
DaSH 2024

Data Science with Human-in-the-Loop

Proceedings of the DaSH Workshop at NAACL 2024

June 20, 2024



©2024 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
317 Sidney Baker St. S
Suite 400 - 134
Kerrville, TX 78028
USA
Tel: +1-855-225-1962
acl@aclweb.org

ISBN 979-8-89176-101-8

i



Introduction

We are delighted to welcome to you DaSH 2024, the Fifth Workshop on Data Science with Human-in-
the-loop at NAACL 2024!

The aim of this workshop is to stimulate research on the cooperation between humans and computers
within the broad area of natural language processing, including but not limited to information extraction,
information retrieval and text mining, machine translation, dialog systems, question answering, language
generation, summarization, model interpretability, evaluation, fairness, and ethics. We invite researchers
and practitioners interested in understanding how to optimize human-computer cooperation and how to
minimize human effort along an NLP pipeline in a wide range of tasks and applications.

We hope to bring together interdisciplinary researchers from academia, research labs and practice to sha-
re, exchange, learn, and develop preliminary results, new concepts, ideas, principles, and methodologies
on understanding and improving human-computer interaction in natural language processing. We expect
the workshop to help develop and grow a strong community of researchers who are interested in this to-
pic and to yield future collaborations and scientific exchanges across the relevant areas of computational
linguistics, natural language processing, data mining, machine learning, data and knowledge manage-
ment, human-machine interaction, and intelligent user interfaces. We are thankful to IBM research for
sponsoring the workshop and best paper awards.

We hope you have a wonderful time at the workshop.

Cheers!

DaSH 2024 Organizers
Eduard Dragut, Temple University
Yunyao Li, Adobe
Lucian Popa, IBM Research
Shashank Srivastava, UNC Chapel Hill
Slobodan Vucetic, Temple University
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Keynote Talk
Show It or Tell It? Text, Visualization, and their Combination

Marti Hearst
University of California, Berkeley

Abstract: In this talk, Dr. Marti Hearst will share observations about the role of language in information
visualization. I will pose questions such as: how do we decide what to express via language vs via visua-
lization? How do we choose what kind of text to use when creating visualizations, and does that choice
matter? Does anyone prefer text over visuals, under what circumstances, and why?

Bio: Dr. Marti Hearst is the Interim Dean of the School of Information and a Professor at UC Berkeley in
the School of Information and the Computer Science Division. Her research encompasses user interfaces
with a focus on scientific document understanding, information visualization with a focus on text, and
computational linguistics. She is the author of Search User Interfaces, the first academic book on that
topic. She is past President of the Association of Computational Linguistics, an ACM Fellow, a member
of the CHI Academy, a SIGIR Fellow, and ACL Fellow, and has received four Excellence in Teaching
Awards.
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Keynote Talk
Show Reasoning Myths about Language Models: What is

Next?
Dan Roth

University of Pennsylvania and Amazon

Abstract: The rapid progress made over the last few years in generating linguistically coherent natural
language has blurred, in the minds of many, the difference between natural language generation, under-
standing, and the ability to reason with respect to the world. Nevertheless, robust support of high-level
decisions that depend on natural language understanding, and that require dealing with “truthfulness” are
still beyond our capabilities, partly because most of these tasks are very sparse, often require grounding,
and may depend on new types of supervision signals.
Dan will discuss some of the challenges underlying reasoning and argue that we should focus on LLMs
as orchestrators – coordinating and managing multiple models, applications, and services, to execute
complex tasks and processes. I will discuss some of the challenges and present some of our work in this
space, focusing on supporting task decomposition and planning.

Bio: Dan Roth is the Eduardo D. Glandt Distinguished Professor at the Department of Computer and
Information Science, University of Pennsylvania, a VP/Distinguished Scientist at AWS AI, and a Fellow
of the AAAS, the ACM, AAAI, and the ACL. In 2017 Roth was awarded the John McCarthy Award,
the highest award the AI community gives to mid-career AI researchers. Roth was recognized “for
major conceptual and theoretical advances in the modeling of natural language understanding, machine
learning, and reasoning.” Roth has published broadly in machine learning, natural language processing,
knowledge representation and reasoning, and learning theory. He was the Editor-in-Chief of the Journal
of Artificial Intelligence Research (JAIR), has served as the Program Chair for AAAI, ACL and CoNLL.
Prof. Roth received his B.A Summa cum laude in Mathematics from the Technion, Israel, and his Ph.D.
in Computer Science from Harvard University in 1995.
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Keynote Talk
Training Social Skills via Human-AI Collaboration

Diyi Yang
Stanford University

Bio: Diyi Yang is an assistant professor in the Computer Science Department at Stanford University.
Her research focuses on human-centered natural language processing and computational social science.
She is a recipient of the Microsoft Research Faculty Fellowship (2021), NSF CAREER Award (2022),
ONR Young Investigator Award (2023), and Sloan Research Fellowship (2024). Her work has received
multiple paper awards or nominations at top NLP and HCI conferences (e.g., ACL, EMNLP, SIGCHI,
and CSCW).
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Keynote Talk
Model-Aided Human Annotation at Scale

Hadas Kotek
Apple

Bio: Dr. Hadas Kotek is a senior data scientist on the Siri Natural Language Understanding team at
Apple. She earned a PhD in Linguistics from MIT and previously held faculty positions at McGill
University, New York University, and Yale University. Dr. Kotek develops methodologies for measuring
the accuracy and efficiency of data annotation at scale, as well as the safety, robustness, and diversity
of the resulting datasets and models, leveraging cross-functional teams to support innovative, product-
centric research. Her most recent research is in the domains of model-in-the-loop annotation, ethical AI,
and the efficacy of Large Language Models. In Fall 2023, she taught a full-semester seminar on Large
Language Models at MIT, where she is currently a Research Affiliate.
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APE: Active Learning-based Tooling for Finding Informative Few-shot
Examples for LLM-based Entity Matching
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Abstract

Prompt engineering is an iterative procedure
often requiring extensive manual effort to for-
mulate suitable instructions for effectively di-
recting large language models (LLMs) in spe-
cific tasks. Incorporating few-shot examples
is a vital and effective approach to providing
LLMs with precise instructions, leading to im-
proved LLM performance. Nonetheless, iden-
tifying the most informative demonstrations
for LLMs is labor-intensive, frequently entail-
ing sifting through an extensive search space.
In this demonstration, we showcase a human-
in-the-loop tool called APE (Active Prompt
Engineering) designed for refining prompts
through active learning. Drawing inspiration
from active learning, APE iteratively selects
the most ambiguous examples for human feed-
back, which will be transformed into few-shot
examples within the prompt. Demo recording
can be found with the submission or be viewed
at https://youtu.be/OwQ6MQx53-Y.

1 Introduction

Prompt engineering typically serves as the initial
step when developing LLM-based applications be-
cause it is a relatively fast process and requires
fewer technical skills than fine-tuning. Prompt en-
gineering involves crafting and optimization of in-
structions provided to LLMs. These prompts need
to be carefully designed to direct the behavior of
LLMs towards performing specific tasks or gener-
ating desired outcomes (Liu et al., 2023). While
LLMs (e.g., ChatGPT and GPT-4) show impressive
capabilities for zero-shot tasks without prior train-
ing, their performance can be further enhanced by
integrating clear and informative few-shot demon-
strations alongside the prompts (White et al., 2023).
These demonstrations not only guide the LLMs but

*Work done while working at Apple
†Work done while interning at Apple
‡Work done while interning at Apple
§Work done while working at Apple

also provide examples that contribute to more ac-
curate and contextually relevant outputs, especially
for ambiguous cases.

Prompt engineering is a dynamic and iterative
process that typically consists of the following
stages: (1) Task Description: clearly outline the
intended task for LLMs, (2) Few-shot Demonstra-
tion: provide a small number of concrete and help-
ful demonstrations to illustrate the precise seman-
tics of the task, (3) Task Input and Completion
Request: present the actual task input and request
an LLM completion. For all three steps, minor
prompt rephrasing is typically needed, but this task
is relatively light and does not require many iter-
ations. However, choosing informative few-shot
demonstrations can be a labor-intensive and time-
consuming process due to the large search space
of the problem. For instance, to identify only 3
demonstration examples out of 100 examples, there
are 970,200 (i.e., 100×99×98) different combina-
tions, a daunting manual task.

Identifying representative and ambiguous
examples to enhance the performance of machine
learning models is a well-established subject within
the active learning community. We can view the
few-shot example identification as an active learn-
ing problem, where the goal is to find the most in-
formative examples to be included in the prompt to
help improve LLMs’ performance. Recently, (Diao
et al., 2023) proposed the idea of using various ac-
tive learning sampling strategy to identify few-shot
examples prompt engineering. Our work follows
the same direction with the main focus being
building an interactive tool (with an intuitive user
interface) that identifies the most informative few-
shot examples through simple human interaction.

In this paper, we present APE (Active Prompt
Engineering), an intuitive and intelligent prompt
engineering tool that iteratively identifies the most
informative and ambiguous examples for which a
given LLM will likely make a mistake, and then
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Figure 1: System Overview

provide them in the prompt as few-shot examples
after seeking human annotation. Unlike (Diao et al.,
2023), which focuses on the backend algorithm
services, our goal is to hide the technical details
by a carefully designed graph user interface so that
we can have a usable tool that truly harnesses the
power of active learning.

2 Methodology

The main goal of APE is to identify a handful of
informative few-shot examples that can boost an
LLM’s performance. As an active learning tool, it
follows the iterative procedure outlined in Figure 1,
involving interaction with both a human user and
the LLM API for prompt engineering.

The best way to understand APE end to end is
to watch the video demo of the tool (see the link in
the abstract). At a high level, in each iteration, we
start with sampling informative examples based on
the prompt of the current iteration, which includes
applying a user-configured sampling strategy to let
the LLM choose the ambiguous examples from the
user-provided sampling pool. Next, users anno-
tate the selected examples, potentially including
explanations for Chain-of-Thought-style prompt-
ing. These newly annotated examples are then used
to update the prompt. Lastly, the new prompt is
evaluated against evaluation data to report its per-
formance.

The core of the active learning process is the
sampling strategy; for simplicity, we will use entity
matching, a classic binary classification task, to il-
lustrate the sampling methodology behind APE.
Given a set P = {p1, . . . , pm} of entity pairs,
where pi consists of a pair ⟨ei1, ei2⟩ of entities, the
task of entity matching is to learn a binary classi-
fier f : ⟨ei1, ei2⟩ → {0, 1}. In this case, the binary
classifier is the LLM in consideration, and the be-
havior of the classifier is dynamically controlled by
the prompts created by APE. In our demo video,
we used the DBLP-Scholar dataset sampled from

(Köpcke et al., 2010) to illustrate APE.

2.1 Active Sampling Strategy

The core of APE is to find the most informative
examples for human annotation to boost the per-
formance of the LLMs. LLMs can be considered
excellent student models that can learn effectively
from examples. Inspired by active learning, we pro-
posed identifying examples that LLMs are uncer-
tain about to be used as few-shot examples for in-
context learning. While both task-specific sampling
strategies and task-agnostic sampling strategies can
be integrated with APE, due to limited space, we
focus on the task-agnostic approaches because they
allow APE to be easily applied to a wide range
of problems. In this demo, we introduce two task-
agnostic strategies: (1) random-based sampling and
(2) self-consistency-based sampling.

Random-based. We randomly select k examples
(no replacement) from the sampling pool in each
active iteration. Random sampling is simple and
fast, and it would work reliably well for many sim-
ple tasks. However, for more sophisticated tasks
where zero-shot LLMs do not perform well, the
chance that random sampling would find informa-
tive examples to boost LLMs’ performance is low.

Self-consistency-based. To overcome the issue
of random sampling, we support self-consistency-
based sampling, a strategy inspired by self-
consistency (Wang et al., 2023). The core idea is to
either run multiple different prompts or the same
prompt multiple times in the style of Chain-of-
Thought (Wei et al., 2023), allowing the model to
generate the final answers with multiple reasoning
paths. The consistent answers (e.g., the majority an-
swer) are then chosen as the final answer. A similar
idea, known as query-by-committee (QBC)(Seung
et al., 1992), has been heavily used in active learn-
ing to identify uncertain examples (Settles, 2009).
QBC works by training a committee of k slightly
different classifiers, e.g., five deep-learning-based
classifiers with different architectures, and then let
the committee make inferences over the same ex-
amples. The disagreement ratio of the committee
is used as a proxy to quantify the uncertainty of the
examples. The examples with high disagreement
ratios are then sent for human annotation.

Our self-consistency-based strategy follows the
same idea. Concretely, when selecting exam-
ples from the sampling pool, for every entity pair
⟨e1, e2⟩, we run the same prompt m times, where
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m is a hyperparameter that is usually a small num-
ber (in our case, 3). However, each run of the
prompt would use a different temperature t, where
t gradually grows from 0 to 1 depending on the
number of runs. For instance, if m = 3, then the
three runs of the prompt would have temperatures:
0, 0.5, 1.0, respectively. Varying the temperature
is a way to control the creativity and consistency
of LLMs, and we use it to build a committee of
slightly different LLMs for uncertain example sam-
pling. Specifically for our entity matching demo
scenarios, we collect the m binary labels for a given
entity pair p, we then compute the label distribu-
tions of the m predictions. We denote the ratio
of positive labels as R+(p) (i.e., # positive labels

m ),
and obviously the ratio of negative labels would be
1 − R+(p). With that, we can then compute the
label distribution entropy H(p) as follows:

−R+(p) logR+(p)−(1−R+(p)) log (1−R+(p))

the entropy can be viewed as a proxy for uncer-
tainty, and the higher the entropy value, the higher
the uncertainty. We then select the examples with
the top-k entropy (breaking tie arbitrarily) for hu-
man annotations. The annotated examples will be
included as new few-shot examples. Note that vary-
ing temperatures is for sampling mode only, we set
the temperature to zero during prompt evaluation.

Incremental or Fixed Sampling. We offer both
incremental sampling and fixed sampling. Incre-
mental sampling accumulates examples labeled in
each iteration to form the final few-shot demon-
strations. In contrast, fixed sampling selects a pre-
determined number of examples iteration without
accumulating them to create the final prompt.

Human Annotation. By default, we only ask the
annotator for the ground truth of a selected exam-
ple, but for self-consistency-based, we also ask for
an explanation of the label provided. Both settings
are user-configurable.

3 Concluding Remarks

Due to limited space, we focus on the tooling as-
pect of APE in this demo paper, and are currently
working on a research paper that will provide a
comprehensive description of the system design,
theoretical foundation underlying this optimization
problem, and experimental evaluations.
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Towards Optimizing and Evaluating a Retrieval Augmented QA Chatbot
using LLMs with Human-in-the-Loop

Anum Afzal, Alexander Kowsik, Rajna Fani, Florian Matthes
School of Computation, Information and Technology

Technical University of Munich
{anum.afzal, alexander.kowsik, rajna.fani, matthes}@tum.de

Abstract

Large Language Models have found application
in various mundane and repetitive tasks includ-
ing Human Resource (HR) support. We worked
with the domain experts of SAP SE to develop
an HR support chatbot as an efficient and effec-
tive tool for addressing employee inquiries. We
inserted a human-in-the-loop in various parts
of the development cycles such as dataset col-
lection, prompt optimization, and evaluation
of generated output. By enhancing the LLM-
driven chatbot’s response quality and explor-
ing alternative retrieval methods, we have cre-
ated an efficient, scalable, and flexible tool for
HR professionals to address employee inquiries
effectively. Our experiments and evaluation
conclude that GPT-4 outperforms other mod-
els and can overcome inconsistencies in data
through internal reasoning capabilities. Addi-
tionally, through expert analysis, we infer that
reference-free evaluation metrics such as G-
Eval and Prometheus demonstrate reliability
closely aligned with that of human evaluation.

1 Introduction

In recent years, incorporating Artificial Intelligence
(AI) into various sectors has led to significant im-
provements in automated systems, particularly in
customer service and support. Since the offset of
Large Language Models (LLMs), more companies
are now incorporating Natural Language Process-
ing (NLP) techniques to minimize the need for hu-
man support personnel, especially domain experts
(Shuster et al., 2021). With a chatbot providing
accurate and comprehensive responses promptly,
domain experts can redirect their focus towards
higher-value tasks, leading to potential cost savings
and improved productivity within the HR depart-
ment. Moreover, an effective chatbot can play a
pivotal role in enhancing overall employee satis-
faction and engagement by delivering timely and
relevant assistance.

To this end, we worked with a SAP SE on de-
veloping an HR chatbot to evaluate the potential of
LLMs on industrial data. We used domain experts
as a human-in-the-loop through various iterations
of LLM-centric development such as dataset col-
lection, prompt optimization, and most importantly
the evaluation of model outputs.

The well-known Retrieval Augmented Genera-
tion (RAG) (Lewis et al., 2021) approach is ideal
for this use case as it allows the model to produce
more grounded answers, hence reducing hallucina-
tions. We optimized different modules of the stan-
dard RAG pipeline such as the retriever and model
prompts, while constantly incorporating feedback
from the domain experts. While the retrieval ac-
curacy of an LLM could still be assessed to a de-
gree, the generative nature of LLMs makes eval-
uation of the generated output quite challenging.
To overcome this, we explored the effectiveness of
both traditional reference-based and reference-free
(LLM-based) automatic evaluation metrics while
using human evaluation as a baseline.

We benchmark OpenAI’s models in our experi-
ments while using the open-source LongT5 (Guo
et al., 2022) and BERT (Devlin et al., 2019) as
a baseline. In essence, both the industry and the
research community could benefit from our find-
ings related to the retriever and the reliability of
automatic evaluation metrics.

2 Corpus

The dataset used in the development of the HR chat-
bot was compiled using SAP’s internal HR policies
with the help of domain experts. While each sam-
ple forms a triplet consisting of a Question, Answer,
and Context, additional metadata such as the user’s
region, company, employment status, and applica-
ble company policies were also included. A snippet
of such a sample is shown in Appendix A.4. The
dataset was compiled using two separate sources
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Figure 1: Distribution over the number of tokens of all
unique articles in our HR dataset.

to have a mix of a gold dataset (FAQ dataset) and a
user-utterance dataset (UT dataset). Both datasets
follow the same structure and differences exist in
the distribution of the questions. We extracted all
unique HR articles to form a knowledge base for
answering new user questions. Additionally, an
evaluation set of 6k samples was used to evaluate
both the retriever and the chatbot as a whole.

2.1 Dataset Collection
FAQ Dataset (N≈48k): This is a collection of
potential questions, along with their corresponding
articles and gold-standard answers. It is carefully
created and curated by domain experts based on
the company’s internal policies.
UT Dataset (N≈41k): This is a collection of real
user utterances (UT) gathered from previous itera-
tions of the chatbot. Inspired by a semi-supervised
learning approach, a simplistic text-matching ap-
proach was implemented that mapped each user
query to a question from the FAQ dataset. The
chatbot logs from this development cycle were in-
spected and corrected by the domain experts.

2.2 Dataset Statistics
Figure 1 shows that the majority of the articles in
our dataset have under 4k tokens. Hence, they can
easily fit into the context window of OpenAI mod-
els. As displayed in ??, the most asked questions
in the dataset revolve around payslips, leave days
of any kind, and questions regarding management.

3 Methodology

In general, the HR chatbot follows the standard
RAG pipeline with optimizations done on individ-
ual modules with the help of domain experts as

shown in Figure 2. The methodology illustrates var-
ious parts of the chatbot pipeline that are influenced
by a human-in-the-loop and is further discussed in
Appendix B.

3.1 Retriever

We compiled a comprehensive knowledge base of
all possible HR articles occurring in the whole
dataset as the basis for retrieval, resulting in
roughly 50k unique articles. Given a user utterance,
the goal of the retriever is to find the most relevant
article from the collection. While the technical de-
tails for each retriever may differ, in general, they
are both embedding-based. Technical details of the
Retriever module are discussed in Appendix D.1.

Moreover, we developed extensive filter func-
tionalities, ensuring that the vector search only con-
siders articles relevant to the user, like their country,
region, or employment status as shown in Table 4.
For example, from the top retrieved articles, we
filter them to only keep the ones that are applicable
to the employee and then pick the article with the
maximum similarity score from the filtered list.

3.1.1 Dense Passage Retriever (BERT)
Dense Passage Retriever (DPR) fine-tunes bert-
base-uncased embedding to generate a model that
given a user query, retrieves the most relevant ar-
ticle from a set of documents. The dataset used
for training was processed to contain questions
paired with their respective gold answers, as well
as positive and negative contexts for each question.
A triplet loss function (Hoffer and Ailon, 2018)
was used for training such that the relevant article
served as the positive context, with two random ar-
ticles from the entire dataset providing the negative
contexts. This retriever is used in the framework
with the fine-tuned LongT5 model and also serves
as a baseline for evaluating the OpenAI retriever.

3.1.2 Vector Search (OpenAI)
The OpenAI Retriever is plain vector search, that
utilizes the text-embedding-ada-002 embedding
model by OpenAI to generate embeddings for each
article, followed by using similarity search to find
the relevant article. To further enhance retrieval
accuracy, we implemented various Query Trans-
formation techniques1 (Cormack et al., 2009a).
These methods alter the user query into a different

1https://docs.llamaindex.ai/en/stable/
optimizing/advanced_retrieval/query_
transformations/
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Figure 2: Block diagram of the methodology introduced in our paper, illustrating baseline and Open AI models,
highlighting the role of the human-in-the-loop during development

representation using LLMs before the embedding
model computes the query vector. The following
three query transformation methods were explored
and evaluated:
1) Intended Topics: Inspired by Ma et al. (2023),
the user question is sent to an LLM with the in-
struction to return a list of three intended topics of
the question, which are then embedded instead of
the user question.

Example: How to request a parental leave?
→ parental leave, childcare leave, maternity leave
2) HyDE (Hypothetical Document Embeddings):
In this method introduced by Gao et al. (2022),
the user question is transformed by an LLM into
three distinct excerpts from potential HR articles
answering the original question. These parts are
then embedded instead of the user question itself.
This approach leads to query embeddings that are
very close to the article embeddings, because of the
very similar content.

Example: How to request a parental leave?
→ To request parental leave, please submit..., If
you wish to request..., ...
3) Multi-Query: This method2 employs LLMs to
generate multiple variations of a user’s question
varying in length and phrasing but maintaining the
same meaning and intent as the original question.
We then embed each of these variants individually.
Along with the embedded original question, we
perform a vector search for each query, combining

2https://docs.llamaindex.ai/en/latest/
examples/retrievers/reciprocal_rerank_fusion/

the results using Reciprocal Rank Fusion (Cormack
et al., 2009b). Additionally, we include queries
from the Intended Topics and HyDE methods.

Example: parental leave request?
→ How can I request a parental leave?, Where can
I apply for parental leave?, ...

3.2 NLG Module
3.2.1 LongT5 (Fine-tuning driven)
We fine-tuned LongT5 (Guo et al., 2022), employ-
ing the local-attention-based variant3, which con-
sists of 296 million trainable parameters. This
model was fine-tuned on a combination of the FAQ
dataset and UT dataset for a generative question-
answering task. To limit computational require-
ments, we fine-tuned it on a context window of
7168 tokens, retaining approximately ∼86K sam-
ples from the original dataset to avoid truncation.

3.2.2 OpenAI Models (Prompt driven)
We used OpenAI’s ChatGPT and GPT-4 to gener-
ate the answer to the user’s query by passing both
the user query and the retrieved article via a mean-
ingful prompt. We conducted extensive prompt
engineering to tailor the responses of the LLMs
to the company’s requirements for an HR chat-
bot. Prompt engineering was an iterative process
that included our qualitative analysis and multi-
ple small evaluations of 10-100 sample responses
by the company’s HR experts who served as the
human-in-the-loop. We analyzed feedback from

3https://huggingface.co/google/
long-t5-local-base
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these evaluation runs and addressed the main issues
in the next iteration of the process to produce the
final prompt shown in Table 5.

3.3 Evaluation Framework
For our analysis we employ Reference-based eval-
uation metrics such as BERTScore (Zhang et al.,
2019), ROUGE (Lin, 2004), and BLEU (Papineni
et al., 2002). We also explore the concept of using
LLM as an evaluator, and finally, we assess the
effectiveness of automated metrics by involving
domain experts in a human-in-the-loop process.

3.3.1 Retriever Evaluation
Our primary evaluation metric for the retriever is
accuracy, defined as the percentage of times the
retriever returns the correct article for a given ques-
tion.

3.3.2 Human Evaluation Setup
The domain experts who served as the human-in-
the-loop brought a high level of precision and in-
sight to the evaluation process. Apart from dataset
curation, they also evaluated the performance of
the retriever by verifying the correctness of the
retrieved articles. After discussion with domain ex-
perts, we found four dimensions across which the
quality of the model’s output could be evaluated
on a score between 1 - 5 following a 5-point Lik-
ert (Likert, 1932) scale. One domain expert eval-
uated 100 samples across the fine-tuned LongT5,
ChatGPT and GPT-4 across Readability, Relevance,
Truthfulness, and Usability.

3.3.3 Reference-based Metrics
In evaluating the effectiveness of reference-based
metrics, we examine two distinct categories: N-
gram-based and embedding-based metrics metrics.
N-gram based metrics: N-gram-based metrics,
such as BLEU (Bilingual Evaluation Understudy)
and ROUGE (Recall-Oriented Understudy for Gist-
ing Evaluation), assess the similarity between the
generated response and the ground truth answer by
analyzing the overlap of n-grams.
Embedding-based metrics: Embedding-based
metrics, such as BERTScore, leverage deep contex-
tual embeddings from language models like BERT
to assess the semantic similarity between generated
and reference texts.

3.3.4 Reference-free Metrics
In the evolving landscape of Natural Language Gen-
eration evaluation, LLM-based metrics emerge as a

compelling alternative, offering insights into model
performance without the constraints of pre-defined
reference responses. Details regarding the prompts
used for these Reference-free metrics are present
in Appendix C.
Prompt-based Evaluation: Prompt-based eval-
uation is at the forefront of NLG advancements,
particularly with the utilization of LLMs (Li et al.,
2024). Inspired by G-Eval, we followed the ap-
proach described by Liu et al. (2023) and tailored
the prompts to be suitable for the evaluation of a
question-answering task.
Tuning-based Evaluation: Nowadays, there is a
significant shift toward leveraging open-source lan-
guage models, such as LLaMA (Touvron et al.,
2023), for fine-tuning purposes. We utilize
Prometheus (Kim et al., 2023), which stands out
for its fine-tuned evaluation capability, leveraging
a large language model to perform nuanced anal-
ysis based on customized score rubrics (Li et al.,
2024). This unique approach enables Prometheus
to evaluate text generation tasks comprehensively,
considering factors such as creativity, relevance,
and coherence without relying on reference texts.

4 Results and Discussion

4.1 Dense Passage Retriever

As depicted in Table 2, surprisingly the BERT-
based DPR significantly outperforms all new meth-
ods with a top-1 accuracy of 22.24%, whereas the
OpenAI-based retriever only reaches a top-1 accu-
racy of 11.12%. Of the latter, the best performer
is Multi-Query, with 10.92%, yet this still falls
short of the Basic retriever (no query transforma-
tion). These results resonate with the findings of
Weller et al. (2024), confirming that query transfor-
mations, do not always lead to better performance.
Our understanding is that the retriever performs
poorly mainly because of the noise attributed to
the dataset. It is worth noting, that our dataset
contains many variant articles for a given topic or
question, with only small differences such as the
region or the employee role. Hence, the incorrect
article may still contain sufficient knowledge to
address user queries. We confirmed these findings
with our domain experts and elaborated on them
further in Appendix A.3. Further results on up to
top-5 articles are shared in Appendix E.1.
However, to assess the effectiveness of the newly
implemented methods on a different dataset, we
gathered 10k samples from CQADupStack English
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HR Test Dataset Stackexchange English
Method top-1 top-1

BERT-based DPR 22.24% -
Basic 11.12% 69.5%

Intended Topics 9.33% 57.25%
HyDE 10.01% 65.91%

Multi-Query 10.92% 71.31%

Table 2: Retriever accuracy on the HR test data and the
Stackexchange benchmark dataset for various retriever
methods on top-1 retrieved articles

(Hoogeveen et al., 2015), a collection of English
language questions and their top answers from
the Stackexchange English forum. We used the
same embedding model as the HR dataset to em-
bed this new data and evaluated its top-1 accuracy.
It can be observed that the Intended Topics method
and HyDE both underperform compared to the Ba-
sic retriever. However, the Multi-Query method
did produce a higher top-1 accuracy. During our
experiments, we noticed that these methods are
greatly influenced by the choice of query trans-
formation prompts. For instance, when HyDE re-
sponses closely matched the desired replies, the
accuracy was significantly higher. These methods
also achieved higher accuracies than the Basic on
other types of data, which indicates that the perfor-
mance is also dependent on the type of data used.
This might explain why these methods couldn’t
achieve higher accuracy on the HR dataset.

4.2 NLG Evaluation

We use the previously optimized DPRs with the
top-1 article for our NLG Module consisting of
ChatGPT, GPT-4 and fine-tuned LongT5 as shown
in Figure 2. An overview of all evaluation scores
highlighting model performance across several di-
mensions is summarized in Table 3.
Overall, GPT-4 shows clear domination in terms of
generation capabilities for an HR chatbot. N-gram-
based evaluation scores such as ROUGE and BLEU
are quite low due to the generative nature of the
(L)LMs, as the answer may contain words differ-
ent than the reference answers. Nonetheless, these
results establish GPT-4 as the leading model, ef-
fectively combining advanced language skills with
the demands of content accuracy and user engage-
ment. On the other hand, the fine-tuned LongT5’s
performance is observed to be inferior when bench-
marked against the OpenAI models. This outcome
is consistent with the anticipated advancements in
LLMs, which are progressively outpacing the capa-

Metric ChatGPT GPT-4 LongT5
Reference-based Evaluation

BLEU Score 0.27 0.28 0.41
ROUGE-1 0.48 0.52 0.51
ROUGE-2 0.36 0.35 0.43
ROUGE-L 0.46 0.50 0.49
BERTScore_P 0.88 0.90 0.91
BERTScore_R 0.96 0.93 0.91
BERTScore_F1 0.90 0.91 0.90

Reference-free Evaluation (LLM-based)

G-Eval: Relevance 4.03 4.51 3.17
G-Eval: Readability 4.26 4.49 3.52
G-Eval: Truthfulness 4.12 4.80 3.36
G-Eval: Usability 4.67 4.79 3.29
Prometheus: Relevance 3.25 3.70 2.83
Prometheus: Readability 3.07 4.22 3.73
Prometheus: Truthfulness 3.20 3.75 3.32
Prometheus: Usability 3.98 4.32 2.83

Domain Expert Evaluation

Human Eval: Readability 4.31 4.76 4.02
Human Eval: Relevance 4.31 4.67 3.46
Human Eval: Truthfulness 4.09 4.41 3.67
Human Eval: Usability 3.32 4.11 2.59

Table 3: Average Evaluation Scores. BLEU (0 to 1),
ROUGE (0 to 1) and BERTScore (-1 to +1 ) were com-
puted on 200 samples, Prometheus (1 to 5) on 60 sam-
ples, and Domain Expert Evaluation (1 to 5) & G-Eval
(1 - 5) on 100 samples.

bilities of fine-tuning-driven models. The perfor-
mance of ChatGPT has been notably strong, trail-
ing marginally behind GPT-4 in only a few scoring
categories. Its close performance to GPT-4 raises
important considerations for the trade-offs between
computational efficiency and output quality.

4.3 Correlation Analysis
Inspired by Zhong et al. (2022), we assessed the
reliability of the evaluation score using Spearman
(Myers and Sirois, 2004) and Kendall (Abdi, 2007)
correlation coefficients in Table 9.
Human Evaluation & Reference-based Metrics
Due to its limited innovation, LongT5 typically
produces text with fewer novel sentences, result-
ing in more favorable scores from n-gram-based
metrics like BLEU and ROUGE. The analysis of
GPT-3.5 and GPT-4, in particular, illuminates a sig-
nificant gap between automated metrics and human
judgment. As these models generate more varied
and longer sentences, their outputs increasingly di-
verge from the patterns recognized by word-overlap
metrics, such as BLEU and ROUGE. For instance,
GPT-4’s BLEU score correlation marks a clear dis-
connect, indicating that as text generation becomes
more complex, the less effective traditional metrics
are in evaluating it. This discrepancy calls into
question the reliance on current automated metrics
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for assessing the creativity and nuance of outputs
from advanced language models, highlighting the
need for more sophisticated evaluation frameworks
that can better align with human judgment.
Human Evaluation & Reference-free Metrics
Despite similar average scores between Reference-
free metrics and Domain Expert evaluations shown
in Table 3, their correlations are low. Since these
methods measure linear and ordinal relationships,
similar averages in evaluations do not imply a
strong correlation as depicted in Table 9.

Overall, while Prometheus and G-Eval both
serve as proxies for human evaluation, their ef-
fectiveness varies by model and evaluation criteria.
While G-Eval excels in assessing truthfulness, its
capability in evaluating readability and usability
lags behind. Prometheus on the other hand, out-
performs G-Eval in assessing usability across all
models. However, G-Eval shows a steadier perfor-
mance across different models, particularly with
LongT5, suggesting its robustness in accurate eval-
uations. Both metrics show weak alignment in
assessing readability, reflecting the inherent chal-
lenge of one LLM evaluating another’s ability to
produce easily understandable text.
Additionally, LLM-based metrics sometimes fail to
align with human judgment, particularly when an-
swers or instructions involve unfamiliar HR terms
or sensitive information. Notably, OpenAI mod-
els’ novel answers exhibit lower human correla-
tion compared to LongT5, which provides answers
more similar to the golden response.

5 Related Work

Previously, domain-specific chatbots meant for a
specific task were designed using conversational
AI frameworks like RASA (Bocklisch et al., 2017).
Latest advancements in NLP have shifted focus to-
wards employing and optimizing LLM-based RAG
(Gao et al., 2024b). Chen et al. (2023) experi-
ment with ChatGPT and several other open-source
models like Vicuna to benchmark their capabili-
ties in RAG, and Wang et al. (2023) use a smaller
secondary domain-specific model to assist a big-
ger LLM on a domain-specific question answering
task on industrial data. Recent studies have ex-
plored various retrieval methods, including dense
vector retrieval (Karpukhin et al., 2020a), sparse
retrieval (Robertson et al., 2004, 2009), and hybrid
approaches (Guu et al., 2020a), to improve the rel-
evance and diversity of retrieved documents. Guu

et al. (2020b) uses various RAG techniques to en-
sure that chatbot responses are based on relevant
HR policies, leading to accurate and helpful user
support.

Given the diverse distribution of the text gener-
ated by LLMs, conventional metrics are not suit-
able for its evaluation (Wei et al., 2021; Belz and
Reiter, 2006; Novikova et al., 2017). Consequently,
a lot of follow-up research has come up in the area
of NLG Evaluation (Gao et al., 2024a; Li et al.,
2024). Specifically focusing on RAG, Es et al.
(2024) released a Framework for the automatic
evaluation of generated output using LLM-based
metrics with a focus on faithfulness. A similar ap-
proach is followed by Saad-Falcon et al. (2023) in
their framework ARES which also evaluates the
performance of RAG systems over relevance and
faithfulness by fine-tuning a lightweight LM judge.

6 Conclusion

By optimizing retrieval techniques and benchmark-
ing state-of-the-art LLMs with the help of domain
experts, we show how LLM-based applications
could benefit from a domain expert as human-
in-the-loop within various iterations of the devel-
opment. Even though our optimizations on the
OpenAI-based retriever show minor improvements,
the accuracy remains quite low due to the poor
quality of the evaluation dataset. Nonetheless, both
ChatGPT and GPT-4 show competence when ad-
dressing the user query. This hints that the in-
ternal reasoning capabilities and domain knowl-
edge of these LLMs are strong enough to over-
come the knowledge in the supposed incorrect ar-
ticle. This also suggests that, given the nature of
the dataset used, the accuracy metric used for the
evaluation of the retriever is not a good measure
of its performance. We employed and studied a
range of evaluation metrics and concluded that in
contrast to traditional evaluation approaches such
ROUGE & BERTScore, LLM-based metrics such
as Prometheus and G-Eval come very close to hu-
man evaluation on average. Nonetheless, our find-
ings reiterate the importance of human judgment,
particularly in use cases that require an understand-
ing of a specific domain.
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Limitations

In our experiments, we mostly worked with Ope-
nAI models which are closed-source and hence
raise concerns of privacy. Additionally, their large
sizes inhibited fine-tuning as they required exten-
sive hardware. Fine-tuning open source and smaller
models tailored to HR-specific contexts could fur-
ther improve response accuracy and relevance. Ad-
ditionally, since we worked with only one domain
expert for the evaluation of the generated answers,
the human evaluation might be biased. Because
of the data protection concerns with the associated
dataset, we cannot make the dataset open source.
We employed basic filtering techniques to include
user-specific information and context, more ad-
vanced approaches could be explored to include
this information into the LLM prompt.

Ethics Statement

Throughout our experiments, we strictly adhere to
the ACL Code of Ethics. The dataset used for our
research was anonymized to not include any per-
sonal information. We employed in-house domain
experts, who receive a full salary for evaluation for
generated summaries. They were informed about
the task and usability of data in the research. Their
annotations were stored in an anonymized fashion,
mitigating any privacy concerns. Through our fine-
tuning strategies, no additional bias was introduced
into the models, other than what might already be
part of the dataset. The goal of the research was
to optimize an LLM-centric chatbot with the help
of a human-in-the-loop. The results and discus-
sions in this paper are meant to further promote
research in LLM-based development, bridging the
gap between academia and application.
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A Dataset

A.1 Dataset Collection

FAQ Dataset: The internal HR policies of the
company consist of Wiki articles, where each ar-
ticle contains a description text followed by some
frequently asked questions. The FAQ dataset was
constructed by the domain articles by compiling
all the FAQ questions from all articles. Each FAQ
question is in the form of a triplet where the con-
text is the original Wiki article the question was de-
rived from. UT Dataset: The user utterance (UT)
dataset was compiled using the user utterances col-
lected from the chatbot logs. To reduce the manual
labeling effort, a simple text-matching approach
was deployed that mapped each user query to one
of the questions from the FAQ dataset. The respec-
tive answers and context of the matched question
were used to create the triplets that form the UT
dataset.

A.2 Dataset Pre-processing

We cleaned the dataset using regular expressions
and with the help of LLMs. This involved remov-
ing unnecessary formatting like HTML tags, lead-
ing or trailing white spaces and newline characters,
and removing some wasteful markdown annota-
tions without text. This process thus reduced the
number of tokens in each document. Some of the
documents were too long to fit into the LLM’s
context window, so we excluded them from our
analysis.

A.3 Dataset Challenges

We discovered that our dataset contains multiple ar-
ticles answering most questions. These articles dif-
fer in a few characters, often in an unequal amount
of whitespaces, or a few exchanged words, or even
entire sections not present in other articles. This sit-
uation leads to multiple slightly different versions
of the same article present in the dataset, all linked
to similar questions. Consequently, the retriever
often retrieves very relevant articles that do not
exactly match the gold standard article but are a
slightly different version.

To address this, we implemented an evaluation
method measuring the Levenshtein distance be-
tween the retrieved article and the gold article. If
this distance is below a threshold of 100, we con-
sider it a successful retrieval. However, this ap-
proach does not match articles with varying sec-
tions, as the Levenshtein distance is much higher,

and we didn’t want to risk matching incorrect arti-
cles by increasing the threshold. All of the results
in Table 2 are using this evaluation method.

As the DPR is fine-tuned on the dataset, which
likely has a strong imbalance in the counts of dif-
ferent article versions, it tends to favor the most
common version. This bias contributes to its higher
accuracy, as the retriever fetches the correct article
more often than not.

A.4 Dataset Example

Table 4 shows an example sample from the FAQ
dataset representing the training triplet along with
all metadata.

DATA TRIPLET
Question: How can I apply for half a day of holiday?
Answer: Unfortunately, vacation days in your coun-
try can only be taken as full days.
Context: {Relevant Article}

META DATA
User Role: Employee
Name of KBA: Vacation
Company Name: {Company Name}
Company Code: {Company Code}
Region: {Region}
Country Code: {Country Code}
FAQ Category: {FAQ Category}
Process ID: {Process ID}
Service ID: {Process ID}

Table 4: HR Dataset Sample

B Human-in-the-Loop

As shown in Figure 2, the domain experts are in-
volved in various parts of the development cycle
explained below:
Dataset Collection: The domain experts play a big
role in the compilation and quality control of the
datasets used in this paper
Prompt Optimization: The domain experts eval-
uated answers generated by models on various
prompt versions. They also provided guidelines
the chatbot should follow when addressing the user
query which is reflected in the final prompt dis-
played in Table 5.
Evaluation: Domain experts also served as the
human annotators for the answers generated by
(L)LMs which helped us assess the quality of an-
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swers as well as study the effectiveness of auto-
matic evaluation scores.

C Prompts Samples

In this section, we provide the extensive list of
prompts used for the OpenAI Models for the Chat-
bot Pipeline, as well as the prompts used for the
LLM-based Metrics.

C.1 Prompts used for OpenAI models
The optimized prompt used for ChatGPT and GPT-
4 during our experiments is shown in Table 5.

C.2 G-Eval Evaluation Metric Prompt
The evaluation prompt used for the Readability Cri-
teria is shown in Table 6. The prompts for other
criteria (Truthfulness, Usability, Relevance) follow
similar instructions as the one shown for the Read-
ability prompt.

C.3 Prometheus Evaluation Metric Prompt
The prompt for the Prometheus Evaluation Metric
outlined in Table 7 was based on the official paper’s
guidelines (Kim et al., 2023) for Feedback Collec-
tion. This specific prompt illustrates the Readabil-
ity Criteria and was similarly adapted for other
criteria such as Truthfulness, Relevance, and Us-
ability. In general, both LLM-based metrics follow
similar evaluation criteria in the prompts.

D Technical Details

D.1 Retriever
It is worth noting that we embed the whole arti-
cle and do not perform chunking. As shown in
Figure 1, these articles are quite long. To cater to
the limited context window of the models, we opt
for the top-1 article to be passed as context. This
also makes sense for our use case as the dataset
is designed such that the answer to any given HR
question usually exists in only one article.

D.2 Dense Passage Retriver Training
Dense Passage Retriever (DPR) (Karpukhin et al.,
2020b) powered by Haystack4 uses the bert-base-
uncased embedding model by google-bert, openly
available on HuggingFace. DPR training aims to
generate a model that creates embeddings where
the question embedding closely aligns with the rel-
evant context embedding. During retrieval, the user

4https://haystack.deepset.ai/

query is processed through the previously trained
retriever, producing a query vector in the same em-
bedding space as the articles. This query vector
is then compared to all article vectors within the
vector store using cosine similarity. The top-k arti-
cles belonging to the embeddings with the highest
cosine similarities are returned.

D.3 LongT5 Fine-tuning

During fine-tuning of the LongT5 models, the train-
ing process was configured with a learning rate of
1e-4 and a batch size of 8, spanning 5 epochs.

E Results and Evaluation

Throughout our research, we encountered several
challenges that warrant attention. The variability
in retrieved articles due to slight differences in con-
tent or formatting posed complexities in evaluating
retrieval accuracy and ensuring consistency in re-
sponse generation. Addressing this challenge may
require further refinement of the retrieval mecha-
nism or additional preprocessing steps to standard-
ize the retrieved content.

E.1 Retriever

The accuracy of both DPR on the top-1, top-2, top-
3, and top-5 articles on both retrievers is shown in
Table 8. As expected, the accuracy of the retriever
module increases as the value of k is increased.
However, we are limited to including only top-1
articles because the articles are quite long and more
samples may not fit in the model’s context window.
The BERT-based DPR model still significantly out-
performs all new methods with a top-1 accuracy
of 22.24% and a top-5 accuracy exceeding 40%.
The new retriever, in comparison, only reaches a
top-1 accuracy of 11.12% and a top-5 accuracy of
18.53% on the same dataset. These results in gen-
eral are quite underwhelming and mainly attributed
to the dataset challenges described in Appendix
A.3.

DPR top-1 top-2 top-3 top-5
BERT-based 22.24% 30.03% 35.08% 40.06%

OpenAI-based 11.12% 15.06% 16.82% 18.53%

Table 8: Retriever Accuracy on the HR test dataset for
various values of k on the HR Dataset. The OpenAI-
based DPR uses the Basic method.
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SYSTEM PROMPT
You are an HR chatbot for SAP SE and you provide truthful and concise answers to employee questions based on provided
relevant HR articles.
1. Stay very concise and keep your answer below 150 words.
2. Do not include too much irrelevant information unrelated to the posed question.
3. Keep your response brief and on point.
4. Include URLs from the relevant article if it is important to answer the question.
5. If the answer applies to specific labs/countries/companies, include this information in your response.
6. Refer to the employee directly as "you" and not indirectly as "the employee".
7. If the provided HR article does not include the answer to the question, tell the employee to create an HRdirect ticket.
8. Answer in a polite, personal, user-friendly, and actionable way.
9. Never make up your response! If you do not know the answer to the question, just say so and ask the user to create an
HRdirect ticket!

USER PROMPT
Question: {question}
Relevant Article: {article}

Table 5: Chatbot Prompt for OpenAI Models

SYSTEM PROMPT
You will be given a generated answer for a given question. Your task is to act as an evaluator and compare the generated
answer with a reference answer on one metric. The reference answer is the fact-based benchmark and shall be assumed as
the perfect answer for your evaluation. Please make sure you read and understand these instructions very carefully. Please
keep this document open while reviewing, and refer to it as needed.
Evaluation Criteria: {criteria}
Evaluation Steps: {steps}

USER PROMPT
Example: {example}
Question: {question}
Generated Answer: {generated_answer}
Reference Answer: {reference_answer}
Evaluation Form: Please provide your output in two parts separate as a Python dictionary with keys rating and explanation.
First the rating in an integer followed by the explanation of the rating.
{metric_name}

METRIC SCORE CRITERIA
{The degree to which the generated answer matches the reference answer based on the metric description.}
Readability(1-5) - Please rate the readability of each chatbot response. This criterion assesses how easily the response can
be understood. A response with high readability should be clear, concise, and straightforward, making it easy for the reader
to comprehend the information presented. Complex sentences, jargon, or convoluted explanations should result in a lower
readability score.

METRIC SCORE STEPS
{Readability Score Steps}
1. Read the chatbot response carefully.
2. Assess how easily the response can be understood. Consider the clarity and conciseness of the response.
3. Consider the complexity of the sentences, the use of jargon, and how straightforward the explanation is.
4. Assign a readability score from 1 to 5 based on these criteria, where 1 is the lowest (hard to understand) and 5 is the
highest (very easy to understand).

Table 6: G-Eval Prompt Example for Readability Criteria
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SYSTEM PROMPT
Task Description: An instruction (might include an input inside it), a response to evaluate, a reference answer that gets a
score of 5, and a score rubric representing an evaluation criterion is given.
2. After writing a feedback, write a score that is an integer between 1 and 5. You should refer to the score rubric.
3. The output format should look as follows: Feedback: [write a feedback for criteria] [RESULT] [an integer number
between 1 and 5].
4. Please do not generate any other opening, closing, and explanations.

Question to Evaluate: {instruction}
Response to Evaluate: {response}
Reference Answer (Score 5): {reference answer}
Score Rubrics: {criteria description}
Score 1: {Very Low correlation with the criteria description}
Score 2: {Low correlation with the criteria description}
Score 3: {Acceptable correlation with the criteria description}
Score 4: {Good correlation with the criteria description}
Score 5: {Excellent correlation with the criteria description}
{criteria description}: Readability(1-5) - Please rate the readability of each chatbot response. This criterion assesses
how easily the response can be understood. A response with high readability should be clear, concise, and straightforward.
Complex sentences, jargon, or convoluted explanations should result in a lower readability score.

Table 7: Prometheus Prompt Example for Readability Criteria

E.2 Correlation between Automatic
Evaluation and Domain Expert
Evaluation

Table 9 shows the individual across for correlation
of each evaluation metric with human evaluation
across LongT5, ChatGPT, and GPT-4. The low
correlation coefficients are a consequence of the
Spearman and Kendall methods, which analyze
the linear and ordinal relationships between vari-
ables by comparing each set of scores. When these
methods detect divergent scores between two eval-
uations, it leads to a reduced correlation coefficient,
indicating a disproportion that is not apparent when
considering the average scores alone.
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Criteria LongT5 ChatGPT GPT-4

Spearman ρ Kendall τ Spearman ρ Kendall τ Spearman ρ Kendall τ

BLEU 0.459 0.337 0.345 0.263 0.146 0.116
ROUGE-1 0.435 0.321 0.364 0.284 0.113 0.091
ROUGE-2 0.462 0.341 0.332 0.258 0.056 0.044
ROUGE-L 0.433 0.324 0.353 0.274 0.093 0.075
BERTScore_P 0.457 0.347 0.304 0.234 0.156 0.122
BERTScore_R 0.466 0.305 0.085 0.064 −0.022 −0.018
BERTScore_F1 0.455 0.332 0.246 0.192 0.097 0.077
G-Eval
Usability 0.675 0.584 0.217 0.198 0.346 0.327
Relevance 0.569 0.499 0.339 0.304 0.325 0.306
Readability 0.208 0.181 0.395 0.373 0.139 0.137
Truthfulness 0.726 0.651 0.694 0.667 0.452 0.432

Prometheus
Usability 0.723 0.675 0.386 0.351 0.516 0.495
Relevance 0.467 0.439 0.419 0.371 0.382 0.357
Readability 0.493 0.468 0.378 0.358 0.225 0.213
Truthfulness 0.541 0.521 0.439 0.402 0.454 0.427

Table 9: Correlations between Automated Metrics and Human Evaluation across Models
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Abstract

The development of conversational AI assis-
tants is an iterative process with multiple com-
ponents. As such, the evaluation and continual
improvement of these assistants is a complex
and multifaceted problem. This paper intro-
duces the challenges in evaluating and improv-
ing a generative AI assistant for enterprises,
which is under active development, and how
we address these challenges. We also share
preliminary results and discuss lessons learned.

1 Introduction

Generative AI assistants for enterprises hold the
great promise of significantly improved productiv-
ity, lowered barrier-to-entry, drastically increased
product adoption, transformative amplification of
creativity, and delivery of better customer and em-
ployee experiences (Kumar et al., 2023). Devel-
oping such an AI assistant is typically an iterative
process, with its evaluation and continual improve-
ment at the center.

Fig. 1 depicts the high-level architecture
of Adobe Experience Platform AI Assistant1

(Bhambhri, 2024), a generative AI assistant built
for an enterprise data platform. As can be seen, it is
a complex pipeline with multiple underlying com-
ponents consisting of one or more machine learning
models based on large language models (LLMs)
or small language models (SLMs). Users interact
with the system via a conversational interface to ob-
tain answers based on heterogeneous data sources.
The evaluation and continual improvement of such
a system is a complex and multifaceted problem
with the following key challenges.
Metrics. The success of Assistant is ultimately
measured by metrics such as user engagement, user
satisfaction, and user retention. However, such met-
rics are lag measures obtainable only after build-
ing and deploying Assistant in production. To

1Hereafter referred to as Assistant

guide continual improvement of Assistant, we
also need to define metrics that are lead measures
for various aspects of Assistant that are likely to
impact the lag measures.
Data. To produce reliable evaluation metrics for
Assistant, we need data that are both represen-
tative and high-quality. We need a systematic ap-
proach to obtain such high-quality data at scale.
Dynamics. As shown in Fig. 1, a real-world AI
assistant usually consists of a complex pipeline of
components. Each component evolves over time as
both the underlying models and the assistant’s func-
tionalities change. Further, in enterprise settings,
the distribution of questions asked is ever-changing
as the customer base shifts and grows and existing
customers mature in their adoption of the assistant.
We need to consider such customer dynamics.
Human-Centered Design. The success of
Assistant depends on both the capabilities of its
underlying components and the user interface (UI)
that surfaces those capabilities to support the over-
all user experience. As such, the evaluation and
continual improvement for Assistant need to take
all underlying components as well as UI into con-
sideration for such a human-centered system (Liao
and Vaughan, 2023).
Privacy and Security. Enterprise AI assistants
like Assistant often deal with sensitive user data.
We need to evaluate its performance while securely
handling customer data and prevent unauthorized
access or misuse (Wu et al., 2023; Yao et al., 2024).

The rest of this paper presents our proposed so-
lution for addressing these changes. We also share
our preliminary results and discuss lessons learned
so far. Our main contributions include:

• A comprehensive continual improvement frame-
work to support the evaluation and continual im-
provement for Assistant.

• A taxonomy of error types for error analysis and
continual improvement.
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Figure 1: Assistant Overall Architecture

• Identifying the limitations of existing approaches
on the evaluation of AI assistants.

• Highlighting the influential role of human-
centered UI design in the evaluation and con-
tinual improvement of Assistant.

• Productionizing such a framework, sharing initial
results and lessons learned.

2 Limitations of Existing Approaches

Common approaches for evaluating AI assistants
include evaluation using explicit feedback, evalua-
tion using implicit feedback, benchmarking (Liang
et al., 2022), and human evaluation (Fernandes
et al., 2023). Explicit feedback is collected from
users through feedback buttons, direct prompts, or
questions on their preferences. In contrast, implicit
feedback is gathered from user actions within a sys-
tem, such as clicks, views, or navigation patterns,
providing insights into user behavior and prefer-
ences without requiring direct input. Evaluating
with benchmark datasets is also a common way to
evaluate AI assistants. These approaches, while im-
portant and effective to a certain degree, suffer from
various limitations when it comes to evaluating an
enterprise AI assistant such as Assistant, which
is under active development and improvement.

2.1 Limitations of Explicit Feedback

Collecting explicit feedback from the users seems
to be the most straightforward way to gauge user
satisfaction and gather input to measure and im-
prove the performance of an AI assistant. Table
1 illustrates the initial set of explicit feedback for
Assistant from our early customers. We can ob-
serve several limitations of this approach.
Sparsity. Explicit user feedback is sparse. From
Table 1, we can see that 76% of all customer in-
teractions receive no explicit feedback at all. This
sparsity issue makes it challenging to understand

user experience and satisfaction comprehensively
and hampers efforts to improve Assistant.
Representativeness. Since sharing explicit feed-
back is not mandatory, not every user does so. As
shown in Table 1, users from two organizations
shared no feedback at all. Further examination
showed that most feedback came from a small num-
ber of users. In fact, about 30% of all the feedback
originated from one user. Such a highly skewed
feedback distribution may misrepresent the overall
sentiment towards Assistant, and fail to reflect
the diversity of users’ experiences and opinions.
Lack of detailed feedback. partly due to mini-
mizing user effort and partly because users only
see the final response, explicit feedback is usually
gathered via a simple UI form (e.g., ,  buttons).
Unfortunately, feedback gathered this way often
fails to capture the nuances of user experiences and
preferences. For instance, a negative feedback in-
dicating an incorrect final response is insufficient
to pinpoint specific components for improvement.
New approaches like showing step-by-step explana-
tions and getting user feedback for the explanation
are alternative ways to get detailed feedback from
users and map them to specific components.

2.2 Limitations of Implicit Feedback
Implicit feedback has been extensively used
in evaluating and improving intelligent systems
(e.g., Jawaheer et al. (2014); Koren et al. (2021)),
and performance measurements of concrete tasks
have been recommended as the best metric for eval-
uating natural language generation systems (Saphra
et al., 2023). This approach has several limitations
when evaluating AI assistants. First, since implicit
feedback is obtained indirectly and passively from
user actions, it may not always reflect users’ true
preferences. Prior work uses denoising techniques
to prune the noisy interactions to avoid serious
negative impact (Wang et al., 2021). In addition,
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Table 1: Feedback type distribution and engagement
ratio from different customers

Customer Positive
feedback

Negative
feedback

No
feedback

Org1 22.8% 16.2% 61%
Org2 12.6% 11.2% 76.2%
Org3 3.2% 24.9% 71.9%
Org4 2.7% 5.0% 92.3%
Org5 11.3% 5.2% 83.5%
Org6 5.6% 9.7% 84.7%
Org7 8.6% 21.4% 70%
Org8 15.4% 7.7% 76.9%
Org9 0% 0% 100%
Org10 0% 0% 100%

Total 10.72% 13.12% 76.16%

deriving implicit feedback from user interactions
could be a challenge on its own. For instance, while
meaningful implicit feedback is readily available
for recommender systems in contexts such as on-
line shopping (clicks, page views, add-to-cart, etc.),
implicit signals available in AI assistants are less
clearly related to concrete user goals. Specifically,
users have a wide variety of goals, and the concrete
tasks to achieve those goals are often very delayed.

2.3 Limitations of Off-the-Shelf Benchmarks
Although public benchmark datasets for general
tasks are abundant (e.g., Chang et al. (2023) lists
46 public benchmark datasets), they are often not
applicable for domain-specific AI assistants. Cre-
ating domain-specific benchmark datasets is labor-
intensive, time-consuming, and requires domain ex-
pertise. Moreover, assistants’ workload and tasks
may also evolve. Thus, there is no one static
benchmark data that suits all (Mizrahi et al., 2024).
Therefore, benchmark data creation itself is a con-
tinual process.

3 Our Approach

In this section, we introduce our framework to over-
come the aforementioned challenges (Section 1)
and limitations of existing approaches (Section 2)
for evaluating an enterprise-grade AI assistant un-
der active development.

3.1 Design Decisions
We first present a few key design decisions to bal-
ance the trade-offs to be made, both in terms of
breadth and depth of any given type of evaluation.
Prioritize metrics directly impacted by produc-
tion changes. The ultimate goal of Assistant is
to improve the productivity and creativity of our

users and lower barriers to entry. Since it takes
time to materialize such lag measures, we focus on
directly responsive “correctness” metrics, assum-
ing a more correct Assistant will ultimately lead
to positive downstream outcomes.
Align metrics with user experience. Not all er-
rors are equal. The impact on the user experience
of one incorrect citation in an otherwise correct
answer is very different from that of a completely
hallucinated answer. We aim to capture this nuance
in the design of our error metrics.
Human Evaluation over automated evaluation.
We believe that, despite challenges (Clark et al.,
2021), human judgments are still best aligned with
eventual user outcomes. As such, we prioritize
human evaluation over automated evaluation. Once
high-quality human judgments are collected, they
can be used to validate which automatic evaluations
are meaningful for specific tasks and components.
Efficient allocation of human evaluators. To con-
duct human evaluation at scale, we focus on the ef-
ficient allocation of human annotators. Specifically,
simple annotation tasks are done by non-experts,
while complex error analysis and the determina-
tion of how to make improvements are left up to
engineers with domain expertise.
Collect both end-to-end metrics and component-
wise metrics. We collect both individual and col-
lective metrics to understand the overall quality of
the system as well as which parts need to improve.
System-wide improvements. All components in
Assistant, from ML/rule-based models, UI/UX
components, to underlying data, may impact sys-
tem performance. Therefore, instead of focusing
solely on ML model improvements, we consider
the entire “vertical" system holistically and leave
no improvement off the table.
Prioritize human evaluation. Automated eval-
uation, which utilizes standard metrics and eval-
uation tools, is popular for its efficiency and ob-
jectivity (Chang et al., 2023). However, although
more labor-intensive and time-consuming, manual
evaluation by domain experts is more reliable in re-
flecting the final user impact. As such, we prioritize
human evaluation over automation.

3.2 Severity-based Error Taxonomy
Designing metrics that align with our end users’
judgments of the correctness and usefulness of
Assistant is a complex task. We observed rel-
atively high error rates from an early version of
Assistant (over 50%), yet our users did not seem
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Table 2: Error Severity Framework in Assistant

Category Definition Consequence Examples

Severity 0 Answer looks right,
but is wrong

Erodes trust with the
users - Convincing Concepts QA answers that are

pure hallucinations
- Incorrect Data QA answers that cannot easily
be verified independently

Severity 1 Answer looks wrong,
user can’t recover Frustrates users - Failure to answer with generic error message

- Answers with obvious logical inconsistencies,
e.g., mixing UI docs and API docs

Severity 2 Answer looks wrong,
user can recover Annoys users - Misunderstood questions that user is able to

rephrase and get correct answer
- Incorrect out-of-scope question rejection that
user is able to override

to perceive error rates to be this high in their self-
reported surveys and regular feedback sessions.
This discrepancy, consistent with the earlier ob-
servation that not all errors are the same (Freitag
et al., 2021), led us to develop a taxonomy of errors.

To illustrate this point, consider the past two
decades, where internet search has become a domi-
nant (semi) natural language interface. In this do-
main, humans have become accustomed to certain
classes of errors. When we do not get the desired
results from a search engine, we rephrase and it-
erate till we find the answer. The initial failure of
the search engine is annoying but generally toler-
able unless we cannot find our answer even after
many re-phrasings. At this point, we are left frus-
trated. Inspired by DevOps terminology (Kim et al.,
2021), we can define two separate classes of errors:
Severity-2 (“Sev-2” for short) errors are annoy-
ing but repairable via rephrasing, while Severity-1
(“Sev-1” for short) errors are not repairable.

Meanwhile, the rise of generative AI has intro-
duced an entirely new class of error: answers that
are convincing and look correct but are, in fact,
wrong. Depending on the use case, these may be
tolerable (or even desirable), but in the realm of en-
terprise assistants, these errors are troubling. They
erode user trust and may lead to complete abandon-
ment of the assistant. We term these Severity-0
errors, “Sev-0” for short. Table 2 summarizes this
severity-based error taxonomy, which has become
an organizing principle for the evaluation and im-
provement of Assistant, as we discuss next.

3.3 Framework for Evaluation and Continual
Improvement

Fig. 2 depicts our proposed evaluation and improve-
ment framework. It includes three main compo-

nents: Assistant, itself, a dedicated Annotation
Tool, and a separate environment for Error Anal-
ysis. Human evaluation drives the evaluation and
improvement of Assistant.

To ensure the efficient allocation of human re-
sources, non-experts provide large-scale annotation
of masked production data, while domain experts
provide detailed error analysis on a sample of pro-
duction data. For each annotation task, to ensure
annotation quality, we design the UI and annotation
guidelines iteratively with pilot study and improve-
ments. We include training modules and exercises
to ensure annotators meet a minimum bar of suf-
ficient domain understanding. We assign multiple
annotators for each annotation task to further en-
sure the annotation quality and conform to best
practices (van der Lee et al., 2021).

We design different annotation tasks to assess
the quality of different Assistant components and
improvements needed. By collecting annotations
based on prior interactions in the production sys-
tem, we can generate both error metrics by severity
(by comparing human labels to the choices the sys-
tem made in production), and new golden-labeled
data for model improvements.

Error analysis is a crucial step in gating im-
provement. At this step, domain experts — those
with deep knowledge of how Assistant is de-
signed — review samples of errors, identify er-
ror patterns, and determine specific improvements.
These improvements take many potential forms,
from prompt engineering to training and improv-
ing in-house models, to creating new templates and
patterns for synthetic data, to more holistic changes
such as improving the user experience or optimiz-
ing the specialized data indexes that are queried by
Assistant, (for example, fine-tuning embeddings,
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Figure 2: Evaluation and continual improvement framework of Assistant

or updating database schema). This last category
of improvements is only possible when the applica-
tion is viewed holistically, and all stakeholders are
involved in error analysis.

4 Preliminary Results: Examples

While Assistant remains in active development,
our evaluation and continual improvement frame-
work already show promising impacts on both the
prioritization and the design of improvements. In
this section, we share the preliminary results ob-
tained so far by examples.

Figure 3: Dashboard showing snapshot of Error Severi-
ties and time-evolution for a single component. Illustra-
tive data of similar magnitude to production numbers.

Fig. 3 illustrates an example error dashboard pro-
duced by the annotation tool, showing component-
wise and end-to-end errors with further breakdown
by severity levels as well as how they change over
time. This dashboard is monitored by all stake-
holders and is used to track the impact of feature
releases and improvements. While ideas for im-
proving Assistant may be endless, detailed error
analysis allows the team to follow a powerful orga-
nizing principle: focusing on reducing error rates
based on their actual impact on the users.

For instance, the example report in Table 3
shows that Out-of-Scope errors were our largest
contributor to Sev-0 errors in Sprint 1. To address
this, we introduced an Out-of-Scope text classifier
using an in-house model, which achieved 90% pre-
cision and successfully reduced most such errors.

However, the new classifier also led to a new,
particularly frustrating source of errors: in-scope
questions misclassified as out-of-scope would no
longer be answered. Without being able to quickly
improve the classifier’s precision, we used our other
available lever of improvement and designed an
override mechanism in the UI to allow users to
receive an answer. As the Sprint 2 report shows,
this UI change converted a potential Sev-1 error
(refusal to answer) into a Sev-2 error (the user could
now recover), showcasing how human-centered UI
design allows holistic improvement of Assistant.

Explainability is important for improving user
trust and comprehension. By helping users discover
wrong answers with better explainability, we can
reduce Sev-0 errors and move them to Sev-1/Sev-2
error buckets. We took a data-driven approach to
choose from many applicable explainability tech-
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Table 3: An example output of error analysis for Con-
cept QA (illustrative data, real labels) from one sprint
to the next after Out-Of-Scope detection was deployed.

Error Severity % Sprint1 % Sprint2
Sev-0 53.4% 36.6%

OutOfScope 21.6% 6.2%
Hallucination 17.0% 16.4%
Doc-Retrieval 13.6% 14.0%
LLM-Error 1.1% 0.0%

Sev-1 46.6% 44.4%
Hallucination 36.4% 33.0%
Citation 5.7% 5.1%
LLM-Error 4.5% 6.3%

Sev-2 - 6.9%
OutOfScope - 6.9%
(incorrect rejection)

niques (Danilevsky et al., 2020). We first went
through the Sev-0 queries obtained during a certain
window and examined which technique(s) can be
used to alleviate the severity of each error based on
the potential overall impact of each explainability
technique, its implementation difficulty, and hu-
man cognitive load. We created a decision matrix
(Table 4) based on the analysis, and we focused
on only 2 of the 7 options from (Li et al., 2024).
As we move forward, we expect many more such
informed improvements based on our framework.

5 Discussion

This framework has organically evolved during the
development of Assistant. While many of the
design choices laid out may seem obvious in hind-
sight, they were not as clear at the beginning of this
project, and so it is worth discussing the lessons
we have learned along the way.

First, we have found that metric design is of
paramount importance. The severity framework
came after many iterations in trying to connect
enthusiastic early customer feedback with a seem-
ingly large overall error rate. The insight that cus-
tomers have varying tolerance depending on the
class of errors has become a powerful organizing
principle for our prioritization and resource alloca-
tion to improve Assistant.

Next, we have seen firsthand the benefits of
building a decomposed system as opposed to de-
pending on a single, monolithic model. The choice
to decompose into multiple, orchestrating models
was led by constraints such as task specialization
and the need to query real-time data. We have also
reaped the secondary benefit of having many avail-

Table 4: Decision matrix for explainability techniques

Explainability
techniques

Potential
impact

Engineering
difficulty

Congitive
load

technique1 0.0% high low
technique2 8.6% high high
technique3 48.6% low low
technique4 88.6% medium medium
technique5 20.0% high low
technique6 100% medium low
technique7 74.3% high low

able “levers of improvement” (prompts, in-house
models, specialized indexes, UX improvements,
etc.), many more than what is possible in a single
language model paradigm.

Finally, iterative and agile development are more
important than designing everything upfront and
building specialized tools. For instance, while it is
tempting to build in-house tools, using spreadsheets
as a simple alternative initially allows us to learn
important lessons on designing the annotation tasks,
from annotation guidelines to the actual UI.

6 Future Work

As we continue to develop Assistant and onboard
more customers, we plan to extend our evalua-
tion and continual improvement framework with
more human-in-the-loop/LLM-in-the-loop automa-
tion to scale our evaluation and error analysis pro-
cesses (Zheng et al., 2023). In addition, the current
framework heavily focuses on retrospective analy-
sis based on past customer interactions. We plan to
extend it with more proactive user studies and eval-
uation of in-development functionalities. Moreover,
personalization is also important for enterprise AI
assistants since we have customers with different
technical levels. To provide the best experience to
various personas in potentially different languages,
additional evaluation metrics and datasets proposed
in (Jadeja and Varia, 2017; Ahuja et al., 2023)
may also be considered. As we have emphasized,
human-centered design is essential for the success
of Assistant. We plan to further explore how
the deeper interplay between ML and UX compo-
nents in this new paradigm of HCI can lead to more
explainable and accurate assistants. Finally, the im-
pact of generative AI applications in the workplace
is an important new area of study (Brynjolfsson
et al., 2023). As we enroll new customers, we in-
tend to run A/B tests (Hussey and Hughes, 2007)
that assess the causal impact of Assistant on the
engagement and productivity of customers.
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Abstract

When performing data augmentation using
large language models (LLMs), the common
approach is to directly generate a large
number of new samples based on the original
dataset, and then model is trained on the
integration of augmented dataset and the
original dataset. However, data generation
demands extensive computational resources. In
this study, we propose Mini-DA, a minimized
data augmentation method that leverages
the feedback from the target model during
the training process to select only the most
challenging samples from the validation set
for augmentation. Our experimental results
show in text classification task, by using as
little as 13% of the original augmentation
volume, Mini-DA can achieve performance
comparable to full data augmentation for intent
detection task, significantly improving data and
computational resource utilization efficiency.

1 Introduction

Data is the lifeblood of deep learning models, and
the availability of high-quality data is crucial for
achieving strong model performance. However, ac-
quiring such data can be a challenge, particularly
in scenarios where data is limited or unavailable.
Moreover, human annotation, a common method
for obtaining labeled data, is known to be finan-
cially expensive and time-consuming. As such,
data augmentation techniques have become increas-
ingly important, especially in scenarios where data
is limited.

Data augmentation has been studied for a long
time in various domains, with rule-based method,
data interpolation techniques, and model based ap-
proaches explored (Feng et al., 2021; Hedderich
et al., 2021). While these traditional data augmenta-
tion methods have shown effectiveness, the rapidly

*These authors contributed equally to this work

evolving field of large language models (LLMs)
has ushered in a new era of augmentation methods
for natural language processing tasks. With their re-
markable ability to generate human-like text, LLMs
have enabled generative data augmentation tech-
niques that can create more diverse and realistic
synthetic samples, potentially leading to improved
model performance. However, as highlighted in
the comprehensive survey by (Ding et al., 2024),
the generation of extensive augmented datasets can
cause significant expenses due to the demands of
considerable computational resources, especially
for SOTA models.

To address the limitation of data augmentation
with LLMs, we propose Mini-DA, a novel frame-
work that aims to maximize the benefits of LLM-
based data augmentation while minimizing the as-
sociated costs. The key innovation of Mini-DA
lies in its ability to leverage the prediction result
of the target model on the validation set during k-
fold cross-validation to identify "challenging sam-
ples" that the model struggles to predict correctly.
Then, for these difficult samples, a instruction-
tuned large language model is used to generate
synthesized data based on a given query and its la-
bel. This process is repeated iteratively, collecting
augmented data until the model’s performance on
the test set stabilizes. Through our experiments
on two datasets for the intent detection task, we
demonstrate that by focusing augmentation efforts
on a limited number of difficult samples, Mini-
DA significantly reduces the augmentation volume
compared to full data augmentation, leading to sub-
stantial savings in computational resources while
still producing comparable performance.

2 Related Work

2.1 Pre-LLM Data Augmentation

Data augmentation has been widely studied before
the advent of LLMs. Various approaches were in-
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Figure 1: Mini-DA framework. The figure shows the iterative augmentation process. (1) One iteration begins
by splitting the original dataset into k-folds. (2) Models are then trained on the training folds. (3) The trained
models are evaluated on the validation folds, and (4) error cases are selected. (5) A LLM is instructed to perform
data augmentation on the selected error samples. (6) The augmented data generated by the LLM is added to the
augmented dataset. (7) In the next epoch, the dataset is re-split, and any existing augmented data corresponding to
samples in the new training folds is integrated.

vestigated, including rule-based methods like Easy
Data Augmentation (EDA) proposed by Wei and
Zou (2019). EDA introduced token-level opera-
tions such as random insertion, deletion, and swap-
ping. At sentence-level data augmentation, para-
phrasing is widely adopted. The most popular one
is Backtranslation (Sennrich et al., 2016), which
uses Seq2seq and language models to translate a
sequence into another language and then back into
the original language.

2.2 Data Augmentation with LLMs

With the emergence of Large Language Models
(LLMs), data augmentation techniques have under-
gone significant refinement and innovation. LLMs
possess capabilities for generating high-quality,
diverse, and contextually relevant text, enabling
novel approaches to data augmentation.

One of the most common data augmentation
method employing LLMs is to use them as data
generators. Chintagunta et al. (2021) utilize pow-
erful models such as GPT-3 to synthesize medi-
cal dialogue summaries. By training models on a
combination of synthesized and human-annotated
data, their approach effectively scales a small set of

human-annotated examples to achieve performance
comparable to using a significantly larger human-
annotated dataset. Møller et al. (2024) employs
LLMs to generate examples for specific labels in
low-resource classification scenarios, by providing
an example and its corresponding label. Lin et al.
(2023) uses instruction tuned LLM, GPT-3.5, to
generate examples within the context of the train-
ing set and subsequently filtered out unhelpful ex-
amples. For intent detection task, Sahu et al. (2022)
introduces a prompting-based data augmentation
using GPT-3, , and demonstrates its effectiveness in
improving classifier performance, especially when
combined with filtering techniques to address chal-
lenges in generating data for closely-related intents.

Another common approach involves using LLMs
to reformulate existing data to more diverse vari-
ations. These techniques are proved to be partic-
ularly valuable in tasks like counterfactual gen-
eration, where existing data is transformed into
its counterfactual version. For instance, Chen
et al. (2023) employs LLMs to generate high-
quality counterfactual data on a large scale. CORE
(Dixit et al., 2022) also uses GPT-3 for retrieval-
augmented generation (RAG), generating counter-
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factual edits conditioned on retrieved excerpts from
the input. These perturbations serve to reduce
model bias and enhance performance.

3 Method

In the following section, we describe our proposed
iterative LLM-in-the-loop data augmentation ap-
proach Mini-DA, as illustrated in Figure 1. At each
iteration, we leverage the feedback from the target
model to identify difficult examples from valida-
tion set and instruct LLM to only augment these
selected samples.

The Mini-DA process can be broken down into
the following steps:

1. Dataset Splitting If the original dataset does
not come with a predefined test set, we first
split a portion of the data to create a held-out
test set. This test set will be used for monitor-
ing the model’s performance and determining
convergence during the iterative process. The
remaining dataset is then split into k folds.
This process employs stratified sampling to
ensure that both sets are representative of the
underlying data distribution.

2. Model Training The target model is trained k
times, using one different fold for validation
and the remaining k-1 folds are combined for
training each time.

3. Validation Set Prediction After training, the
best models saved from the training stage are
then evaluated on their own validation set.

4. Challenging Case Collection Error case from
prediction of each fold on validation set are
collected and identified as challending sam-
ples

5. Selective Data Augmentation The prediction
errors are then input to an LLM with prede-
fined data augmentation prompt, and obtain a
set of synthetic examples as augmented data.

6. Augmented Dataset Data generated from last
step is then added to the augmented dataset,
and we maintain a augmented dataset map-
ping between each original sample and its cor-
responding augmented data for future use.

7. Augmented Data Integration For the next
augmenting epoch, the dataset is re-split into

a.
You are an experienced data annotator. Please
generate five user questions following the re-
quirements below.
1. Focus on the "banking" domain;
2. Should focus on "{intent_label}" intent,
which represent {intent_definition};
3. The newly generated sentence needs to be
semantically similar to sentence: "{query}";
b.
You are an experienced data annotator. Please
generate five user questions following the re-
quirements below.
1. Focus on the "{domain_label}" domain;
2. Should focus on "{intent_label}" intent,
which represent {intent_definition};
3. The newly generated sentence needs to be
semantically similar to sentence: "{query}";
4. Newly generated sentences need to be in Chi-
nese;

Figure 2: The prompts used to generate augmented
data for a. banking77 dataset and b. ECDT-NLU-2019
dataset

new k folds. And k new training and valida-
tion set pairs are formed. Before training on
the new training sets, we check if any samples
in each new training set have corresponding
augmented data in augmented dataset. If so,
we incorporate those augmented samples into
each training set. Each training set should
only contain augmented samples that are gen-
erated from original data it contains.

8. Iterative Process Steps 2 through 7 are re-
peated for a predetermined number of epochs
or until a convergence criterion is met, which
is typically when the model’s performance
on a held-out test set stops improving across
a predetermined number of epochs. At this
point, the augmentation of the original dataset
is completed.

4 Experiments Setup

4.1 Datasets and Task
To verify the effectiveness of our approach, we con-
duct experiments on two intent detection datasets,
including banking77 (Casanueva et al., 2020) and
ECDT-NLU-20191.

1http://conference.cipsc.org.cn/smp2019/
evaluation.html
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The original banking-77 is an English dataset in
the banking domain, which includes 10,003 train-
ing and 3,080 test cases labeled with 77 intent.
Since our primary focus is on enhancing the model
performance in data limited scenario, we sampled
a subset from banking77 for our experiments. We
will refer the sampled dataset as banking77-filtered
in this paper. Banking77-filtered includes 2,047
training and 693 test cases, which still has 77 intent
labels.

The original ECDT-NLU-2019 is a Chinese nat-
ural language understanding dataset consisted of
multiple tasks, including domain classification, in-
tent detection, and slot filling. We only considered
the intent detection task in our experiments. This
datasets comprises 2,061 training and 516 test cases
with 45 intent labels.

4.2 Models
Since the two datasets we used for our experiments
are in different languages, we selected bert-base-
multilingual-uncased2 (Devlin et al., 2018) as our
base model for training and prediction.

We use GPT-3.5 Turbo as the large language
model to generate augmented dataset. The prompts
used to augmented each dataset is illustrated in
Figure 2.

4.3 Implementation Details
During the data splitting step, we set k = 5
for 5-fold cross-validation. In each augmenting
epoch, we train bert-base-multilingual-uncased for
30 training epochs with a batch size of 64, learning
rate of 2e − 5 and the Adam optimizer (Kingma
and Ba, 2017).

The stopping criterion for the iterative augment-
ing process is set to the average accuracy stop im-
proving on test set for 2 consecutive augmenting
epochs. For both datasets, we run the augmenting
process for a maximum of 10 epochs.

4.4 Baseline Methods
We compare our proposed method with two base-
line methods. It is important to note that our pri-
mary focus is on proposing an efficient framework
for data augmentation by contrasting full-dataset
augmentation with selective augmentation. There-
fore, we include a basic prompt-based data aug-
mentation method using a LLM as our baseline.
However, the augmentation component (step 5) in

2https://huggingface.co/google-bert/
bert-base-multilingual-uncased

our framework is modular and can be modified to
other augmentation methods with LLM depending
on the specific use case.

1. Baseline 1: We performed 5-fold cross-
validation on the same base model, bert-
base-multilingual-uncased, using the original,
unaugmented training sets and the same hy-
perparameters in 4.3.

2. Baseline 2: we performed full data augmenta-
tion by generating augmented samples for ev-
ery instance in the training set using GPT-3.5
Turbo with the prompts specified in Figure 2.
We then conducted 5-fold cross-validation,
where for each fold, the augmented data gen-
erated from that fold’s training set was inte-
grated into the corresponding fold’s training
set, ensuring no data augmented from the val-
idation fold was trained on. The same hyper-
parameters in 4.3 were employed.

4.5 Evaluation Metrics

Considering the imbalanced class distribution
present in the two selected datasets, we utilized
accuracy as the evaluation metric to assess and
compare the model performance across all meth-
ods on both datasets.

5 Result and Analysis

In this section, we present the experimental re-
sults obtained by evaluating our proposed Mini-DA
method and the two baseline approaches on the
selected datasets. We report and analyze the per-
formance of each method in terms of the average
accuracy of 5-fold cross-validation. Results are
shown in Figure 3, Table 1, Figure 4, and Table 2.

For banking77-filter dataset, results shown in
Figure 3, the average accuracy on test set of models
trained on the original dataset achieved 80.52% (the
dotted green line), while average accuracy mod-
els trained on the fully augmented dataset reaches
86.41% (the green line), representing a 5.89% im-
provement from unaugmented baseline. The red
line represents the average accuracy on the test set
when using the Mini-DA framework for training set
augmentation crossing augmentation epochs. At
the second augment epoch, Mini-DA achieved an
average accuracy of 86.64%, which is even 0.23%
higher than the result obtained using the fully aug-
mented dataset, despite only augmenting 24% of
the training data. When progressing to the fifth
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Figure 3: Accuracy on the banking77-filtered test
set for the Mini-DA approach (red line) compared to
the fully augmented dataset (green line at top) and
the original, unaugmented dataset (dotted green line
at bottom) across augmentation epochs. The bars
indicate the sum of total augmented data added to
the training set at each epoch.

Figure 4: Accuracy on the ECDT-NLU-2019 test set
for the Mini-DA approach (red line) compared to
the fully augmented dataset (green line at top) and
the original, unaugmented dataset (dotted green line
at bottom) across augmentation epochs. The bars
indicate the sum of total augmented data added to
the training set at each epoch.

Method Augment
Epoch

Number of
Augmented
Data added
to Training
sets

Average
ACC
on Test
set

No Augmentation 0 0.8052
Full Augmentation 2047 0.8641

Mini-
DA

1 372 0.8560
2 482 0.8664
3 516 0.8603
4 541 0.8551
5 573 0.8678
6 590 0.8560
7 603 0.8620
8 610 0.8528
9 628 0.8626

Table 1: Results of banking77-filter

Method Augment
Epoch

Number of
Augmented
Data added
to Training
sets

Average
ACC
on Test
set

No Augmentation 0 0.9050
Full Augmentation 2061 0.9213

Mini-
DA

1 180 0.9101
2 237 0.9140
3 253 0.9167
4 268 0.9202
5 281 0.9151
6 285 0.9170
7 296 0.9190
8 307 0.9140
9 311 0.9178

Table 2: Results of EDTC-NLU-2019

augment epoch, Mini-DA achieved its optimal per-
formance while a total of 573 training data points
were augmented, accounting for 28% of the train-
ing set. On the test set, the average ACC reached
86.78%, an improvement of 0.37% compared to
the average accuracy using the full augmented data.

On the EDTC-NLU-2019 dataset (shown by Fig-
ure 4), we observed similar phenomena. At the
fourth augment epoch, the average accuracy on the
test set reached 92.02%, which is only 0.11% lower
than the result obtained using the fully augmented
dataset (92.13%). However, at this point, Mini-DA
only augmented 13% of the training data, result-
ing in a reduction of 1793 GPT-3.5 Turbo requests
compared to the full data augmentation approach.

Through these experiments, we can observe that

for intent detection scenarios with low resources,
Mini-DA effectively combines two stages: fine-
tuning on the target model and data augmentation
using a LLM. By employing a cross-validation
approach to selectively augment difficult samples
from the validation set, Mini-DA avoids unneces-
sary augmentation of correctly predicted samples
in the training set, thereby reducing the cost of data
augmentation.

6 Conclusion

In this work, we present Mini-DA to efficiently
augment intent detection data with LLMs. We de-
sign a iterative LLMs-in-the-loop framework that
incorporates feedback from fine-tuning stage of tar-
get model to generate an augmented dataset. The
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results demonstrate that with as little as 13% of the
augmented data generated, we can achieve compa-
rable performance to full data augmentation on in-
tent detection task in data-limited scenarios. Over-
all, Mini-DA presents a promising solution for data
augmentation which significantly reducing compu-
tational costs and improving data efficiency.

For future work, our plan involves conducting
comprehensive experiments across various tasks,
including but not limited to question answering,
text generation, and text retrieval. We believe this
approach can be effective in improving model per-
formance across a wide range of tasks in a data-
efficient manner.
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1 Introduction

Large Language Models (LLMs) are highly ad-
vanced Artificial Intelligence (AI) systems capa-
ble of understanding, interpreting, and generating
languages. The integration of AI chatbots like
ChatGPT into our daily lives and businesses has
had a profound impact on both society and indus-
tries (Eloundou et al., 2023). However, the success
of GPTs/LLMs depends not only on their ability
to generate responses and perform tasks well but
also on their alignment with human values and
expectations.

The prevalent method for aligning AI/LLMs cur-
rently involves preference learning (PL) through
human feedback. However, gathering human feed-
back is slow and expensive and often results in
incomplete or imperfect data (Bai et al., 2022; Lee
et al., 2023). Furthermore, participants may inten-
tionally provide inaccurate or harmful feedback due
to malicious intentions, as pointed out by (Casper
et al., 2023). These factors can lead to unintended
consequences in estimating rankings from prefer-
ence datasets from models such as BTL. They pose
a considerable challenge in ensuring the integrity
and reliability of the preference datasets used for
aligning LLMs, especially when scaling up the
alignment process with large-scale responses and
participants.

Approaching the issues, we consider the fol-
lowing learning problem: Suppose there are 𝑛
responses we wish to order based on a notion of
comparison, between every pair of responses, with
probabilistic outcomes. Further, we are given a
set, ℵ = {(𝑖, 𝑗 , {𝑦𝑘𝑖 𝑗})}, consisting of 𝐾 indepen-
dent pairwise comparison outcomes, denoted by
{𝑦𝑘𝑖 𝑗} ∈ {0, 1}, 𝑘 ∈ [𝐾], between pairs of responses
(𝑖, 𝑗) ⊆ [𝑛] × [𝑛], a significant proportion of which
might be corrupted by an adversary.

In this passive learning setting, our contribu-
tions are as follows. We give a generic definition

Figure 1: CURATRON corrects incomplete and
adversarially corrupted preference data to improve
RLHF/DPO alignment results compared to using the
raw initial preference data.

of (additive) adversarial noise and show that if it
is not accounted for, the quality of the estimated
ranking can be quite poor. To address this, we de-
velop an efficient and correct ranking method called
Robust Preference Data for Rigorous Alignment
(RORATRON), which is robust against adversarial
noise. Under certain assumptions, we prove that
our method guarantees high-probability learnabil-
ity with a small margin of error. We also devise a
method called Complete Robust Preference Data for
Rigorous Alignment (CURATRON) to handle the
scenario where not all pairs are compared, and the
observed pairwise data is adversarially corrupted.

2 Related Work

LLM Alignment with PL from human feedback:
PL was initially developed to train agents in simu-
lated environments to perform nuanced behaviors
that are hard to define but easy to observe and recog-
nize (Christiano et al., 2017). It has recently been
found successful in aligning LLMs to human inten-
tions and values such as harmfulness, helpfulness,
factuality, and safety. Some of the methods of PL in
LLMs are RLHF (Ouyang et al., 2022), RLAIF (Bai
et al., 2022; Lee et al., 2023), DPO/𝜓PO (Rafailov
et al., 2023; Tunstall et al., 2023; Zhao et al., 2023),
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and SLiC-HF (Zhao et al., 2023).

Ranking Models: In the BTL model, item 𝑖
has an associated score 𝑤𝑖; then, the probabil-
ity that item 𝑖 is preferred over 𝑗 is given by
𝑃𝑖 𝑗 = 𝑒−𝑤𝑖/(𝑒−𝑤𝑖 + 𝑒−𝑤 𝑗 ) where w ∈ R𝑛 is the
BTL parameter vector to be estimated from data;
here, P ∈ R𝑛×𝑛 is called the ‘preference matrix’.
A closely related model, in the non-active setting,
is the recently proposed LR model (Rajkumar and
Agarwal, 2016) wherein a generic class of prefer-
ence matrices is characterized to be those having
low rank under transformations using certain func-
tions; specifically, for BTL-like models, the logit
function defined as 𝜓(𝑥) = log (𝑥/(1 − 𝑥)) turns
out to right choice as shown in their paper. However,
while their model accounts for missing information,
they do not consider the harder problem of handling
adversarial noise.

Robust Subspace Recovery: The Robust PCA
(RPCA) problem (Netrapalli et al., 2014) addresses
the following question: suppose we are given a data
matrix M which is the sum of an unknown low-rank
matrix L and an unknown sparse matrix S, can we
recover each of the component matrices? While
several works (Yi et al., 2016; Hsu et al., 2011) an-
alyze this problem, it is shown in (Netrapalli et al.,
2014) that, under information-theoretically tight
assumptions, a simple iterative algorithm based on
non-convex alternating projections of appropriate
residuals provably yields an 𝜖-accurate solution in
𝑂 (log(1/𝜖)) iterations with an overall computa-
tional complexity of 𝑂 (𝑛2𝑟2 log(1/𝜖)) where 𝑟 is
the rank of L. We will use this result, in particular,
to derive guarantees for our ranking problem.

3 Problem Setup
3.1 Notation
We denote the set of all permutations of 𝑛 LLM
responses/items as S𝑛. If not specifically defined,
we use lower-case letters for scalars, upper-case
letters for global constants, lower-case bold-face
letters for vectors and upper-case bold-face letters
for matrices; specifically, P denotes a preference
matrix. Let P𝑛 := {P ∈ [0, 1]𝑛×𝑛 |𝑃𝑖 𝑗 + 𝑃 𝑗𝑖 = 1}
denote the set of all pairwise preference matrices
over 𝑛 responses. Let the set of stochastic-transitive
matrices be P𝑆𝑇𝑛 := {P ∈ P𝑛 |𝑃𝑖 𝑗 > 1/2, 𝑃 𝑗𝑘 >
1/2 =⇒ 𝑃𝑖𝑘 > 1/2}. Let the set preference
matrices described by the BTL model be P𝐵𝑇𝐿𝑛 :=
{P ∈ P𝑛 |∃w ∈ R𝑛 s.t. 𝑒−𝑤𝑖/(𝑒−𝑤𝑖 + 𝑒−𝑤 𝑗 )}. Let

𝜓 : [0, 1] ↦→ R be a strictly increasing bĳective 𝐿-
Lipschitz function and define the class of low-rank
preference matrices with respect to𝜓 asP𝐿𝑅 (𝜓,𝑟 )𝑛 =
{P ∈ P𝑛 |rank(𝜓(P)) ≤ 𝑟} where 𝑟 ∈ [𝑛]; when
we apply such a transformation to a matrix, it is
applied entry-wise. In this paper, we take 𝜓 to be
the logit function.

For any matrix M ∈ R𝑛×𝑛, let the infin-
ity norm be denoted by ∥M∥∞ = max𝑖, 𝑗

��𝑀𝑖 𝑗 ��,
the Frobenius norm be denoted by ∥M∥𝐹 =√︃∑𝑛

𝑖=1
∑𝑛
𝑗=1 𝑀

2
𝑖 𝑗 , the spectral norm be denoted by

∥M∥2 = maxx,y∈R𝑛 x⊤My. Denoting the indicator
function by 1, define the zero norm of a matrix to be
the maximum number of non-zero elements in any
row/column, ie, ∥M∥0 = max(max 𝑗

∑𝑛
𝑖=1 1(𝑀𝑖 𝑗 ≠

0),max𝑖
∑𝑛
𝑗=1 1(𝑀𝑖 𝑗 ≠ 0)). Let the Singular Value

Decomposition (SVD) of a square matrix be given
by M = U𝚺V⊤ where U,V ∈ R𝑛×𝑟 are orthonor-
mal matrices (whose columns are singular vectors)
and 𝚺 ∈ R𝑟×𝑟 is the diagonal matrix of singu-
lar values. Now, M is said to be 𝜇-incoherent
if max

(
max𝑖

e⊤𝑖 U


2 ,max𝑖
e⊤𝑖 V


2

)
≤ 𝜇

√︁
𝑟/𝑛

where e𝑖 denotes the 𝑖𝑡ℎ basis vector in R𝑛. Also,
let 𝜎max := max𝑖 Σ𝑖𝑖 and 𝜎min := min𝑖 Σ𝑖𝑖 .

We define the distance between a permutation
𝜎 ∈ S𝑛 and a preference matrix P ∈ P𝑛 as:

dist(𝜎,P) :=
(
𝑛
2

)−1 ∑︁
𝑖< 𝑗

1
((𝑃𝑖 𝑗 > 1/2) ∧ (𝜎(𝑖) ≻ 𝜎( 𝑗)))

+
(
𝑛
2

)−1 ∑︁
𝑖< 𝑗

1
((𝑃 𝑗𝑖 > 1/2) ∧ (𝜎( 𝑗) ≻ 𝜎(𝑖)))

Note that the above loss function basically is the
number of pairs on which the ordering with respect
𝜎 and P differ divided by the number of ways to
choose two out of 𝑛 responses. Finally, let 𝑃min =
min𝑖≠ 𝑗 𝑃𝑖 𝑗 and Δ = min𝑖≠ 𝑗

��𝜓(𝑃𝑖 𝑗) − 𝜓(1/2)��.
3.2 Characterization of the Adversary
The following (weak) assumption characterizes the
properties of the adversary.
Assumption 1. The (additive) adversarial noise
which corrupts a 𝜇-incoherent preference matrix
P ∈ P𝐿𝑅 (𝜓,𝑟 )𝑛 is modeled by a skew-symmetric
sparse matrix S so that the corrupted preference
matrix Pc ∈ P𝑛 is given by Pc = P + S. We assume
the (deterministic) bounded degree condition that
∥S∥0 ≤ 𝑑 < 𝑛 such 𝑑 < 𝑛/512𝜇2𝑟 where 𝑟 ≤ 𝑛.
So, why do existing non-robust algorithms not re-
cover the true response ordering in the presence
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of an adversarial noise source? This question is
answered by the following proposition, which pre-
cisely quantifies how bad a ranking could be when
an algorithm uses the corrupted pairwise preference
matrix. The key idea is to construct an adversary
that intentionally flips true comparison results.
Claim 1 (Upper bound on estimation error).
Under Assumption 1 it is possible that dist(�̂�,Pc) =
𝑂 (1).
Proof. Assume that we are exactly given the entries
of the preference matrix as opposed to sampling
them. Note that in order to estimate a ranking from
a given preference matrix, we still need to use a
pairwise ranking procedure. Let �̂� ∈ S𝑛 be the
output of any Pairwise Ranking (PR) procedure with
respect to an underlying preference matrix Q ∈ P𝑛.
For a constant 𝛾 > 1, �̂� is said to be 𝛾-approximate
if dist(�̂�,Q) ≤ 𝛾min𝜎∈S𝑛 dist(𝜎,Q). Define the
following distance which measures the fraction of
response pairs over which two preference matrices
{Q,R} ∈ P𝑛 disagree.

dist(Q,R) :=
(
𝑛
2

)−1 ∑︁
𝑖< 𝑗

1
((𝑄𝑖 𝑗 > 1/2) ∧ (𝑅𝑖 𝑗 < 1/2))

+
(
𝑛
2

)−1 ∑︁
𝑖< 𝑗

1
((𝑄𝑖 𝑗 < 1/2) ∧ (𝑅𝑖 𝑗 > 1/2))

By Lemma 20 of (Rajkumar and Agarwal, 2016),
for Q ∈ P𝑆𝑇𝑛 and R ∈ P𝑛, we have dist(�̂�,Q) ≤
(1 + 𝛾) dist(Q,R). But note that it is possible that
dist (Q,R) = 1 as it is easy to construct by R that
disagrees with Q in every entry by simply setting
R = Q⊤. Now, we may set Q = P and R = Pc for
any algorithm that uses Pc for ranking; specifically,
for the adversary satisfying Assumption 1, we can
see by a direct counting argument that dist (Q,R) ≤
𝑑 (2𝑛−1−𝑑)
𝑛(𝑛−1) which proves the claim. □

4 Fully Observed Adversarial Setting
4.1 Algorithm
We present our main algorithm for robust passive
ranking from pairwise comparisons in the presence
of adversarial noise in Algorithm 1. The input data
consist of the set of pairwise comparison results
ℵ = {(𝑖, 𝑗 , {𝑦𝑘𝑖 𝑗})}, (𝑖, 𝑗) ∈ [𝑛] × [𝑛], 𝑘 ∈ [𝐾],
𝑦𝑘𝑖 𝑗 ∈ {0, 1}. The algorithm assumes the true rank
of 𝜓(P) as an input parameter; specifically, for the
BTL model, we set 𝑟 = 2. Algorithm 1 calls the
Robust PCA and 𝛾-approximate pairwise ranking
procedures.

Algorithm 1 RORATRON: Robust Preference Data
for Rigorous Alignment
Input: Comparison dataset ℵ = { (𝑖, 𝑗 , {𝑦𝑘𝑖 𝑗 }) }, true rank 𝑟 .
Output: Ranking of 𝑛 responses, �̂� ∈ S𝑛 .
1: Estimate entries of P̂ for 𝑖 ≤ 𝑗 as:

𝑃𝑖 𝑗 =

{
1
𝐾

∑𝐾
𝑘=1 𝑦

𝑘
𝑖 𝑗 if 𝑖 < 𝑗

1/2 if 𝑖 = 𝑗

2: Set 𝑃𝑖 𝑗 = 1 − 𝑃𝑗𝑖 for all 𝑖 > 𝑗.
3: Perform robust PCA: {𝜓 (P) , Ŝ} ← RPCA(𝜓 (P̂) , 𝑟 ) .
4: Using a pairwise ranking procedure after taking the inverse transform:

�̂� ← PR(P) .
5: return �̂�.

4.2 Analysis
We begin with a useful short result followed by the
statement and the proof of our main result that, with
high probability, we achieve 𝜖–accurate ranking
in polynomial time using polynomial number of
samples, despite the presence of adversarial noise.
In this context, it is noteworthy that we present
the result for LR models which strictly contain the
BTL model while being much more general (Rajku-
mar and Agarwal, 2016); upon proving this result,
we specialize it to the classic BTL model as well
(Corollary 1).
Lemma 1 (Some properties of the logit function).
Let 𝑎, 𝑏, 𝑐 ∈ (0, 1) such that 𝑐 = 𝑎 + 𝑏. Then, we
have,

1. 𝜓(𝑐) = 𝜓(𝑎) + 𝜓(𝑎 + 𝑏) + 𝜓(1 − 𝑎)
2. 𝜓(𝑎) + 𝜓(1 − 𝑎) = 0.

Proof. Both follow by using the definition of the
logit function that 𝜓(𝑎) = log(𝑎/(1−𝑎)) and using
the property that log(𝑎𝑏) = log(𝑎) + log(𝑏). □

Theorem 1 (Provably good estimation of rank-
ing in LR models in the presence of adversar-
ial noise). Let P ∈ P𝐿𝑅 (𝜓,𝑟 )𝑛 be the true prefer-
ence matrix according to which the pairwise com-
parison dataset ℵ = {(𝑖, 𝑗 , {𝑦𝑘𝑖 𝑗})} is generated
for all responses pairs (𝑖, 𝑗) such that 𝑘 ∈ [𝐾].
Let P̂ be the empirical preference matrix com-
puted using ℵ. Let S ∈ [0, 1]𝑛×𝑛 be the adver-
sarial matrix that additively corrupts P̂. Let 𝜓
be 𝐿-Lipschitz in [ 𝑃min

2 , 1 − 𝑃min
2 ] and 𝜓(P) be

𝜇-incoherent. Let each pair be compared indepen-
dently𝐾 ≥ 16384𝜇2(1+𝛾)𝐿2𝑛2 log2(𝑛)/𝜖Δ2 times
where Δ = min𝑖≠ 𝑗

��𝜓(𝑃𝑖 𝑗) − 𝜓(1/2)��. Then, with
probability atleast 1−1/𝑛3, Algorithm 1 returns an
estimated permutation �̂� such that dist(�̂�,P) ≤ 𝜖 .
Remark 1 (Computational complexity). In Al-
gorithm 1, Step 1 takes 𝑂 (𝑛2𝐾) = 𝑂 (𝑛4 log2 𝑛/𝜖)
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time, Step 3 takes 𝑂 (𝑛2𝑟2 log(1/𝜖)), and Step 4
takes 𝑂 (𝑛2 + 𝑛 log 𝑛) time. Thus, putting together
the cost of these main steps, the overall computa-
tional complexity of our robust ranking algorithm
for P ∈ P𝐿𝑅 (𝜓,𝑟 )𝑛 is 𝑂 (𝑛4 log2 𝑛/𝜖).
Remark 2 (Identifying adversarially corrupted
pairwise comparisons). From Step 3 of Algo-
rithm 1, using Theorem 2 of (Netrapalli et al., 2014),
we also have Supp(Ŝ) ⊆ Supp(S) and thus we can
identify the corrupted pairwise comparison results.

Proof. Let 𝑃𝑖 𝑗 be the empirical probability estimate
of 𝑃𝑖 𝑗 . Note that we compute 𝑃𝑖 𝑗 = 1

𝐾

∑𝐾
𝑘=1 𝑦

𝑘
𝑖 𝑗

from the given pairwise comparison dataset, ℵ =
{(𝑖, 𝑗 , {𝑦𝑘𝑖 𝑗})}. Now, P̂ = P̃ + S. By Lemma 1,
we may write the adversarially corrupted empirical
probability estimate as 𝜓(P̂) = 𝜓(P̃) + S̃ where
S̃ = 𝜓(P̃+S) +𝜓(1−P̃). We have 𝜓(P̃) = 𝜓(P) +Ñ
where Ñ = 𝜓(P̃) − 𝜓(P). Now, this noise, Ñ, is
purely due to finite-sample effects which can be
controlled (using concentration arguments given in
the inequality 𝜉3 below) by driving it down to as
small a value as we want by ensuring large enough
number of comparisons for each pair. Note that we
input 𝜓(P̂) = 𝜓(P) + S̃ + Ñ to Subroutine ?? and
obtain 𝜓(P) as the output in Step 3 of Algorithm 1.
Hence, using Theorem 2 from (Netrapalli et al.,
2014), if

Ñ
∞
≤ 𝜎min(𝜓(P))/100𝑛, we have,

∥𝜓 (P)−𝜓 (P)∥𝐹 ≤ 𝜖 ′+2𝜇2𝑟(7∥Ñ∥2+ 8𝑛
𝑟 ∥Ñ∥∞)

after 𝑇 ≥ 10 log(3𝜇2𝑟𝜎1/𝜖 ′) iterations associated
with Subroutine RPCA. Next, we have, with proba-
bility at least 1 − 1/𝑛3,

∥𝜓 (P)−𝜓 (P)∥𝐹 ≤ 𝜖 ′ + 2𝜇2𝑟

(
7
Ñ

2
+ 8𝑛
𝑟

Ñ
∞

)
𝜉1≤ 𝜖 ′ + 32𝜇2𝑛

Ñ
2

𝜉2≤ 𝜖 ′ + 32𝜇2𝑛𝜏

𝜉3≤ 𝑛
√︂

𝜖

1 + 𝛾
Δ
2

where 𝜉1 follows by using 𝑟 ≤ 𝑛 and
Ñ

∞
≤
Ñ

2
,

𝜉2 follows by substituting for Ñ from Lemma 2
with 𝐾 ≥ 𝐿2𝑛2 log2 𝑛

𝜏2 , and 𝜉3 is obtained using 𝜖 ′ =

𝑛
√︃

𝜖
1+𝛾

Δ
4 , 𝜏 = min

(
𝜎min(𝜓(P))/100,

√︃
𝜖

1+𝛾
Δ

128𝜇2

)
.

Then using similar arguments as proof of Theorem
13 in (Rajkumar and Agarwal, 2016), we obtain our
result. □

Lemma 2 (Concentration of sampling noise). Un-
der the conditions of Theorem 1, let each response

pair be compared such that the number of com-
parisons per response pair is 𝐾 ≥ 𝐿2𝑛2 log(𝑛)

𝜏2 ; with
probability at least 1 − 1/𝑛3,

Ñ
2
≤ 𝜏.

Proof. Let 𝐿 be the Lipschitz constant of 𝜓 and set
𝐾 ≥ 𝐿2𝑛2 log(𝑛)

𝜏2 . Using the inequality that
Ñ

2
≤

𝑛
Ñ

∞
,

Pr(∥Ñ∥2≥𝜏) ≤ Pr
(Ñ

∞
≥ 𝜏
𝑛

)
= Pr

(
∃(𝑖, 𝑗) :

���𝜓(𝑃𝑖 𝑗) − 𝜓(𝑃𝑖 𝑗)��� ≥ 𝜏
𝑛

)
≤
∑︁
𝑖, 𝑗

Pr
(���𝜓(𝑃𝑖 𝑗) − 𝜓(𝑃𝑖 𝑗)��� ≥ 𝜏

𝑛

)

≤
∑︁
𝑖, 𝑗

Pr
(���𝑃𝑖 𝑗 − 𝑃𝑖 𝑗 ��� ≥ 𝜏

𝑛𝐿

)
≤ 1
𝑛3

□

Next, for completeness, we recall the following
lemma (proved in Theorem 8 and Lemma 14 of
(Rajkumar and Agarwal, 2016)) which characterizes
the incoherence constant 𝜇 of P ∈ (P𝐿𝑅 (𝜓,2)𝑛 ∩
P𝑆𝑇𝑛 ) in Assumption 1.

Lemma 3 (Incoherence of BTL and LR models).
We have P ∈ (P𝐿𝑅 (𝜓,2)𝑛 ∩ P𝑆𝑇𝑛 ) if and only if
𝜓(P) = uv⊤ − vu⊤ for u ∈ R𝑛+ and v ∈ R𝑛 where
u⊤v = 0. Moreover, 𝜓(P) is 𝜇-incoherent where

𝜇 =
√︁
𝑛
2

(
𝑢2

max
𝑢2

min
+ 𝑣2

max
𝑣2

max

)1/2
where 𝑢min = min𝑖 |𝑢𝑖 |,

𝑢max = max𝑖 |𝑢𝑖 |, 𝑣min = min𝑖 |𝑣𝑖 | and 𝑣max =
min𝑖 |𝑣𝑖 |. We also haveP𝐵𝑇𝐿𝑛 ⊂ (P𝐿𝑅 (𝜓,2)𝑛 ∩P𝑆𝑇𝑛 )
since we may set u = 1 where 1 is the all-ones vector
and v = w where w is the BTL parameter vector. In
this case, we may rewrite 𝜇 =

√︁
𝑛
2

(
1 + (𝑤max−𝑤)2

(𝑤min−𝑤)2
)

where 𝑤 = 1
𝑛

∑𝑛
𝑖=1 𝑤𝑖 .

The following corollary makes precise our claim
that up to 𝑂 (𝑛2) response pairs may be subject
to adversarial corruption, but our RORATRON
algorithm still recovers a good ranking.

Corollary 1 (Recovery result for BTL model).
Consider P ∈ P𝐵𝑇𝐿𝑛 . Using Assumption 1, let
the adversarial matrix be S ∈ [0, 1]𝑛×𝑛 satisfying
∥S∥0 ≤ 𝑛/1024𝜇2 where 𝜇 is characterized as in
Lemma 3. Then, with probability 1 − 1/𝑛3, the
output of Algorithm 1 with input P̂ computed using
ℵ = {(𝑖, 𝑗 , {𝑦𝑘𝑖 𝑗})} satisfies and 𝑟 = 2, dist(�̂�,P) ≤
𝜖 .
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Algorithm 2 CURATRON: Complete Robust
Preference Data for Rigorous Alignment
Input: Comparison dataset ℵ = { (𝑖, 𝑗 , {𝑦𝑘𝑖 𝑗 }) }, true rank 𝑟 .
Output: Ranking of 𝑛 responses, �̂� ∈ S𝑛 .
1: Estimate entries of P̂ for 𝑖 ≤ 𝑗 as:

𝑃𝑖 𝑗 =




1
𝐾

∑𝐾
𝑘=1 𝑦

𝑘
𝑖 𝑗 if 𝑖 < 𝑗 and (𝑖, 𝑗 ) ∈ Ω

1/2 if 𝑖 = 𝑗 and (𝑖, 𝑗 ) ∈ Ω
1/2 if (𝑖, 𝑗 ) ∉ Ω

2: Set 𝑃𝑖 𝑗 = 1 − 𝑃𝑗𝑖 for all 𝑖 > 𝑗.
3: Set R← OptSpace(𝜓 (P̂)Ω ) .
4: Use a robust PCA procedure: 𝜓 (P) ← RPCA(R) .
5: Using a pairwise ranking procedure after taking the inverse transform:

�̂� ← PR(P) .
6: return �̂�.

5 Partially Observered Adversarial
Setting

In this section, we consider the partially observed
and adversarially corrupted comparison results set-
ting. Both factors can be modeled in a unified
manner by setting the corresponding missing en-
tries of the preference matrix to zero (or a specific
constant to account for numerical stability). We
present our robust ranking algorithm for this setting
in Algorithm 2 – this essentially involves using the
‘OptSpace’ matrix completion algorithm of (Kesha-
van et al., 2010) followed by using the robust PCA
algorithm of (Netrapalli et al., 2014) as sub-routines.
We now derive the recovery guarantees as follows.

Theorem 2 (Provably good estimation of ranking
in BTL model in the presence of adversarial
noise as well as missing data). Consider a similar
notation as in Theorem 1 but let P ∈ P𝐵𝑇𝐿𝑛 . Let
Ω ⊆ [𝑛] × [𝑛] be a set of compared response pairs.
Assume Ω is drawn uniformly from all subsets of
[𝑛] × [𝑛] of size |Ω| such that |Ω| ≥ 𝐶′′𝑛 log(𝑛)
and let the sparse noise satisfy ∥S∥∞ ≤ Δ𝑤

log(𝑛)
𝐶Δ𝑛

where Δ𝑤 := min𝑖, 𝑗
��𝑤𝑖 − 𝑤 𝑗 ��. Let the number of

comparisons per pair be 𝐾 ≥ 𝑐𝑛4/Δ𝑤 . Then with
probability at least 1 − 2/𝑛3, Algorithm 2 returns a
ranking that satisfies dist(�̂�,P) ≤ 𝜖 .
Remark 3 (Robust Estimation of BTL Model
in the Partially Observed Case). For the BTL
model, Theorem 2 says 𝑂 (𝑛 log 𝑛) pairs suffice to
estimate the BTL model, which matches bounds
from (Rajkumar and Agarwal, 2016). Further, even
in this incomplete comparison data case, we are
able to tolerate uniformly random additive sparse
noise with its maximum absolute entry scaling as
the order of the BTL ‘score-gap’ divided by the
number of responses up to logarithmic factors, ie,

𝑂 (Δ𝑤/𝑛).
Proof. From Lemma 3, we have𝜓(P) = 1w⊤−w1⊤
for the BTL model where 𝜓 is the logit function.
Clearly, in this case, 𝜓(P) is a real skew-symmetric
matrix of rank 𝑟 = 2. Since it is skew-symmetric, its
eigenvalues, which are the roots of its charateristic
polynomial, are of the form ±𝜆𝑖 for some 𝜆 ∈ R and
𝑖 =
√
−1, and hence, 𝜎min(𝜓(P)) = 𝜎max(𝜓(P)),

ie, the condition number of 𝜓(P), 𝜅 = 1. Now, we
recall the spectral-lower bound from Corollary 2 of
(Horne, 1997),

𝜎min (𝜓 (P) ) ≥
∥𝜓 (P) ∥𝐹√
𝑟 (𝑟−1)

≥
√︂
𝑛(𝑛−1)

2 Δ𝑤 (1)

where Δ𝑤 = min𝑖, 𝑗
��𝑤𝑖 − 𝑤 𝑗 ��.

Let Ω ⊆ [𝑛] × [𝑛] be a subset of all the re-
sponse pairs with comparison results among which
some might be corrupted by sparse noise, ie,
𝜓(P̂Ω) = 𝜓(PΩ) + S̃Ω + ÑΩ. Let T := S̃Ω + ÑΩ.
From Theorem 1.2 of (Keshavan et al., 2010),
we have 1

𝑛

𝜓(P̂) − 𝜓(P)
𝐹

= 1
𝑛 ∥T +M∥𝐹 ≤

𝐶𝜅2 𝑛
√
𝑟
|Ω | ∥T∥2 where M is the noise matrix after

obtaining the completed matrix 𝜓(P̂) from 𝜓(P̂Ω)
using OptSpace. Using triangle inequality and
noting that |Ω| ≥ 𝐶′′𝑛 log(𝑛), the noise may be
bounded as

∥ÑΩ+M∥∞ ≤
ÑΩ +M


𝐹
≤ ∥T∥2

√
2𝐶𝑛2

|Ω| +
S̃Ω


𝐹

𝜁1≤ 𝐶′ 𝑛

log(𝑛)
S̃Ω


2

(2)

where 𝐶, 𝐶′ and 𝐶′′ are constants and 𝜁1 is ob-
tained by using the triangle inequality that ∥T∥2 ≤S̃Ω


2
+
ÑΩ


2
, followed by setting 𝐾 ≥ 𝑐𝑛4/Δ𝑤

for constant 𝑐 and finally using
S̃Ω


𝐹
≤ √𝑛

S̃Ω


2
.

Then, combining Equations 2 and 1, we have if
log(𝑛)
𝐶Δ𝑛

Δ𝑤 ≥
S̃Ω


2
=
𝜓(P̂) − 𝜓(P̃)

2

≥
𝜓(P̂) − 𝜓(P̃)

∞
≥ 𝐿

P̂ − P̃

∞
≥ ∥S∥∞

where 𝐶Δ is a global constant and using Lemma 2,
then we have the guarantee (along similar lines
as that of Theorem 1 that Algorithm 2 returns an
estimated permutation which satisfies dist(�̂�,P) ≤
𝜖 . □

6 Experiments
We now perform simulations in order to understand
the performance of our robust ranking approach
in practice in both general and LLM preference
dataset settings.
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6.1 Performance of Robust Ranking in LLM
Preference Dataset

In this illustrative experiment, from the MT-Bench
dataset (Zheng et al., 2023), we collect the data
of the first prompt “Compose an engaging travel
blog post about a recent trip to Hawaii, highlight-
ing cultural experiences and must-see attractions"
and its six responses from GPT-3.5, GPT-4 (Ope-
nAI et al., 2023), Claude-v1 (Anthropic, 2023),
Vicuna-13B (Chiang et al., 2023), Alpaca-13B
(Taori et al., 2023), and LLaMA-13B (Touvron et al.,
2023a). Additionally, we generated nine responses
to the same prompt using Llama-2-70B-chat-hf
(Touvron et al., 2023b), Falcon-180B-chat (Al-
mazrouei et al., 2023), Openchat-3.5 (Wang et al.,
2023), Mixtral-8x7B-Instruct-v0.1 (Jiang
et al., 2024), Mistral-7B-Instruct-v0.2
(Jiang et al., 2023), Gemini-pro (Gemini
et al., 2023), Dolphin-2.2.1-mistral-7B
(Hartford, 2023), Solar-10.7B-instruct-v1.0
(Kim et al., 2023), Yi-34B-chat (01.ai, 2023)
from Hugging Face’s HuggingChat (Hugging Face,
2023) and LMSYS’s Chatbot Arena (Zheng et al.,
2023). So we have 𝑛 = 15 responses.

Next, we rank the responses using OpenAI’s GPT-
4 Turbo GPT-4-1106-preview (OpenAI et al.,
2023). This ranking helps us create the BTL param-
eter vector w. We then sort this vector descendingly
for visually accessible when building the corre-
sponding preference matrix P ∈ R𝑛×𝑛. With

(𝑛
2
)

comparisons in P, we randomly remove entries
based on a specified deletion probability parameter,
𝑑𝑝, to simulate unobserved comparisons. We then
create an adversarial skew-symmetric sparse matrix,
S, using the given matrix P and an adversarial cor-
ruption probability parameter 𝑎𝑝. When corruption
is applied, it involves randomly selecting a value
from 𝑈 (−5, 5) and then adding to the P to give
P𝑐, which then becomes the input of our algorithm.
It’s important to note that P is a skew-symmetric
matrix, any corruption must be applied to both 𝑖 𝑗
and 𝑗𝑖 values.

Our experiment results visualized in Figure 2
show that 𝑑𝑝 = 10% and 𝑎𝑝 = 10% can signifi-
cantly affect the ranking of different models and
the rank of the matrix when performing logit link
transformation. The ranking can get altered quite
badly when compared to the original matrix. Also,
the logit link transformation of the corrupted matrix
is high-rank, which indicates that there are noises
in the matrix. By using CURATRON to impute the

missing comparisons and filter out the noisy sparse
matrix, we successfully reconstruct the original
matrix, which is low-rank when in logit link trans-
formed form. As a result, we obtain the correct
ranking. We also obtain noisy comparisons that
can be used to identify responders with malicious
intent and prevent them from continuing to alter
results.

We now examine how our algorithm performs
across different levels of unobserved and adversar-
ially corrupted comparisons. In the plots shown
in Figure 3, we compare the performance of our
approach by varying two parameters, 𝑑𝑝 and 𝑎𝑝.
We use normalized Frobenius error, correlation,
and ranking distance as evaluation metrics. Our
results are averaged over 5 runs. When there is
no adversarial noise, we can recover the original
P with no normalized Frobenius error and perfect
correlation and ranking, even if 50% of the compar-
ison data was missing. This suggests that we may
not need to collect all comparisons from humans
to obtain the entire data. We observe that, with
𝑛 = 15, we only need to obtain about 50 − 55%
of the 105 comparisons and fill in the rest with
our algorithm to achieve a strict 0% NFE, perfect
correlation, and ranking. On the other hand, when
missing data is absent, our algorithm performs well
with NFE of approximately 6%, even when 35%
of the comparison data is adversarially corrupted.
When both adversarial noise and missing data are
present, we can achieve a low NFE of around 4%
when both 15% of the comparison data is missing
and 15% of adversarially corrupted comparisons
(30% in total) affect P.

Figure 2: Left: Original matrix. Middle: corrupted
matrix. Right: reconstructed matrix. The corrupted
matrix has 10% adversarial corruptions and 10% of
unobserved comparisons. We use our CURATRON algo-
rithm to successfully recover the original matrix.

36



Figure 3: Average over 5 runs of reconstruction error,
correlation, and distance between reconstructed ranking
and original ranking for different percentages of unob-
served and adversarial comparisons.

7 Conclusion

Our study examines how missing information and
distorted feedback can impact LLMs, potentially
compromising their performance in terms of align-
ment with human values. We have proposed a
robust algorithm for provably correct and efficient
ranking responses in the BTL, LR, and general
binary choice models. This robust ranking data is
then input in the PL step. Further, we also handled
the partially observed setting, wherein only some
response pairs are compared, by integrating matrix
completion techniques into our robust learning al-
gorithm. In all cases, we provided statistical and
computational guarantees using novel techniques.
Through our comprehensive analysis, we hope to
contribute to the ongoing discussion on AI safety
by helping to create and scale LLMs/AGI mod-
els that align with human values and expectations.
Some future research directions include tightening
the recovery results for partially observed settings
under weaker conditions (possibly using noisy-case
extensions of (Yi et al., 2016)), exploring other
notions of adversarial noise, and understanding the
minimax optimal rates for ranking estimators un-
der various noise models. We also plan to study
the parametric non-active pairwise ranking setting,
studying lower bounds and practical algorithms in
the active setting similar to (Heckel et al., 2016).
Furthermore, it would be interesting to investigate
whether we can extend this approach to solve the
entity corruption problem in retrieval models, as
shown in (Naresh et al., 2022). Another research
direction could be defining an alignment framework

that expands DPO to various objective functions
based on Rank Centrality (Negahban et al., 2017).
Finally, we aim to examine the relationship between
robust PL and model capacity, as this can shed light
on the trade-offs between model complexity and
generalization performance.
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