@inproceedings{giarelis-etal-2024-unified,
title = "A Unified {LLM}-{KG} Framework to Assist Fact-Checking in Public Deliberation",
author = "Giarelis, Nikolaos and
Mastrokostas, Charalampos and
Karacapilidis, Nikos",
editor = "Hautli-Janisz, Annette and
Lapesa, Gabriella and
Anastasiou, Lucas and
Gold, Valentin and
Liddo, Anna De and
Reed, Chris",
booktitle = "Proceedings of the First Workshop on Language-driven Deliberation Technology (DELITE) @ LREC-COLING 2024",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.delite-1.2",
pages = "13--19",
abstract = "Fact-checking plays a crucial role in public deliberation by promoting transparency, accuracy, credibility, and accountability. Aiming to augment the efficiency and adoption of current public deliberation platforms, which mostly rely on the abilities of participants to meaningfully process and interpret the associated content, this paper explores the combination of deep learning and symbolic reasoning. Specifically, it proposes a framework that unifies the capabilities of Large Language Models (LLMs) and Knowledge Graphs (KGs), and reports on an experimental evaluation. This evaluation is conducted through a questionnaire asking users to assess a baseline LLM against the proposed framework, using a series of fact-checking metrics, namely readability, coverage, non-redundancy, and quality. The experimentation results are promising and confirm the potential of combining the capabilities of these two technologies in the context of public deliberation and digital democracy.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="giarelis-etal-2024-unified">
<titleInfo>
<title>A Unified LLM-KG Framework to Assist Fact-Checking in Public Deliberation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nikolaos</namePart>
<namePart type="family">Giarelis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Charalampos</namePart>
<namePart type="family">Mastrokostas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikos</namePart>
<namePart type="family">Karacapilidis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Language-driven Deliberation Technology (DELITE) @ LREC-COLING 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Annette</namePart>
<namePart type="family">Hautli-Janisz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriella</namePart>
<namePart type="family">Lapesa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucas</namePart>
<namePart type="family">Anastasiou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Valentin</namePart>
<namePart type="family">Gold</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="given">De</namePart>
<namePart type="family">Liddo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Reed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Fact-checking plays a crucial role in public deliberation by promoting transparency, accuracy, credibility, and accountability. Aiming to augment the efficiency and adoption of current public deliberation platforms, which mostly rely on the abilities of participants to meaningfully process and interpret the associated content, this paper explores the combination of deep learning and symbolic reasoning. Specifically, it proposes a framework that unifies the capabilities of Large Language Models (LLMs) and Knowledge Graphs (KGs), and reports on an experimental evaluation. This evaluation is conducted through a questionnaire asking users to assess a baseline LLM against the proposed framework, using a series of fact-checking metrics, namely readability, coverage, non-redundancy, and quality. The experimentation results are promising and confirm the potential of combining the capabilities of these two technologies in the context of public deliberation and digital democracy.</abstract>
<identifier type="citekey">giarelis-etal-2024-unified</identifier>
<location>
<url>https://aclanthology.org/2024.delite-1.2</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>13</start>
<end>19</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Unified LLM-KG Framework to Assist Fact-Checking in Public Deliberation
%A Giarelis, Nikolaos
%A Mastrokostas, Charalampos
%A Karacapilidis, Nikos
%Y Hautli-Janisz, Annette
%Y Lapesa, Gabriella
%Y Anastasiou, Lucas
%Y Gold, Valentin
%Y Liddo, Anna De
%Y Reed, Chris
%S Proceedings of the First Workshop on Language-driven Deliberation Technology (DELITE) @ LREC-COLING 2024
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F giarelis-etal-2024-unified
%X Fact-checking plays a crucial role in public deliberation by promoting transparency, accuracy, credibility, and accountability. Aiming to augment the efficiency and adoption of current public deliberation platforms, which mostly rely on the abilities of participants to meaningfully process and interpret the associated content, this paper explores the combination of deep learning and symbolic reasoning. Specifically, it proposes a framework that unifies the capabilities of Large Language Models (LLMs) and Knowledge Graphs (KGs), and reports on an experimental evaluation. This evaluation is conducted through a questionnaire asking users to assess a baseline LLM against the proposed framework, using a series of fact-checking metrics, namely readability, coverage, non-redundancy, and quality. The experimentation results are promising and confirm the potential of combining the capabilities of these two technologies in the context of public deliberation and digital democracy.
%U https://aclanthology.org/2024.delite-1.2
%P 13-19
Markdown (Informal)
[A Unified LLM-KG Framework to Assist Fact-Checking in Public Deliberation](https://aclanthology.org/2024.delite-1.2) (Giarelis et al., DELITE 2024)
ACL