
Proceedings of the Fifth Workshop on Data Science with Human-in-the-Loop (Language Advances), pages 25–30
June 20, 2024 ©2024 Association for Computational Linguistics

Mini-DA: Improving Your Model Performance through Minimal Data
Augmentation using LLM

Shuangtao Yang∗, Xiaoyi Liu∗, Xiaozheng Dong∗, Bo Fu
Lenovo Knowdee (Beijing) Intelligent Technology Co., Ltd., Beijing, China

{yangst, liuxy, dongxz, fubo}@knowdee.com

Abstract

When performing data augmentation using
large language models (LLMs), the common
approach is to directly generate a large
number of new samples based on the original
dataset, and then model is trained on the
integration of augmented dataset and the
original dataset. However, data generation
demands extensive computational resources. In
this study, we propose Mini-DA, a minimized
data augmentation method that leverages
the feedback from the target model during
the training process to select only the most
challenging samples from the validation set
for augmentation. Our experimental results
show in text classification task, by using as
little as 13% of the original augmentation
volume, Mini-DA can achieve performance
comparable to full data augmentation for intent
detection task, significantly improving data and
computational resource utilization efficiency.

1 Introduction

Data is the lifeblood of deep learning models, and
the availability of high-quality data is crucial for
achieving strong model performance. However, ac-
quiring such data can be a challenge, particularly
in scenarios where data is limited or unavailable.
Moreover, human annotation, a common method
for obtaining labeled data, is known to be finan-
cially expensive and time-consuming. As such,
data augmentation techniques have become increas-
ingly important, especially in scenarios where data
is limited.

Data augmentation has been studied for a long
time in various domains, with rule-based method,
data interpolation techniques, and model based ap-
proaches explored (Feng et al., 2021; Hedderich
et al., 2021). While these traditional data augmenta-
tion methods have shown effectiveness, the rapidly

*These authors contributed equally to this work

evolving field of large language models (LLMs)
has ushered in a new era of augmentation methods
for natural language processing tasks. With their re-
markable ability to generate human-like text, LLMs
have enabled generative data augmentation tech-
niques that can create more diverse and realistic
synthetic samples, potentially leading to improved
model performance. However, as highlighted in
the comprehensive survey by (Ding et al., 2024),
the generation of extensive augmented datasets can
cause significant expenses due to the demands of
considerable computational resources, especially
for SOTA models.

To address the limitation of data augmentation
with LLMs, we propose Mini-DA, a novel frame-
work that aims to maximize the benefits of LLM-
based data augmentation while minimizing the as-
sociated costs. The key innovation of Mini-DA
lies in its ability to leverage the prediction result
of the target model on the validation set during k-
fold cross-validation to identify "challenging sam-
ples" that the model struggles to predict correctly.
Then, for these difficult samples, a instruction-
tuned large language model is used to generate
synthesized data based on a given query and its la-
bel. This process is repeated iteratively, collecting
augmented data until the model’s performance on
the test set stabilizes. Through our experiments
on two datasets for the intent detection task, we
demonstrate that by focusing augmentation efforts
on a limited number of difficult samples, Mini-
DA significantly reduces the augmentation volume
compared to full data augmentation, leading to sub-
stantial savings in computational resources while
still producing comparable performance.

2 Related Work

2.1 Pre-LLM Data Augmentation

Data augmentation has been widely studied before
the advent of LLMs. Various approaches were in-
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Figure 1: Mini-DA framework. The figure shows the iterative augmentation process. (1) One iteration begins
by splitting the original dataset into k-folds. (2) Models are then trained on the training folds. (3) The trained
models are evaluated on the validation folds, and (4) error cases are selected. (5) A LLM is instructed to perform
data augmentation on the selected error samples. (6) The augmented data generated by the LLM is added to the
augmented dataset. (7) In the next epoch, the dataset is re-split, and any existing augmented data corresponding to
samples in the new training folds is integrated.

vestigated, including rule-based methods like Easy
Data Augmentation (EDA) proposed by Wei and
Zou (2019). EDA introduced token-level opera-
tions such as random insertion, deletion, and swap-
ping. At sentence-level data augmentation, para-
phrasing is widely adopted. The most popular one
is Backtranslation (Sennrich et al., 2016), which
uses Seq2seq and language models to translate a
sequence into another language and then back into
the original language.

2.2 Data Augmentation with LLMs

With the emergence of Large Language Models
(LLMs), data augmentation techniques have under-
gone significant refinement and innovation. LLMs
possess capabilities for generating high-quality,
diverse, and contextually relevant text, enabling
novel approaches to data augmentation.

One of the most common data augmentation
method employing LLMs is to use them as data
generators. Chintagunta et al. (2021) utilize pow-
erful models such as GPT-3 to synthesize medi-
cal dialogue summaries. By training models on a
combination of synthesized and human-annotated
data, their approach effectively scales a small set of

human-annotated examples to achieve performance
comparable to using a significantly larger human-
annotated dataset. Møller et al. (2024) employs
LLMs to generate examples for specific labels in
low-resource classification scenarios, by providing
an example and its corresponding label. Lin et al.
(2023) uses instruction tuned LLM, GPT-3.5, to
generate examples within the context of the train-
ing set and subsequently filtered out unhelpful ex-
amples. For intent detection task, Sahu et al. (2022)
introduces a prompting-based data augmentation
using GPT-3, , and demonstrates its effectiveness in
improving classifier performance, especially when
combined with filtering techniques to address chal-
lenges in generating data for closely-related intents.

Another common approach involves using LLMs
to reformulate existing data to more diverse vari-
ations. These techniques are proved to be partic-
ularly valuable in tasks like counterfactual gen-
eration, where existing data is transformed into
its counterfactual version. For instance, Chen
et al. (2023) employs LLMs to generate high-
quality counterfactual data on a large scale. CORE
(Dixit et al., 2022) also uses GPT-3 for retrieval-
augmented generation (RAG), generating counter-
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factual edits conditioned on retrieved excerpts from
the input. These perturbations serve to reduce
model bias and enhance performance.

3 Method

In the following section, we describe our proposed
iterative LLM-in-the-loop data augmentation ap-
proach Mini-DA, as illustrated in Figure 1. At each
iteration, we leverage the feedback from the target
model to identify difficult examples from valida-
tion set and instruct LLM to only augment these
selected samples.

The Mini-DA process can be broken down into
the following steps:

1. Dataset Splitting If the original dataset does
not come with a predefined test set, we first
split a portion of the data to create a held-out
test set. This test set will be used for monitor-
ing the model’s performance and determining
convergence during the iterative process. The
remaining dataset is then split into k folds.
This process employs stratified sampling to
ensure that both sets are representative of the
underlying data distribution.

2. Model Training The target model is trained k
times, using one different fold for validation
and the remaining k-1 folds are combined for
training each time.

3. Validation Set Prediction After training, the
best models saved from the training stage are
then evaluated on their own validation set.

4. Challenging Case Collection Error case from
prediction of each fold on validation set are
collected and identified as challending sam-
ples

5. Selective Data Augmentation The prediction
errors are then input to an LLM with prede-
fined data augmentation prompt, and obtain a
set of synthetic examples as augmented data.

6. Augmented Dataset Data generated from last
step is then added to the augmented dataset,
and we maintain a augmented dataset map-
ping between each original sample and its cor-
responding augmented data for future use.

7. Augmented Data Integration For the next
augmenting epoch, the dataset is re-split into

a.
You are an experienced data annotator. Please
generate five user questions following the re-
quirements below.
1. Focus on the "banking" domain;
2. Should focus on "{intent_label}" intent,
which represent {intent_definition};
3. The newly generated sentence needs to be
semantically similar to sentence: "{query}";
b.
You are an experienced data annotator. Please
generate five user questions following the re-
quirements below.
1. Focus on the "{domain_label}" domain;
2. Should focus on "{intent_label}" intent,
which represent {intent_definition};
3. The newly generated sentence needs to be
semantically similar to sentence: "{query}";
4. Newly generated sentences need to be in Chi-
nese;

Figure 2: The prompts used to generate augmented
data for a. banking77 dataset and b. ECDT-NLU-2019
dataset

new k folds. And k new training and valida-
tion set pairs are formed. Before training on
the new training sets, we check if any samples
in each new training set have corresponding
augmented data in augmented dataset. If so,
we incorporate those augmented samples into
each training set. Each training set should
only contain augmented samples that are gen-
erated from original data it contains.

8. Iterative Process Steps 2 through 7 are re-
peated for a predetermined number of epochs
or until a convergence criterion is met, which
is typically when the model’s performance
on a held-out test set stops improving across
a predetermined number of epochs. At this
point, the augmentation of the original dataset
is completed.

4 Experiments Setup

4.1 Datasets and Task
To verify the effectiveness of our approach, we con-
duct experiments on two intent detection datasets,
including banking77 (Casanueva et al., 2020) and
ECDT-NLU-20191.

1http://conference.cipsc.org.cn/smp2019/
evaluation.html
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The original banking-77 is an English dataset in
the banking domain, which includes 10,003 train-
ing and 3,080 test cases labeled with 77 intent.
Since our primary focus is on enhancing the model
performance in data limited scenario, we sampled
a subset from banking77 for our experiments. We
will refer the sampled dataset as banking77-filtered
in this paper. Banking77-filtered includes 2,047
training and 693 test cases, which still has 77 intent
labels.

The original ECDT-NLU-2019 is a Chinese nat-
ural language understanding dataset consisted of
multiple tasks, including domain classification, in-
tent detection, and slot filling. We only considered
the intent detection task in our experiments. This
datasets comprises 2,061 training and 516 test cases
with 45 intent labels.

4.2 Models
Since the two datasets we used for our experiments
are in different languages, we selected bert-base-
multilingual-uncased2 (Devlin et al., 2018) as our
base model for training and prediction.

We use GPT-3.5 Turbo as the large language
model to generate augmented dataset. The prompts
used to augmented each dataset is illustrated in
Figure 2.

4.3 Implementation Details
During the data splitting step, we set k = 5
for 5-fold cross-validation. In each augmenting
epoch, we train bert-base-multilingual-uncased for
30 training epochs with a batch size of 64, learning
rate of 2e − 5 and the Adam optimizer (Kingma
and Ba, 2017).

The stopping criterion for the iterative augment-
ing process is set to the average accuracy stop im-
proving on test set for 2 consecutive augmenting
epochs. For both datasets, we run the augmenting
process for a maximum of 10 epochs.

4.4 Baseline Methods
We compare our proposed method with two base-
line methods. It is important to note that our pri-
mary focus is on proposing an efficient framework
for data augmentation by contrasting full-dataset
augmentation with selective augmentation. There-
fore, we include a basic prompt-based data aug-
mentation method using a LLM as our baseline.
However, the augmentation component (step 5) in

2https://huggingface.co/google-bert/
bert-base-multilingual-uncased

our framework is modular and can be modified to
other augmentation methods with LLM depending
on the specific use case.

1. Baseline 1: We performed 5-fold cross-
validation on the same base model, bert-
base-multilingual-uncased, using the original,
unaugmented training sets and the same hy-
perparameters in 4.3.

2. Baseline 2: we performed full data augmenta-
tion by generating augmented samples for ev-
ery instance in the training set using GPT-3.5
Turbo with the prompts specified in Figure 2.
We then conducted 5-fold cross-validation,
where for each fold, the augmented data gen-
erated from that fold’s training set was inte-
grated into the corresponding fold’s training
set, ensuring no data augmented from the val-
idation fold was trained on. The same hyper-
parameters in 4.3 were employed.

4.5 Evaluation Metrics

Considering the imbalanced class distribution
present in the two selected datasets, we utilized
accuracy as the evaluation metric to assess and
compare the model performance across all meth-
ods on both datasets.

5 Result and Analysis

In this section, we present the experimental re-
sults obtained by evaluating our proposed Mini-DA
method and the two baseline approaches on the
selected datasets. We report and analyze the per-
formance of each method in terms of the average
accuracy of 5-fold cross-validation. Results are
shown in Figure 3, Table 1, Figure 4, and Table 2.

For banking77-filter dataset, results shown in
Figure 3, the average accuracy on test set of models
trained on the original dataset achieved 80.52% (the
dotted green line), while average accuracy mod-
els trained on the fully augmented dataset reaches
86.41% (the green line), representing a 5.89% im-
provement from unaugmented baseline. The red
line represents the average accuracy on the test set
when using the Mini-DA framework for training set
augmentation crossing augmentation epochs. At
the second augment epoch, Mini-DA achieved an
average accuracy of 86.64%, which is even 0.23%
higher than the result obtained using the fully aug-
mented dataset, despite only augmenting 24% of
the training data. When progressing to the fifth
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Figure 3: Accuracy on the banking77-filtered test
set for the Mini-DA approach (red line) compared to
the fully augmented dataset (green line at top) and
the original, unaugmented dataset (dotted green line
at bottom) across augmentation epochs. The bars
indicate the sum of total augmented data added to
the training set at each epoch.

Figure 4: Accuracy on the ECDT-NLU-2019 test set
for the Mini-DA approach (red line) compared to
the fully augmented dataset (green line at top) and
the original, unaugmented dataset (dotted green line
at bottom) across augmentation epochs. The bars
indicate the sum of total augmented data added to
the training set at each epoch.

Method Augment
Epoch

Number of
Augmented
Data added
to Training
sets

Average
ACC
on Test
set

No Augmentation 0 0.8052
Full Augmentation 2047 0.8641

Mini-
DA

1 372 0.8560
2 482 0.8664
3 516 0.8603
4 541 0.8551
5 573 0.8678
6 590 0.8560
7 603 0.8620
8 610 0.8528
9 628 0.8626

Table 1: Results of banking77-filter

Method Augment
Epoch

Number of
Augmented
Data added
to Training
sets

Average
ACC
on Test
set

No Augmentation 0 0.9050
Full Augmentation 2061 0.9213

Mini-
DA

1 180 0.9101
2 237 0.9140
3 253 0.9167
4 268 0.9202
5 281 0.9151
6 285 0.9170
7 296 0.9190
8 307 0.9140
9 311 0.9178

Table 2: Results of EDTC-NLU-2019

augment epoch, Mini-DA achieved its optimal per-
formance while a total of 573 training data points
were augmented, accounting for 28% of the train-
ing set. On the test set, the average ACC reached
86.78%, an improvement of 0.37% compared to
the average accuracy using the full augmented data.

On the EDTC-NLU-2019 dataset (shown by Fig-
ure 4), we observed similar phenomena. At the
fourth augment epoch, the average accuracy on the
test set reached 92.02%, which is only 0.11% lower
than the result obtained using the fully augmented
dataset (92.13%). However, at this point, Mini-DA
only augmented 13% of the training data, result-
ing in a reduction of 1793 GPT-3.5 Turbo requests
compared to the full data augmentation approach.

Through these experiments, we can observe that

for intent detection scenarios with low resources,
Mini-DA effectively combines two stages: fine-
tuning on the target model and data augmentation
using a LLM. By employing a cross-validation
approach to selectively augment difficult samples
from the validation set, Mini-DA avoids unneces-
sary augmentation of correctly predicted samples
in the training set, thereby reducing the cost of data
augmentation.

6 Conclusion

In this work, we present Mini-DA to efficiently
augment intent detection data with LLMs. We de-
sign a iterative LLMs-in-the-loop framework that
incorporates feedback from fine-tuning stage of tar-
get model to generate an augmented dataset. The
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results demonstrate that with as little as 13% of the
augmented data generated, we can achieve compa-
rable performance to full data augmentation on in-
tent detection task in data-limited scenarios. Over-
all, Mini-DA presents a promising solution for data
augmentation which significantly reducing compu-
tational costs and improving data efficiency.

For future work, our plan involves conducting
comprehensive experiments across various tasks,
including but not limited to question answering,
text generation, and text retrieval. We believe this
approach can be effective in improving model per-
formance across a wide range of tasks in a data-
efficient manner.
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