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Abstract
We use query results from manually designed corpus queries for fine-tuning an LLM to identify argumentative
fragments as a text mining task. The resulting model outperforms both an LLM fine-tuned on a relatively large
manually annotated gold standard of tweets as well as a rule-based approach. This proof-of-concept study
demonstrates the usefulness of corpus queries to generate training data for complex text categorisation tasks,
especially if the targeted category has low prevalence (so that a manually annotated gold standard contains only a
small number of positive examples).
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1. Introduction

Gaining an empirical overview of arguments, sen-
timents, and desires voiced in public discourse is
an important prerequisite in technological support
for deliberation. Social media have become an
increasingly important platform for such publicly
voiced opinions, but the automated extraction of
computer-mediated natural argumentation is chal-
lenging due to the disconnectedness of the state-
ments encountered and the broad variation in their
linguistic expression. We work at the boundary of
natural language processing, corpus linguistics, ar-
gumentation mining, and reasoning in an approach
where we use interactively designed corpus queries
to capture expressions of relevant phenomena with
high precision in a corpus of tweets. In the present
contribution, we focus on the possibility of exploit-
ing query matches as training data to fine-tune an
LLM, allowing us to increase recall of the queries
with only a small loss in precision.

1.1. Related Work
We illustrate our approach to finding argumentative
fragments with the running example of expressions
of desire. The end goal is a formal representa-
tion of argumentative statements, leveraging the
power of automated reasoners to aid in the diffi-
cult task of reconstructing implicit reasoning steps
(Boltužić and Šnajder, 2016) and connections be-
tween statements (Budzynska and Reed, 2011).
The example in this paper belongs to a large inven-
tory of argumentative fragments in our argument
mining framework. Each of these fragments repre-
sents a concept that we deem relevant to everyday

argumentation – besides desire, this includes state-
ments about e.g. consequence and group mem-
bership. Of course, the presence of desire or any
other such fragment on its own does not imply the
presence of an argument. However, expressions
of desire are common building blocks in everyday
argumentation and we consider them particularly
relevant to deliberation processes.

A straightforward solution for detecting desire
would be to train a supervised binary classifier on
our manually annotated gold standard. Recent
work has shown promising results from fine-tuning
pre-trained large language models (LLM), which
exploits the rich linguistic knowledge encoded in
the LLM (see e. g. Rahman et al., 2023; Qiu and
Jin, 2024). However, obtaining sufficient training
data can still be difficult, especially for complex an-
notation tasks like our running example: Besides
conceptual issues of precisely defining the scope
of what is counted as desire, there are many ways
to express the concept linguistically. Moreover, the
prevalence of desire in our data set is low (≈ 6%),
so we expect to find only a handful of positive exam-
ples even in a relatively large manually annotated
gold standard (see Section 2.2). Thus, the auto-
matic identification of such tweets is a challenging
task.

In our case study, we compare the approach of
fine-tuning an LLM on a manually labelled gold
standard to a rule-based approach using manually
developed corpus queries developed by (cf. Dykes
et al., 2020, 2021). These queries can retrieve
thousands of positive examples with high preci-
sion, which we can then use as additional training
data in fine-tuning the LLM. This combined method
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outperforms the other approaches by a consider-
able margin. Our approach thus shares the same
goal as data augmentation, i. e. “to increase the
diversity of training examples without explicitly col-
lecting new data” (Feng et al., 2021, 968). Data
augmentation usually adds to a training corpus with
artificial examples that are very close to observed
instances, or that are developed introspectively. An
alternative approach similar to ours is to use “weak
labeled data” (Shnarch et al., 2018), where coarse
heuristics are applied to extract training examples
while allowing for a significant amount of noise. In
our approach, we use linguistically sophisticated
queries which can extract empirical instances from
the overall corpus with high precision to enhance
our much smaller manually annotated set.

2. Data and Manual Annotation

2.1. Data
We reconstruct the corpus of Dykes et al. (2020),
containing tweets with the token brexit (case-
insensitive) collected in 2016, i.e. the year of the
UK Brexit referendum. We disregard retweets and
apply a strict deduplication algorithm (which dis-
regards case shift, @-mentions, URLs, and hash-
tags). Our data comprises over 4.3 million tweets
with approximately 80 million tokens.

Since we also build on the queries from Dykes
et al. (2021), we use the IMS Open Corpus Work-
bench (Evert and Hardie, 2011)1 for corpus in-
dexing, and apply a similar linguistic annotation
pipeline, i.e. Ark TweetNLP (Owoputi et al., 2013)2

for simple PoS tags, the OSU Twitter NLP tools
(Ritter et al., 2011, 2012)3 for Penn-style PoS tags
and named entity recognition, and a lemmatiser
based on Minnen et al. (2001). For tokenisation,
we use SoMaJo (Proisl and Uhrig, 2016)4 and rec-
oncile the different tokenisation layers during post-
processing.

2.2. Manual Annotation
For manual annotation, two random samples are
extracted from the corpus: pre consists of 785
of the originally 1000 tweets labelled for desire by
Dykes et al. (2021) – i.e., the tweets from their study
that were still available during our corpus construc-
tion. All of these tweets were posted before the
Brexit referendum (June 23, 2016). The examples
from pre are used as a starting point for developing
corpus queries (cf. Section 3.1).

1https://cwb.sourceforge.io/
2http://www.cs.cmu.edu/~ark/TweetNLP/
3https://github.com/aritter/twitter_nlp
4https://github.com/tsproisl/SoMaJo
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M 0.627 0.724 0.778
V 0.579 0.601
E 0.689

p
o

s
t M 0.723 0.772 0.906

V 0.730 0.814
E 0.890

Table 1: Inter-annotator agreement (kappa scores)
for the desire pattern.

Since this sample only contains tweets from be-
fore the Brexit referendum, we sampled an addi-
tional 1000 random tweets posted on August 21,
2016 after the referendum (post).5 Manual anno-
tation of post provides additional training data for
the LLM and allows us to estimate query recall (as
unseen test data for the queries).

Additionally, random samples of query matches
were annotated to provide reliable estimates of
query precision (see Section 4). For desire, this
amounts to a total of 3997 tweets (matches). In
contrast to pre and post, this data set is not a ran-
dom selection of tweets but includes only tweets
found by our queries. As it does not show how many
instances of desire were missed by the queries it
cannot be used to reliably estimate recall.6

Our annotation guidelines are based on those
provided by Dykes et al. (2021) and were continu-
ously refined during annotation. For each fragment,
we give a description along with positive and nega-
tive examples from the corpus. For instance, the
description of desire differentiates two uses of the
word support, which is accepted as an expression
of desire in She supports Brexit but is excluded
when referencing actions (they gave a speech to
support Brexit). Even for human annotators, detect-
ing desire is not as straightforward as it may seem
intuitively, since it is easily confused with other simi-
lar patterns such as the desirer pattern (expression
of membership in a group of entities desiring a con-
cept, as in Trump is a Brexit supporter).

Three student assistants annotated all desire
statements via a custom web interface. Their an-
notations were adjudicated regularly, and doubtful
cases were discussed with the project members.
We report pairwise inter-annotator agreement in
Table 1. The kappa scores range from κ = .579 (di-
rect comparison of annotators V and E on pre) to
κ = .906 (agreement of annotator M with the adjudi-
cated gold standard), showing a modest to substan-

5Improved deduplication carried out after sampling
reduced this data set to 973 tweets.

6To put in exaggerated terms: a query with a single
true positive and no false positives has a precision of
100%, but this does not say anything about its recall.

https://cwb.sourceforge.io/
http://www.cs.cmu.edu/~ark/TweetNLP/
https://github.com/aritter/twitter_nlp
https://github.com/tsproisl/SoMaJo
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tial agreement with the final gold standard. Given
the difficulty of the task, we deem these values to
be good overall. Our gold standard is available at.7

The prevalence of desire according to the manual
annotation was 4.5% on pre and 7.7% on post,
cf. Table 2; it is thus indeed an infrequent phe-
nomenon.

3. Automatically Detecting Desire

3.1. Querying
The queries we use to find further examples of our
argumentative fragments are written in the CQP
query language (Evert and The CWB Development
Team, 2022), enabling complex searches that com-
bine different levels of linguistic annotation.

[lemma="all|everything|that|what"]
/entity_np_actor[]
[lemma=$verbs_prefer]
[lemma="be"]
[lemma="for|to"] [pos="DET|A.+"]*
(/entity_np_all[] | [pos="VERB"])

The example above is one of 18 queries for desire
and matches all ENTITY wants is for/to NP/VP.8

The queries are designed to abstract away from
annotated examples as much as possible while
maintaining high precision. For instance, because
the entity in desire statements is almost always a
person or an organisation/group, the noun phrase
/entity_np_actor[] has to contain a proper
name or a noun from a manually compiled list of
plausible entities.

In total, the queries retrieve 145,699 corpus
matches. Table 2 (top) shows the performance
of the query approach on our labelled datasets: a
recall of 43% on unseen data (post), but a very
high-precision of 96% (matches).

3.2. LLM Fine-Tuning
In this section, we fine-tune an LLM on the binary
classification of tweets as to whether they contain
desire. We consider two models here: firstly, a
model trained on a 70% training/test split of the
adjudicated gold standard (combined, comprising
pre and post). This dataset contains 73 positive
and 1158 negative examples. Secondly, a model
trained on query matches (excluding matches on
combined to ensure comparability). We use 70%
of all 145,699 matches as positive training exam-
ples and add the same amount of random tweets
(excluding query matches and those in combined).

7Link will be provided with the final submission.
8The query was slightly shortened for the sake of

readability. Due to limited space, we cannot provide a
detailed explanation of the query syntax.

We thus assume all query matches to be instances
of desire and randomly selected tweets to be nega-
tive examples. This is a reasonable approximation
since the prevalence of desire is ca. 6% and the
precision of our queries is ca. 96%.

We opt for distilbert-base-uncased (Sanh et al.,
2019) as a base model and fine-tune using the
transformers package with standard settings.
The choice of distilbert-base-uncased for this paper
stemmed from its lightweight nature, being nearly
half the size of models like bert-base-uncased, its
availability off-the-shelf, and the fact that it has
shown promising outcomes in prior research (see
e. g. Rahman et al., 2023). Although we did ex-
plore other models, our experiments consistently
demonstrated similar results (see below).

The trained models can be used to calculate
scores for both classes (desire and no desire); we
focus on the positive class here. A cut-off value for
this score determines the trade-off between preci-
sion and recall; Figures 1 and 2 show the resulting
precision-recall curves. As a composite measure
we use the area under these curves (PR-AUC).

4. Results

Unsurprisingly, the LLM trained on query matches
accurately distinguishes query matches from other
tweets, despite using 70% of the matches as posi-
tive training examples. Evaluation on the remaining
30% (mixed with random tweets) yields a PR-AUC
of 0.9978. However, we are interested in its per-
formance to detect desire in general, not limited to
instances that are also found by the queries (whose
estimated recall is only 43%).

Figure 1: PR curve of LLM trained on query
matches and evaluated on combined.

The PR curve of this LLM on combined (Fig-
ure 1) shows that decent trade-offs between preci-
sion and recall are possible. It is no coincidence
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data set prev. approach FN FP TN TP precision recall F1

pre 0.08
queries

31 3 721 30 0.91 0.49 0.64
post 0.05 25 6 923 19 0.76 0.43 0.55
matches 0.96 94 2312 0.96

combined
0.06 LLM (matches) 28 33 1620 77 0.70 0.73 0.72
0.06 queries 56 9 1644 49 0.84 0.47 0.60

test-split
0.06 LLM (matches) 9 6 489 23 0.79 0.72 0.75
0.06 LLM (combined) 19 26 469 13 0.33 0.41 0.37
0.06 queries 17 2 493 15 0.88 0.47 0.61

Table 2: Top: Evaluation of corpus queries for desire on different data sets. Recall can most reliably be
estimated from post, while precision can most reliably be estimated on actual query matches (indicated
in italics). Middle and bottom: comparison of different approaches on the complete data set combined
(middle) and on the test split of combined (bottom). The query approach yields the highest precision,
and the LLM trained on query matches yields the highest recall (indicated in bold).

that the performance of the queries themselves lies
on this curve: The LLM can near-perfectly retrieve
query results and at this point, its predictions are al-
most identical to the query matches. Moving down
the PR curve, we buy recall by spending precision.
We also indicate the optimal cut-off point maximis-
ing F1, i.e. the harmonic mean between precision
and recall. We determine this value ex post for rea-
sons of simplicity, but it could also be determined
on a separate development set.

Figure 2: PR curves on test-split of combined.

Figure 2 evaluates both trained LLMs on the test
split of combined. The LLM trained only on 73 pos-
itive and 1158 negative examples performs poorly
in comparison to the LLM trained on query matches.
Table 2 lists detailed results for all approaches on
combined and its test split (for LLMs, the num-
bers shown are taken at the point of optimal F1). In
terms of precision, the queries yield the best results
(as by design). However, the LLM trained on query
matches can yield better recall, as is exemplified
by the point of optimal F1 on the PR-curve.

5. Discussion

Examining tweets that are true positives (TP) of
the LLM at the point of optimal F1 but not found
by the corpus queries shows that the higher recall
of the LLM approach can be attributed to several
interpretable factors:

Most new TPs contain typos (Britian) or short
insertions (Denmark for one will be queuing up to
leave). While the queries could likely be adjusted
to find such cases, this would either introduce un-
necessary complexity or compromise precision.

Other new TPs are due to errors in the linguistic
pre-processing used by queries, e.g. several nomi-
nalised adjectives that were incorrectly treated as
adjectives by the PoS tagger and thus not found
by queries (The British want EU migrants to stay).
Similarly, the queries impose semantic restrictions
via wordlists. The LLM, on the other hand, also
finds instances of desire with unusual entities such
as noted Europhile paper backs Brexit.

Finally, the LLM found some tweets with syn-
tactic patterns for which no queries had been writ-
ten – either because the expression contained non-
standard syntax (If we Brexit., ending the Barnet
agreement, I’m for!), or because the constructions
were too rare to reasonably justify developing a
manual query (Very much looking forward to see-
ing nigel farage in action tonight).

Most false positives (FP) of the LLM, which were
not matched by the queries, are syntactically similar
to one of the queries without expressing the cor-
rect semantics (#Brexit gloom is for losers). Fewer
tweets allude to desire more implicitly than allowed
by the guidelines (“Being pro brexit is wacist!” said
the hipster white brits to the black brits – this tweet
is not accepted because it is a general statement
rather than a specific entity desiring something).
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6. Conclusion

In conclusion, manually engineered corpus queries
can retrieve argumentative fragments with very
high precision but limited scalability. Tweets con-
taining typos or unusual constructions are often
missed. Using an LLM fine-tuned on query results,
on the other hand, allows us to choose the trade-
off between precision and recall freely along the
PR curve. Compared to the query matches, the
LLM can retrieve considerably more relevant tweets.
Based on the new TPs found in the gold standard,
the additional hits can also be expected to reflect
some of the typical CMC features that are often
filtered out by the queries.

Note that considerable improvements of the LLM
predictions are quite possible. Firstly, training on
all query results could be explored, but would no
longer allow us to assess the LLM’s ability to predict
query results. Secondly, using a data set with the
estimated prevalence of desire for training could
be beneficial. Lastly, experimenting with different
base models and hyperparameter settings (such as
learning rate, weight decay, etc.) is another avenue.
However, our primary objective here was to estab-
lish a proof of concept rather than engineering an
optimal system.
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