@inproceedings{anastasiou-de-liddo-2024-hybrid,
title = "A Hybrid Human-{AI} Approach for Argument Map Creation From Transcripts",
author = "Anastasiou, Lucas and
De Liddo, Anna",
editor = "Hautli-Janisz, Annette and
Lapesa, Gabriella and
Anastasiou, Lucas and
Gold, Valentin and
Liddo, Anna De and
Reed, Chris",
booktitle = "Proceedings of the First Workshop on Language-driven Deliberation Technology (DELITE) @ LREC-COLING 2024",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.delite-1.6",
pages = "45--51",
abstract = "In order to overcome challenges of traditional deliberation approaches that often silo information exchange between synchronous and asynchronous modes therefore hindering effective deliberation, we present a hybrid framework combining Large Language Models (LLMs) and human-in-the-loop curation to generate argument maps from deliberation transcripts. This approach aims to enhance the efficiency and quality of the generated argument maps, promote transparency, and connect the asynchronous and synchronous deliberation modes. Finally, we outline a realistic deliberation scenario where this process can be successfully integrated.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="anastasiou-de-liddo-2024-hybrid">
<titleInfo>
<title>A Hybrid Human-AI Approach for Argument Map Creation From Transcripts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lucas</namePart>
<namePart type="family">Anastasiou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">De Liddo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Language-driven Deliberation Technology (DELITE) @ LREC-COLING 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Annette</namePart>
<namePart type="family">Hautli-Janisz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriella</namePart>
<namePart type="family">Lapesa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucas</namePart>
<namePart type="family">Anastasiou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Valentin</namePart>
<namePart type="family">Gold</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="given">De</namePart>
<namePart type="family">Liddo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Reed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In order to overcome challenges of traditional deliberation approaches that often silo information exchange between synchronous and asynchronous modes therefore hindering effective deliberation, we present a hybrid framework combining Large Language Models (LLMs) and human-in-the-loop curation to generate argument maps from deliberation transcripts. This approach aims to enhance the efficiency and quality of the generated argument maps, promote transparency, and connect the asynchronous and synchronous deliberation modes. Finally, we outline a realistic deliberation scenario where this process can be successfully integrated.</abstract>
<identifier type="citekey">anastasiou-de-liddo-2024-hybrid</identifier>
<location>
<url>https://aclanthology.org/2024.delite-1.6</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>45</start>
<end>51</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Hybrid Human-AI Approach for Argument Map Creation From Transcripts
%A Anastasiou, Lucas
%A De Liddo, Anna
%Y Hautli-Janisz, Annette
%Y Lapesa, Gabriella
%Y Anastasiou, Lucas
%Y Gold, Valentin
%Y Liddo, Anna De
%Y Reed, Chris
%S Proceedings of the First Workshop on Language-driven Deliberation Technology (DELITE) @ LREC-COLING 2024
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F anastasiou-de-liddo-2024-hybrid
%X In order to overcome challenges of traditional deliberation approaches that often silo information exchange between synchronous and asynchronous modes therefore hindering effective deliberation, we present a hybrid framework combining Large Language Models (LLMs) and human-in-the-loop curation to generate argument maps from deliberation transcripts. This approach aims to enhance the efficiency and quality of the generated argument maps, promote transparency, and connect the asynchronous and synchronous deliberation modes. Finally, we outline a realistic deliberation scenario where this process can be successfully integrated.
%U https://aclanthology.org/2024.delite-1.6
%P 45-51
Markdown (Informal)
[A Hybrid Human-AI Approach for Argument Map Creation From Transcripts](https://aclanthology.org/2024.delite-1.6) (Anastasiou & De Liddo, DELITE 2024)
ACL