chain-of-thought reasoning,
or Argument Generation with Aya 35B being the
only significant exception. We observe that models
of smaller sizes (medium and small) experience
a significant performance boost when prompted
via Argument Generation (for 100% of the mod-
els) and chain-of-thought reasoning (for 62% of
the models).

Furthermore, smaller models show a higher per-
formance gain when compared to the largest Llama
3 and Aya instances. More specifically, the mean
performance gain when utilizing Argument Gener-
ation compared to chain of thought prompting is
3.18% for small models, and 2.72% for medium
models, while the performance gain for the large
models is 0.95%. We hypothesize that the reason
behind the lower performance gain in larger mod-
els is due to their already impressive capability to
infer the correct results without the requirement to
introduce further information probing techniques
such as chain-of-thought reasoning and Argument
Generation. More concretely, forcing the model to
perform self-reasoning or rank the validity of argu-
ments and responses does not expose the model to
previously hidden information, and does not nec-
essarily increase the performance when additional
information is not strictly required to respond to the
input. This phenomenon is especially observable
in CommonSenseQA and TruthfulQA as seen in
table 1, where the introduction of prompting does
not improve the model performance in all instances.
These observations are in line with those reported
by Kojima et al. (2022) and lead us to believe that
knowledge probing prompting methods are only
useful in cases where this additional information
is required to make strong predictions and might
additionally depend on model architecture.

To further investigate the effects of prompting
on model performance, and its relationship with
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Figure 2: Mean Performance in models of different size

the number of model parameters, we report the
mean performance across the number of parame-
ters in figure 3. We find that although both our
proposed method and chain-of-thought reasoning
provide improved performance in models of larger
size, their impact diminishes as the models grow
larger. More specifically, we find that the mean
difference between zero-shot prompting and Ar-
gument Generation methods is 4.66% for models
with less than 7 billion parameters, 4.94% for mod-
els of 7 billion to 8 billion parameters, and 0.45%
for the largest models. Further investigation is re-
quired to fully confirm our observations, however,
this finding bolsters the previous hypothesis that
Argument Generation as a prompting technique,
is more effective in increasing the performance
of smaller models. This behavior may stem from
the fact that large models are able to generate con-
vincing arguments for incorrect options, making
the task of discerning an invalid argument from
a valid one difficult. Conversely, smaller models
are not able to generate arguments of high quality
for incorrect candidates, thus goading the model
to rank the valid argument over the incorrect one.
Similarly, the observed mean differences between
Argument Generation and chain-of-thought reason-
ing are 2.92%, 2.33%, and 0.95% respectively for
models of small (<7B), medium (7B and 8B), and
large (>8B) sizes.

Based on the above observation, a multi-agent
technique to increase performance might be to gen-
erate arguments using a less capable model, while
utilizing a more performant model to rank the ar-
guments. We delegate these additional analyses to
future work.

7 Discussion and Future Work

Prompting has been proposed as a method of im-
proving model performance in either task-specific
settings or broader, task-agnostic environments (Sa-
hoo et al., 2024b). Despite the visible gains of
employing prompting to yield better model results,
the literature showcasing how, and when prompting
works is limited (Petrov et al., 2024). We observe
that the proposed method is able to significantly
boost the model performance in smaller models
while gaining marginal improvements as the model
size increases, which is contrary to the previous
work showing that larger models have higher gains
through prompting (Wei et al., 2022b). This leads
us to believe that the relationship between prompt-
ing and the nature of the model is complex, and
might be affected both by the model size, and its
relative task-specific knowledge and capabilities.
Further work is required to demonstrate the effects
of prompting when models hold knowledge of vary-
ing degrees with respect to a task description. In-
vestigation of the learning resources used in model
training can provide invaluable insight into the rela-
tionship between prompting and model reasoning.

8 Conclusion

In this work, we have proposed Argument Gener-
ation as a novel, zero-shot prompting technique.
Through empirical evaluation using a number of
datasets, we observe that our method is able to out-
perform both zero-shot prompting and zero-shot
chain-of-thought reasoning in the majority of the
conducted tests, making it a likely candidate when
improving the model performance in a zero-shot
setting is required. Furthermore, we show that
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Figure 3: Mean Performance trend across model parameters

our approach yields larger gains in smaller mod-
els, both offering an effective method that can be
used in small models and providing a possible fu-
ture direction to better understand the relationship
between model capabilities and prompting.

9 Limitations

Despite the observation that Argument Generation
is able to generally outperform other common zero-
shot prompting methods, its reliance on the exis-
tence of a predefined number of options from which
the model can arguments is an inherent limitation
of our work. While it is true that all questions
can be modified to behave as either a multi-choice
question or a yes-no question, this conversion relies
on the background knowledge of the user that is
interacting with the model, meaning that in cases
where the user has no information regarding the
possible answer for an open question, the correct
formulation of the input to fit our criteria can only
be delegated to the model itself.

In addition, while we have made the best effort
to cover datasets pertaining to different tasks that
evaluate various model capabilities, it is possible
that other task-agnostic prompting methods out-
perform our approach in a number of yet untested
metrics. Further investigation is required to fully
confirm the effects of our approach on different
models and tasks.

10 Ethical Considerations

Previous work has shown that Large Language
Models are limited in their capability to understand
their own lack of knowledge (Yin et al., 2023). As
such, it is possible to generate prompts that exacer-
bate model hallucinations, and even force models

to generate misinformation. The proposed method
can especially be prone to attacks of a similar kind
as a malicious agent can force the model to show-
case generally unwanted behavior by providing
the model with incorrect, and even dangerous op-
tions. Based on this observation, we encourage the
research community to continue the work in hallu-
cination reduction and use all prompting methods
both responsibly and skeptically.
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A Model Details

We utilize the Ollama framework 3 to conduct all
evaluations described in the paper. Generally, we
make use of the 4-bit quantized (Rokh et al., 2023)
versions of the tested models to maintain consis-
tency, and due to hardware limitations. Table 3
demonstrates all the tested models, their Ollama
hub links, as well as their quantization methods. In
the cases that an Ollama model is not available, or
the model is closed-source, we use the associated
Huggingface4 instance of the model, or use an API
to access the model.

Model Name Hub Link Quantization Method

Gemma 2B Link Q4
Gemma 7B Link Q4
Llama3 7B Link Q4
Llama3 80B Link Q4
Phi3 3.8B Link Q5
Mistral 7B Link Q4
GPT-4o-Mini Link N/A
Qwen 2 1.5B Link FP16
Aya 35B Link Q4

Table 3: All model sources as well as their quantization
method.

Additionally, in order to minimize output vari-
ance and generate reproducible evaluations, all
tests were performed with a model temperature
of 0 and a random seed of 42. Furthermore, our
test setting involved a workstation containing an
Nvidia A6000, and an Nvidia RTX 4090, with 128
GB of available RAM. All testing code will be
made publicly available upon the publication of the
work.

B Evaluation Method and Prompt Strings

Table 4 lists the tested prompting methods as well
as the special instruction used for each prompt. A
special instruction is a text string that is appended
to the end of the input question and aims to guide
the model behavior while responding to that spe-
cific input.

For the case of zero-shot prompting, we simply
ask the model to only respond with the correct an-
swer without providing any instructions to reason
about the input. Chain-of-thought reasoning is ad-
ditionally employed via the guidelines provided

3https://github.com/ollama/ollama-python
4https://huggingface.co/

by Kojima et al. (2022). Finally, we showcase the
special instructions for the proposed method, both
containing the implicit assumption generation, and
common argument generation.
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Prompting Method Special Instruction

Zero-Shot Only respond with the correct answer

Chain-of-Thought Let’s think about each option step by step

Argument Generation w/ Implicit As-
sumptions

When answering, first reason about each choice, and make
an argument for why it can be the answer and why it cannot
be the answer. Then identify, for each choice, what implicit
assumptions you might be making for each of your arguments.
By implicit assumption, we mean those propositions that are
necessary so that the choice logically follows the question. Then
select one of the choices based on the strongest argument

Argument Generation When answering, first reason about each choice, and make an
argument for why it can be the answer and why it cannot be the
answer. Then select one of the choices based on the strongest
argument.

Table 4: Special model instructions corresponding to each prompting method.
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Abstract

In the context of English as a Foreign Language
(EFL) writing education, LLM-as-a-tutor can
assist students by providing real-time feedback
on their essays. However, challenges arise
in assessing LLM-as-a-tutor due to differing
standards between educational and general use
cases. To bridge this gap, we integrate peda-
gogical principles to assess student-LLM in-
teraction. First, we explore how LLMs can
function as English tutors, providing effective
essay feedback tailored to students. Second,
we propose three criteria to evaluate LLM-as-
a-tutor specifically designed for EFL writing
education, emphasizing pedagogical aspects.
In this process, EFL experts evaluate the feed-
back from LLM-as-a-tutor regarding (1) qual-
ity and (2) characteristics. On the other hand,
EFL learners assess their (3) learning outcomes
from interaction with LLM-as-a-tutor. This
approach lays the groundwork for developing
LLMs-as-a-tutor tailored to the needs of EFL
learners, advancing the effectiveness of writing
education in this context.

1 Introduction

Personalized feedback is known to significantly
enhance student achievement (Bloom, 1984). How-
ever, providing real-time, individualized feedback
at scale in traditional classroom settings is chal-
lenging due to limited resources. Large language
models (LLMs) can be particularly beneficial to ad-
dress this challenge by enabling real-time feedback
in educational settings (Kasneci et al., 2023; Wang
and Demszky, 2023; Yan et al., 2024). However,
LLMs often struggle to generate constructive feed-
back within educational contexts. Unlike human
feedback, which consistently identifies areas for
improvement, LLM-generated feedback frequently
fails to effectively highlight students’ weaknesses
(Behzad et al., 2024). Therefore, it is essential to
identify the advantages and limitations of LLMs as

English writing tutors and to develop methods for
providing effective feedback for students.

The evaluation of LLMs for educational pur-
poses differs significantly from their general-
purpose evaluation. General-purpose LLM eval-
uation primarily focuses on assessing the quality
of responses (Wang et al., 2023; Zheng et al., 2023;
Chang et al., 2024). However, as Lee et al. (2023)
emphasize, merely evaluating the final output qual-
ity is insufficient to capture the full dynamics of
human-LLM interactions. In particular, educa-
tional feedback needs a more nuanced consider-
ation of factors beyond traditional metrics. It also
requires the expertise of education professionals
to evaluate the learning process and outcomes due
to its inherent challenges. Our work incorporates
metrics specifically tailored to pedagogical consid-
erations by involving real-world education stake-
holders to better assess student-LLM interactions.

In summary, the main contributions of this work
are as follows:

1. We explore the role of LLM as tutors in gen-
erating essay feedback.

2. We introduce an educational evaluation metric
customized for EFL writing education.

3. We assess student-LLM interactions by involv-
ing real-world educational stakeholders.

2 LLMs as EFL Tutors: Early Insights

In this section, we report preliminary findings
that display both the advantages and limitations
of LLM-as-a-tutor.

2.1 Advantage of LLM-as-a-tutor
We conduct a group interview with six EFL learn-
ers and a written interview with three instructors
to explore the needs for LLM-as-a-tutor. To re-
flect the perspectives of key stakeholders in EFL
writing education, we recruit undergraduate EFL
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learners and instructors from a college EFL center.
The use of LLM-as-a-tutor presents a significant
opportunity for EFL learners by enabling real-time
feedback at scale. While all students expressed a
strong need for both rubric-based scores and feed-
back, only two of them had previously received
feedback from their instructors. Students are partic-
ularly interested in receiving immediate scores and
feedback, allowing them to identify weaknesses in
their essays and refine them through an iterative
process.

2.2 Limitation of LLM-as-a-tutor

We conduct an experiment using gpt-3.5-turbo
to generate essay feedback on standard setting. The
model is configured to act as an English writing
teacher and provide feedback based on an EFL writ-
ing scoring rubric (Cumming, 1990; Ozfidan and
Mitchell, 2022). Detailed experimental settings
and prompts are described in Appendix §A. We
ask 21 English education experts to evaluate the
feedback on a 7-point Likert scale, focusing on
feedback tone (positiveness, directness) and help-
fulness. The experts rate the feedback’s positive-
ness at 5.93 and directness at 3.72. This result
indicates gpt-3.5-turbo’s inherent tendency to
generate positive feedback. However, previous re-
search and our qualitative interviews suggest that
EFL learners prefer direct and negative feedback
(Ellis, 2008; Saragih et al., 2021). Moreover, the
experts found the feedback from gpt-3.5-turbo
less helpful, with an average helpfulness rating of
3.41 out of 7.

2.3 Mitigating Limitation

To address the limitations of standard prompting
in generating effective feedback for EFL learners,
we propose a score-based prompting method that
involves informing the model of a student’s essay
weakness using rubric-based scores. While models
like gpt-3.5-turbo, trained with reinforcement
learning from human feedback, generally align
with human preferences in broad contexts, they
may not always provide the most constructive feed-
back for EFL learners who need more targeted guid-
ance. These models tend to generate positive and
indirect feedback, which, though satisfactory in
general contexts, may not be as effective for learn-
ers who need more targeted and constructive guid-
ance. Therefore, we suggest score-based prompting
method, leveraging rubric-based scores for LLM
self-refinement of feedback generation (Pan et al.,

2024).
Score-based prompting method uses predicted

scores and rubric explanations to generate feedback
on students’ essays. Student’s essays are scored by
the state-of-the-art automated essay scoring model
(Yoo et al., 2024) under three rubrics: content, or-
ganization, and language (Table 2). We assume this
scoring information can guide the model in gener-
ating feedback that is more aligned with students’
needs. The exact prompting setup is described in
Appendix §A.

3 Student-LLM Interaction Evaluation

In this section, we introduce evaluation methods
for student-LLM interaction. We provide feedback
generated with score-based prompting to student.
English experts then evaluate LLM-generated feed-
back with our evaluation metrics on a 7 point Likert
scale.

3.1 Annotator Details

We explore student-LLM interaction of 33 EFL
learners and gather evaluations from 21 English ed-
ucation experts, who are key stakeholders in EFL
writing education. These experts hold Secondary
School Teacher’s Certificates (Grade II) for En-
glish, licensed by the Ministry of Education, Re-
public of Korea. The student cohort comprises
32 Korean students and one Italian student, with
a gender distribution of 12 females and 21 males.
While participating in EFL writing courses, stu-
dents independently write their essays, which are
then subjected to LLM-generated feedback. This
feedback is produced by gpt-3.5-turbo using
score-based prompting, and is delivered through
the RECIPE (Han et al., 2023) platform as part of
their coursework.

3.2 Evaluation Details

We introduce educational metrics specifically de-
signed to assess student-LLM interactions within
the context of EFL writing education (Table 1).
These metrics are constructed by adapting Lee et al.
(2023)’s framework to fit the EFL writing settings,
focusing on targets, perspectives, and criteria.

Targets We identify two primary aspects for eval-
uating student-LLM interactions: output and pro-
cess. Output refers to the LLM’s generated feed-
back that students receive, while process encom-
passes the development of students’ essays, com-
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Standard Prompting Score-based Prompting

C* O L*Level of Detail
1
2
3
4
5
6
7

C* O* L*Accuracy
1
2
3
4
5
6
7

C* O* L*Relevance
1
2
3
4
5
6
7

C* O* L*Helpfulness
1
2
3
4
5
6
7

Negative Positive
L*
O*
C*

Straight-
forward

Polite
L*
O*
C*

General Specific
L*
O*
C*

Indirect Direct
L*
O*
C*

Small Large
L*
O*
C*

Figure 1: Evaluation results on quality and characteristic of two rubric-based feedback with standard prompting
and score-based prompting in a 7-point Likert scale. C, O, and L denote Content, Organization, and Language,
respectively. Asterisk denotes statistical significance tested by the paired T-test at p level of < 0.05.

Criteria Target Perspective Metric

1. Quality Output Teacher Level of detail, Accuracy, Relevance, Helpfulness

2. Characteristic Output Teacher
Negative-Positive, Straightforward-Polite,
General-Specific, Indirect-Direct, Small-Large

3. Learning outcome Process Student Essay quality improvement, Understanding

Table 1: Evaluation metrics constructed upon targets, perspectives, and criteria

prehension, and overall progress during the interac-
tion.

Perspectives The evaluation involves the two
main stakeholders in EFL education: students and
teachers. While students may favor LLMs that
provide immediate, correct answers, this approach
may not be pedagogically optimal. Therefore, it is
crucial to incorporate teachers’ perspectives when
assessing the quality and characteristics of LLM-
generated feedback.

Criteria We first evaluate student-LLM interac-
tions using three key criteria: quality, characteris-
tics, and learning outcomes.

For quality assessment, we adapt evaluation cri-
teria from LLM response assessments (Zheng et al.,
2023), re-defining those criteria to suit our domain
of feedback generation: level of detail, accuracy,
relevance, and helpfulness (Appendix §B.1).

For characteristics assessment, we propose five
characteristics to analyze the type of feedback,
building on previous studies in English writing ed-
ucation. These criteria include: negative ↔ pos-
itive (Cheng and Zhang, 2022), straightforward
↔ polite (Lysvåg, 1975; Danescu-Niculescu-Mizil
et al., 2013), general ↔ specific (Leibold and
Schwarz, 2015), indirect↔ direct (Van Beuningen

et al., 2012; Eslami, 2014), small↔ large (Liu and
Brown, 2015). See Table 3 for more detailed expla-
nations and examples. Since these five criteria are
grounded in pedagogical theory and research, the
analysis of feedback requires the involvement of
educational experts who can interpret subtle distinc-
tions in feedback in alignment with instructional
objectives.

For learning outcome assessment, We assess the
impact of student-LLM interaction. Students as-
sess their own learning progress by comparing their
improvement before and after receiving feedback
from the LLM. After engaging with LLM-as-a-
tutor to revise their essays, students reflect on their
learning process through a questionnaire. The de-
tailed questions are provided in Appendix §C.

• Negative↔ Positive: Is the tone of feedback
positive?

• Straightforward ↔ Polite: Is the feedback
polite?

• General↔ Specific: Is the feedback specific?

• Indirect↔ Direct: Is the feedback direct?

• Small↔ Large: How extensive is the quan-
tity of feedback provided?
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3.3 Results
In this section, we report the results of standard
and score-based prompting across three criteria:
quality, characteristic, and learning outcome.

Quality Four figures in the top row in Figure 1
present the quality evaluation results for the two
types of feedback. Score-based prompting outper-
forms standard prompting in terms of accuracy,
relevance, and helpfulness, achieving statistical sig-
nificance across all rubrics. Feedback generated
by standard prompting varies in the level of detail
(4.16 – 5.28), while score-based prompting pro-
duces consistently detailed feedback (4.48 – 4.86).
Moreover, feedback from standard prompting tends
to be overly detailed in summarizing the essay,
which is not perceived as constructive (see exam-
ples in Table 4). Further qualitative analysis is
described in Appendix §B.2.1.

Characteristic We evaluate feedback using five
metrics tailored to English writing education.
Score-based prompting generates more negative,
straightforward, direct, and extensive feedback
compared to standard prompting across all rubrics
(see the figures located in the lower section of
Figure 1). Specifically, feedback from standard
prompting tends to generate general compliments
rather than constructive criticism. In contrast, feed-
back from score-based prompting is notably more
concise, delivering more content in significantly
fewer tokens (70.46 vs. 79.19) and sentences (4.20
vs. 5.04). To further support the results, we also
conduct a qualitative analysis of the feedback char-
acteristics on Negative↔ Positive and Straightfor-
ward↔ Polite (Appendix §B.2.2).

As a result, 74.38% of teacher annotators prefer
feedback from score-based prompting, compared
to only 12.50% who favor feedback from standard
prompting (Pie chart in Figure 1). The remaining
13.12% report no difference between the two feed-
back types. This is statistically significant at a p
level of < 0.05 using the Chi-squared test, with a
fair agreement (Fleiss Kappa 0.22).

Learning Outcome The feedback provided
through score-based prompting leads to a signifi-
cant improvement in students’ confidence regard-
ing the quality of their essays and their understand-
ing of each rubric (Figure 2). On average, EFL
learners express high satisfaction with the LLM-
generated feedback, rating 6.0 for quality and 6.03
for characteristics on a 7.0 scale. These results

Perceived
Confidence*

Rubric
Understanding*

1
2
3
4
5
6
7

Content
Organization
Language

Figure 2: Learning outcome

are statistically significant, tested by the Wilcoxon
test at p value of < 0.05. Such a strong positive
response underscores the potential of score-based
prompting on both student confidence and satisfac-
tion, highlighting its potential to enhance writing
instruction in EFL contexts.

4 Conclusion

This paper advances EFL writing education by gen-
erating and evaluating feedback tailored to students’
needs, incorporating pedagogical principles, and
involving real-world educational stakeholders. Our
focus on essay feedback through LLM-as-a-tutor
aims to more effectively support EFL students in
their writing process. In the future, we plan to
customize the LLM-as-a-tutor to provide individ-
ualized support. For instance, our evaluation met-
ric and dataset can be utilized to personalize feed-
back, aligning with students’ varying preferences.
This customization would allow LLM-as-a-tutor
to adapt to the specific needs and desires of each
student, thereby enhancing the learning experience.
Ultimately, we envision personalized LLM agents
in EFL education, offering tailored support to each
learner based on their unique needs.

Limitations

We utilize ChatGPT, a black-box language model,
for feedback generation. This results in a lack of
transparency in our system, as it does not provide
explicit justifications or rationales for the gener-
ated feedback. We acknowledge the importance
of and the need for continued research aimed at
developing models that produce more explainable
feedback, thereby opening avenues for future ex-
ploration.

Ethics Statement

We expect that this paper will make a significant
contribution to the application of NLP for good,
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particularly in the domain of NLP-driven assis-
tance in EFL writing education. All studies are
conducted with the approval of our institutional re-
view board (IRB). We ensured non-discrimination
across all demographics, including gender and age.
We set the wage per session to be above the mini-
mum wage in the Republic of Korea in 2023 (KRW
9,260 ≈ USD 7.25) 1. Participation in the exper-
iment was entirely voluntary, with assurance that
their choice would not influence their academic
scores or grades.
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Practical and ethical challenges of large language
models in education: A systematic scoping review.
British Journal of Educational Technology, 55(1):90–
112.

Haneul Yoo, Jieun Han, So-Yeon Ahn, and Alice Oh.
2024. Dress: Dataset for rubric-based essay scoring
on efl writing. Preprint, arXiv:2402.16733.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang,
Joseph E Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena. In
Advances in Neural Information Processing Systems,
volume 36, pages 46595–46623. Curran Associates,
Inc.

289

https://doi.org/10.1162/tacl_a_00660
https://doi.org/10.1162/tacl_a_00660
https://doi.org/10.1162/tacl_a_00660
http://files.eric.ed.gov/fulltext/EJ1294325.pdf
http://files.eric.ed.gov/fulltext/EJ1294325.pdf
https://doi.org/10.1111/j.1467-9922.2011.00674.x
https://doi.org/10.1111/j.1467-9922.2011.00674.x
https://doi.org/10.1111/j.1467-9922.2011.00674.x
https://doi.org/10.18653/v1/2023.findings-emnlp.806
https://doi.org/10.18653/v1/2023.findings-emnlp.806
https://doi.org/10.18653/v1/2023.bea-1.53
https://doi.org/10.18653/v1/2023.bea-1.53
https://doi.org/10.18653/v1/2023.bea-1.53
https://doi.org/10.18653/v1/2023.bea-1.53
https://doi.org/10.1111/bjet.13370
https://doi.org/10.1111/bjet.13370
https://arxiv.org/abs/2402.16733
https://arxiv.org/abs/2402.16733
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf


Appendix

A Essay Feedback Generation Model

The essay feedback generation experiments were
conducted with gpt-3.5-turbo (0301 version)
with Azure OpenAI API. To provide consistent
feedback among students, we opted for a temper-
ature setting of 0. This deterministic approach
ensures that our system remains uniform, akin to
evaluations from a single, consistent instructor. Be-
low is the prompt template we used for feedback
generation.

Standard Prompting

You are an English writing teacher;
give feedback on this argumentative essay
with three rubrics: content, organization, and
language.
${rubric explanation}
${essay prompt}
${student’s essay}

Score-based Prompting

You are an English writing teacher;
according to the provided score , give feedback

on this argumentative essay with three rubrics:
content, organization, and language.
${rubric explanation}
${essay prompt}
${student’s essay}

Score
${rubric-based essay scores}

B Essay Feedback Evaluation Details

B.1 Quality Assessment Explanation

• Level of detail: The feedback is specific, sup-
ported with details.

• Accuracy: The feedback content provides ac-
curate information according to the essay.

• Relevance: The feedback is provided accord-
ing to the understanding of the essay criteria.

• Helpfulness: The feedback is helpful for stu-
dents to improve the quality of writing.

Table 2: Rubric explanations

Rubric Description

Content Paragraph is well-developed and
relevant to the argument, sup-
ported with strong reasons and ex-
amples.

Organization The argument is very effectively
structured and developed, making
it easy for the reader to follow
the ideas and understand how the
writer is building the argument.
Paragraphs use coherence devices
effectively while focusing on a sin-
gle main idea.

Language The writing displays sophisticated
control of a wide range of vocab-
ulary and collocations. The essay
follows grammar and usage rules
throughout the paper. Spelling and
punctuation are correct throughout
the paper.

B.2 Sample-level Analysis on Essay Feedback
Evaluation

B.2.1 Quality

Table 5 shows two different language feedback ex-
amples for the same essay with a score of 2.5 out
of 5.0. These examples are generated using differ-
ent prompts: a standard prompt and a score-based
prompt. The green text indicates detailed support
and examples provided by the essay (level of de-
tail), and the blue text describes the overall evalua-
tion of the essay regarding the language criterion.
By comparing blue text, score-based prompting
suggests the improvements (helpfulness) such as

‘errors and awkward phrasing’ and ‘punctuation
and capitalization’, while standard prompting only
praises language use such as ‘vocabulary and col-
locations’. Considering that the language score of
the essay is 2.5 out of 5.0, the feedback generated
by score-based prompting appears to be more accu-
rate. The orange text in the feedback generated by
the standard prompt is irrelevant to the language
criterion (relevance) and has similar expressions
to an organization explanation in Table 2. We as-
sume that score-based prompting, providing more
detailed, relevant, and accurate feedback, will be
more helpful to EFL students in improving their
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Type Explanation Example

Negative Teachers’ comments indicate that there are some er-
rors, problems, or weaknesses in students’ writing.

The essay lacks depth and development in its content.

Positive The former refers to comments affirming that stu-
dents’ writing has met a standard such as “good
grammar”, “clear organization”, and “the task is well
achieved”.

The essay is very well-organized and effectively
structured.

Polite Politeness includes hedge expressions, modal verbs,
positive lexicon, and 1st person pronouns.

However, the essay could benefit from more elabora-
tion and development of each point.

Straightforward Straightforward includes factuality expression and
negative lexicon

The essay lacks depth and analysis.

Vague Feedback is vague in its suggestions for ways a stu-
dent can enhance their work.

There are some grammar errors.

Specific Feedback is specific in its suggestions for ways a
student can enhance their work.

There are some split infinitives in the paper. Check
out more information about split infinitives in the
courseroom folder titled Writing Resources.

Indirect The teacher indicates in some way that an error exists
but does not provide the correction, thus leaving it to
the student to find it.

However, the essay could benefit from more exam-
ples and evidence to further strengthen the argument
. . .

Direct The teacher provides the student with the correct
form.

In the third paragraph, the phrase ‘unsatisfied things’
could be more specific and descriptive.

Small Feedback with a small quantity contains less content. The essay provides a clear argument and supports
it with well-developed paragraphs that are relevant
to the topic. The reasons and examples provided
are strong and effectively demonstrate the writer’s
opinion. The essay effectively addresses the prompt
and provides a well-rounded argument.

Large Feedback with a large quantity contains more exten-
sive content in the feedback.

The essay provides a clear and well-supported argu-
ment on the topic of whether young children should
spend most of their time playing or studying. The
writer presents two strong reasons for their opinion
that playing is better for young children. The first
reason is that playing is a way of studying, as it helps
children learn how to communicate and collaborate
with others. The second reason is that young children
are not yet mature enough for formal education, and
forcing them to learn before they are ready can lead
to a decline in their interest in learning. The writer
supports their argument with specific examples and
uses clear and concise language throughout the essay.

Table 3: Explanation and example of feedback types

essays. This again highlights the necessity of the
score-based prompting process.

The green text in Table 4 represents detailed sup-
port and examples, while the blue text suggests im-
provements for the essay, which align with level of
detail and helpfulness criteria, respectively. Feed-
back generated with standard prompting describes
specific details of the content of the essay. How-
ever, it only summarizes the content of the essay
and provides praise, instead of suggestions or criti-
cism. On the other hand, feedback with score-based
prompting points out that ‘the essay lacks depth
and analysis’ and ‘could benefit from expanding on
their ideas and providing more specific examples’.

B.2.2 Characteristics
Table 6 presents two different content feedback
examples for the same essay, scored 2.0 out of
5.0. Positive feedback is highlighted in blue text,
while negative feedback is in orange. Negative
feedback identifies errors in the essay, helping
students recognize and address their weaknesses.
Positive feedback, on the other hand, affirms that
students’ writing meets certain standards through
praise (Cheng and Zhang, 2022; Hyland and Hy-
land, 2001). When comparing feedback gener-
ated by the two prompting methods, score-based
prompting focuses more on negative feedback,
while standard prompting only emphasizes posi-
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tive aspects. Since overuse of negative feedback
may discourage students’ self-efficacy, teachers
often precede negative feedback with positive feed-
back or tone down the negative feedback (Hyland
and Hyland, 2001) with hedge expressions such as
‘could’, which is written as green text in Table 6.

C Questionaire for Learning Outcome

Please answer these questions AFTER finishing the
main exercise.

1. My confidence in the quality of the essay in-
creased after the exercise.

2. My understanding of the content criteria in-
creased after the exercise.

3. My understanding of the organization criteria
increased after the exercise.

4. My understanding of the language criteria in-
creased after the exercise.

5. Please rate the appropriateness of the style or
tone of the AI-based feedback.

6. Please rate the overall performance of AI-
based scoring.

7. Please rate the overall quality of AI-based
feedback.

8. Please freely share your thoughts regarding
the exercise.
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Standard Prompting Score-based Prompting

The content of the essay is well-developed and relevant to the
argument. The writer has identified three major problems in
their country and has provided specific reasons and details to
support their opinion. The writer has effectively highlighted
the gender problem, inequality problem, and offensive replying
culture in some communities. The writer has also provided
examples of how these problems are threatening their society
and splitting people up. Overall, the content of the essay is
strong and persuasive.

The essay has some relevant points, but the content is not
well-developed. The writer mentions three problems in Korea,
but only briefly touches on each one without providing strong
reasons or examples to support their argument. The essay lacks
depth and analysis, and the writer could benefit from expanding
on their ideas and providing more specific details.

Table 4: Example of quality evaluation on content feedback. The feedback is generated based on the student’s essay,
whose content score is 2.5 out of 5.0. The colors of the texts stand for quality evaluation criteria as follows: green
(level of detail), and blue (helpfulness).

Standard Prompting Score-based Prompting

The language used in the essay is sophisticated and displays a
wide range of vocabulary and collocations. The writer follows
grammar and usage rules throughout the paper, and spelling
and punctuation are correct. The essay is well-written and easy
to read. Overall, the language used in the essay is strong and
effectively communicates the writer’s argument.

The essay displays some control of vocabulary and gram-
mar, but there are also several errors and awkward phrasings
throughout. For example, the writer uses the phrase (‘now-
days’ instead of ‘nowadays’), and there are several instances
of awkward phrasing and word choice. Additionally, there
are several errors in punctuation and capitalization. The essay
would benefit from more careful proofreading and editing, as
well as more attention to precise and effective language use.

Table 5: Example of quality evaluation on language feedback. The feedback is generated based on the student’s
essay, whose language score is 2.5 out of 5.0. The colors of the texts stand for quality evaluation criteria as follows:
green (level of detail), blue (helpfulness), and orange (relevance).

Standard Prompting Score-based Prompting

The essay effectively addresses the prompt by discussing three
qualities of a good friend: honesty, sharing, and competition.
Each quality is well-developed and supported with specific
reasons and examples. The writer’s argument is clear and per-
suasive, making a strong case for why these qualities are im-
portant in a friendship. Overall, the content is well-organized
and relevant to the topic at hand.

The essay provides a clear and concise argument about the
qualities of a good friend. The writer has identified three
key qualities - honesty, sharing, and competition - and has
provided specific reasons and examples to support each point.
However, the essay could benefit from more elaboration and
development of each point. For example, the writer could
provide more specific examples of how honesty is important in
a friendship, or how competition can lead to personal growth.
Additionally, the essay could benefit from a stronger conclusion
that summarizes the main points and provides a final thought
on the topic.

Table 6: Example of characteristics analysis on language feedback. The feedback is generated based on the student’s
essay, whose language score is 2.0 out of 5.0. The colors of the texts stand for feedback type as follows: blue
(positive), green (polite), and orange (negative).
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Abstract

Accurate product categorization in e-commerce
is critical for delivering a satisfactory online
shopping experience to customers. With the
vast number of available products and the nu-
merous potential categories, it becomes crucial
to develop a classification system capable of
assigning products to their correct categories
with high accuracy. We present a dual-expert
classification system that utilizes the power of
large language models (LLMs). This frame-
work integrates domain-specific knowledge and
pre-trained LLM’s general knowledge through
effective model fine-tuning and prompting tech-
niques. First, the fine-tuned domain-specific
expert recommends top K candidate categories
for a given input product. Then, the more
general LLM-based expert, through prompt-
ing techniques, analyzes the nuanced differ-
ences between candidate categories and se-
lects the most suitable target category. We
introduce a new in-context learning approach
that utilizes LLM self-generated summariza-
tion to provide clearer instructions and enhance
its performance. Experiments on e-commerce
datasets demonstrate the effectiveness of our
LLM-based Dual-Expert classification system.

1 Introduction

Accurate product categorization on e-commerce
sites is the foundation of a structured catalog sys-
tem to better meet customer needs. A catalog with
accurate categorization helps fuel the search en-
gine, which scopes and ranks the search results
from queries efficiently. The buyers can find rele-
vant products through the query or browse directly
from the targeted categories. The customer behav-
ior can further enhance the downstream personal-
ized tasks like advertisement and item recommen-
dations. Eventually the accurate catalog leads to
customer satisfaction as well as the revenue.

*Equal contribution.

Assigning the category for every single product
in the world is far from simple. The problem is
to map the product description to the label under
a well-defined category taxonomy, which includes
over thousands of labels. The category selected by
the sellers can be noisy due to the vast number of
labels and different interpretation of the categories.
Reviewing and fixing the wrongly assigned items
manually is not feasible. Therefore, the catalog
relies on a categorization system, which utilizes a
classification model with high accuracy and cover-
age to improve the catalog quality.

Although the classification problems have been
researched for years, e-commerce product catego-
rization differs from classical ones. This is due
to the vast volume of products with noisy and in-
complete signals in both product description and
categorical labels. Besides, subjective customer
opinions about multi-functional products add the
complexity, as these opinions can influence prod-
uct descriptions and optimal category assignment.
It is non-trivial to train machine learning models
to discern consistent categorical patterns that meet
customer expectations for a large population of
catalog.

We approach product categorization as a text
classification problem, since most product items
in e-commerce platform are represented through
structured or unstructured textual features. Re-
cently, pre-trained models (PTMs) have shown sub-
stantial benefits in capturing universal language
representations and strong reasoning capability
with RLHF (Ziegler et al., 2019; Lampinen et al.,
2022). Two prominent PTM frameworks are: 1)
discriminative models with the encoder structure,
like BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2018; Conneau
and Lample, 2019; Conneau et al., 2019), and
2) generative models with the decoder structure,
like OpenAI’s GPT series (Generative Pre-trained
Transformer) (Radford et al., 2018, 2019; Brown

1
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et al., 2020; Ouyang et al., 2022). Though some
efforts have unified discriminative and generative
tasks within a single framework, discriminative lan-
guage models are generally preferred for sentence
understanding, while generative language models
are more commonly used for text generation and
reasoning. With the increasing parameter sizes and
extensive pre-training on vast datasets and various
learning tasks, these language models have consis-
tently attained state-of-the-art (SOTA) performance
across numerous NLP benchmarks. Given the over-
lap between pretrained knowledge and e-commerce
catalog, we believe that PTMs possess the domain
knowledge that is necessary to differentiate the nu-
ances between categories.

In this study, we introduce an innovative dual-
expert framework that integrates both discrimina-
tive and generative large language models (LLM)
in a cascading approach to achieve precise prod-
uct categorization. Initially, the discriminative lan-
guage model is fine-tuned with domain data, acting
as a domain expert to recommend the top K can-
didate classes for each product. Subsequently, an
off-the-shelf LLM selects the optimal target from
the top K suggestions based on certain criteria via
prompting. The LLM in our framework serves as
the general expert due to its capability acquired
through pre-training on a large corpus of general
data and well alignment with human instructions.
The major contribution of this study can be sum-
marized in 3 folds:

• 1) We propose a novel LLM-based dual-expert
categorization system, which is designed to
achieve accurate product classification in e-
commerce and output reasons for hard cases.

• 2) We introduce the key components of
domain-specific and general experts, and de-
scribe the strategies to inject domain knowl-
edge into the decision-making process of each
expert.

• 3) We compare the performance of this dual-
expert framework against the popular text clas-
sification models as well as the SOTA model
in two e-commerce catalog datasets, proved
its superiority on e-commerce categorization.

2 E-commerce Product Categorization

In e-commerce, product categorization involves as-
signing one or more optimal categories from thou-
sands of labels based on product features. This

task is challenging due to noisy and incomplete
catalog data. E-commerce sites generally define
a taxonomy (a hierarchical structure) as the target
label space for categorization. As this taxonomy be-
comes more granular, categories can become very
similar, with only subtle differences distinguishing
them.

Output Label Space Online e-commerce sites
pre-define the semantic structure of item categories
(known as taxonomy) according to business pur-
pose. This taxonomy serves as the target label
space for categorization, and is constructed as hier-
archical trees. As the taxonomy tree becomes fine
and granular, the categories may appear similar to
each other, with only subtle differences separating
them. Extreme multi-label text classification aims
to identify relevant labels from an extremely large
set of labels, making it a challenging task (Zhang
et al., 2021a; Chang et al., 2020). Accuracy of
classification models can vary depending on the
complexity and dimensionality of the label space.
Additionally, catalog data inherently suffers from
label imbalance, which is widely known as the long
tail issue. Classification models may struggle to
learn patterns for the underrepresented, smaller cat-
egories in the skewed distribution.

Catalog Noise and Incompleteness The train-
ing data for our ML-based categorization model
is mainly derived from samples of catalog data,
which often includes noisy labels and incomplete
information. A key challenge for e-commerce cate-
gorization systems is to extract meaningful signals
about customer preferences from this low-quality
data. We classify the quality of the model training
data into two types:

• Noise Signals. Item features and labels of-
ten contain noise, leading to unstable learning.
This noise can be soft (exaggerated proper-
ties) or hard (misleading/irrelevant descrip-
tions) and is common in popular categories.
Meanwhile, label assignments can be noisy
due to outdated categorization systems, in-
ternal biased corrections, and incorrect label
suggestions from sellers. These are the major
sources of label noise.

• Incomplete Information. Incomplete infor-
mation often arises from the subjective opin-
ions of sellers and customers. For instance,
sellers in an automobile store might omit

2
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Figure 1: LLM-based Dual-Expert e-commerce categorization framework. The system comprises two key compo-
nents that operate sequentially: a Domain Expert that identifies the top K categories, followed by a General Expert
that decides the optimal category from the top candidates by applying reasoning. We inject the domain knowledge
to each expert through model fine-tuning (domain expert) and prompting (LLM-based general expert).

keywords and only provide brand and series
numbers, resulting in very brief item descrip-
tions. This limited information confuses gen-
eral buyers. Additionally, catalog labels are in-
complete because selling items may be multi-
functional, yet sellers typically provide only
a single label which may not align with how
different buyers perceive or intend to use the
product. In this scenario, our task is to find
the most favored category, even when multiple
options are acceptable.

To overcome the issues, we propose a novel
LLM based Dual-Expert approach for product clas-
sification.

3 LLM Based Dual-Expert System

LLM-based multi-agent systems have emerged
as a novel technology with advanced capabilities.
These systems specialize LLMs into various dis-
tinct agents, each with different expertise (Wu et al.,
2023; Qian et al., 2024; Yue et al., 2024). Our
domain-specific and general expert system has two
language models cooperating with each other and
each has a specialty. Specifically, we have designed
two expert models that work sequentially to assign
the optimal category to a given product. The whole
pipeline is shown in Figure 1. First, a discrimina-
tive model work as the domain expert to find top K
candidate categories for the selling product given

its item data. Then, an off-the-shelf LLM serves
as the general expert, evaluating which categories
from the top K candidates are most suitable and
accurate for the selling product in question. The
LLM outputs its decision and the reasoning behind
its selection.

3.1 Domain Expert

The primary objective of the domain expert is to
identify the top K most relevant leaf categories
for a given product, with relevance determined by
similar patterns observed in the training data. Si-
multaneously, the domain expert ensures a highly
accurate top 1 prediction to support the online infer-
ence pipeline. The backbone of the domain expert
is XLM-R (Conneau et al., 2019), a Transformer
model that is pre-trained on monolingual data us-
ing the multilingual masked language modeling
(MLM) objective.

3.1.1 Label Semantic Capture via Label
Augmentation

Discriminative models face a limitation in explic-
itly lacking semantic knowledge about the labels.
Our in-depth study observed a high frequency of
label-related keywords in the item data written by
sellers, indicating that keyword matching could
benefit semantic understanding in our domain tasks.
Therefore, we strategically expose the label names
to the model, aiding its few-shot and zero-shot
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learning capabilities. To enhance the training data
with label names, we use the full path of labels, i.e.,
a path in a taxonomy tree. We randomly mask the
branch along this path and replace the title or de-
scription of sampled training data with the masked
path (Figure 2). These synthetic training samples
are then added to the original data.

3.1.2 Two-phase Learning
Learning from large, noisy catalog data is difficult
due to label imbalance and errors in signals. To
tackle this, we split model training into two phases.
In the first phase, the domain expert reviews chal-
lenging cases and uses focal loss to handle imbal-
ance. In the second phase, the model focuses on
major patterns, reinforcing the initial phase with
bootstrap loss. Further details are in the following
sections.

Phase 1: Exploration of Category Relationship
The catalog data inherently suffers from label im-
balance, commonly referred to as the long tail is-
sue. To address this, we incorporate focal loss (Lin
et al., 2017) into our objectives as a dynamic learn-
ing approach to better capture challenging cases in
smaller categories. The mathematics definition of
focal loss for classification can be defined as:

LFL = −
N∑

k=1

αk (1− qk)γ log (qk) , (1)

where qk is the predicted probability of the true
label k by model. αk is the corresponding class
weight of the true label. It is predefined based on
the desired label distribution, e.g., popularity score
of the product in catalog. γ is a hyperparameter
controlling the learning weight of hard examples.
The higher the value of γ, the lower the loss for
well-classified examples.

Phase 2: Self-Exploitary The second phase of
training employs a self-justifying learning mecha-
nism that accounts for knowledge consistency dur-
ing training (Reed et al., 2014). It augments the

Figure 2: Example of synthetic data for capturing label
semantics.

usual prediction objective with a notion of percep-
tual consistency, which allows the model to dis-
agree with a perceptually-inconsistent training la-
bel and effectively relabel the data while training.
The assumption behind this idea is that incorrect la-
bels are likely to be eventually highly inconsistent
with other data points predicted to the same label
by the model. Therefore, it acts in a manner of self
label clean-up and bootstraps itself until conver-
gence to stable knowledge. Here, we incorporate
this idea into the cross-entropy training loss:

LBT_BCE(p, q) =−
N∑

k=1

βpklog(qk) + β(1− pk)log(1− qk)

+
N∑

k=1

(1− β)qklog(qk),

(2)
where pk, qK are ground truth label and model pre-
diction, respectively. N is the size of target labels.
Parameter 0 ≤ β ≤ 1 balances bootstrap learn-
ing and supervised classification. It is empirically
set in the range [0.8, 0.95]. Due to the large batch
training steps (tbatch), we can set a delta activation
β̂ that adaptively turns on/off the bootstrap loss at
a given global step Tgate:

β̂ =

{
1, if tbatch < Tgate

β, if tbatch ≥ Tgate
(3)

3.2 General Expert

After the Domain Expert produces top K candidate
categories, the LLM-based General Expert then rea-
sons about the top candidate categories via proper
prompting strategies, and selects optimal category
among the candidates.

3.2.1 Zero-shot
Product category names often carry rich semantic
meaning. For instance, hierarchical path of cate-
gory "Toys and Games / Sports & Outdoor Play
Toys / Sandboxes & Beach Toys / Beach Toys" self
explains that "Beach Toys" is for outdoor play and
is under Toys and Games department. Thus, we di-
rectly prompt the LLM-based General Expert with
product item data and candidate categories’ path
names.

3.2.2 In-context learning via LLM
self-generated summarization

LLMs demonstrate remarkable capabilities in in-
context learning (ICL), they can learn to do a spe-
cific task by conditioning on a prompt consisting of
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input-output examples (Brown et al., 2020). LLMs
can generalize to previously unseen data by using
few-shot examples provided in the prompt, with-
out explicit pre-training for the specific task (Xie
et al., 2021). ICL are recently used in text classifi-
cation(Milios et al., 2023; Zhu and Zamani, 2023;
Simig et al., 2022; D’Oosterlinck et al., 2024a).

In e-commerce product categorization task, there
are a vast number of different categories in the tax-
onomy tree, each with numerous products associ-
ated with it. In the traditional approach of few-
shot in-context learning, we need to select example
products for each candidate category in the prompt.
However, the selected products may contain infor-
mation irrelevant to the candidate category, and
may not adequately represent the candidate cate-
gory.

To address these issues, we propose a novel
in-context learning approach. Rather than provid-
ing a few products and their associated categories
as few-shot examples in the prompts, we provide
clear definitions of the candidate categories to the
LLM-based General Expert, where the category
definition is self-generated by LLMs. The self-
generation process is as follows. For each category,
we curated a collection of data points that have been
previously labeled as belonging to that particular
category, then LLMs were instructed to summarize
from the pool of data and generate a clear defini-
tion for the category based on the provided data.
To ensure diversity in the summarizing samples,
we include multi-source data from both popular

Figure 3: Prompting strategies. (a) LLM is prompted
to directly select an optimal category. (b) Categories
are represented by various levels of information, includ-
ing in-context learning via summarization. (c) LLM is
enforced to rank in order to reason. (d) LLM is encour-
aged to execute CoT before ranking.

selling products and catalog representatives of each
category via unsupervised learning. Consequently,
a summarized definition of each category was self-
generated by LLMs. We then feed these LLM-
generated category definitions to the LLM-based
General Expert, aiding in more accurate category
selection (Figure 3b, Figure 6).

3.2.3 Enhanced reasoning
To boost LLM’s decision-making capabilities, we
employed prompts that are designed to enhance the
reasoning processes within LLMs. We instructed
LLMs to identify the categories that match the main
functionality or intended usage of the product (Fig-
ure 3a). A product category consists of a root level
node (typically a Department) and intermediate
nodes, followed by a fine-grained leaf node. We
experiment with prompts containing various levels
of information from the categories (Figure 3b).

Think step by step enables LLMs to generate
task reasoning processes (Kojima et al., 2022).
Chain-of-thought (CoT) prompting significantly
enhances reasoning abilities of LLMs through
chained reasoning steps (Wei et al., 2022, 2021).
CoT prompting, which involves the presentation of
intermediate reasoning steps, has proven effective
in zero-shot (Kojima et al., 2022) and in-context
learning (Wei et al., 2022) settings. To enhance
LLM’s reasoning capability on product classifica-
tion task, we instructed LLMs to rank the relevant
candidate categories from the most likely to the
least likely for a given product (Figure 3c). Fur-
thermore, LLM is encouraged to find clues in the
product item data, think of a potential user and a
use case for the product, then finally proceed to
perform the ranking task (Figure 3d).

4 Experiments

4.1 Dataset

We evaluate our Dual-Expert framework on two
benchmark datasets.

RetailProducts2023. This dataset contains
95,526 products that potentially belong to 2,214
categories from an E-commerce site. The dataset
contains categories that have limited number of
data entries. Each category has at least 10 asso-
ciated data points to guarantee sufficient data for
training and testing.

E-commerceCatalog. For curating this data, we
select the e-commerce catalog data of 3 locales in
different languages to assess the robustness of our

5
298



Table 1: Model performance on RetailProducts2023
dataset.

Precision* Recall* F1 score* F1 score (macro)

fastText 0.857 0.837 0.836 0.716
BERT 0.901 0.890 0.891 0.779

XLM-R 0.902 0.910 0.899 0.782
Domain Expert alone 0.925 0.929 0.921 0.825

Dual-Expert 0.972 0.969 0.968 0.925

*Weighted average.

Table 2: Classification accuracy on the E-
commerceCatalog dataset.

Locale 1 Locale 2 Locale 3

DHPC (Zhang et al., 2021b) (baseline) +0% +0% +0%
Domain Expert alone +1.01% +1.33% +1.57%

Domain Expert w/ XLM-R Selector +1.12% +1.05% +1.31%
Dual-Expert +3.81% +4.01% +3.14%

dual-expert approaches. In each locale, we collect
an evaluation dataset of 10K products. This dataset
was curated through multiple iterations of human
review to provide a fair evaluation of all models
compared. The Domain Expert is fine-tuned on
millions of sampled catalog data per locale and we
pick K = 10 as the number of suggested candi-
date categories for the LLM-based General Expert.
The SOTA model Deep Hierarchical Product Clas-
sifier (DHPC) (Zhang et al., 2021b) is used as the
baseline for comparison.

We leverage Mixtral from mistral.ai, a high-
quality sparse mixture of experts model (SMoE) as
the General Expert. Unless otherwise stated, we
perform experiments with a temperature of 0.
4.2 Results
4.2.1 Dual-Expert model achieves better

classification performance compared to
the baseline

The results indicate that Dual-Expert model
achieves higher classification performance
consistently across RetailProducts2023 and
E-commerceCatalog datasets compared to baseline
models (Tables 1 and 2). On the RetailProd-
ucts2023 dataset, many categories have limited
number of data points, consequently, vanilla
XLM-R models exhibit poor performance on these
minority classes, as evidenced by the significantly
lower macro F1 score of 0.782, when compared to
our Dual-Expert model (0.925). Similarly, fastText
(Joulin et al., 2017) and BERT models exhibit rela-
tively poor performance (Table 1). The Domain
Expert model, which is a specialized version of
XLM-R, has improved classification performance,
although it requires relatively large amount of

training data to accurately learn and distinguish
between different categories. The Dual-Expert
model demonstrates generalization capabilities
on minority classes, showcasing its remarkable
zero-shot and few-shot capabilities (Table 1). This
is powered by the extensive knowledge gained
during pretraining and alignment stages of the
LLMs.

On the E-commerceCatalog dataset (Table 2),
Dual-Expert model demonstrates significant accu-
racy improvement in 3 locales compared to the
baseline SOTA model DHPC and Domain-specific
Expert alone (Table 2). These results demonstrate
that collaboration between the two experts, where
the Domain Expert provides relevant categories and
the LLM-based General Expert applies its reason-
ing capability to distinguish among categories and
select the optimal one, leads to increased classifi-
cation performance. Of note, we trained a XLM-R
based binary classification model that makes binary
predictions for (product, category) pairs. We used
this model as a selector, substituting the General
Expert. The overall accuracy was comparable or
inferior to Domain Expert, suggesting these models
likely learned the same noise in the training data.

Dual-Expert achieves higher classification ac-
curacy partially due to its ability to address noisy
mislabeled data in the training set. Consider the
product shown in Figure 1, there are snowball clip-
pers that are incorrectly labeled as beach toys in
training data, a BERT-based discriminative model
would learn this inaccurate classification during
fine-tuning. In contrast, LLMs have the extensive
general knowledge to recognize that such product
is not a beach toy, but rather a snow exploration toy.
Consequently, this approach effectively mitigates
the issue of incorrect labeling in training data.

4.2.2 Impact of domain expert training
strategies

We conduct ablation study to assess the impact
of removing the proposed components of domain
expert’s training strategies. As shown in Table 3, re-
moving any of these strategies causes performance
drop. The bootstrap learning in phase 2 has the
most significant impact on the accuracy of domain-
expert’s top1 prediction, as it stabilizes the later
stages of model training and prevent over-fitting.
For the entire dual-expert system, label augmenta-
tion and phase 1 training play a more crucial role
than phase 2 since they enhance model’s learning
from the few-shot knowledge and improves topK

6
299



retrieval performance of the domain expert.

4.2.3 Clear category definitions through LLM
self-generated summarization enhance
Dual-Expert’s decision-making
capabilities

Table 4 summarizes Dual-Expert’s performance
when using prompts that provide clear category def-
initions and enhance its reasoning capabilities. We
observed that the prompts employing short phrases
to represent categories achieved relatively low clas-
sification accuracy (Table 4, with ambiguous cate-
gory definition). This is expected, as short phrases
encode limited category information. For example,
’accessory’ as a category name is ambiguous, there-
fore LLM misunderstands the category and makes
errors.

To make the category definitions more clear, we
propose a novel in-context learning approach via
LLM self-generated summarization. For each cate-
gory, we first instructed LLMs to summarize from
the pool of data and generate a clear definition for
the category based on the provided data. Then, in-
stead of providing products and their associated
categories as few-shot examples directly in the
prompts, we provide the LLM with self-generated
category summary, and instruct the LLM to select
the most appropriate category among the candi-
dates. As a result, the Dual-Expert model achieves
the highest classification accuracy improvement
of 3.8%, 4.0%, 3.1% for the 3 locales, respec-
tively (Table 4, descriptive category name with
ICL summarization). The findings suggest that
LLMs excel at summarizing the core characteris-
tics of a particular category. By leveraging the
summarizations of categories generated by LLMs
themselves, the models are equipped with more pre-
cise and well-defined descriptions of the categories,
enabling them to make more accurate classification
predictions (Figure 6).

4.2.4 Classification accuracy of the
LLM-based Dual-Expert improves via
enhanced reasoning

Our baseline prompting strategy involves instruct-
ing the LLM to directly choose optimal category
from candidate classes (Table 4, zero-shot). LLM
often states that "category A is correct" and that
"categories B, C, and D are incorrect" without fur-
ther explanations and reasoning. LLMs likely did
not engage in extensive reasoning, classification
accuracy was relatively low. When prompted to

Table 3: Ablation Study: Impact of training strategies
on Domain Expert’s classification accuracy, i.e. Label
Augmentation (LA), Phase 1&2 training.

Training Method Domain Expert Acc (top 1) Dual-Expert Acc (top k -> 1)

Domain Expert w/o LA -0.7% -1.5%
Domain Expert w/o Phase1 -0.2% -0.5%
Domain Expert w/o Phase2 -1.4% -0.25%

Table 4: Comparison of LLM prompting strategies
on Dual-Expert’s classification accuracy. Baseline is
DHPC (Zhang et al., 2021b)

Prompt Strategy Locale 1 Locale 2 Locale 3

with ambiguous category definition +0.85% +0.53% -0.68%
descriptive category name +1.23% +0.80% +2.06%
descriptive category name with ICL summarization* +3.81% +4.01% +3.14%
enhanced reasoning via rank +3.85% +3.55% +2.26%
enhanced reasoning via CoT and rank +3.32% +3.59% +2.86%

*Proposed prompt strategy in Dual-Expert

rank all relevant candidate categories in descend-
ing order, from the most likely to the least likely,
LLM enhanced its reasoning capabilities. As a
result, we observe classification accuracy improve-
ment by 3.85%, 3.55% and 2.26% in the 3 locales,
respectively (Table 4).

4.3 Discussion

4.3.1 Inference cost
Inference cost is crucial for the practical applica-
tion of this work to large-scale e-commerce product
categorization. Consider the online/offline traffic
of practical categorization system, we utilized the
thresholding within the domain expert to regulate
the traffic flowing into the general expert. In our
practice, this approach reduces total traffic by 80%
while maintaining overall accuracy improvements,
as the 20% of data that passed through the entire
workflow are typically cases the Domain Expert
alone struggles to classify correctly (Figure 4). Fur-
thermore, the Dual-Expert system (Table 1), in
return, can act as a reliable auditor for determining
the appropriate threshold for the Domain Expert
model, further dynamically optimizing the trade-
off between performance and computational cost.

4.3.2 Probing framework feasibility
From our experiments, we found that for classifica-
tion tasks with fine-grained categories and limited
number of data points per category, LLMs demon-
strate robust zero-shot and few-shot capabilities.
As shown in Figure 5, when minimum number of
data points per category is small, Dual-Expert out-
performs the Domain Expert with larger margin.
E-commerce categorization task falls under this
regime, since catalog data inherently exhibits long
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Figure 4: Modified framework that utilizes both Dual-
Expert and Domain Expert alone for large scale applica-
bility.

tail distribution, and the categories are fine-grained
with subtle differences, such example categories
are shown in Figure 6. As the categories become
larger with sufficient amount of training data per
category, and categories are well-separated with
no conceptual overlap or nuanced difference, dis-
criminative classification models tend to provide
on-par classification performance compared to the
LLM-based Dual-Expert (Figure 5).

5 Related Work

When the label space is vast with thousands of
labels, a typical approach towards classification
based on ICL is reducing the label space by iden-
tifying most relevant candidates for a given input
(Milios et al., 2023). In this regards, research com-
munity has worked with both generative and non-
generative techniques to narrow down to most rele-
vant labels. Simig et al. (2022) explored generating
candidate labels in the setting where task involves
classification in unseen labels. Zhu and Zamani
(2023) uses a set of labels and map the LLM gener-
ated candidates to actual labels by using semantic

Figure 5: Framework feasibility on RetailProducts2023.

similarity. D’Oosterlinck et al. (2024b) takes a step
further and ranks the retrieved labels by using an
additional LLM. Semantic similarity works well
when there is direct mapping between input and
output. In our work, we target e-commerce data
where the direct mapping between input to leaf cat-
egories does not work because a large number of
leaf categories can have semantically similar defi-
nition which defeats the purpose of classifying the
product in a single leaf category. Further, using
multiple LLMs and making several calls to them
is expensive. We reduce that cost by using only
one LLM that processes the relevant labels selected
by a non-generative model. In the non-generative
approaches, Jain et al. (2019) considered building
an approximate nearest neighbor (ANN) graph as
an indexing structure over the labels by relying on
sparse features engineered from the text. The rele-
vant labels for a given text were then found quickly
from the nearest neighbors of the instance via the
ANN graph. With the introduction of PLMs, clas-
sification performance on several tasks improved
significantly through PLMs’ ability of learning bet-
ter text representation from the raw, unstructured
text. In our work, we explore LLM’s capability for
classification in different situations that occur in
e-commerce domain - when product text is noisy,
and when classification labels are fine-grained and
conceptually overlapping. Each situation has their
own challenges. We show that the Dual-Expert
paradigm overcomes these challenges and outper-
forms the discriminative classification model in
selecting the optimal category. We also show that
enhancing the LLM prompt with self-generated
summarization outperforms other prompt-tuning
techniques experimented in this paper.

6 Conclusion
In this study, we propose a Dual-Expert classifi-
cation workflow, which leverages the pre-trained
LLMs for accurate e-commerce product categoriza-
tion. It comprises two experts: a domain-specific
expert, trained on a large e-commerce domain data,
identifies relevant candidate classes; and a general
expert, powered by a LLM with In-Context Learn-
ing, that handles nuanced reasoning and decision-
making. This dual-expert architecture leverages the
complementary strengths of each expert, blending
specialized domain knowledge with general reason-
ing capabilities from pre-training, to achieve high
classification accuracy in e-commerce categoriza-
tion.
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A Appendix

A.1 Example that showcases the effectiveness
of in-context learning via LLM
self-generated summarization/definition

LLM self-generated summarization/definition of
the categories helps clarify the category definitions
to the LLM, which in turn improves LLM’s product
categorization capability (Figure 6).
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Figure 6: An example product that showcases the effectiveness of LLM self-generated summarization/definition.
Two candidate categories are similar with subtle differences. LLM self-generated summarization identifies the key
features that separate them: one is edible cake topper, the other is non-edible.

11
304



Proceedings of the 1st Workshop on Customizable NLP: Progress and Challenges in Customizing NLP for a
Domain, Application, Group, or Individual (CustomNLP4U), pages 305–316

November 16, 2024 ©2024 Association for Computational Linguistics

Adapting LLM Predictions in In-Context Learning with Data Priors

Javier Chiyah-Garcia∗

Heriot-Watt University
Edinburgh, UK
fjc3@hw.ac.uk

Prasoon Goyal
Amazon

New York, USA
prasog@amazon.com

Michael Johnston
Amazon

New York, USA
mjohnstn@amazon.com

Reza Ghanadan
University of Maryland

College Park, USA
rezag@umd.edu

Abstract
In-Context Learning (ICL) has enabled Large
Language Models (LLMs) to excel as general-
purpose models in zero and few-shot task set-
tings. However, since LLMs are often not
trained on the downstream tasks, they lack cru-
cial contextual knowledge from the data distri-
butions, which limits their task adaptability.

This paper explores using data priors to auto-
matically customize prompts in ICL. We extract
these priors in a dataset-agnostic way based
on historical information, enabling LLMs to
personalize their output towards users or tasks
at inference time. We find that they im-
prove LLM’s output by injecting latent dataset-
specific information for the task of rating pre-
diction. Throughout a series of experiments,
we show replicable results across LLMs and
datasets on what information and methods are
most effective for adapting ICL outputs with
priors. Our findings offer a systematic ap-
proach to customizing prompts with additional
information in a privacy-friendly manner, re-
quiring only aggregated data that is computa-
tionally efficient.

1 Introduction

The field of NLP has progressed significantly to-
wards generalizing to unseen tasks and inputs with
pre-trained Large Language Models (LLMs). With
In-Context Learning (ICL) (Brown et al., 2020;
Liu et al., 2023), models are conditioned with task
instructions and a few examples to generate text
predictions, without task-specific training in zero
and few-shot settings (Wei et al., 2022; Chowdhery
et al., 2022). Thus, LLMs are increasingly used as
all-purpose models for tasks beyond text genera-
tion, such as classification and regression (Zhu and
Zamani, 2024; Salemi et al., 2024).

ICL enables the personalization of LLM outputs
by incorporating relevant context in the prompt,

∗Research conducted during an internship at Amazon.
Correspondence to fjc3@hw.ac.uk and prasog@amazon.com

without fine-tuning individual models (Salemi
et al., 2024). Recent approaches focus on retriev-
ing and incorporating relevant information in the
prompt (Mireshghallah et al., 2022; Andreas, 2022)
or building personal user profiles (Mazaré et al.,
2018; Naumov et al., 2019; Li and Tuzhilin, 2019).
However, these methods have challenges, such as
identifying relevant information, impracticality of
fine-tuning models or parameters for each user,
computational constraints with large prompts, and
avoiding over-personalization (i.e., profiling).

In this paper, we focus on knowledge person-
alization (Kirk et al., 2023) of outputs based on
historical data (i.e., previous interactions with the
system), and argue that LLMs benefit from explic-
itly providing information about the data distribu-
tion in ICL prompts. We initially experiment with
the use of data priors as supplementary context in
prompts for rating prediction, automatically synthe-
sized based on previous behavior, e.g., “Consider
that this product is rated on average with a 4”. Sec-
ondly, we probe LLMs with modifications of these
priors to analyze their benefits and limitations.

We find that LLMs leverage this information to
adapt to the input and calibrate their predictions
within ranges that align with the underlying dataset
distribution. Our findings also indicate that LLMs
are generally resilient to inaccurate priors, and that
their benefits are more significant when task demon-
strations are absent from the prompts, potentially
benefiting resource-constrained scenarios. Data
priors offer a computationally efficient alternative
to methods that depend on large volumes of data,
retrieval algorithms or fine-tuned LMs.

Our contributions in this paper are as follows:

1. We demonstrate how incorporating data pri-
ors in prompts enhances the ICL performance
of LLMs by better aligning with a particular
user/element.

2. We probe LLMs with a range of alterna-
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tive prior values, including upper and lower
bounds, and analyze their role in downstream
task adaptation.

3. We present experiments and prompt samples
to facilitate the reproduction of our results and
to adapt our method to other datasets.

2 Background

ICL relies on an LLM’s ability to transfer and gen-
eralize to unseen tasks, without updating or train-
ing its parameters (see Dong et al. (2023) for a
comprehensive survey and definition). The initial
instruction conditions models to the task, whilst
the demonstration examples, henceforth demonstra-
tions, provide both the task format and useful input
knowledge (i.e., label space) (Min et al., 2022).

ICL is highly sensitive to the prompt context
and its demonstrations for downstream task adapta-
tion (Jiang et al., 2020; Zhao et al., 2021; Mishra
et al., 2022), thus prior works have explored se-
lecting optimal demonstrations (Liu et al., 2022)
and ordering them (Li and Qiu, 2023; Zhang et al.,
2022; Lu et al., 2022). They have also proposed
LMs to generate demonstrations (Kim et al., 2022;
Zemlyanskiy et al., 2022) and unsupervised or su-
pervised retrievers (Rubin et al., 2022; Agrawal
et al., 2023). However, most of these methods rely
on resource-intensive training or pre-processing
(e.g., SBERT (Reimers and Gurevych, 2019) or
BM25 (Robertson and Zaragoza, 2009) for similar-
ity), which limits their scope to small pre-fixed data
subsets. Our method, in contrast, relies solely on
context (Dudy et al., 2021) from population-wide
statistics as an alternative to training or retrievers.

Previous NLP personalization efforts have fo-
cused on creating user-specific representations
(Mazaré et al., 2018; Wu et al., 2021) by inferring
user attributes (Mireshghallah et al., 2022) or per-
sonas (Zhang et al., 2018) from narratives (Vincent
et al., 2024) or public reviews (Li and Tuzhilin,
2019). These representations are then used to
condition the input and generate more personal-
ized outputs (Mairesse and Walker, 2011; Zhang
et al., 2018; Li and Tuzhilin, 2019; Majumder et al.,
2019). While these approaches target user-specific
adaptation (e.g., chatty vs. terse (Mairesse and
Walker, 2011)), we propose adapting to users or
other elements by leveraging the data distribution,
without training user-specific modules (e.g., user-
specific vectors (Zhong et al., 2021)), which require
substantial computational resources.

3 Contextual Data Priors

This section explores how including priors into
prompts enhances LLM adaptation and predictions.
Data priors represent population characteristics
(e.g., averages) and thus can be leveraged to per-
sonalize outputs beyond users (e.g., products).

3.1 Experimental Setup
Task We evaluate our approach on numeric rat-
ing prediction based on review text (Baccianella
et al., 2009) with several LLMs. Given an input
review text t for an element, these models predict
a rating rpred ∈ [1, 5] ∩ R. This task is similar
to personalized sentiment prediction (Zhong et al.,
2021; Mireshghallah et al., 2022) and LAMP-3
(Salemi et al., 2024); however we use considerably
larger test datasets and allow floating-point rating
predictions rather than restricting to integers.

Datasets We use two large-scale online review
datasets: Amazon Product Reviews (APR) (Ni
et al., 2019), 233 million reviews divided into 29
product categories; and Google Local Reviews
(GLR) (Li et al., 2022), with 666 million Google
Maps reviews of USA businesses and landmarks
split by state. Both datasets use ratings from 1
(bad) to 5 (good) stars and feature many-to-many
relationships between users and reviewed items.

Given the large size of APR and GLR datasets,
we limit our experiments to sub-categories. We
further reduce these to dense K-core subsets, as
sampled by the APR authors, where each user and
element has at least K reviews. We aim to balance
dataset size and reproducibility after extracting K-
core subsets, yielding substantial subsets of dense
data. Our final test subsets have the following en-
tries: APR-Games (19K), APR-Clothing (17K),
GLR-Montana (7.5K) and GLR-Vermont (15K).
Since we use ICL and our method does not require
training, we do not have training subsets. Previ-
ous works applying ICL to these datasets restrict
their test sets to 2K (Li and Qiu, 2023) and 2.5K
(Salemi et al., 2024) randomly sampled entries, and
over 20K entries for training. Appendix D provides
further dataset details.

Models We test with the following models1:
LaMini-GPT (Wu et al., 2023), FLAN-T5-
XL (Chung et al., 2022), Instruct-GPT-J (NLP
Cloud, 2023), and Alexa Teacher Model (Alex-
aTM) (Soltan et al., 2022; FitzGerald et al., 2022).

1See Appendix A for further model details.
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Metrics Following recent works (Salemi et al.,
2024), we use Root Mean Squared Error
(RMSE) to measure the distance between predicted
rpred and true rtrue ratings (1 to 5) for n test en-
tries (Eq. (1)). As a distance, lower numbers are
closer to the target and thus better. We additionally
calculate the Percentage Change (∆ %) to facili-
tate comparisons across experiments, models and
datasets with the baseline (No priors); see Eq. (2).

RMSE =

√√√√ 1

n

n∑

i=1

(rtrue − rpred)2 (1)

∆% =
RMSEx − RMSEbaseline

RMSEbaseline
× 100 (2)

Implementation To evaluate performance in re-
view prediction, we prompt the LLMs to gener-
ate up to 5 tokens (or end of sequence) and parse
the predicted rating. While both APR and GLR
datasets use integer scores, we allow outputs be-
tween 1.0 and 5.0 (1.3, 4.4...) since it is commonly
treated as a regression task. Predictions outside
this range or with additional text (e.g., “3 stars”)
are marked as out of distribution and removed2.
We use custom prompts adapted to each LLM’s
prompting strategy3 and provide 3 random reviews
demonstrations in the prompt.

3.2 Experiment 1: ICL Adaptation
To understand how data priors influence LLM out-
puts, we compare the following conditions, where
we add a sentence containing the prior value in
natural language (refer to Table 1 for examples):

• None: default ICL prompt without priors.

• Object: sentence with the prior P obj for an
object or site as its mean rating from previous
reviews.

P obj
n =

1

n− 1

n−1∑

i=1

Ratingobji

• User: sentence with the prior P usr for a user
calculated from the user’s mean historical rat-
ings.

P usr
n =

1

n− 1

n−1∑

i=1

Ratingusri

• Object+User: both priors combined into a
single sentence.

2Fewer than 0.5% entries.
3Full prompts are provided in Appendix B.

Prior Example Prompt

None Give a rating between 1 to 5: <demonstrations>
Input: Loved it! Review:

Object Give a rating between 1 to 5: <demonstrations>
Consider this product is rated on average with a 3.5
Input: Loved it! Review:

User Give a rating between 1 to 5: <demonstrations>
Consider this reviewer rates on average with a 4.1
Input: Loved it! Review:

Object
+
User

Give a rating between 1 to 5: <demonstrations>
Consider that this product is rated on average with
3.5 and that this reviewer rates on average with 4.1
Input: Loved it! Review:

Table 1: Sample prompts for each data prior with task
instruction, demonstrations, data prior and input query.

3.3 Experiment 2: Control Conditions

Along with exploring the enhancements that data
priors provide, we also test if these improvements
arise due to other factors, such as priors being a
good approximation of the target output, which
LLMs can use as predictions. We compare our re-
sults with baselines and isolate confounding factors
through several control conditions with priors.

Prior baselines We first evaluate how close the
synthesized priors are from the target output by
using each prior as the prediction, without the
ICL prompt or LLMs. We experiment with two:
BaselineObject and BaselineUser.

Oracle (or upper bound) We evaluate whether
providing the gold target output as the prior in
the prompt pushes LLMs towards better results.
We would expect that models that merely carry
over priors as a prediction would also reach perfect
scores. We substitute the calculated priors from
§ 3.2 with the gold output value POracle = rtrue

(keeping prompt text intact) in these experiments:
OracleObject and OracleUser.

Distractor (or lower bound) Similarly, we test
whether wrong or inaccurate data priors may hin-
der the LLM’s performance. Thus we introduce
“distractor” conditions, whereby we substitute the
prior with a value far from the true output whilst
keeping prompts intact. Since outputs range from
1 to 5, and a random baseline has a mean RMSE
≈ 2.0 across datasets, we calculate the distractor
value Dn as 2 points away from the true gold out-
put,Dn = (rtruen −2) if rtruen ≥ 3, else (rtruen +2),
in: DistractObject and DistractUser.

We discuss other types of priors in Appendix C.
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3.4 Results

We evaluate the impact of priors by comparing
each condition to the performance of each model’s
prompt without priors (None) using Percentage
Change ∆ %. Specifically, we calculate:

∆% =
RMSEx − RMSEPNone

RMSEPNone

× 100

This section discusses results from comparing
PC ∆ %, refer to Appendix E for extended results.

ICL Improvements Table 2 shows the benefits
that data priors provide to LLMs, with similar gains
when using Object or User priors, and larger when
these are combined in Object+User. We see that
the historic ratings help models anchor their output
towards a rating, likely exploiting the propensity
that some users and objects may have around a
particular rating.

We also see that all but one LLM reach their
best scores when combining Object+User priors,
despite the relatively increased noise in the prompt
from a longer sentence and two conflicting val-
ues. The relative improvement is often greater than
both Object or User separately, suggesting that
this may be further used as a balancing between
a range of ratings. All LLMs benefit from pri-
ors, although we see variance as some favor either
Object or User.

Control Conditions Due to space constraints, we
provide all results in Appendix E (Table 8). Firstly,
we observe that the prior baselines are not good
approximations of the gold output, usually with a
RMSE of ≈ 1 and higher (worse) than most out-of-
the-box LLMsPredicting (copying) the same prior
number would deteriorate results, suggesting their
usefulness extends beyond a numerical value.

Model Object User Object+User
∆ % ∆ % ∆ %

LaMini-GPT -8.59 -9.35 -11.88
FLAN-T5-XL -8.10 -7.74 -9.72
Instruct-GPT-J -12.09 -20.70 -15.41
AlexaTM -2.40 -5.36 -10.51

Mean ∆ % -7.79 -10.79 -11.88

Table 2: Relative improvements from § 3.2 experi-
ments compared to not using priors (None), averaged
across datasets (lower is better ↓). Refer to Table 8 (Ap-
pendix E) for baselines and absolute results.

In the Oracle setting, LLMs consistently reach
their best results and largest improvements (see
Table 3), yet they are far from perfect scores. This
reaffirms that LLMs are not copying these priors
and instead use them to tune or guide their output.

Regarding the Distractor setting, the tests yield
a mix of effects. Depending on the condition and
LLM, we get slightly worse or better results than
not having priors (None), ±1.5%. The results far
exceed a random baseline and are not substantially
compromised by inaccurate information, which re-
inforces the notion that priors balance or tune mod-
els closer to a dataset with insight that is not present
in demonstrations alone.

Model
Oracle Distract

Object User Object User
∆ % ∆ % ∆ % ∆ %

LaMini-GPT -25.07 -13.60 +9.01 +0.31
FLAN-T5-XL -7.62 -7.10 -0.74 +0.47
Instruct-GPT-J -20.93 -28.52 +0.16 -4.09
AlexaTM -14.86 -12.15 -2.06 -2.36

Mean ∆ % -17.12 -15.34 +1.59 -1.42

Table 3: Summary of § 3.3 experiments, negative results
show improvement. Refer to Appendix E for all results.

Priors without Demonstrations The gains in
Distractor settings suggest that priors may be useful
beyond providing a value to anchor outputs, and
may play a role in helping LLMs adapt to the task.
Therefore, we repeat all previous experiments with
no demonstrations in the prompt to analyze their
role (see Appendix E, Table 9).

Under these settings, we observe a stronger prior
effect (larger ∆ %) across most conditions. Mod-
els less reliant on demonstrations exhibit the great-
est impact, with most LLMs achieving their best
results under the Object+User and Oracle prior
conditions. In the absence of demonstrations, mod-
els seem to heavily rely on priors, which can serve
as a suitable alternative even when they poorly ap-
proximate the target output. This mirrors the ef-
fectiveness of demonstrations even with incorrect
labels (Min et al., 2022).

4 Discussion and Conclusion

This paper explores the adaptation of LLM out-
puts in ICL using easily-calculable data priors as
contextual information. We demonstrate that incor-
porating user- or object-specific context in prompts
helps LLMs to customize outputs, consistently im-
proving results.
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Secondly, we test isolating factors responsible
for these improvements and find that LLMs do not
simply reproduce the provided priors in their out-
puts. Instead, higher-quality priors – those closer to
the latent dataset distribution or ground truth – lead
to enhanced outcomes, particularly in the absence
of demonstrations. Results show that inaccurate
data prior values have minor negative impact and
may even provide benefits. This reveals LLMs may
leverage priors for more than tuning their predic-
tions. Our findings suggest that priors serve a dual
purpose: anchoring predictions around specific
values and facilitating downstream task adaptation.
This could be similar to the role of demonstrations,
which extends beyond format examples (Min et al.,
2022).

While priors may have limited utility in tasks
lacking clear numeric population traits (e.g., rea-
soning), we anticipate this work paves the way
towards further exploring the role of additional
context in ICL. Future work will explore tasks with
unbalanced datasets, such as categorical classifica-
tion with majority labels, where providing mode
rather than mean may prove beneficial.

These conceptually straightforward data priors
offer complementary benefits to demonstrations for
task or user adaptations, while being significantly
more computationally efficient and easier to im-
plement than training demonstration retrievers or
models, which could be intractable for user-specific
modules. Their aggregate nature also helps miti-
gate some of the drawbacks typically associated
with personalization in NLP (Flek, 2020; Dudy
et al., 2021; Kirk et al., 2023).

5 Limitations

Our work has several limitations: 1) we only inves-
tigate the task of rating review prediction, which
has a numeric output and thus allows to calculate
averages to use as priors. Further investigation
would be required as to determine whether there is
task-agnostic context that we can consistently ex-
tract to improve ICL in other domains, i.e., classifi-
cation. 2) We use subsets of two large datasets, but
these categories could be biased or provide limited
transferable evidence of the benefits of priors. We
aimed to balance dataset size versus reproducibil-
ity, as larger subsets would be more difficult to
evaluate. Our work contributes an initial step into
understanding how context in the prompt, different
from task demonstrations, could be useful across

models and datasets in ICL. 3) We use models of
different sizes that we think are representative of
the ICL research field, from a small 1.5B parame-
ter model, LaMini-GPT, to a large LLM with 20B
parameters, AlexaTM. However, we were not able
to test all models that may also be relevant, such as
GPT-4/ChatGPT (OpenAI, 2023), LLama 2 (Tou-
vron et al., 2023) or OPT-IML (Iyer et al., 2023). 4)
We did not test whether retrieving optimal demon-
strations rather than randomly choosing them, had
any effects on the benefits of data priors. Instead,
this paper focused on exploring complementary in-
formation in the prompts that could be useful when
a retriever is not practical or in data-scarce settings.
Finally, 5) we did not exhaustively test alternative
priors, e.g., random numbers. We use personalized
priors for users/objects as a way of adapting to the
input and providing some useful information. We
discuss alternative data priors in Appendix C and
why they were not included, but ultimately leave
the study of alternative data priors for future work
as this may be dataset-dependent.
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A Model and Compute Details

Models We run our experiments with models
that have been Instruction-Tuned (IT) with var-
ied prompts and datasets to augment their transfer-
ability (Chowdhery et al., 2022; Wei et al., 2022).
These models usually have a superior performance
in ICL and have an easier time adapting to tasks.
We test with these popular models of different sizes
(refer to Table 4 for number of parameters):

• LaMini-GPT (Wu et al., 2023), distilled IT
version of GPT-2 (Radford et al., 2019).

• FLAN-T5-XL (Chung et al., 2022), IT ver-
sion from T5-XL (Raffel et al., 2020).

• Instruct-GPT-J (NLP Cloud, 2023), IT ver-
sion of GPT-J (Wang and Komatsuzaki, 2021).

• Alexa Teacher Model (AlexaTM), further IT
from (Soltan et al., 2022; FitzGerald et al.,
2022).

A.1 Other Baselines

Random Baseline We randomly select an integer
out of 5 as the output.

Fine-tuned RoBERTa We fine-tune a RoBERTa
(Liu et al., 2019) model trained to predict a number
out of 5 as a classification task. This resembles
previous works that treat the task as sentiment pre-
diction from a few pre-determined labels. We train
this model for 3 epochs using only the review text
as input.

Model # of Parameters

LaMini-GPT-1.5B (Wu et al., 2023) 1.5B
FLAN-T5-XL (Chung et al., 2022) 3B
Instruct-GPT-J (NLP Cloud, 2023) 6B
AlexaTM (Soltan et al., 2022; FitzGer-
ald et al., 2022)

20B

Table 4: LLMs used in experiments with their approxi-
mate number of parameters.

Experiments We used a machine with 4 NVIDIA
V100 GPUs with 16G of RAM each, with a maxi-
mum sequence length of 1024 tokens. We used the
LLM’s HuggingFace versions when available. A
full range of experiments, as in i.e., Table 8, takes
approximately 3-4 days.

B Model Prompts

We provide full sample prompts in Table 5. Prior
sentences would change to reflect more accurate de-
scriptions of the items reviewed per dataset: “prod-
uct” for APR and “location/place” for GLR.

C Additional Data Priors

The data priors evaluated in the paper are not an
exhaustive list of dataset statistics that could be ex-
tracted. We limited our experiments to priors that
were easy to understand but also provided a wide
(and scoped) range of interesting results. Mean
values are a representation of the underlying data
distribution (i.e. the mean of a product rating con-
veys a rough summary of the data), and thus en-
able adaptation based on available information: a
general dataset mean compared to a lower-level
personalized mean for users or objects (mean of
previous user/item ratings).

This paper aims to demonstrate that using these
prior values aids LLM adaptation to tasks in ICL,
yet the exact choice of prior would depend on the
specific setting (task/dataset/model).

We considered the following priors before decid-
ing to only include mean and the oracle/distractor
variants:

• Mode/Median: alternative user or object-
specific metrics, such as mode and median,
may be too dataset-dependent and provide
poor approximations. Our proposed data
priors aim to convey distribution tendencies,
which we believe the mean better represents
in these datasets. Both APR and GLR datasets
have slightly skewed distributions towards 1
and 5 stars (more 1 and 5 star reviews than oth-
ers), and thus the arithmetic mean can capture
distribution shifts in the underlying distribu-
tion with decimal precision, unlike median or
mode. Datasets with a different distribution
should consider these alternatives.

• Random: use a random value as the prior. We
believe that the Distractor conditions better
demonstrate the impact of incorrect values
without the unpredictability of randomness. In
practice, we observed results that were slightly
better than the Distractor conditions.

• Consistent values: using the same value
across all dataset priors as a control condi-
tion. Similar to the random values as priors,
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Model Sample Prompt

LaMini-GPT
+ None prior

Below is an instruction that describes a task. Write a response that appropriately completes the request.\n
### Instruction: Choose the rating between 1.0 (bad) and 5.0 (good) for this review.\n
Here are some examples: \n
<demonstrations>
Review: Loved it! \n
Rating:

FLAN-T5-XL
+ Object prior

Given a product review, you MUST choose the most likely rating from 1.0 (bad) to 5.0 (good).
Here are several cases for your reference: \n
<demonstrations>
Consider this product is rated on average with a 3.5 \n
Review: Loved it! \n
Rating:

Instruct-GPT-J
+ User prior

Given a product review, you MUST choose the most likely rating from 1.0 (bad) to 5.0 (good).
Here are several cases for your reference: \n
<demonstrations>
Consider this reviewer rates on average with a 4.1 \n
Review: Loved it! \n
Rating:

AlexaTM
+ Object+User prior

Below is an instruction that describes a task. Write a response that appropriately completes the request.\n
### Instruction: Choose the rating between 1.0 (bad) and 5.0 (good) for this review.\n
### Here are some examples:\n
<demonstrations>
Consider that this product is rated on average with a 3.5 and that this reviewer rates on average with a 4.1 \n
Review: Loved it! \n
Rating:

Table 5: Sample prompts for each model with task instruction, demonstrations, data prior and input query. We
tested several prompts but we settled on these as they seemed to work well across LLMs. Demonstrations have
the same format as the input query (Review-Rating) and are selected at random from an unrelated subset (different
object and user).

we think that this does not provide further rel-
evant results. We think that experimenting
Oracle (always correct) and Distractor (al-
ways incorrect) provide better insights into the
mechanisms that makes data priors work.

D Datasets

Table 6 summarizes the test entries used after fil-
tering with the K-core process described in § 3.1.
Since our method does not require training, we only
use test data.

Dataset Category Test Set

Amazon Product Reviews Games 18,802
(Ni et al., 2019) Clothing 17,084

Google Local Reviews Montana 7,473
(Li et al., 2022) Vermont 14,919

Table 6: Test entries per subset used in our experiments.

We compare the train/test dataset sizes with pre-
vious works in ICL in Table 7. These works also
used other datasets and tasks in their experiments
but treated each separately, hence we only report
the sizes for the Amazon Product Review dataset
that we have in common.

Work Sampling #Classes #Train #Test

Li and Qiu (2023) Random 2 30000 2000
Salemi et al. (2024) Random 5 20000 2500

Our work K-core dense - 0 35800

Table 7: Comparison of previous ICL works using the
Amazon Product Reviews dataset.

E Additional Experiment Results

Table 8 shows extra results from § 3.2 and § 3.3.
Table 9 shows the results from running the same ex-
periments without demonstrations in the prompts.

Notably, the BaselineUser prior has a 0.0 RMSE
for the APR-Clothing dataset in experiments, with
the fine-tuned RoBERTa (Liu et al., 2019) closely
following at 0.07 RMSE. This suggests that this par-
ticular data split may be exceptionally predictable.

Demonstration Selection When using demon-
strations (Table 8), we randomly sample 3 entries
from the same data subset to use as examples in the
prompt. We ensure that these entries are not from
the same user, product or location as the test review
to avoid biases.
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Model
Datasets

APR-Games APR-Clothing GLR-Montana GLR-Vermont Mean
RMSE ↓ ∆ % RMSE ↓ ∆ % RMSE ↓ ∆ % RMSE ↓ ∆ % ∆ %

Random Baseline 2.159 2.058 1.956 1.973
Fine-tuned RoBERTa 0.724 0.073 0.780 0.749

Priors
BaselineObject 0.880 1.372 1.007 0.985
BaselineUser 0.781 0.000 0.919 0.932

LaMini-GPT
None 0.761 1.000 0.909 0.882
Object 0.661 -13.15 0.942 -5.74 0.840 -7.53 0.812 -7.92 -8.59
User 0.700 -7.99 0.872 -12.81 0.832 -8.51 0.811 -8.07 -9.35
Object+User 0.657 -13.56 0.850 -14.94 0.821 -9.66 0.800 -9.34 -11.88
OracleObject 0.582 -23.50 0.784 -21.57 0.662 -27.11 0.634 -28.10 -25.07
OracleUser 0.674 -11.35 0.872 -12.82 0.776 -14.67 0.745 -15.54 -13.60
DistractObject 0.849 11.62 1.083 8.31 0.977 7.46 0.959 8.65 9.01
DistractUser 0.776 2.08 1.034 3.42 0.893 -1.76 0.860 -2.49 0.31

FLAN-T5-XL
None 0.7156 1.0490 1.0075 0.966
Object 0.6741 -5.80 0.906 -13.66 0.9454 -6.16 0.900 -6.77 -8.10
User 0.6701 -6.36 0.9447 -9.94 0.9355 -7.15 0.8932 -7.50 -7.74
Object+User 0.6539 -8.62 0.9046 -13.77 0.9253 -8.16 0.8853 -8.32 -9.72
OracleObject 0.6606 -7.69 0.9259 -11.73 0.9555 -5.16 0.9085 -5.91 -7.62
OracleUser 0.6609 -7.64 0.9447 -9.94 0.9577 -4.94 0.9091 -5.85 -7.10
DistractObject 0.7115 -0.57 0.9994 -4.73 1.0226 1.50 0.9738 0.85 -0.74
DistractUser 0.7128 -0.39 1.0595 1.00 1.0191 1.15 0.9666 0.10 0.47

Instruct-GPT-J
None 0.9530 1.2353 1.1310 1.1182
Object 0.821 -13.85 1.2011 -2.77 0.9544 -15.61 0.9379 -16.12 -12.09
User 0.8061 -15.41 0.8782 -28.91 0.9122 -19.35 0.9044 -19.12 -20.70
Object+User 0.7976 -16.31 1.1488 -7.00 0.9101 -19.53 0.9082 -18.78 -15.41
OracleObject 0.7788 -18.28 1.0009 -18.98 0.8467 -25.14 0.8798 -21.32 -20.93
OracleUser 0.7202 -24.43 0.8782 -28.91 0.7646 -32.40 0.8014 -28.33 -28.52
DistractObject 0.9575 0.47 1.3672 10.68 1.0662 -5.73 1.0648 -4.78 0.16
DistractUser 0.9673 1.50 1.2951 4.84 0.9934 -12.17 1.0005 -10.53 -4.09

AlexaTM
None 0.6195 0.8757 0.8386 0.8490
Object 0.6318 1.99 0.8279 -5.46 0.829 -1.14 0.8067 -4.98 -2.40
User 0.6265 1.13 0.7139 -18.48 0.8163 -2.66 0.8367 -1.45 -5.36
Object+User 0.605 -2.34 0.6274 -28.35 0.789 -5.91 0.803 -5.42 -10.51
OracleObject 0.5753 -7.13 0.6743 -23.00 0.7047 -15.97 0.7359 -13.32 -14.86
OracleUser 0.5689 -8.17 0.7139 -18.48 0.7367 -12.15 0.7657 -9.81 -12.15
DistractObject 0.6342 2.37 0.8012 -8.51 0.8374 -0.14 0.8324 -1.96 -2.06
DistractUser 0.6408 3.44 0.7957 -9.14 0.8257 -1.54 0.8303 -2.20 -2.36

Table 8: Results from experiments with data priors. We compare LLMs across datasets and under 8 conditions: the
initial 4 with distinct prior prompts (§ 3.2); followed by 4 highlighted rows with altered prior values (§ 3.3). We
provide a supervised fine-tuned RoBERTa (Liu et al., 2019) baseline for comparison and the prior baselines from
§ 3.3. Lower is better for RMSE and percentage change ∆ % (refer to § 3.1). We average the results of 3 runs, and
provide prompts with 3 randomly-selected task demonstrations each.
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Experiments with 0 Demonstrations in Prompts

Model
Datasets

APR-Games APR-Clothing GLR-Montana GLR-Vermont Mean
RMSE ↓ ∆ % RMSE ↓ ∆ % RMSE ↓ ∆ % RMSE ↓ ∆ % ∆ %

Random Baseline 2.159 2.058 1.956 1.973
Fine-tuned RoBERTa 0.724 0.073 0.780 0.749

Priors
BaselineObject 0.880 1.372 1.007 0.985
BaselineUser 0.781 0.000 0.919 0.932

LaMini-GPT
None 0.742 0.874 0.837 0.784
Object 0.654 -11.84 0.883 1.08 0.796 -4.85 0.747 -4.69 -5.08
User 0.663 -10.67 0.801 -8.31 0.783 -6.44 0.735 -6.23 -7.91
Object+User 0.629 -15.28 0.798 -8.71 0.745 -11.02 0.715 -8.85 -10.96
OracleObject 0.483 -34.94 0.645 -26.15 0.553 -33.95 0.502 -36.00 -32.76
OracleUser 0.620 -16.45 0.801 -8.31 0.720 -13.93 0.655 -16.49 -13.80
DistractObject 0.957 28.87 1.191 36.32 0.921 10.06 0.873 11.34 21.65
DistractUser 0.775 4.42 0.979 12.04 0.850 1.59 0.799 1.91 4.99

FLAN-T5-XL
None 0.7124 1.0646 1.0367 0.986
Object 0.6724 -5.61 0.908 -14.70 0.9691 -6.52 0.929 -5.84 -8.17
User 0.6716 -5.73 0.9422 -11.50 0.9795 -5.52 0.9316 -5.53 -7.07
Object+User 0.63 -11.57 0.8055 -24.34 0.89 -14.15 0.8589 -12.90 -15.74
OracleObject 0.6511 -8.60 0.8721 -18.08 0.9635 -7.06 0.9176 -6.95 -10.17
OracleUser 0.6574 -7.72 0.9422 -11.50 0.9744 -6.01 0.9257 -6.13 -7.84
DistractObject 0.685 -3.85 0.9738 -8.53 1.0182 -1.78 0.9591 -2.74 -4.22
DistractUser 0.693 -2.72 1.0629 -0.16 1.0226 -1.36 0.9667 -1.97 -1.55

Instruct-GPT-J
None 1.0336 1.2638 1.0345 1.0230
Object 0.9011 -12.82 1.2251 -3.06 1.0608 2.54 1.048 2.44 -2.72
User 0.8666 -16.16 1.0541 -16.59 1.0461 1.12 1.028 0.49 -7.78
Object+User 0.902 -12.73 1.1743 -7.08 1.0459 1.10 1.0301 0.69 -4.50
OracleObject 0.8251 -20.17 1.102 -12.80 0.9081 -12.22 0.9208 -9.99 -13.80
OracleUser 0.7634 -26.14 1.0539 -16.61 0.8164 -21.08 0.8217 -19.68 -20.88
DistractObject 0.9498 -8.11 1.2156 -3.81 1.0277 -0.66 1.017 -0.59 -3.29
DistractUser 0.9912 -4.10 1.2501 -1.08 1.0016 -3.18 0.9962 -2.62 -2.75

AlexaTM
None 0.6306 0.9793 0.8706 0.8583
Object 0.6183 -1.95 0.7565 -22.75 0.8067 -7.34 0.7654 -10.82 -10.72
User 0.6126 -2.85 0.6285 -35.82 0.7509 -13.75 0.7476 -12.90 -16.33
Object+User 0.5977 -5.22 0.5086 -48.06 0.7631 -12.35 0.7249 -15.54 -20.29
OracleObject 0.5461 -13.40 0.6743 -31.14 0.7331 -15.79 0.6797 -20.81 -20.29
OracleUser 0.5507 -12.67 0.6285 -35.82 0.7304 -16.10 0.6771 -21.11 -21.43
DistractObject 0.6511 3.25 0.782 -20.15 0.8269 -5.02 0.7845 -8.60 -7.63
DistractUser 0.6649 5.44 0.8566 -12.53 0.8168 -6.18 0.7925 -7.67 -5.23

Table 9: Results from experiments with data priors without task demonstrations in the prompts. Note that ∆ % in
this table references the respective None prior condition, and thus cannot be compared directly with Table 8. Lower
is better for RMSE and percentage change ∆ %.
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Abstract
Generative Vision and Language models have
obtained remarkable results recently, thanks
to the use of robust pre-trained Visual en-
coders and Large Language Models (LLMs),
together with efficient model adaptation train-
ing strategies, requiring minimal architectural
modifications, while preserving LLMs’ orig-
inal capabilities. With these advances focus-
ing mainly on the English language, there is a
gap in customization methodologies for other
languages. In this paper, we propose a cus-
tomization methodology that adapts existing
state-of-the-art vision and language architec-
tures to European Portuguese (PT-PT). As a re-
sult of applying this methodology, we introduce
V-GlórIA , the first Large Vision and Language
generative model specifically customized for
European Portuguese. V-GlórIA supports mul-
timodal tasks such as image captioning, re-
trieval, and dialogue. To deliver V-GlórIA,
we leverage state-of-the-art V&L architectures,
and contribute with PT-PT machine translated
pre-training (CC3M PT-PT) and benchmark
(MSCOCO PT-PT and VisDial PT-PT) datasets.
Our experiments show that V-GlórIA delivers
promising performance in text-image retrieval
and downstream tasks in a zero-shot setting,
such as image captioning and visual dialogue
tasks, highlighting the effectiveness of our cus-
tomization approach. 1

1 Introduction

Vision and Language are two of the main com-
munication and information perception mediums,
serving as fundamental channels through which hu-
mans interpret and interact with the world around
them. Devising Vision and Language (V&L) mod-
els that can seamlessly combine these two modal-
ities is paramount to delivering AI systems ca-
pable of addressing tasks such as image caption-
ing and visual question-answering, essential tasks

1Code and data are available in https://github.com/
amsimplicio/V-GlorIA.

to aid visually impaired individuals, and Image-
to-Text and Text-to-Image retrieval, for general
multimodal information seeking. Recently, there
have been notable advances in vision and language
models (Liu et al., 2023; Koh et al., 2023; Kim
et al., 2021), which leverage Large Language Mod-
els as backbones (Touvron et al., 2023; Brown
et al., 2020; Zhang et al., 2022) (LLMs). Most of
these advances have been made with models in En-
glish or other high-resource languages, leaving be-
hind other lower-resource languages, as is the case
of European Portuguese (PT-PT). This evidences
the urgent need of having effective customization
methologies to deliver V&L LMs, openly available,
for PT-PT speakers. This customization process
raises two complementary challenges: 1) how to
overcome the limited availability of PT-PT multi-
modal datasets and resources, and 2) how to train
a Large Visiwon and Language model, capable of
addressing multiple V&L tasks, in PT-PT.

Most LLMs are trained with text-only web
scraped data, achieving great performance on a
myriad of natural language tasks, but lack an
overall understanding of images, thus not having
visual reasoning capabilities. Pioneering vision
and language models, adopted fully multimodal
Transformer-based models (Lu et al., 2019; Yu
et al., 2022; Wang et al., 2022), with either single-
stream or dual-stream architectures (Bugliarello
et al., 2021), pre-trained on image-text pairs. More
recently, towards generalizing high-performing
large LMs to the visual domain, it is common prac-
tice to leverage text-only LLMs as the backbone
and equip them with a visual encoder (Radford
et al., 2021; Dosovitskiy et al., 2021). Then, LLMs
are augmented with a visual projection compo-
nent that aligns visual tokens with the LLM token-
space (Koh et al., 2023; Liu et al., 2023).

In this paper, we seek to establish a
V&Lcustomization methodology to European Por-
tuguese, and as a result, deliver the first European
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Portuguese vision and language LM, V-GlórIA.
To this extent, we make two major contributions:
1) we create and make available both large-scale
image-text pre-training datasets as well as well-
known V&L benchmarks in European Portuguese.
In particular, CC3M (Sharma et al., 2018a) PT-PT
(3 million image-caption pairs) for pre-training,
MSCOCO (Lin et al., 2014) PT-PT (image-caption
pairs) and VisDial (Das et al., 2017) PT-PT (vi-
sual dialogs) for benchmarking on downstream
V&L tasks. An extensive assessment of available
machine translation approaches is carried out. 2)
following the V&L LMs state-of-the-art, we adapt
the FROMAGe (Koh et al., 2023) model to support
PT-PT. Its flexible decoder-based architecture, aug-
mented with multimodal specialized layers, gives
the model the capacity to process and produce in-
terleaved multimodal inputs and outputs. Given
that a key step is to replace the original LLM by a
PT-PT LLM, we leverage a recent PT-PT text-only
decoder, GlórIA (Lopes et al., 2024), and conduct
extensive experiments, in a zero-shot setting, on
image caption and visual dialog tasks.

2 Related Work

Most Generative Vision and Language models con-
sist of decoder-only Transformers. GPT-3 (Brown
et al., 2020) showed that when trained with a lot
of data, language models can generalize and solve
new (unseen) tasks. This is very useful since al-
though the training is expensive and requires a lot
of data, once they are pre-trained, they can be ap-
plied to a myriad of tasks with reduced adaptation
costs. LLaVA (Liu et al., 2023) takes advantage
of this by creating a general Vision and Language
model using a frozen LLM as decoder and a frozen
visual encoder to encode the images, training a
linear layer that transforms the image embeddings
into the LLM embedding space. This simple linear
transformation has the advantage of introducing
a very small number of parameters to be learned,
allowing for efficient large-scale training, while
leveraging the generalization capabilities of the
backbone text LLM. Different ways of mapping im-
age embeddings to the LLM token subspace have
been tried, such as a Q-Former (Li et al., 2022)
consisting of a Query transformer that learns query
embeddings that will interact with the image encod-
ing through cross attention, and CogVLM (Wang
et al., 2024) where although the part of the LLM
that processes the text input will still be frozen,

it trains the weights used to compute the queries,
keys, and values relative to the image embeddings.
FROMAGe (Koh et al., 2023) takes a step further
by extra linear transformations that enable to model
to generatively retrieve images/texts. This is ac-
complished by introducing a special retrieval token,
that is then trained under a multimodal contrastive
learning of cross-modal mappings.

Most of these models are in English or other
high-resource languages. Very recently, open Euro-
pean Portuguese LLMs have been made available.
In particular, GlórIA (Lopes et al., 2024) is a Eu-
ropean Portuguese LLM Decoder based on GPT-
Neo (Black et al., 2021) - which approximates the
GPT3 architecture - trained on a 35B token corpus,
from a diverse set of domains, including web con-
tent, news pieces, encyclopedic knowledge, news
articles, and dialogs. Gervásio (Santos et al., 2024)
is another relevant European Portuguese LLM de-
coder which is based on a pre-trained LLaMA 2
7B (Touvron et al., 2023) model, fine-tuned on
Portuguese instruction datasets, comprising around
83M tokens. Regarding V&L approaches, litera-
ture is scarce. CAPIVARA (dos Santos et al., 2023)
trains a Brazilian Portuguese CLIP model, while
performing data augmentation through image cap-
tioning and machine translation. In this work, and
using recent developments in the LLM PT-PT, we
seek to narrow this gap, by introducing a European
Portuguese V&L model.

3 PT-PT Datasets for Vision and
Language AI

Due to the lack of European Portuguese
V&L datasets, we embraced the task of translat-
ing core vision and language datasets from En-
glish into European Portuguese. Given the size of
existing datasets (millions scale), translating the
datasets with human experts would be too costly,
hence we considered three distinct automatic ma-
chine translation models: first, we considered a)
MADLAD-400 (Kudugunta et al., 2023), a model
trained on a 3T token dataset based on Common-
Crawl, created by Google, covering text data from
over 400 languages; b) Narrativa2, which is an
mBART-50 (Tang et al., 2020) model fine-tuned
on the opus-100 (Zhang et al., 2020) dataset for
English to Portuguese Translation, c) DeepL3 a

2https://huggingface.co/Narrativa/
mbart-large-50-finetuned-opus-en-pt-translation

3https://www.deepl.com/translator
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Table 1: Translation statistics, for CC3M and COCO, with different machine translation approaches. # Samples -
total number of samples, # Tokens - total number of tokens, # Avg. Tokens/Sample - average number of tokens per
sample. * Stands for the original captions.

Statistic English* MADLAD Narrativa DeepL

C
C

3M

# Samples 2 709 383 2 709 383 2 287 769 2 709 383
# Tokens 27 919 393 26 558 075 24 257 997 29 844 147
# Tokens/Sample 10.30 9.80 10.60 11.02

C
O

C
O # Samples 25 014 25 014 23 614 25 014

# Tokens 282 297 282 172 267 893 292 626
# Tokens/Sample 11.29 11.28 11.34 11.70

Original*: plenty of space : at
square feet the property would
have ample room for actor and
her daughter
MADLAD-400: abundância
de espaço: em pés quadrados a
propriedade teria amplo espaço
Narrativa: plenty of space : at
square feet the property would
have ample room for actor and
her daughter
DeepL: muito espaço: em met-
ros quadrados, a propriedade
teria muito espaço para o ator
e a sua filha

Original*: people waiting for
the bus in snow storm
MADLAD-400: pessoas à es-
pera do ônibus na tempestade
de neve
Narrativa: Pessoas à espera
do autocarro em tempestade de
neve
DeepL: pessoas à espera do
autocarro numa tempestade de
neve

Original*: person serves
lunch to two of her daughters
at their farm.
MADLAD-400: uma mulher
serve o almoço para duas de
suas filhas em sua fazenda
Narrativa: A pessoa serve o
almoço a duas filhas da fazenda
dela.
DeepL: uma pessoa serve o al-
moço a duas das suas filhas na
sua quinta.

Figure 1: Translation results of sample captions from
the CC3M dataset, using each of the three considered
translation approaches. The original caption is shown
for reference.

commercial translation service.

We started by pre-assessing the performance of
each of the three approaches, using a subset of
CC3M, comprising both shorter and longer cap-
tions. Table 1 illustrates some of the translated ex-
amples of the CC3M dataset (Sharma et al., 2018a).
First, although MADLAD-400 seems to give good
translations, most are in Brazilian Portuguese. Nar-
rativa translations are in European Portuguese, but
for many captions, the model output is the orig-
inal English caption, rather than its translation.
DeepL seems to solve these problems, by provid-
ing high-quality European Portuguese translations,
with the disadvantage of being a commercial so-
lution. For example, for the first image, Narrativa
outputted the original caption, and in the second
image MADLAD-400 uses a Brazilian Portuguese
lexicon in its translations (e.g. "ônibus" instead of
"autocarro", the word bus). Something we also no-
tice is that MADLAD-400 often does not translate
the full caption (as in the first image).

Given these observations, we translated the
CC3M (Sharma et al., 2018b), MSCOCO (Lin
et al., 2014), and VisDial (Das et al., 2017) datasets,
using DeepL and MADLAD-400(Kudugunta et al.,
2023). Given the higher effectiveness of DeepL,
we will take them as the main datasets/benchmarks,
and refer to them as CC3M PT-PT, MSCOCO PT-
PT and VisDial PT-PT, respectively. The CC3M
PT-PT dataset was used as the pre-training dataset,
and both MSCOCO PT-PT and VisDial PT-PT were
used for benchmarking retrieval, image-captioning
and visual dialog tasks. Table 1 shows the aggre-
gated statistics of these datasets. It is important to
note that the lower number of total tokens in the
Narrativa translation stems from the fact that some
captions are not actually translated. DeepL transla-
tions have higher token numbers than the original
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English dataset, which despite corroboration with
the increased verbosity of Portuguese vs. English,
will have an impact on the models’ performance.

4 Method

In this section we present V-GlórIA, an European
Portuguese Large V&L model, capable of flexi-
bly interleaving the two modalities, images and
text, and therefore generalize to different NLP and
CV tasks such as multimodal retrieval, image cap-
tioning, and visual dialog. Therefore, we adapt
the FROMAGe model (Koh et al., 2023) architec-
ture, which leverages a text LLM and adds a set
of projection layers to align images with the LLM
input subspace, and support generative retrieval.
Specifically, it allows us to use an European Por-
tuguese LLM, that will be frozen during training,
with lightweight training strategies aimed at equip
V-GlórIA with visual and linguistic reasoning ca-
pabilities.

4.1 V-GlórIA Architecture

4.1.1 PT-PT Language Model Backbone.
V-GlórIA uses a Portuguese large language model
decoder originally trained with text-only data with
a causal language modeling task. V-GlórIA is
based on a PT-PT open and top performing LLM,
GlórIA (Lopes et al., 2024). In the experiments, we
compare it with alternative LLM backbones, such
as Gervásio (Santos et al., 2024).

4.1.2 Visual Encoder Model.
Images are encoded using a pre-trained CLIP ViT-
L/14 (Radford et al., 2021), such that given an
image y, the visual model outputs v(y) ∈ Rm,
corresponding to the [CLS] token embedding. Both
θ and ϕ, both LLM and visual encoder parameters
will be frozen.

4.1.3 Visual Projection Layer.
With the LLM and the visual encoder frozen, a
projection layer is used to map the encoded im-
ages to the embedding subspace of the LLM token.
Namely, a linear layer, v(y)T ·Wc ∈ Rd, where d
corresponds to the LLM hidden dimension. This
transformation makes it possible for our Portuguese
decoder to understand the contents of the image it
receives.

4.1.4 Multimodal Retrieval.
In order to support retrieving images, conditioned
either on text or images, a special token [RET] is

added to the model vocabulary, so that at any point
in the decoding, the model can decode this token
and its embedding (which will be learned) can be
used for retrieval. During training, a [RET] token is
appended to the end of the input captions. In prac-
tice, two linear mappings are trained, Wt ∈ Rd×q

and Wi ∈ Rm×q, which will map the hidden rep-
resentation of [RET] obtained from the last hidden
layer of the LLM and the visual embeddings, re-
spectively, into a common q dimensional space.

4.2 Training
The training tasks are specifically designed to equip
the model vision and language reasoning capabil-
ities: describing visual content; processing inter-
vealed images and text in its context; and third
matching images to text and vice versa. The model
is trained with a multitask objective L comprising
image captioning and image-text retrieval, with

L = λcLc + λr(Li2t + Lt2i), (1)

with λc = λr = 0.5, as illustrated in Figure 2.

4.2.1 Image Captioning.
For captioning, the model is trained to autoregres-
sively predict the next token, with a Cross-entropy
loss conditioned on the image representation, i.e.

lc(x, y) =

T∑

t=1

log pθ(st|v(y)TWc, s1, . . . , st−1),

(2)
where st represents the t-th token of the caption x,
Wc the weights of the visual projection layer, and
θ the frozen parameters of the LLM.

4.2.2 Image-text Retrieval.
For bidirectional multimodal retrieval, given a cap-
tion xi and its corresponding image yi4, the In-
foNCE (van den Oord et al., 2018) loss for multi-
modal contrastive learning is used as

Lt2i = −
1

N

N∑

i=1

(
log

exp(xi · yi/τ)∑N
j=1 exp(xj · yj/τ)

)
,

(3)
where xi · yi corresponds to the cosine similarity
between embeddings. The loss in the opposite
direction, Li2t, is defined reciprocally, with xi and
yi swapped.

4For the sake of notation simplification, xi ∈ Rq and
yi ∈ Rq correspond to the [RET] token output of the re-
trieval mapping Wt ∈ Rd×q , and to the outputs of the visual
mapping Wi ∈ Rm×q , respectively.
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Figure 2: Overview of the V-GlórIA architecture. The model is trained on image-text pairs for image captioning and
image-text retrieval. The LLM and visual encoder are frozen, while the three projection layers (in yellow), with
weight matrices Wc, Wi, and Wt, are learned.

5 Experimental Setup

We assess the performance of our model in both im-
age retrieval and image-and-text generation tasks.
The models were trained on the CC3M PT-PT
dataset, originally comprising 3.3 million image-
text pairs, which after filtering out missing and
corrupted images resulted in a total of 2.7M sam-
ples. We consider both GlórIA 1.3B 5 and Gervásio
7B 6 as the PT-PT LLM backbones.

Multimodal retrieval and image captioning are
evaluated in both the CC3M PT-PT (full-shot) and
MSCOCO PT-PT (zero-shot) evaluation sets. Mod-
els are also evaluated in the Visual Dialog task (Das
et al., 2017), in a zero-shot setting. To estab-
lish a comparison between English and European
Portuguese, we consider the architectural twin of
GlórIA 1.3B, GPTNeo 1.3B (Black et al., 2021),
an English-only LLM.

Training details. For training, we set a batch size
of 180 and train for a total of 20000 iterations,
taking about 24 hours on 1x NVIDIA A100 40GB
GPU. We used the Adam optimizer (Kingma and
Ba, 2015) with a learning rate of 0.0003 and a
warmup of 100 steps.

The loss weight λc and λr are set to 1, the vi-
sual prefix length of k = 1. As for the embed-
ding dimensions, we set the retrieval embedding
dimension to q = 256, and model inner embedding
dimension to d = 2048.

As most of the model parameters are frozen,

5https://huggingface.co/NOVA-vision-language/
GlorIA-1.3B

6https://huggingface.co/PORTULAN/
gervasio-7b-portuguese-ptpt-decoder

our method is memory and compute-efficient: we
backpropagate through the frozen LLM and visual
model but only compute gradient updates for the 3
trainable linear mappings and [RET] embedding.

6 Results and Discussion

In this section, we discuss the experimental results
in the image captioning and cross-modal retrieval
tasks. We start by evaluating our model in cross-
modal retrieval, in both Image to Text (I2T) and
Text to Image (T2I) settings, and then in image
captioning. We follow related work, and for cross-
modal retrieval experiments adopt as metrics Re-
call@5 (R@5), and Recall@10 (R@10), and for
image captioning BLEU and METEOR. Finally,
we consider the challenging task of Visual Dialog,
in a zero-shot setting. For the three tasks, we follow
the established task evaluation protocols.

6.1 Cross-Modal Retrieval Results

The cross-modal retrieval results are shown in Ta-
ble 2, where, for reference, we show (in gray)
the performance of an English model (GPT-Neo
1.3B), trained and evaluated on the corresponding
original English datasets. We can observe that V-
GlórIA, using GlórIA as LLM, trained with data
translated with DeepL, has the best results, signifi-
cantly outperforming Gervásio in both directions,
although the latter has more than five times the
number of GlórIA parameters. In the MSCOCO
validation set (unseen data), we observe a simi-
lar trend, where GlórIA shows to be preferable
to Gervásio. However, in MSCOCO, we observe
that higher performance is achieved when training
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Table 2: Cross-modal Retrieval results for CC3M PT-PT and MSCOCO PT-PT datasets.

I2T T2I

LLM Backbone Data Language R@5 R@10 R@5 R@10

C
C

3M

GPT-Neo 1.3B English 13.7 31.3 11.9 29.0
GlórIA 1.3B PT-PT MADLAD-400 22.5 44.9 22.0 44.1
GlórIA 1.3B PT-PT DeepL 23.4 45.9 23.3 45.9
Gervásio 7B PT-PT MADLAD-400 15.5 33.8 15.3 34.4
Gervásio 7B PT-PT DeepL 16.6 34.8 16.1 35.5

M
SC

O
C

O

GPT-Neo 1.3B English 21.0 30.7 21.1 29.6
GlórIA 1.3B PT-PT MADLAD-400 34.7 46.8 35.7 47.2
GlórIA 1.3B PT-PT DeepL 30.2 41.1 30.1 40.7
Gervásio 7B PT-PT MADLAD-400 16.6 25.5 16.5 24.2
Gervásio 7B PT-PT DeepL 16.7 24.5 15.7 22.3

Table 3: Image Captioning results on the validation split of the CC3M PT-PT and MSCOCO PT-PT datasets.

LLM Backbone Data Language BLEU1 BLEU2 BLEU3 BLEU4 METEOR

C
C

3M

GPT-Neo 1.3B English 18.5 9.9 6.0 4.0 17.6
GlórIA 1.3B PT-PT MADLAD-400 11.9 6.0 3.5 2.3 13.9
GlórIA 1.3B PT-PT DeepL 11.8 5.7 3.3 2.2 13.7
Gervásio 7B PT-PT MADLAD-400 9.6 5.4 3.4 2.3 12.3
Gervásio 7B PT-PT DeepL 10.8 6.1 3.8 2.6 13.1

M
SC

O
C

O

GPT-Neo 1.3B English 42.8 24.1 12.9 7.0 13.1
GlórIA 1.3B PT-PT MADLAD-400 29.7 16.2 8.8 4.7 13.8
GlórIA 1.3B PT-PT DeepL 25.8 12.7 6.8 3.6 12.1
Gervásio 7B PT-PT MADLAD-400 21.6 12.3 7.0 3.9 13.4
Gervásio 7B PT-PT DeepL 23.8 13.3 7.9 4.7 12.9

and evaluating using the dataset translations ob-
tained with MADLAD-400. This might be because
although these models are European Portuguese
LLMs, some of the data they were trained on may
be in Brazilian Portuguese allowing the model to
better understand the latter variety present in the
MADLAD-400 translation.

When comparing the performance between the
two languages, i.e. PT-PT (GlórIA 1.3B) and
English (GPT-Neo 1.3B), we observe that perfor-
mance is higher in PT-PT. This shows the robust-
ness of our training procedure and hints at the
promising capabilities of PT-PT vision and lan-
guage models.

Table 4: Zero-shot results on VisDial (Das et al., 2017),
for image-and-text-to-text (IT2T) and text-to-image
(T2I) retrieval. Unlike previous methods, is capable
of generating free-form text interleaved with image out-
puts through text-to-image retrieval.

IT2T T2I

Backbone R@5 R@10 R@5 R@10

GlórIA 1.3B 4.2 14.1 17.3 25.2
Gervásio 7B 4.0 13.9 8.2 14.0

6.2 Image Captioning Results

Table 3 shows the results of the image captioning.
Again, for reference, we show (in gray) the per-
formance of an English model (GPT-Neo 1.3B),
trained and evaluated on the corresponding original
English datasets.
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Query: "Uma mota Honda preta estacionada em frente a uma garagem."
*Query in English* - "A dark Honda motorbike parked in front of a garage."

Retrieved images:

(a) Image retrieval

Ground truth:
Um homem numa prancha de surf na água.

V-GlórIA generated caption:
Um surfista a surfar a onda!

Gervásio generated caption:
um surfista a saltar de uma onda[RET] surfista a saltar
de uma onda[RET] surfista ...

Ground truth caption:
Várias pessoas caminham pelo aeroporto enquanto
esperam pelas suas malas.

V-GlórIA generated caption:
A fila de pessoas que se encontram a caminho do
aeroporto.

Gervásio generated caption:
pessoas a descer a passagem de nível.

(b) Image captioning.

Question: Quantas pessoas estão na foto?
Answer (GT): 5
Answer (V-GlórIA): 13

Question: Estão virados para a câmara?
Answer (GT): sim
Answer (V-GlórIA): sim

Question: Estão a usar casacos?
Answer (GT): sim
Answer (V-GlórIA): sim

Question: Existem árvores visíveis?
Answer (GT): sim
Answer (V-GlórIA): branco

(c) Visual dialog.

Figure 3: V-GlórIA can solve core vision and language tasks.
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First, we observe the same trend in which our
model, V-GlórIA, using GlórIA 1.3B as its LLM
backbone, consistently achieves superior perfor-
mance, compared to the Gervásio LLM backbone.
Second, it can be seen that the task is much more
challenging on CC3M-PT, with all models obtain-
ing a lower performance. These low BLEU scores
on CC3M, might be explained by the fact that since
CC3M captions are collected from the web, and
not manually annotated like in MSCOCO, mak-
ing them more prone to being unaligned with the
image. This is evidenced in the first example of
Table 1, where the caption mentions "actor and
her daughter" which cannot be guessed from the
picture. However, in MSCOCO, higher BLEU and
METEOR scores are obtained. This is explained by
three aspects: 1) the captions’ lexicon diversity in
MSCOCO is significantly lower when compared to
CC3M, and 2) the connection between images and
the captions is much tighter in MSCOCO, and 3)
captions have a more predictable format. It should
be noted that for MSCOCO, models are evaluated
in a zero-shot setting, evidencing that V-GlórIAis
capable of generalizing to unseen data.

When comparing a full English setup (gray lines)
vs. a PT-PT model trained on PT-PT data, we ob-
serve that the former achieves higher performance
in both datasets. Given the proximity of the image
captioning task to the original LLM loss, and the
fact that GPT-Neo 1.3B was pre-trained on a sig-
nificantly larger text corpus, compared to GlórIA
and Gervásio, this is not surprising, and we believe
that this can be countered with an improved PT-PT
LLM.

6.3 Visual Dialog Results
To assess our model performance on a more chal-
lenging vision and language task, we evaluate it
on the Visual Dialog (VisDial) (Das et al., 2017)
task, in zero-shot, in two different settings: a) IT2T
(image and text to text) where given an image, a
dialog about it, and a question, the model has to
select the correct answer from a pool of 100 can-
didate answers, and b) T2I (text to image), where
given a dialog about an image, the model has to
retrieve the correct image. Given that V-GlórIA is
an autoregressive decoder, we follow the protocol
of (Koh et al., 2023) for IT2T, and given a question
and answer sequence, we select the answer with
the lowest perplexity, among the candidate answer
options.

Table 4 shows the results. We observe that all

models exhibit low performance, regardless of the
PT-PT LLM backbone. Performance is, however,
higher in T2I, compared to IT2T, which is con-
sistent with the fact that the T2I task is closer to
the vision and language tasks considered in train-
ing. Notwithstanding, V-GlórIA , using the GlórIA
PT-PT LLM, demonstrates better generalization ca-
pabilities to new tasks, significantly outperforming
the model using the Gervásio PT-PT LLM. We be-
lieve that part of these results can be dramatically
improved by using a stronger PT-PT LLM. That is,
despite the higher effectiveness of the GlórIA PT-
PT LLM, it was not trained on instructions. This
makes the model struggle when instructed to an-
swer questions.

7 Conclusions

In this paper, we proposed a methodology to effi-
ciently customize a Vision and Language LLM to
European Portuguese. In particular, we introduced
V-GlórIA, the first European-Portuguese Vision
and Language model, capable of addressing mul-
timodal tasks such as retrieval, image captioning,
and visual dialogs illustrated in Figure 3. Exper-
iments, leveraging current best performing open
PT-PT LLMs as backbones, reveal performances
that are competitive with the English counterpart
setting (i.e. English pre-training and benchmarks),
on these tasks. V-GlórIA demonstrated to be ca-
pable of generalizing to unseen data, especially in
multimodal retrieval. For more challenging tasks,
such as Visual Dialog, the proposed approach is
still not on par with English models. However, we
believe that as better PT-PT models arise, including
instruction-tuned ones, the performance gap can
be narrowed down by employed our devised cus-
tomization methodology, and leveraging our con-
tributed PT-PT data resources. We will release the
PT-PT high-quality translations of the most popular
V&L datasets to foster research in this area.

8 Ethical Considerations

This research presents a methodology for customiz-
ing and adapting vision and language models to
European Portuguese. In alignment with principles
of transparency and ethical responsibility, we exclu-
sively utilized publicly available research datasets
and benchmarks. No private or sensitive informa-
tion, whether personal or proprietary, was used in
this work.
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