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Abstract
The paper investigates the reproducibility of various approaches to automatically simplify German texts and identifies
key challenges in the process. We reproduce eight sentence simplification systems including rules-based models,
fine-tuned models, and prompting of autoregressive models. We highlight three main issues of reproducibility:
the impossibility of reproduction due to missing details, code, or restricted access to data/models; variations in
reproduction, hindering meaningful comparisons; and discrepancies in evaluation scores between reported and
reproduced models. To enhance reproducibility and facilitate model comparison, we recommend the publication
of model-related details, including checkpoints, code, and training methodologies. Our study also emphasizes
the importance of releasing system generations, when possible, for thorough analysis and better understanding
of original works. In our effort to compare reproduced models, we also create a German sentence simplification
benchmark of the eleven models across seven test sets. Overall, the study underscores the significance of
transparency, documentation, and diverse training data for advancing reproducibility and meaningful model
comparison in automated German text simplification.
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1. Introduction

Text simplification (TS) is a Natural Language Pro-
cessing (NLP) task that aims to enhance the ac-
cessibility and understandability of textual content
for a diverse audience. This process involves the
transformation of complex language structures into
simpler and more straightforward forms to be bet-
ter understandable for a specific target group, e.g.,
people with varying linguistic abilities, cognitive im-
pairments, or those learning a new language (Alva-
Manchego et al., 2020).

In recent years, German TS has also gained
more attraction resulting in a few sentence simplifi-
cation models, e.g., ZEST (Mallinson et al., 2020),
sockeye-APA-LHA (Spring et al., 2021), mBART-
DEplain-APA (Stodden et al., 2023), or custom-
decoder-ats (Anschütz et al., 2023). But even if
the NLP community has increased efforts in bet-
ter reproducibility of (new) research by designing
checklists on responsibility1 or asking for repro-
ducibility studies (Branco et al., 2020), some NLP
models are still not easily reproducible. This has
also hampered German TS because the access to
resources is often restricted, not enough informa-
tion are named for reproduction, models and code
are unavailable, or system outputs are not made
accessible to other researchers.

1https://aclrollingreview.org/
responsibleNLPresearch/

Therefore, in this work, we try to reproduce ex-
isting German TS models and re-generate their
system outputs to facilitate analysing different Ger-
man TS approaches or creating evaluation meth-
ods for German TS. Further, we discuss whether
the reproduced models match or differ from the
original models by analysing automatic TS met-
rics. To compare the reproduced models with each
other, we also create a German sentence simpli-
fication benchmark on 7 test sets, including the
system outputs of all 11 TS models. We make the
code, the system outputs (if permitted by license),
and the system evaluation reports available to in-
crease the reproduction of this work in future Ger-
man TS research. All materials are provided in
https://github.com/rstodden/easse-de.

2. Related Work

The most similar works to ours are reproduc-
tion studies of English text simplification systems.
Cooper and Shardlow (2020) and Arvan et al.
(2022), for example, both reproduced the work on
English TS by Nisioi et al. (2017): they trained
a TS model using the provided code on a to-be-
processed dataset and evaluate whether they can
simulate the original findings. In our work, we will
do the same for 7 German TS models.

Popović et al. (2022), in comparison, do not fo-
cus on the reproduction of a TS model but tried
to repeat the human evaluation study proposed

https://aclrollingreview.org/responsibleNLPresearch/
https://aclrollingreview.org/responsibleNLPresearch/
https://github.com/rstodden/easse-de
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in Nisioi et al. (2017). Unfortunately, we cannot
replicate this for German TS as human evaluation
is rarely performed, and insufficient information
would be available to repeat the process.

3. Method

For our reproduction study, we first describe the
selection of models (see subsection 3.1) and then
explain on which data we have trained and eval-
uated them (see subsection 3.2). Afterwards, we
explain more about how we check the extent of
the reproduction, whether the model seems totally
different, rather close or identical to the original
model (see subsection 3.3).

3.1. Models

Based on a literature review, we found some sen-
tence simplification models for German, which
have been proposed in recent years. We split the
lines of research into

(i) rule-based models, e.g., rule-based model by
Suter et al. (2016), DISSIM (Niklaus et al.,
2019), and hda-etr (Siegel et al., 2019) (see
subsection 4.1),

(ii) training sequence-to-sequence generation
models, e.g., sockeye-APA-LHA (Spring
et al., 2021) and other sockeye vari-
ants (Ebling et al., 2022) (see subsection 4.2),

(iii) fine-tuning sequence-to-sequence genera-
tion models, e.g., mBART_DEplain-APA
(Stodden et al., 2023), mBART_DEplain-
APA+web (Stodden et al., 2023), or mT5-
MULTISIM (Ryan et al., 2023) (see subsec-
tion 4.3),

(iv) zero shot simplification, e.g., ZEST (Mallinson
et al., 2020),

(v) prompting autoregressive language models,
e.g., BLOOM in Ryan et al. (2023) or Ponce
et al. (2023) (see subsection 4.4), or ChatGPT
in Manning (2023) or Deilen et al. (2023) (see
subsection 4.4), and

(vi) combining autoregressive language mod-
els and sequence-to-sequence models, e.g.,
custom-decoder-ats (Anschütz et al., 2023)
(see subsection 4.5).

We tried to reproduce all of the listed models.
Unfortunately, for some models (see models high-
lighted in italics), neither the code nor the prompts
are available, and they require too much comput-
ing power (i.e., mT5-MultiSim) to reproduce the
model. Further, no system generations are avail-
able for these models, which could have been used

for comparisons. Hence, we could only reproduce
6 models and their corresponding system outputs
(see models highlighted in boldface). In section 4,
we will describe each of the (reproduced) models in
more detail and describe how we have reproduced
them.

For the German TS benchmark, we also propose
three new TS systems, i.e., mT5 (Xue et al., 2021)
fine-tuned on a manually aligned news corpus, i.e.,
DEplain-APA (Stodden et al., 2023a), and mT5 fine-
tuned on an automatically aligned web corpus, i.e.,
Simple German Corpus (Toborek et al., 2023) (and
Toborek et al. 2023 for more corpus description pa-
per). For both models, i.e., mT5-DEplain-APA2 and
mT5-SGC3, we use the same hyperparameters
(see Appendix A), the code and the system outputs
also available in the Github repository. Additionally,
we train sockeye on DEplain-APA with the same
parameters as those used for sockeye-APA-LHA.
This model is further called sockeye-DEplain-APA.

3.2. Training & Test Data

For training, fine-tuning, or prompting the models,
we used the same training and evaluation data as
named in the original work (if available).

hda-etr is a rule-based system which require
no training data and was not evaluated on
any test data yet. The training and/or eval-
uation data to reproduce trimmed_mbart_sent
(i.e., DEplain-APA (Stodden et al., 2023a) and
DEplain-web (Stodden et al., 2023b))4, BLOOM
(i.e., TextComplexityDE (TCDE19) (Naderi et al.,
2019) and GEOlino (Mallinson et al., 2020)5), and
encoder-decoder-ats (i.e., 20Minuten (Rios et al.,
2021)6) are available, pre-split into training, de-
velopment, and test set which enhanced the re-
production process. The APA-LHA data (Spring
et al., 2021) to reproduce sockeye-APA-LHA is
available upon request7, but the data is randomly
split into training and test sets each time when
pre-processing the data. Hence, our experiments
for sockeye-APA-LHA are conducted on a different
split than in the original paper.

Additionally, we evaluate the models on the Sim-
ple German Corpus (Toborek et al., 2023); a man-
ually aligned test set of web texts corresponding to
the training data for mT5-SGC.

2https://huggingface.co/DEplain/
mt5-DEplain-APA

3https://huggingface.co/DEplain/
mt5-simple-german-corpus

4https://github.com/rstodden/DEPlain
5https://github.com/XenonMolecule/MultiSim
6https://github.com/ZurichNLP/20Minuten
7https://zenodo.org/records/5148163

https://huggingface.co/DEplain/mt5-DEplain-APA
https://huggingface.co/DEplain/mt5-DEplain-APA
https://huggingface.co/DEplain/mt5-simple-german-corpus
https://huggingface.co/DEplain/mt5-simple-german-corpus
https://github.com/rstodden/DEPlain
https://github.com/XenonMolecule/MultiSim
https://github.com/ZurichNLP/20Minuten
https://zenodo.org/records/5148163
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3.3. Evaluation

Strategies on how to evaluate the similarity of re-
produced models to the original models are (i) sim-
ilarity of system outputs, (ii) comparison of auto-
matic metrics measured on the new system out-
puts and the reported scores in the original papers,
or (iii) comparison of human judgements on the
system outputs.

In our study, the first strategy only applies to one
model (i.e., trimmed_mbart_sent), as for the other
models, the system outputs of the original TS mod-
els have not been made available. Hence, only for
the trimmed_mbart_sent model we can compare
how similar the published system generations are
to our reproduced system generations. As simi-
larity measurement, we check for exact matches
in both sets of generations and apply the BERT-
Score-F1 (Zhang* et al., 2020)8. Further, we did
not validate the reproduced models by manual eval-
uation, as evaluation using manual judgements is
often not conducted. If conducted, for example
in Mallinson et al. (2020), no system generations
(also no reproduced generations) are available to
be analyzed.

Our strategy for validation of the reproduced
models is to compare the reported scores
of TS metrics, e.g., SARI (Xu et al., 2016),
BLEU (Papineni et al., 2002), BERT-Score Pre-
cision (BS_P) (Zhang* et al., 2020), or the German
adaptation of Flesch Reading Ease (FRE) (Amstad,
1978) with the scores measured for the system
generations of the reproduced systems.

Most of the German TS papers describe that
they are evaluating their systems using the im-
plementation of the metrics in EASSE (Alva-
Manchego et al., 2019)9, i.e., Trienes et al. (2022),
Ryan et al. (2023), Stodden et al. (2023)10, and
Ponce et al. (2023).

Mallinson et al. (2020) use their own version
of SARI, BLEU, and FRE-BLEU, Anschütz et al.
(2023) did not use EASSE as it does not include
ROUGE. Hence, they use the implementations of
BLEU, SARI, and ROUGE provided in Hugging-
face (Wolf et al., 2020). In other papers, e.g.,
Spring et al. (2021) or Rios et al. (2021), it is not
mentioned which implementation of SARI or BLEU
has been used. We have generated the metric
scores for all models using the metrics implemen-
tation described in the original paper. If no details

8For both metrics we have used their Hugging-
face implementation, i.e., https://huggingface.co/
spaces/evaluate-metric/exact_match and https://
huggingface.co/spaces/evaluate-metric/bertscore.

9EASSE is a Python package (Alva-Manchego et al.,
2019) which is designed for the ease of evaluation of
English sentence simplification.

10They are using the German version of EASSE, i.e.,
EASSE-DE (Stodden, 2024).

on the implementation were provided, we have
generated the scores with the EASSE-DE pack-
age (Stodden, 2024).

4. TS Models & Reproduction

In the following, we briefly summarize the TS sys-
tems for which we can reproduce results and argue
why we couldn’t or haven’t reproduced the other
models (see subsection 4.6). See Table 1 for an
overview of all reproduced models.

4.1. Rule-based Models

Siegel et al. (2019) implement some rules of easy-
to-read guidelines (“Leichte Sprache”) as a rule-
based simplification model. In more detail, it con-
tains the following two rules: substitution of com-
plex words and compound splitting. Their model,
called hda-etr, focuses only on lexical simplifica-
tion. Siegel et al. include their rules into Lan-
guageTool11, a re-writing tool that assists in giving
recommendations on how to correct or improve
a given input text. For hda-etr a working code is
provided12, containing also a graphical interface
for highlighting infringements against easy guide-
lines. For better performance, we re-implemented
the code without the infringements and interface.
The updated code can be found at https://github.
com/rstodden/easy-to-understand_language.

4.2. Training Sequence-to-sequence
Models

In recent years, the same department, i.e., the
computational linguistics department of the Univer-
sity of Zurich, has published a few research papers
including very similar TS models (see (Säuberli
et al., 2020; Spring et al., 2021; Ebling et al., 2022)).
They trained a sequence-to-sequence model with a
transformer architecture using the Sockeye frame-
work (Domhan et al., 2020) among others on APA-
LHA-OR-B1 and APA-LHA-OR-A2 (Spring et al.,
2021).

(Säuberli et al., 2020) experimented with a for-
mer and smaller version of APA-LHA and Sock-
eye. They report results of their base Sockeye
architecture as well as additional experiments with,
e.g., smaller batch sizes or extensions with lin-
guistic features. They also experimented with
data augmentation strategies, i.e., adding non-
parallel simplifications (NULL2TRG), adding iden-
tical pairs with the simplifications on both sides of
the pair (TRG2TRG), and adding pairs including

11https://github.com/languagetool-org/
languagetool

12https://github.com/hdaSprachtechnologie/
easy-to-understand_language

https://huggingface.co/spaces/evaluate-metric/exact_match
https://huggingface.co/spaces/evaluate-metric/exact_match
https://huggingface.co/spaces/evaluate-metric/bertscore
https://huggingface.co/spaces/evaluate-metric/bertscore
https://github.com/rstodden/easy-to-understand_language
https://github.com/rstodden/easy-to-understand_language
https://github.com/languagetool-org/languagetool
https://github.com/languagetool-org/languagetool
https://github.com/hdaSprachtechnologie/easy-to-understand_language
https://github.com/hdaSprachtechnologie/easy-to-understand_language


4

System Name Reference Type Training Data # Simp. Pairs URL
hda-etr Siegel et al. (2019) rule-based - - https://github.com/hdaSprachtechnologie/

easy-to-understand_language

sockeye-APA-LHA Spring et al. (2021) &
Ebling et al. (2022) seq2seq APA-LHA OR-A2 &

APA-LHA OR-B1
8,455 &
9,268 https://github.com/ZurichNLP/

RANLP2021-German-ATS
sockeye-DEplain-APA - seq2seq DEplain-APA 10,660 https://huggingface.co/DEplain

mBART-DEplain-APA Stodden et al. (2023) fine-tuned
seq2seq DEplain-APA 10,660 https://huggingface.co/DEplain/trimmed_

mbart_sents_apa

mBART-DEplain-APA+web Stodden et al. (2023) fine-tuned
seq2seq DEplain-APA+web 10,660 +

1,594 https://huggingface.co/DEplain/trimmed_
mbart_sents_apa_web

mT5-DEplain-APA - fine-tuned
seq2seq DEplain-APA 10,660 https://huggingface.co/DEplain

mT5-SGC - fine-tuned
seq2seq SGC 4,430 https://huggingface.co/DEplain

BLOOM-zero Ryan et al. (2023) zero-shot
AR model - - https://github.com/XenonMolecule/

MultiSim

BLOOM-sim-10 Ryan et al. (2023) few-shot
AR model

TCDE19 &
GEOlino 200 & 959 https://github.com/XenonMolecule/

MultiSim

BLOOM-random 10 Ryan et al. (2023) few-shot
AR model

TCDE19 &
GEOlino 200 & 959 https://github.com/XenonMolecule/

MultiSim

custom-decoder-ats Anschütz et al. (2023)
AR model +
fine-tuned
seq2seq

Simplified, monolingual
German data &
20Minuten

544,467 &
17,905 https://huggingface.co/josh-oo/

custom-decoder-ats

Table 1: Overview of German TS models including training details (i.e., training data and size of training
samples). Each line separates different model types. The models in italics are newly proposed in this
work.

back-translated simplifications and original simplifi-
cations (BT2TRG). Compared to their base model,
adding more data decreased their SARI and BLEU
scores, except for adding TRG2TRG, their overall
best-performing system. As far as we know, these
(and the ones by Anschütz et al. (2023)) are the
only experiments with augmented data for German
TS. Unfortunately, the experiments cannot be re-
produced as neither the corpus, the models, the
code, nor enough details regarding building the
models are available.

However, we reproduce another Sockeye variant
for German TS, which was proposed by (Spring
et al., 2021; Ebling et al., 2022). However, we ran
into a few issues which made our results incom-
parable to the original results and reported scores.
First, due to non-solvable conflict errors of required
Python packages, we need to update the sockeye
version from 2.3.8 to 3.1.1413. The technical dif-
ferences between both implementations are listed
in Appendix B. Further, a data split into training,
development and test set were neither provided
nor fixed through parameters in the code.

4.3. Fine-tuning Sequence-to-sequence
models (transfer-learning)

Rios et al. (2021) are the first who used
mBART (Liu et al., 2020) for German document
simplification. The main improvements of their ap-
proach compared to the standard mBART are to
maximize the input length (to 4096), reduce the
vocabulary to the 20k most frequent German to-
kens, and add a special language tag to specify the

13Sockeye 3 (Hieber et al., 2022) is a neural machine
translation pipeline.

target language level (de_A1, de_A2, or de_B1).
This approach has also been adapted for docu-
ment simplification of news and web texts (Stod-
den et al., 2023), for paragraph simplification of
clinical notes (Trienes et al., 2022), and for sen-
tence simplification of news and web texts (Stod-
den et al., 2023). An overview of the adaptations
and the different hyperparameters can be found in
Appendix H.

As this work focuses on sentence sim-
plification, we will just include the mod-
els proposed in Stodden et al. (2023),
i.e., trimmed_mbart_sents_DEplain-APA
(further called mBART-DEplain-APA) and
trimmed_mbart_sents_DEplain-APA+web (further
called mBART-DEplain-APA+web). Compared to
Rios et al. (2021), they reduce the vocabulary to
35k and use one universal language tag (de_SI).
As the names suggest the models are trained on
DEplain-APA (Stodden et al., 2023a) or DEplain-
APA plus DEplain-web (Stodden et al., 2023b).
The checkpoints of the models, instructions on
how to use them and their system generations for
three test sets are available on Huggingface14 and
GitHub15. Hence, for reproduction we could use
the Huggingface’s text-to-text-generation pipeline
to generate the system outputs on all test sets.

14https://huggingface.co/DEplain/trimmed_mbart_
sents_apa and https://huggingface.co/DEplain/
trimmed_mbart_sents_apa_web

15https://github.com/rstodden/DEPlain/
tree/main/G__Automatic_Text_Simplification_
Experiments/generated_outputs

https://github.com/hdaSprachtechnologie/easy-to-understand_language
https://github.com/hdaSprachtechnologie/easy-to-understand_language
https://github.com/ZurichNLP/RANLP2021-German-ATS
https://github.com/ZurichNLP/RANLP2021-German-ATS
https://huggingface.co/DEplain
https://huggingface.co/DEplain/trimmed_mbart_sents_apa
https://huggingface.co/DEplain/trimmed_mbart_sents_apa
https://huggingface.co/DEplain/trimmed_mbart_sents_apa_web
https://huggingface.co/DEplain/trimmed_mbart_sents_apa_web
https://huggingface.co/DEplain
https://huggingface.co/DEplain
https://github.com/XenonMolecule/MultiSim
https://github.com/XenonMolecule/MultiSim
https://github.com/XenonMolecule/MultiSim
https://github.com/XenonMolecule/MultiSim
https://github.com/XenonMolecule/MultiSim
https://github.com/XenonMolecule/MultiSim
https://huggingface.co/josh-oo/custom-decoder-ats
https://huggingface.co/josh-oo/custom-decoder-ats
https://huggingface.co/DEplain/trimmed_mbart_sents_apa
https://huggingface.co/DEplain/trimmed_mbart_sents_apa
https://huggingface.co/DEplain/trimmed_mbart_sents_apa_web
https://huggingface.co/DEplain/trimmed_mbart_sents_apa_web
https://github.com/rstodden/DEPlain/tree/main/G__Automatic_Text_Simplification_Experiments/generated_outputs
https://github.com/rstodden/DEPlain/tree/main/G__Automatic_Text_Simplification_Experiments/generated_outputs
https://github.com/rstodden/DEPlain/tree/main/G__Automatic_Text_Simplification_Experiments/generated_outputs
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4.4. Autoregressive Language Models

Ryan et al. (2023) experimented with few-shot and
zero-shot learning on a multi-lingual simplification
corpus (including German) (Ryan et al., 2023b)
using the autoregressive language model BLOOM
(with 176 billion parameters) (Workshop, 2023). As
examples in the few-shot setting they used either k
random sentences pairs or k pairs in which source
sentences are most similar to the to-be-tested sen-
tence. We reproduced their experiments with the
provided code and data.

4.5. Autoregressive Language Models +
Sequence-to-sequence Models

For custom-decoder-ats (Anschütz et al., 2023),
first, Anschütz et al. have fine-tuned an autoregres-
sive language model on simplified language and
then have combined it with a fine-tuned sequence-
to-sequence model.

For custom-decoder-ats16 (Anschütz et al., 2023)
the checkpoint of the model and instructions on
how to use it are available on Huggingface. Hence,
we could use the provided code and Huggingface’s
text-to-text-generation pipeline to generate the sys-
tem outputs on all test sets.

4.6. No Reproduction

We have not reproduced some of the models, the
reasons for that are as follows: (Mallinson et al.,
2020) propose a zero-shot cross-lingual sentence
simplification model called ZEST. Although the
code is available, we could not reproduce the ZEST
model and regenerate its outputs.

Ryan et al. (2023) have proposed a multi-
lingual sentence simplification model named mT5-
MULTISIM. They fine-tuned mT5 (Xue et al.,
2021) on several corpora, including three Ger-
man corpora, i.e., GEOlino (Ryan et al., 2023a),
TCDE19 (Ryan et al., 2023c), and German News17.
Due to limited computing power, we could not re-
produce mT5-MULTISIM as it was originally trained
on 3 GPUs with the size of 48 GB for each.

Schlippe and Eichinger (2023) also used a T5
model for training their German TS model, but they
use the multilingual model Flan-T5 (Chung et al.,
2022). Their training and evaluation data is not
available. Hence, we haven’t included this model
in our reproduction study.

Ponce et al. (2023) also experiment with
BLOOM, but with the version with 7 billion parame-
ters18 and on structural simplification, i.e., split and

16https://huggingface.co/josh-oo/
custom-decoder-ats

17Unfortunately, although it should be available on
request, we do not yet have access to this corpus.

18https://huggingface.co/bigscience/bloom-7b1

rephrase. They do not provide enough information
to reproduce their approach (e.g., prompt missing,
few-shot or zero-shot?) as it is only a small side
project of their work.

Some researchers experiment on German TS
with ChatGPT, e.g., (Deilen et al., 2023), (Manning,
2023) or Schlippe and Eichinger (2023), but we do
not include this approaches as we are focusing on
open, non-proprietary language models.

5. Reproduction Results

To check whether the reproduced models are iden-
tical to the models described in the original work,
we compare the newly measured scores with those
reported in the original papers.

5.1. hda-etr

For hda-etr, unfortunately, no automatic scores are
provided in the original paper, hence, we cannot
compare whether our re-implementation works as
expected. However, to enable comparisons in fu-
ture work, in section 6, we report results of hda-etr
on a few test sets.

5.2. Sockeye-APA-LHA

As previously mentioned, our reproduction of
sockeye-APA-LHA was trained on a different model
version with different training data and will also
be evaluated on different test sets of APA-LHA.
The comparison of reported and reproduced re-
sults also reflects this (see Appendix C): the BLEU
scores differ between roughly 1.0 and for SARI,
even between 4.0 and 9.0 points. Hence, unfortu-
nately, our reproduced Sockeye-APA-LHA model
is not comparable to the original model, and the
conclusions we can draw from the reproduction
might not be the same as the original model.

5.3. BLOOM

For the three different approaches using BLOOM,
i.e., zero-shot BLOOM, random 10-shot BLOOM
and similarity 10-shot BLOOM, our reproduced sys-
tem generations seem to be slightly different than
the original system generations (see Appendix D).
For all approaches on GEOlino, the SARI scores
differ by less than 1.5 points. However, for TCDE19,
the gap between the SARI scores is up to 2.5
points. If we also compare the baseline results,
we can see that these are identical. Hence, we can
exclude different data splits as a possible reason.
It remains unclear why the numbers are that dif-
ferent, either the provided code is slightly different
from the one used for the reported experiments,
the evaluation method is different, or predictions of
BLOOM are not fixed.

https://huggingface.co/josh-oo/custom-decoder-ats
https://huggingface.co/josh-oo/custom-decoder-ats
https://huggingface.co/bigscience/bloom-7b1
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5.4. custom-decoder-ats

To check whether custom-decoder-ats still meets
the results reported in the original paper, we re-
produced the results on the 20min corpus. The
reported results of Anschütz et al. (2023) differ only
slightly from the reproduced results (BLEU: roughly
0.3 and SARI: roughly 2.0, see Appendix E).
Hence, we argue that the reproduced model is
fairly comparable to the described model.

5.5. mBART-DEplain-APA &
mBART-DEplain-APA+web

Even if the checkpoints of the mBART models
are provided to reproduce the system generations,
the scores of the reproduced models differ from
the reported scores in the original paper (see
Appendix F). For example, the SARI scores of
mBART-DEplain-APA differ by roughly 2 points on
DEplain-web or roughly 4 points on DEplain-APA
when comparing reproduced and reported scores.
However, the scores of the reproduced baseline
are identical to the reported baseline using the
EASSE-DE evaluation framework. Hence, we can
argue that the same evaluation approach and the
same test data have been used, and these are not
the reasons for the differences.

We also compared the similarity of the repro-
duced system generations of mBART-DEplain-APA
and mBART-DEplain-APA+web with the provided
system generations of the original models by mea-
suring their exact match and BERTScore-F1. As
can be seen in Table 2, the exact matches for
mBART-DEplain-APA are on each test set lower
than 50% and for mBART-DEplain-APA+web vary-
ing between 49% and 74%. However, the BERT-
Scores show that the predictions per instance are
quite similar for both models, even if, again, the
scores are higher for DEplain-APA+web. This con-
firms the previous findings; thus, the uploaded
model must be slightly different from the one used
to report the results in the original paper.

exact↑ BS mean↑ BS min BS std
DEplain-APA 42.24 0.9589 0.6587 0.0546
DEplain-web 17.98 0.9163 0.4885 0.0740
TCDE19 9.20 0.8889 0.7253 0.0739

(a) mBART-DEplain-APA
exact↑ BS mean↑ BS min BS std

DEplain-APA 73.68 0.9827 0.7328 0.0391
DEplain-web 56.99 0.9628 0.4623 0.0694
TCDE19 48.80 0.9593 0.7360 0.0600

(b) mBART-DEplain-APA+web

Table 2: Similarity between copied system genera-
tions and reproduced system generations by exact
match (in %), and BERT-Score F1 values (mean,
minimum, and standard deviation).

6. German TS Benchmark

The previous results show that most of the repro-
duced models are similar to the results of the origi-
nal models. However, the results of the models are
not comparable to each other as they are evaluated
on different test sets and with different metrics im-
plementations. To unify the evaluation reports and
build a German sentence simplification benchmark,
we evaluate the reproduced models and three new
models on seven German sentence simplification
test sets, i.e., APA-LHA-OR-A2, APA-LHA-OR-B1,
DEplain-APA, DEplain-web, Simple German Cor-
pus (SGC), TCDE19, and GEOlino. We first de-
scribe the evaluation approach, then report the
models’ results per domain of the test set, and
finally compare the results across all test sets.

6.1. Method

All models are automatically evaluated against one
reference19 and on the same evaluation metrics,
i.e., SARI (Xu et al., 2016), BLEU (Papineni et al.,
2002), BS_P (Zhang* et al., 2020), and FRE (Am-
stad, 1978). Although the metrics have been criti-
cized regarding their suitability for text simplification
evaluation (e.g., see Sulem et al. 2018, Tanprasert
and Kauchak 2021, or Alva-Manchego et al. 2021),
we are reporting them due to missing alternatives.
Following the recommendation of Alva-Manchego
et al. (2021), we use BS_P as the main evaluation
metric. If the score is high, we verify it with other
metrics, such as SARI, BLEU, and FRE. In addi-
tion, as recommended by Tanprasert and Kauchak
(2021) and Alva-Manchego et al. (2019), we also
report linguistic features to get more insights into
the system-generated simplifications, i.e., compres-
sion ratio and sentence splits.

For the measurement of the metrics and fea-
tures, we are using the evaluation framework,
i.e., EASSE-DE, a multi-lingual adaptation of the
EASSE evaluation framework (Stodden, 2024). In
comparison to EASSE, EASSE-DE includes, for
example, German tokenization, German readability
metrics, and a multi-lingual version of BERTScore.
In Appendix G, more details are provided regarding
the settings used for evaluation with EASSE-DE.
We do not manually evaluate the models as this is
out of the scope of this work.
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BLEU↑ SARI↑ BS_P↑ FRE↑ Compr.
ratio ↓ Sent.

splits↑

hda_LS 3.02 14.02 0.12 37.55 1.14 1.04
sockeye-APA-LHA 13.59 51.77 0.35 68.65 0.64 0.99
sockeye-DEplain-APA 4.79 40.32 0.25 70.25 0.71 1.25
mBART-DEplain-APA 4.73 30.28 0.23 57.55 0.85 1.33
mBART-DEplain-APA+web 4.56 25.89 0.23 56.35 0.84 1.16
mT5-DEplain-APA 4.65 34.47 0.24 58.10 0.58 1.09
mT5-SGC 2.78 39.79 0.28 70.25 0.48 1.00
BLOOM-zero 2.44 26.83 0.19 51.85 0.82 1.29
BLOOM-10-random 2.64 33.05 0.24 57.95 0.64 0.98
BLOOM-10-similarity 5.10 38.05 0.29 64.60 0.59 0.98
custom-decoder-ats 0.28 37.05 0.08 52.60 3.16 2.91
Identity baseline 3.50 3.90 0.18 44.70 1.00 1.00
Reference baseline 100 100 1.00 69.55 0.60 0.97
Truncate baseline 2.60 17.49 0.19 54.25 0.79 1.00

Table 3: Evaluation on APA-LHA-OR-A2.

BLEU↑ SARI↑ BS_P↑ FRE↑ Compr.
ratio ↓ Sent.

splits↑

hda_LS 4.54 15.49 0.15 36.15 1.15 1.10
sockeye-APA-LHA 11.00 44.93 0.32 61.90 0.70 0.97
sockeye-DEplain-APA 3.57 39.4 0.25 70.65 0.68 1.26
mBART-DEplain-APA 5.32 30.94 0.26 57.65 0.86 1.37
mBART-DEplain-APA+web 5.81 26.61 0.25 56.05 0.85 1.19
mT5-DEplain-APA 4.92 35.70 0.26 57.70 0.57 1.10
mT5-SGC 2.54 39.36 0.29 70.45 0.48 1.00
BLOOM-zero 3.41 27.56 0.21 56.80 0.84 1.34
BLOOM-10-random 5.18 32.43 0.26 56.25 0.71 0.98
BLOOM-10-similarity 6.21 37.22 0.27 62.00 0.72 0.98
custom-decoder-ats 0.52 37.59 0.07 49.70 3.78 3.51
Identity baseline 5.47 4.89 0.22 43.70 1.00 1.00
Reference baseline 100 100 1.00 62.60 0.68 0.98
Truncate baseline 4.59 18.36 0.22 53.85 0.79 1.00

Table 4: Evaluation on APA-LHA-OR-B1.

6.2. News Test Sets: APA-LHA-OR-A2 &
APA-LHA-OR-B1 & DEplain-APA

Although, mBART-DEplain-APA, mT5-DEplain-
APA, sockeye-DEplain-APA, and sockeye-APA-
LHA are trained on alignments of the same source,
i.e., news of the Austrian Press Agency, sockeye-
APA-LHA achieves clearly better BS_P (difference
> 5), SARI (difference > 9) and BLEU scores (dif-
ference > 5) on both APA-LHA test sets (see Ta-
ble 3 and Table 4). In contrast, sockeye-DEplain-
APA, mBART-DEplain-APA and mT5-DEplain-APA
perform much better on DEplain-APA than sockeye-
APA-LHA (see Table 5) with respect to BS_P (dif-
ference > 16), SARI (difference > 4), and BLEU
(difference > 8). Hence, as expected, the models
are most suitable on the test set of the corpus that

19Unfortunately, no test set contains more than one
reference. Therefore, the results should be considered
with caution as the suitability of the evaluation metrics
has been checked on (English) test sets with multiple
references.

BLEU↑ SARI↑ BS_P↑ FRE↑ Compr.
ratio ↓ Sent.

splits↑

hda_LS 22.3 26.06 0.55 64.60 1.00 1.00
sockeye-APA-LHA 11.84 40.16 0.37 63.70 0.94 0.97
sockeye-DEplain-APA 19.58 44.14 0.53 71.45 0.94 1.09
mBART-DEplain-APA 28.49 38.72 0.64 65.30 0.99 1.07
mBART-DEplain-APA+web 28.03 33.81 0.64 65.20 0.98 1.05
mT5-DEplain-APA 22.32 39.41 0.61 63.20 0.87 1.04
mt5-SGC 8.12 37.92 0.48 71.65 0.74 1.00
BLOOM-zero 16.14 35.43 0.53 65.10 0.87 1.14
BLOOM-10-random 17.97 35.93 0.57 65.50 0.91 1.00
BLOOM-10-similarity 20.97 41.27 0.57 65.70 0.93 1.07
custom-decoder-ats 1.24 36.42 0.16 53.00 7.41 5.07
Identity baseline 26.89 15.25 0.63 58.75 1.00 1.00
Reference baseline 100.00 100.00 1.00 65.80 1.03 1.20
Truncate baseline 16.11 27.20 0.55 66.10 0.80 1.01

Table 5: Evaluation on DEplain-APA.

they have been trained on (APA-LHA vs. DEplain-
APA). Besides computational reasons, this might
also be due to the different alignment strategies
(APA-LHA: automatically vs. DEplain-APA: manu-
ally) or the different extent of the complex-simple
pairs (APA-LHA: OR to A2 or B1 vs. DEplain-APA:
B2 to A2) of both corpora.

However, mBART-DEPlain-APA, mT5-DEplain-
APA, and sockeye-DEplain-APA are all trained on
the same training data. Hence, their differences
in performance seem to be due to their system
architectures. When evaluating on DEplain-APA,
sockeye-DEplain-APA splits the sentences most of-
ten, whereas mT5-DEplain-APA compresses most
sentences. Further, the mBART model achieves
the best results concerning BS_P and BLEU, but
sockeye-DEplain-APA achieves the highest SARI
score and a much lower BS_P score (difference =
11). More experiments with different hyperparame-
ters and training sets are required to confirm this
finding.

Further, we can compare the mBART models
with respect to a data augmentation strategy be-
cause both models are trained in an identical set-
ting except for additional training data in mBART-
DEplain-APA+web. The augmented data (automat-
ically aligned and from different domains) seems
to reduce the quality of the system generations
on the news domain as on all three test sets:
the BLEU, SARI and BS_P scores are lower for
mBART-DEplain-APA+web than mBART-DEplain-
APA.

6.3. Web Test Sets: DEplain-web &
Simple-German-Corpus

BLEU↑ SARI↑ BS_P↑ FRE↑ Compr.
ratio ↓ Sent.

splits↑

sockeye-APA-LHA 0.24 32.41 0.13 69.55 0.74 0.90
sockeye-DEplain-APA 3.44 36.24 0.24 76.7 0.76 1.32
mBART-DEplain-APA 13.50 33.11 0.40 69.65 0.90 1.30
mBART-DEplain-APA+web 17.99 34.07 0.44 69.05 0.85 1.16
mT5-DEplain-APA 6.80 37.15 0.36 70.90 0.63 1.10
mt5-SGC 2.50 36.56 0.37 78.10 0.47 0.93
BLOOM-zero 10.88 30.58 0.35 70.30 0.85 1.28
BLOOM-10-random 11.06 30.90 0.39 68.55 0.69 0.98
BLOOM-10-similarity 11.62 37.03 0.42 70.05 0.63 0.98
custom-decoder-ats 0.72 34.92 0.10 57.15 5.41 3.79
Identity baseline 20.85 11.93 0.42 62.95 1.00 1.00
Reference baseline 100.00 100.00 1.00 77.90 0.94 1.84
Truncate baseline 17.28 24.58 0.40 67.05 0.82 1.02

Table 6: Evaluation on DEplain-web.

Focusing on the web test sets, mBART-DEplain-
APA+web performs best on DEplain-web (wrt.
BS_P and BLEU, see Table 6) and BLOOM-10-
similarity best on SGC (wrt. BS_P, SARI, and
BLEU, see Table 7). Although mt5-SGC and
mBART-DEplain-APA+web are both trained on
complex-simple pairs of the web domain, both
achieve comparable low BS_P scores on SGC.
A reason for that might be the mix of topics, dif-
ferent alignment types (automatic vs. manual), or
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a mix of language varieties (Easy German, Plain
German, and others) in their training data.

customer-decoder-ats and sockeye-APA-LHA
perform the worst on both datasets (wrt. BS_S).
Following the compression ratio and sentence split
values, customer-decoder-ats seems to halluci-
nate by extending the original text with many addi-
tional sentences. This might be because customer-
decoder-ats is originally built to simplify longer
texts. Sockeye-APA-LHA appears to underperform
on test sets for other target groups or domains
other than its training data.

BLEU↑ SARI↑ BS_P↑ FRE↑ Compr.
ratio ↓ Sent.

splits↑

hda_LS 6.34 20.22 0.25 41.15 1.00 1.03
sockeye-APA-LHA 0.33 35.50 0.13 63.70 0.80 0.82
sockeye-DEplain-APA 1.35 37.86 0.18 71.05 0.79 1.01
mBART-DEplain-APA 5.70 32.77 0.31 58.15 0.97 1.00
mBART-DEplain-APA+web 6.56 29.80 0.33 44.95 1.61 1.09
mT5-DEplain-APA 2.81 35.92 0.30 51.45 0.76 0.88
mt5-SGC 3.30 43.62 0.37 58.55 0.61 0.85
BLOOM-zero 3.76 31.95 0.25 53.55 0.81 1.07
BLOOM-10-random 4.64 33.16 0.30 51.50 0.75 0.92
BLOOM-10-similarity 13.32 44.66 0.38 58.65 0.92 1.13
custom-decoder-ats 0.44 36.53 0.06 32.05 8.83 3.68
Identity baseline 7.46 6.51 0.29 41.15 1.00 1.00
Reference baseline 100.00 100.00 1.00 65.40 1.25 1.81
Truncate baseline 4.66 20.12 0.28 50.50 0.81 0.87

Table 7: Evaluation on SGC.

6.4. Knowledge Acquiring Test Sets:
GEOlino & TCDE19

BLEU↑ SARI↑ BS_P↑ FRE↑ Compr.
ratio ↓ Sent.

splits↑

hda_LS 55.22 34.20 0.76 61.50 1.00 1.00
sockeye-APA-LHA 0.69 18.94 0.15 69.45 1.05 0.92
sockeye-DEplain-APA 7.27 24.71 0.33 77.3 0.96 1.15
mBART-DEplain-APA 50.56 44.29 0.74 70.75 1.04 1.15
mBART-DEplain-APA+web 55.35 44.28 0.79 64.60 0.97 1.08
mT5-DEplain-APA 28.43 36.93 0.65 67.95 0.80 1.04
mt5-SGC 11.92 28.75 0.55 78.30 0.70 0.94
BLOOM-zero 28.18 32.15 0.59 67.85 0.87 1.26
custom-decoder-ats 0.77 22.05 0.08 46.55 14.61 4.76
Identity baseline 67.12 26.81 0.86 61.50 1.00 1.00
Reference baseline 100.00 100.00 1.00 66.00 0.95 1.32
Truncate baseline 45.39 29.78 0.75 63.80 0.83 1.00

Table 8: Evaluation on GEOlino (n=663).

We also evaluate on two test sets with simplifica-
tion of knowledge-acquiring platforms, i.e. GEOlino
simplification of science for children and TCDE19
with simplifications of Wikipedia texts for non-native
German speakers. For both corpora, only test sets
and no training sets exist. Therefore, BLOOM-
10-random and BLOOM-10-similarity cannot be
evaluated as no samples exist that could be added
during prompting.

Further, currently, no training data for sentence
simplification in the same domain or for the same
target group of these test sets exists. There-
fore, the presented results in Table 8 and Table 9
can be seen in the out-of-domain evaluation of
the TS systems. mBART-DEplain-APA+web per-
forms best on both test sets with respect to BLEU
and BERTScore whereas mBART-DEplain-APA
achieves best SARI scores.

BLEU↑ SARI↑ BS_P↑ FRE↑ Compr.
ratio ↓ Sent.

splits↑

hda_LS 20.66 26.92 0.45 33.65 1.00 1.01
sockeye-APA-LHA 0.13 29.87 0.14 69.05 0.43 0.97
sockeye-DEplain-APA 0.68 31.79 0.19 65.0 0.51 1.42
mBART-DEplain-APA 13.69 39.14 0.50 51.10 0.76 1.57
mBART-DEplain-APA+web 17.75 37.37 0.55 43.65 0.74 1.29
mT5-DEplain-APA 2.84 35.09 0.40 46.60 0.40 1.14
mt5-SGC 1.05 32.98 0.38 64.40 0.31 0.97
BLOOM-zero 9.46 34.96 0.42 45.55 0.78 1.75
custom-decoder-ats 1.73 32.87 0.22 27.70 1.54 4.22
Identity baseline 27.31 14.99 0.55 28.10 1.00 1.00
Reference baseline 100.00 100.00 1.00 51.20 0.95 2.04
Truncate baseline 20.17 26.45 0.52 37.65 0.81 1.00

Table 9: Evaluation on TCDE19 (n=250).

6.5. Comparison Across Domains

In this section, we analyse the reproduced models’
results across all test sets. For a better overview of
the capabilities of the models across the test sets,
in Appendix I, we provide the BS_P scores of all
models on all test sets and in Appendix J for SARI.
The tables also include the rank of the model per
test set.20

Comparing the performance of the models
across all test sets, the scores of hda_LS are al-
ways close to the scores of the identity baseline,
which might be due to only minimal changes in the
original sentences. Of all models, custom-decoder-
ats still produces the most complex sentences with
respect to FRE and compression ratio. On all test
sets, the readability seems even lower for custom-
decoder-ats than for the original complex texts (see
identity baselines). The reason for that is halluci-
nation in the system outputs, which could be ex-
plained by the model’s design as it is trained for
document simplification, in which the texts are, by
nature, longer than in sentence simplification cor-
pora. mt5-SGC has the lowest compression ratio
on all test sets, possibly due to the very short sen-
tences in its training data, which are mostly texts
in Easy German.

Overall, no system ranks best across all test
sets (wrt. BS_P and SARI). On average, BLOOM-
10-similarity performs best (wrt. BS_P) if similar
examples are available, whereas mBART-DEplain-
APA+web achieves on average, the best ranks fol-
lowing BS_P on all seven test sets, and sockeye-
DEplain-APA performs best on both settings wrt.
SARI. The additional data, i.e., massive data dur-
ing pre-training in BLOOM and additional web data
for mBART, seems to have a positive effect on
the system generations or at least the evaluation

20BLOOM-10-random and BLOOM-10-similarity re-
quire training samples each time when generating a
simplified sentence, which is not available for all test sets
(e.g., TCDE19 or GEOlino). In addition, when simplifying
texts in practice, i.e., as an intra-lingual translation tool,
also no simplification examples would be made available.
In order to integrate this limitation, BLOOM-10-random
and BLOOM-10-similarity will be penalized in our eval-
uation on TCDE19 and GEOlino with the highest rank
equal to the worst result.
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scores. In comparison, sockeye-DEplain-APA is
only trained on simple-complex pairs of DEplain-
APA, and, therefore, the model cannot transfer well
to other domains as it only performs very well on
the news test sets.

However, the transfer learning of pre-trained
models appears to be more effective for BLOOM
than for mBART or mT5, which might be due to its
larger pre-training data size. Further, BLOOM has
been prompted with only a few samples, but it still
outperforms the smaller language models, even
though they have been fine-tuned on many task-
relevant samples. We can also confirm the findings
of (Ryan et al., 2023) that BLOOM-10-similarity
generates better simplifications than BLOOM-10-
random and better than BLOOM-zero on all test
sets with respect to BS_P and SARI. For more
comparisons of mT5 and BLOOM (also including
the capability of TS models across multiple lan-
guages), we refer the interested reader to Ryan
et al. (2023).

For the sockeye models, we assume that the
size of APA-LHA and DEplain-APA is too small to
train a model from scratch. It could be a promising
approach to combine similar training data with each
other to increase the training size for sockeye, e.g.,
a combination of APA-LHA, DEplain-APA, and/or
SGC because a positive effect of data combination
has been revealed for mBART-DEplain-APA+web
compared to mBART-DEplain-APA.

7. Conclusion & Discussion

We have reproduced different approaches on how
to simplify German texts automatically. However,
we have also revealed some new issues regarding
models’ reproduction and have confirmed previ-
ously named problems with respect to the training
data and the evaluation process.

We found the following three main issues with
the models, i.e.,

(i) impossibility of reproduction, e.g., due to miss-
ing details, missing code, not-available or
restricted-access data, or restricted-access
language models,

(ii) differences in reproduction and, therefore, less
comparison, e.g., due to different data splits,
and

(iii) differences in evaluation scores for reported
scores and scores of reproduced models due
to different system outputs or different imple-
mentations of metrics.

For better reproducibility and better comparison
between ATS models, we recommend publishing
as many details and materials related to the models
as possible with respect to copyright and licenses,

e.g., publishing (i) the checkpoints of the trained
or fine-tuned models and code how to reuse them,
or (ii) the code and a description of how to rebuild
and re-train the model, including model versions
and used prompts.

Additionally, we also recommend publishing the
system generations (if not restricted by copyright)
to enable further analysis of the results. In our re-
production study, in the comparison of the reported
and reproduced scores, we have seen that even
if the ATS models or the code are available for
reproduction, the system generations seem to be
different from those described in the original works.
Hence, some analysis of the original work might
not hold when reproducing.

We have also shown that, for example, due to
limited computing resources, system generations
cannot always be reproduced even if the code or
the model is provided. We argue that the sys-
tem generations are helpful for understanding the
original work better and can also be valuable for
building better evaluation metrics.

To compare the reproduced models with each
other, we have built a German sentence simplifi-
cation benchmark on 7 test sets. We found, as
expected, that models achieve the best scores if
they are evaluated and trained on the same cor-
pus. We have also shown that some models, es-
pecially mBART-DEplain-APA+web (wrt. SARI and
BERT-Score), achieve good scores on test sets on
which domain or target group they were not trained.
Hence, the models seem to have learned some
universal simplification. Nevertheless, we want to
emphasize that simplicity is subjective. Hence, for
each person and each target group, a text is eas-
ier or more difficult to read. Following this, a text
simplification model should also learn to simplify
for a specific target group and not for many tar-
get groups at the same time (Gooding, 2022; Sta-
jner, 2021). Therefore, we recommend not mixing
training data from texts written for different target
groups but evaluating the models only on texts writ-
ten for the target group of interest. Due to limited
resources, this is currently impractical. Hence, we
have presented approaches with mixed training
data and evaluated across texts of different target
groups.

However, the analysis with respect to SARI or
BERT-Score allows us to draw different conclu-
sions: Following their scores, different models are
ranked as best models. More work regarding the
suitability and interpretability of evaluation metrics
(especially regarding test sets with only one refer-
ence) is required for a more reliable interpretation
of this German TS benchmark.
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A. Hyperparamter mT5

parameter name value
epochs 10
model mt5-base
prefix "simplify to plain German: "
max length 128:128
learning rate 0.001
batch size 4
metric SARI
optimzer adafactor

Table 10: Hyperparameter for fine-tuning mT5

B. Hyperparameter Sockeye

C. Reproduction results of
sockeye-APA-LHA

D. Reproduction results of BLOOM

E. Reproduction results of
customer-decoder-ats

F. Reproduction Results of
mBART-DEplain-APA and
mBART-DEplain-APA+web

G. EASSE-DE settings

• lowercasing: False, • tokenizer: spacy, • test
set: custom, • metrics: bleu,sari,bertscore,fre • lan-
guage: DE

Sockeye-APA-LHA Spring et al. (2021)
Sockeye version 3.1.34 < 2.3.17
num_layers 6 6
optimized_metric ’bleu’ ’bleu’
max_num_checkpoint_not_improved 10 10
checkpoint_improvement_threshold 0.001
seed 42 1
batch_type ’sentence’ word
batch_size 256 2048
optimizer ’adam’ ’adam’
max_seq_len 95 95
label_smoothing 0.3 0.3
transformer_model_size 512 512
transformer_attention_heads 4 4
transfromer_feed_forward_num_hidden 2048 2048
transformer_dropout_attention 0.1 0.1
transformer_dropout_act 0 0
transformer_dropout_prepost 0.1 0.1
embed_dropout 0.3 0.3
transformer_positional_embedding_type ’fixed’ ’fixed’
initial_learning_rate 0.0002 0.0002
learning_rate_reduce_factor 0.9 0.9
learning_rate_schedule_type ’plateau-reduce’ ’plateau-reduce’
update_interval 1 2
vocabular size 20000 20000
init xavier
Init-scale 3
Init-xavier-factor-type avg
architecture transformer

Table 11: Hyperparameters of our reproduction
and the ones reported in Spring et al. (2021).

copied reproduced
System BLEU↑ SARI↑ BLEU↑ SARI↑
Sockeye-APA-LHA 12.3 40.73 11.40 45.20

(a) APA-LHA OR-B1
copied reproduced

System BLEU↑ SARI↑ BLEU↑ SARI↑
Sockeye-APA-LHA 15.20 42.04 14.15 52.17

(b) APA-LHA OR-A2

Table 12: Reproduced and copied results for sock-
eye on APA-LHA (Spring et al., 2021).

H. Hyperparameter mBART

I. Overview of BERT-Score Precision
per model and test set

J. Overview of SARI results per
model and test set

TCDE19 (n=25) GEOlino (n=25)
copied repro. copied reprod.

System SARI↑ SARI↑ SARI↑ SARI↑
zero-shot 32.26 34.96 29.59 28.75
random 10-shot 38.07 35.49 35.42 36.92
similarity 10-shot 38.93 39.86 39.7 40.36
Identity Baseline 15.42 15.42 27.45 27.44
Truncate Baseline 26.81 26.81 30.7 30.74

Table 13: Reproduced and copied results for
BLOOM. The identity baseline results are taken
from the code, all other copied scores are taken
from the original paper (Ryan et al., 2023)
.
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BLEU↑ SARI↑ ROUGE-L↑
german_gpt FT 4.8 42.74 17.93

(a) 20Minuten (copied)
BLEU↑ SARI↑ ROUGE-L↑

german_gpt FT 4.12 41.85 17.23

(b) 20Minuten (reproduced)

Table 14: Reproduced and copied results for 20Min
and custom-decoder-ats (Anschütz et al., 2023).

System BLEU↑ SARI↑ BS_P↑ FRE↑
mBART-DEplain-APA 28.25 34.818 0.639 63.072
mBART-DEplain-APA+web 28.506 34.904 0.64 62.669
Identity baseline 26.89 15.25 0.63 58.75

(a) copied
System BLEU↑ SARI↑ BS_P↑ FRE↑
mBART-DEplain-APA 30.01 39.12 0.48 -
mBART-DEplain-APA+web 29.62 34.44 0.47 -
Identity baseline 28.50 15.88 0.45 -

(b) reproduced & EASSE
System BLEU↑ SARI↑ BS_P↑ FRE↑
mBART-DEplain-APA 28.49 38.72 0.64 65.3
mBART-DEplain-APA+web 28.03 33.81 0.64 65.2
Identity baseline 26.89 15.25 0.63 59.23

(c) reproduced & EASSE-DE

Table 15: Reproduced and copied results
for mBART-DEplain-APA and mBART-DEplain-
APA+web (Stodden et al., 2023) on DEplain-APA.

System BLEU↑ SARI↑ BS_P↑ FRE↑
mBART-DEplain-APA 15.727 30.867 0.413 64.516
mBART-DEplain-APA+web 17.88 34.828 0.436 65.249
Identity baseline 20.85 11.931 0.423 60.825

(a) copied
System BLEU↑ SARI↑ BS_P↑ FRE↑
mBART-DEplain-APA 14.41 33.15 0.20 -
mBART-DEplain-APA+web 18.95 34.11 0.25 -
Identity baseline 21.65 12.34 0.23 -

(b) reproduced & EASSE
System BLEU↑ SARI↑ BS_P↑ FRE↑
mBART-DEplain-APA 13.5 33.11 0.4 69.65
mBART-DEplain-APA+web 17.99 34.07 0.44 69.05
Identity baseline 20.85 11.93 0.42 62.95

(c) reproduced & EASSE-DE

Table 16: Reproduced and copied results
for mBART-DEplain-APA and mBART-DEplain-
APA+web (Stodden et al., 2023) on DEplain-web.
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Rios et al. (2021) Rios et al. (2021) Trienes et al. (2022) Stodden et al. (2023) Stodden et al. (2023)
model standard mbart small mbart mBART-large-cc25 mBART long-mbart
model-url facebook/mbart-large-cc25 facebook/mbart-large-cc25 facebook/mbart-large-cc25
max length 1024:1024 1024:4096 256:256 2048:1024
learning rate 0.00003 0.00003 0.00003
lr_schedule_type ’plateau-reduce’ ’plateau-reduce’ ’plateau-reduce’ ’plateau-reduce’
batch size 1024:1024 4 4 16 1
optimizer adamW adam adam
warm-up 10% of train + linear decay
beam size 5 6 6
vocabulary size 250k 20k 35k 35k
attention window x 512 512 512
attention dropout 0.1 0.1 0.1 0.1
dropout 0.3 0.3 0.3 0.3
label smoothing 0.2 0.2 0.2 0.2
early stopping rougeL rougeL rougeL rougeL
language tags de_DE:[de_A1|de_A2|de_B1] yes, but not specified de_DE:de_SI de_DE:de_SI

Table 17: Hyperparamters of mBART in different papers.

APA-LHA-OR-B1 APA-LHA-OR-A2 DEplain-APA DEplain-web SGC GEOlino TCDE19 AVG rank
BS_P Rank BS_P Rank BS_P Rank BS_P Rank BS_P Rank BS_P Rank BS_P Rank (5 sets) (7 sets)

hda_LS 0.12 10 0.15 10 0.55 6 n/a 11 0.25 8 0.76 2 0.45 3 9 7.14
sockeye-APA-LHA 0.35 1 0.32 1 0.37 10 0.13 9 0.13 10 0.15 8 0.14 9 6.2 6.86
sockeye-DEplain-APA 0.25 4 0.25 8 0.53 8 0.24 8 0.33 9 0.19 7 0.18 8 7.4 7.43
mBART-DEplain-APA 0.23 8 0.26 6 0.64 2 0.4 3 0.31 4 0.74 3 0.5 2 4.6 4
mBART-DEplain-APA+web 0.23 8 0.25 8 0.64 2 0.44 1 0.33 3 0.79 1 0.55 1 4.4 3.43
mT5-DEplain-APA 0.24 6 0.26 6 0.61 3 0.36 6 0.3 6 0.65 4 0.4 5 5.4 5.14
mT5-SGC 0.28 3 0.29 2 0.48 9 0.37 5 0.37 2 0.55 6 0.38 6 4.2 4.71
BLOOM-zero 0.19 9 0.21 9 0.53 8 0.35 7 0.25 8 0.59 5 0.42 4 8.2 7.14
BLOOM-10-random 0.24 6 0.26 6 0.57 5 0.39 4 0.3 6 n/a 11 n/a 11 5.4 7
BLOOM-10-similarity 0.29 2 0.27 3 0.57 5 0.42 2 0.38 1 n/a 11 n/a 11 2.6 5
custom-decoder-ats 0.08 11 0.07 11 0.16 11 0.1 10 0.06 11 0.08 9 0.22 7 10.8 10

Table 18: Overview of BERT-Score Precision values per model and test set including ranks per test
set. The last two columns contain the averages across all test sets (n=7) and all test sets with available
training data (n=5).

APA-LHA-OR-B1 APA-LHA-OR-A2 DEplain-APA DEplain-web SGC GEOlino TCDE19 AVG rank
SARI Rank SARI Rank SARI Rank SARI Rank SARI Rank SARI Rank SARI Rank (5 sets) (7 sets)

hda_LS 14.02 11 15.49 11 26.06 11 n/a 11 20.22 11 34.2 4 26.92 9 11 9.71
sockeye-APA-LHA 51.77 1 44.93 1 40.16 3 32.41 8 35.5 6 18.94 9 29.87 8 3.8 5.14
sockeye-DEplain-APA 40.32 2 39.4 2 44.14 1 36.24 4 24.71 3 31.79 7 37.86 7 2.4 3.71
mBART-DEplain-APA 30.28 8 30.94 8 38.72 5 33.11 7 32.77 8 44.29 1 39.14 1 7.2 5.43
mBART-DEplain-APA+web 25.89 10 26.61 10 33.81 10 34.07 6 29.8 10 44.28 2 37.37 2 9.2 7.14
mT5-DEplain-APA 34.47 6 35.7 6 39.41 4 37.15 1 35.92 5 36.93 3 35.09 3 4.4 4
mT5-SGC 39.79 3 39.36 3 37.92 6 36.56 3 43.62 2 28.75 6 32.98 5 3.4 4
BLOOM-zero 26.83 9 27.56 9 35.43 9 30.58 10 31.95 9 32.15 5 34.96 4 9.2 7.86
BLOOM-10-random 33.05 7 32.43 7 35.93 8 30.9 9 33.16 7 n/a 11 n/a 11 7.6 8.57
BLOOM-10-similarity 38.05 4 37.22 5 41.27 2 37.03 2 44.66 1 n/a 11 n/a 11 2.8 5.14
custom-decoder-ats 37.05 5 37.59 4 36.42 7 34.92 5 36.53 4 22.05 8 32.87 6 5 5.57

Table 19: Overview of SARI scores per model and test set including ranks per test set. The last two
columns contain the averages across all test sets (n=7) and all test sets with available training data (n=5).
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