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Abstract
Plain language summarization, or lay summarization, is an emerging natural language processing task, aiming
to make scientific articles accessible to an audience of non-scientific backgrounds. The healthcare domain can
greatly benefit from applications of automatic plain language summarization, as results that concern a large portion
of the population are reported in large documents with complex terminology. However, existing corpora for this
task are limited in scope, usually regarding conference or journal article abstracts. In this paper, we introduce
the task of automated generation of plain language summaries for clinical trials, and construct CARES (Clinical
Abstractive Result Extraction and Simplification), the first corresponding dataset. CARES consists of publicly
available, human-written summaries of clinical trials conducted by Pfizer. Source text is identified from documents
released throughout the life-cycle of the trial, and steps are taken to remove noise and select the appropriate sections.
Experiments show that state-of-the-art models achieve satisfactory results in most evaluation metrics.
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1. Introduction

Lay summarization, also known as plain language
summarization, is the process of distilling intricate
information into clear, concise and easily digestible
summaries (Vinzelberg et al., 2023). In an era of
abundant specialized knowledge and technical jar-
gon, lay summarization plays a vital role in making
complex ideas, scientific findings, or technical con-
cepts accessible and comprehensible to individuals
who may lack expertise in a particular field.

Lay summarization is particularly important in
communicating scientific articles to the general pub-
lic, especially in the field of medicine. This became
apparent during the COVID-19 pandemic when mil-
lions of scientific articles with medical content were
published (Islam et al., 2020). These articles were
comprehensible to only a few, resulting in misinter-
pretations to the extent that it led to misinformation
and fake news (Brennen et al., 2020).

The state-of-the-art in lay summarization is con-
stantly evolving, driven by cutting-edge NLP ap-
proaches, as well as by the development of ap-
propriate datasets for supervised learning (Chan-
drasekaran et al., 2020; Guo et al., 2021, 2024;
Goldsack et al., 2022; Attal et al., 2023). Existing
datasets concern scientific publications. Another
important type of scientific information is clinical
trials, which comprise several long documents, in-
cluding a study protocol, a statistical analysis plan
and a report synopsis, as well as related scientific
publications. Lay summarization of clinical trials is
not only important for the general public, but also
a requirement for pharmaceutical companies by
regulations such as EU Regulation No 536/2014
and US Public Health Service Act 2007. However,
to the best of our knowledge, this task has not been

considered by the NLP community before and no
relevant public datasets exist.

This work takes some first steps to fill this gap,
by introducing lay summarization of clinical trials as
a task, and constructing a corresponding dataset,
CARES (Clinical Abstractive Result Extraction and
Simplification), which pairs publicly available plain
language summaries (PLSs) with relevant pieces
of text from the associated documents. Table 1
shows a sample of such a pair.

Source: Programmed death ligand 1 (PD-L1,
also called B7-H1 or CD274) has a known role
in the suppression of T-cell responses. The PD-
1 receptor is expressed on activated CD4+ and
CD8+ T cells. By interaction with its ligands,
PD-L1 and PD-L2, PD-1 delivers a series of
strong inhibitory signals to inhibit T-cell functions.
Avelumab*(MSB0010718C), a fully human anti-
body of the immunoglobulin G1 (IgG1) isotype,
specifically targets and blocks PD-L1, the ligand for
PD-1 receptor. In preclinical studies, the combina-
tion of avelumab with chemotherapy (gemcitabine,
oxaliplatin, 5FU) showed improved anti-tumor ac-
tivity over single-agent chemotherapy ...
Summary: Avelumab is a medicine that may work
by targeting a protein called programmed death-
ligand 1 (pd-l1) found on the cancer cell. Pd-l1 is
involved in the bodys immune system response to
cancer. When this study was started, avelumab
was being tested for use in women with advanced
ovarian cancer. Although avelumab is approved in
other types of cancer, it is not approved for use ...

Table 1: Sample of a source and summary pair
from the CARES dataset.



61

The rest of the paper is structured as follows:
Section 2 presents related work in this field. Sec-
tion 3 discusses the developed dataset. Section 4
covers the experiments conducted on this dataset
and finally, Sections 5 and 6 introduce the conclu-
sions and limitations of the dataset, respectively.

2. Related Work

In this section, we delve into the existing research
and methodologies regarding lay summarization,
particularly focusing on datasets available for the
task and methods employed for generating simpli-
fied summaries from scholarly documents.

2.1. Datasets
One of the first resources in the field of lay summa-
rization was a corpus of 572 full-text papers accom-
panied by lay summaries, in a variety of domains,
including archaeology, hematology, and engineer-
ing, which was made available by Elsevier in the
context of the 1st Workshop on Scholarly Document
Processing (Chandrasekaran et al., 2020).

In biomedicine, (Guo et al., 2021) developed a
dataset pairing 7,805 systematic reviews from the
Cochrane database with plain language abstracts
written by domain experts. (Goldsack et al., 2022)
introduced two datasets: the Public Library of Sci-
ence (PLOS) and eLife, each containing biomedical
articles along with PLSs written by experts, the first
having over 27k examples. Recently, (Attal et al.,
2023) presented PLABA a dataset containing 750
abstracts from PubMed from 75 different health-
related topics and expert-created adaptations at the
sentence level. Lastly, (Guo et al., 2024) describe
CELLS, the largest dataset of over 62k examples of
parallel scientific abstracts and the corresponding
expert-authored lay language summaries.

The dataset developed for our study differs from
prior efforts in that CARES is the first dataset tai-
lored specifically to clinical trials, instead of scien-
tific publications.

2.2. Methods
There have been several efforts to develop models
and methods for lay summarization. Specifically,
(Chaturvedi et al., 2020), in their attempt to tackle
CL-LaySumm20, which requested the development
of non-technical summaries from scholarly docu-
ments, introduced a two-step divide-and-conquer
technique. This approach involves extracting sen-
tences from plain sections of the inputs using an
unsupervised network and then performing abstrac-
tive summarization and merging them.

Furthermore, during CL-LaySumm 2020 in SDP
workshop at EMNLP 2020, (Kim, 2020) achieved

the top performance on the task of generating sim-
plified summaries for scientific papers. They em-
ployed the PEGASUS (Zhang et al., 2019) model
for producing the initial lay summaries, which were
improved by appending important sentences to the
summary of which the number of words was un-
der a certain threshold, using a Presumm (Liu and
Lapata, 2019), a BERT-based (Devlin et al., 2018)
extractive summarization model.

Lastly, (Shaib et al., 2023) utilized GPT-3 in the
zero-shot setting to summarize and simplify articles
describing trials. They also applied this approach to
the summarization of meta-analyses involving mul-
tiple documents. Despite also working on the lay
summarization of clinical trials, our approach differs
in that we aim to reproduce a particular document
and not provide a general lay summary.

Although there is existing literature on lay summa-
rization tasks for scientific publications and articles,
we are the first to apply the generation of simplified
summaries to whole clinical trials.

3. CARES Dataset

Motivated from the crucial role of high-quality paral-
lel corpora in developing biomedical simplification
models (Ondov et al., 2022), we introduce CARES,
the 1st dataset for plain language summarization of
clinical trials1. Although summaries (referred to as
targets or golden summaries hereafter) are readily
available, there exists no single respective technical
text (source) for the entire summary. In this section,
we outline our methodology for creating the dataset,
as well as the process of identifying the suitable
document and subsection for each component of
the PLS.

3.1. Target Extraction
We start the construction of CARES from the Plain
Language Study Results Summaries repository of
Pfizer2. We collected the PDF files of the 176 sum-
maries that existed in this repository, up to March
3rd, 2023. Next, we extracted their text, making
sure artifacts are not introduced in the form of page
numbers or identifiers present in the margins.

We found that their length often exceeds 1,200
words, which surpasses the capacity of most
state-of-the-art models such as BART and PEGA-
SUS. To address this issue, we exploited their
discourse structure, inspired by the divide-and-
conquer paradigm in (Gidiotis and Tsoumakas,
2020). Authors follow a question-answer structure,
aimed at addressing different aspects of the clinical

1https://github.com/PolydorosG/CARES
2https://www.pfizer.com/science/clinical-trials/plain-

language-study-results-summaries

https://github.com/PolydorosG/CARES
https://www.pfizer.com/science/clinical-trials/plain-language-study-results-summaries
https://www.pfizer.com/science/clinical-trials/plain-language-study-results-summaries
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trial, from its conception to its results. The respec-
tive titles of these sections are as follows:

• Q1: “Why was this study done?"

• Q2: “What happened during {i} study?",
i ∈ {the, this}

• Q3: “What were the results of the study?"

• Q4: “What {i} did {j} have during the study?",
i ∈ {medical problems, side effects}
j ∈ {participants, patients, children, boys,
volunteers, infants}

• Q5: “Were there any serious medical prob-
lems?" ∨ "Did {i} have any serious {j}?",
i ∈ {(study) participants, study infants},
j ∈ {side effects, medical problems}

Table 2 shows the number of examples per sec-
tion, along with their average word counts. It is
evident that Q1 and Q5 appear consistently in each
of the initial 176 summaries, in contrast to Q2-Q4.
Missing data are attributed to two factors: a) the
existence of studies with different objectives, lead-
ing to certain sections being deemed irrelevant to
the specific analysis being conducted and therefore
not being included by the summary authors, and b)
the introduction of noise during the text extraction
process, despite our measures to prevent this. In
such cases, portions of the text become corrupted,
rendering certain sections irrecoverable.

Section Summaries Average # of words
Q1 176 325
Q2 175 555
Q3 166 287
Q4 171 267
Q5 176 130

Total 864 -

Table 2: Section headers identified in the PLSs.

3.2. Source Selection
Every clinical trial has a set of documents that de-
scribe each of its parts, from its design to the anal-
ysis of the results. Clinical studies begin with a
study protocol. This is a detailed description of the
plan that explains the objective of the clinical trial,
as well as how it will be conducted. The protocol is
usually accompanied by a statistical analysis plan.
At the same time, scientific journal articles may be
published for certain studies, mainly of new drugs.
Finally, after the end of the trial, a clinical study
report synopsis is created, which analyzes the re-
sults as well as the events that occurred during
the study. Many of these documents exceed 100
pages of text, rendering summarization impossible
for models without selecting a small portion of each

document. Next, we will describe the document
selected for each section, with the exception of Q3
for which no appropriate section was found.

The content of Q1 is the most general of all. It
usually includes research-independent elements,
such as general information about the disease and
results of previous studies. Concerning the trial
itself, the questions that will be answered, as well
as the motivation of the researchers are described.
As these are determined in advance, the most ap-
propriate document is the study protocol. When
available, we keep the study protocol’s summary,
often referred to as synopsis. Otherwise, we use
its introduction section, as it was found to contain
most of the necessary information.

Q2 concerns the design of the clinical study. It
analyzes data on the population and the separa-
tion of patients into groups. Afterward, the strategy
followed regarding the administration of the sub-
stance is mentioned, as well as the type of the
study, such as whether the groups are randomly
selected (randomization), whether a control group
is included, or whether it is single-blind or double-
blind. This information is located in the study design
part of the study protocol. Since section titles are
not consistent across study protocols, we use reg-
ular expressions to isolate the particular segment.

Finally, Q4 and Q5 both refer to the side effects
and medical problems experienced by the trial par-
ticipants. Their difference lies in the severity, as
they are analyzed separately in Q5 if they were life-
threatening, required medical attention, or caused
permanent damage. Due to the thematic similarity
of the two questions, the source of both is found in
the safety results section of the clinical study report
synopsis.

Despite an initial choice of both document and
section within the selected document, we find that
source lengths remain prohibitively large for neural
models. A major reason for this was the introduc-
tion of noise during text extraction. Despite pre-
processing steps, including cropping margins and
automatically identifying and removing text from
tabular data, errors in these steps may persist, intro-
ducing a large volume of artifacts. For this reason,
we proceed to evaluate each sentence of the large
initial source section with regard to its similarity to
the target.

Let Y = {Y1, Y2, ..., Yn} be a set of golden sum-
maries, and X = {X1, X2, ..., Xn} be a set of the
respective candidate, uncleaned sources. We to-
kenize each initial source into a sequence of m
sentences, Xi = [x1, x2, ..., xm]. We then quantify
the similarity of each sentence with the summary
using the ROUGE-L (Lin, 2004) recall score RLCS :

RLCS(xi, Yi) =
LCS(xi, Yi)

l
, (1)

where l is the length of sentence xi and LCS(xi, Yi)
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is the length of the longest common subsequence
between xi and Yi.

Although ROUGE was used in previous work to
match sentences of the summary with parts of a
document and automatically create source-target
pairs for training (Gidiotis and Tsoumakas, 2020),
no special care has been taken for entities. Given
the simplified vocabulary of the summaries, we
propose the addition of entity matches between
candidate sources and targets as an anchor be-
tween complex and simplified text. In the context
of factual consistency of summarization, Nan et al.
(2021) proposed the use of named entity recall and
precision. We adapt this concept in order to mea-
sure entity-level recall RE . Specifically, we extend
the proposed method to also include numbers and
percentages. Since decimals are not included in
PLSs, we identify such digits in the source. These
numbers are then rounded to the nearest integer to
best align the source and target formats. The final
similarity score is thus defined as:

S(xi, Yi) = α ∗RLCS(xi, Yi)+

(1− α) ∗RE(r(NExi
), NEYi

) (2)

where α is a hyper parameter, NExi
, NEYi

the
named entities detected in source sentence xi and
PLS Yi respectively, and r(·) the simplification func-
tion applied to source entities.

Finally, after evaluating each sentence’s similar-
ity to the respective target, we select sentences in
descending order until scores reach a threshold
or the maximum length is exceeded. Sentences
are reordered before forming the dataset to best
replicate the document’s structure. In case of no
appropriate source sentences (i.e. no sentences
pass the fixed similarity threshold), the examples
are removed completely. An example of the source
extraction pipeline is provided in Figure A.1.

The final dataset consists of 478 source-target
pairs. The final word counts, along with the number
of examples in each split are presented in Table
3. Note that to best reproduce real-world settings,
we make sure each summary’s subsections are
not present in different splits. Lastly, to aid future
research, we publish both the selected sources as
well as the entire source documents and targets.

Length Summaries
Section Source Target Train Val. Test

Q1 713 330 87 13 9
Q2 665 570 79 12 8
Q4 406 279 102 18 13
Q5 405 129 104 19 14

Table 3: Source and summary length after our
similarity-based filtering method, along with num-
ber of examples in train, test and validation splits.

4. Experiments

To facilitate future work, we benchmark our dataset
using state-of-the-art summarization models BART
and PEGASUS. We run all experiments on an
Nvidia Tesla T4 with 16 GB of memory, using the
open-source Hugging-Face implementations (Wolf
et al., 2019) for a maximum of 10 epochs. We moni-
tor the models’ performance on the validation set for
each epoch and select the best model according to
ROUGE-L score. All BART models were initialized
from the "facebook/bart-large" model, and PEGA-
SUS from "google/pegasus-large". Finally, entity
recognition was performed using spaCy (Honnibal
and Montani, 2017).

Since Q4 and Q5 of the same PLS may have the
same source, we train models under two settings.
The first consists of training separate models for
each section, referred to as BART and PEGASUS,
treating them as a distinct summarization task. For
the second approach, in order to utilize the whole
training set in a single model we prepend the sec-
tion’s title to each source employing special tokens
to tag it, before feeding the document to the model
(Passali and Tsoumakas, 2022). These models are
referred to as BARTTAG and PEGASUSTAG.

We evaluate generated summaries using both
ROUGE and named entity recall and precision, to
evaluate entity-level factual consistency. The ex-
perimental results reported in Table 4 are highly
promising, with the BART models outperforming
PEGASUS on most sections. However, determin-
ing what constitutes a good ROUGE score can vary
depending on the domain and the specific task at
hand. In our investigation, we observed that the
ROUGE scores of models trained on our dataset
align with those reported in similar studies on anal-
ogous datasets. It is worth noting that while individ-
ual models exhibit superior performance compared
to the tagging method, this enhanced performance
is achieved at the expense of requiring four times
as many models.

Regarding the somewhat subpar performance
in Q2, we attribute it to the open-endedness of the
question rather than our regular expressions. To
further investigate this we calculate the ROUGE
scores between the selected sources and golden
summaries. As can be seen in Table 5, contrary
to the model performance, our retrieval approach
appears to be most successful in Q2. Therefore
we ascribe the relatively bad performance, to Q2
being a harder section to simplify and summarize.

Finally, we notice that models trained on the en-
tire dataset (BARTTAG and PEGASUSTAG), de-
spite generally showcasing lower ROUGE scores,
are able to more accurately generate entities. This
observation is consistent with previous claims that
ROUGE alone is inadequate to quantify factual con-
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Model ROUGE− 1 ROUGE− 2 ROUGE− L PrecisionNE RecallNE

Q1

BART 51.8 25.3 31.3 46.79 35.34
BARTTAG 50.7 24.0 30.6 47.36 44.60
PEGASUS 34.0 11.7 22.7 35.51 42.34
PEGASUSTAG 35.0 10.9 22.4 43.46 41.73

Q2

BART 47.1 19.3 25.7 69.98 44.13
BARTTAG 46.5 19.5 26.8 70.05 38.77
PEGASUS 34.0 13.0 25.4 58.32 39.94
PEGASUSTAG 35.0 12.4 24.2 69.50 26.85

Q4

BART 73.9 62.4 67.0 53.90 48.74
BARTTAG 70.7 58.6 63.8 58.71 57.09
PEGASUS 66.2 57.0 60.8 54.86 46.85
PEGASUSTAG 69.7 61.1 68.7 60.61 48.64

Q5

BART 62.3 47.4 53.7 30.52 56.22
BARTTAG 61.0 46.6 53.1 35.42 58.60
PEGASUS 50.4 39.4 46.0 39.05 48.97
PEGASUSTAG 56.3 44.8 51.2 31.59 37.24

Table 4: ROUGE F1 and named entity results of BART and PEGASUS models on our dataset. We mark
the best performances with bold. BARTTAG and PEGASUSTAG are trained on the entire dataset.

Section R-1 R-2 R-L
Q1 28.00 6.55 13.48
Q2 32.91 8.34 14.42
Q4 27.34 5.83 13.84
Q5 18.47 4.78 10.89

Table 5: ROUGE scores between selected source
segments and golden summaries.

sistency (Kryściński et al., 2019b).
Following previous work on lay summarization

(Guo et al., 2022), we report the average Coleman-
Liau readability score (Coleman and Liau, 1975) for
the source, gold summary and model-generated
summary for BARTTAG in Table 6. This score eval-
uates the simplicity of a passage, by providing an
estimate of the years of education required to under-
stand it. A lower score suggests a simpler writing
style. We confirm that PLSs offer greater readability
than the respective source segments. We also find
that the BARTTAG consistently exhibits readability
levels are consistently closer to the desired target,
reflecting its effectiveness in producing simplified
versions of the source.

Section Source Summary Model Summary
Q1 14.5 11.6 11.1
Q2 12.0 10.2 11.0
Q4 13.5 11.7 12.1
Q5 13.2 12.0 12.6

Average 13.3 11.4 11.7

Table 6: Coleman-Liau readability scores for
source, golden and BARTTAG summaries.

Despite impressive ROUGE scores, we note
the factual inconsistency of generated summaries,
which has previously been reported by several au-

thors as a problem in abstractive summarization
(Kryściński et al., 2019b; Cao et al., 2018; Kryś-
ciński et al., 2019a). Qualitative analysis shows
that this problem can be largely attributed to three
reasons: i) Missing information, where identified
sources do not contain all necessary information
to accurately produce summary entities, ii) Typos,
where entities are "mistyped", due to the model’s
dictionary (e.g. letters missing from a substance’s
name), iii) Hallucinations, where entities are made
up due to biases present in the training set (e.g.
stating that a study was performed in the US rather
than the UK). We present representative examples
for some identified causes of factual inconsisten-
cies in Table 7 of Appendix A.2.

5. Conclusion

This work introduced the task of automatic gener-
ation of lay summaries for clinical trials and con-
structed the first related dataset to support training
and evaluation. To enable the use of transformer
models for this task, we proposed the division of
each golden summary into thematic subsections
with appropriate length. Additionally, we located the
source of each section from an array of documents
and proposed similarity measures as a means of im-
proving source quality. To facilitate future research,
we benchmarked our dataset with popular summa-
rization models using several metrics and found
that BART performs well on all thematic sections.
Finally, we noted challenges in the form of factual
inconsistency of generated summaries, attributable
to both model biases and source imperfections.
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6. Limitations

Although CARES utilizes all publicly available PLSs
by Pfizer, it remains smaller than datasets available
for other summarization tasks. This is largely at-
tributed to plain summaries being made mandatory
in recent years. Another limitation of CARES is
the inclusion of summaries by a single sponsor. Al-
though the general format is similar between trials
of different sponsors, we cannot guarantee mod-
els trained on CARES will generalize well across
different sponsors.

7. Bibliographical References

Kush Attal, Brian Ondov, and Dina Demner-
Fushman. 2023. A dataset for plain language
adaptation of biomedical abstracts. Scientific
Data, 10(1):8.

J Scott Brennen, Felix M Simon, Philip N Howard,
and Rasmus Kleis Nielsen. 2020. Types, sources,
and claims of COVID-19 misinformation. Ph.D.
thesis, University of Oxford.

Ziqiang Cao, Furu Wei, Wenjie Li, and Sujian Li.
2018. Faithful to the original: Fact aware neural
abstractive summarization. In Proceedings of
the AAAI Conference on Artificial Intelligence,
volume 32.

Muthu Kumar Chandrasekaran, Guy Feigenblat,
Dayne Freitag, Tirthankar Ghosal, Eduard Hovy,
Philipp Mayr, Michal Shmueli-Scheuer, and Anita
de Waard. 2020. Overview of the first workshop
on scholarly document processing (SDP). In
Proceedings of the First Workshop on Scholarly
Document Processing, pages 1–6, Online. Asso-
ciation for Computational Linguistics.

Rochana Chaturvedi, Saachi ., Jaspreet Singh
Dhani, Anurag Joshi, Ankush Khanna, Neha
Tomar, Swagata Duari, Alka Khurana, and Va-
sudha Bhatnagar. 2020. Divide and conquer:
From complexity to simplicity for lay summa-
rization. In Proceedings of the First Workshop
on Scholarly Document Processing, pages 344–
355, Online. Association for Computational Lin-
guistics.

Meri Coleman and Ta Lin Liau. 1975. A computer
readability formula designed for machine scoring.
Journal of Applied Psychology, 60(2):283.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training
of deep bidirectional transformers for language
understanding. CoRR, abs/1810.04805.

Alexios Gidiotis and Grigorios Tsoumakas. 2020. A
divide-and-conquer approach to the summariza-
tion of long documents. IEEE/ACM Transactions
on Audio, Speech, and Language Processing,
28:3029–3040.

Tomas Goldsack, Zhihao Zhang, Chenghua Lin,
and Carolina Scarton. 2022. Making science sim-
ple: Corpora for the lay summarisation of scien-
tific literature. In Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 10589–10604, Abu Dhabi,
United Arab Emirates. Association for Computa-
tional Linguistics.

Yue Guo, Wei Qiu, Gondy Leroy, Sheng Wang, and
Trevor Cohen. 2022. Cells: A parallel corpus
for biomedical lay language generation. arXiv
preprint arXiv:2211.03818.

Yue Guo, Wei Qiu, Gondy Leroy, Sheng Wang,
and Trevor Cohen. 2024. Retrieval augmenta-
tion of large language models for lay language
generation. Journal of Biomedical Informatics,
149:104580.

Yue Guo, Wei Qiu, Yizhong Wang, and Trevor Co-
hen. 2021. Automated lay language summariza-
tion of biomedical scientific reviews. Proceedings
of the AAAI Conference on Artificial Intelligence,
35(1):160–168.

Matthew Honnibal and Ines Montani. 2017. spacy
2: Natural language understanding with bloom
embeddings, convolutional neural networks and
incremental parsing. To appear, 7(1):411–420.

Md Saiful Islam, Tonmoy Sarkar, Sazzad Hossain
Khan, Abu-Hena Mostofa Kamal, S. M. Murshid
Hasan, Alamgir Kabir, Dalia Yeasmin, Moham-
mad Ariful Islam, Kamal Ibne Amin Chowdhury,
Kazi Selim Anwar, Abrar Ahmad Chughtai, and
Holly Seale. 2020. Covid-19–related infodemic
and its impact on public health: A global social
media analysis. The American Journal of Tropical
Medicine and Hygiene, 103(4):1621 – 1629.

Seungwon Kim. 2020. Using pre-trained trans-
former for better lay summarization. In Proceed-
ings of the First Workshop on Scholarly Docu-
ment Processing, pages 328–335, Online. Asso-
ciation for Computational Linguistics.

Wojciech Kryściński, Nitish Shirish Keskar, Bryan
McCann, Caiming Xiong, and Richard Socher.
2019a. Neural text summarization: A critical
evaluation. arXiv preprint arXiv:1908.08960.

Wojciech Kryściński, Bryan McCann, Caiming
Xiong, and Richard Socher. 2019b. Evaluating
the factual consistency of abstractive text sum-
marization. arXiv preprint arXiv:1910.12840.

https://doi.org/10.18653/v1/2020.sdp-1.1
https://doi.org/10.18653/v1/2020.sdp-1.1
https://doi.org/10.18653/v1/2020.sdp-1.40
https://doi.org/10.18653/v1/2020.sdp-1.40
https://doi.org/10.18653/v1/2020.sdp-1.40
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/2022.emnlp-main.724
https://doi.org/10.18653/v1/2022.emnlp-main.724
https://doi.org/10.18653/v1/2022.emnlp-main.724
https://doi.org/10.1609/aaai.v35i1.16089
https://doi.org/10.1609/aaai.v35i1.16089
https://doi.org/10.4269/ajtmh.20-0812
https://doi.org/10.4269/ajtmh.20-0812
https://doi.org/10.4269/ajtmh.20-0812
https://doi.org/10.18653/v1/2020.sdp-1.38
https://doi.org/10.18653/v1/2020.sdp-1.38


66

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. In Text summa-
rization branches out, pages 74–81.

Yang Liu and Mirella Lapata. 2019. Text summa-
rization with pretrained encoders. arXiv preprint
arXiv:1908.08345.

Feng Nan, Ramesh Nallapati, Zhiguo Wang, Ci-
cero Nogueira dos Santos, Henghui Zhu, De-
jiao Zhang, Kathleen McKeown, and Bing Xi-
ang. 2021. Entity-level factual consistency of
abstractive text summarization. arXiv preprint
arXiv:2102.09130.

Brian Ondov, Kush Attal, and Dina Demner-
Fushman. 2022. A survey of automated meth-
ods for biomedical text simplification. Journal of
the American Medical Informatics Association,
29(11):1976–1988.

Tatiana Passali and Grigorios Tsoumakas. 2022.
Topic-aware evaluation and transformer methods
for topic-controllable summarization.

Chantal Shaib, Millicent Li, Sebastian Joseph, Iain
Marshall, Junyi Jessy Li, and Byron Wallace.
2023. Summarizing, simplifying, and synthesiz-
ing medical evidence using GPT-3 (with varying
success). In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 1387–
1407, Toronto, Canada. Association for Compu-
tational Linguistics.

Oliver Vinzelberg, Mark David Jenkins, Gordon
Morison, David McMinn, and Zoe Tieges. 2023.
Lay text summarisation using natural language
processing: A narrative literature review.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, et al. 2019. Huggingface’s transform-
ers: State-of-the-art natural language process-
ing. arXiv preprint arXiv:1910.03771.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and
Peter J. Liu. 2019. PEGASUS: pre-training with
extracted gap-sentences for abstractive summa-
rization. CoRR, abs/1912.08777.

A. Appendix

A.1. Source extraction
Figure A.1 presents an example of the source se-
lection pipeline. Initially, target sections are identi-
fied based on their titles. Subsequently, the most
relevant document and subsection within it are ex-
tracted. Given that this text may contain irrelevant

sentences or noise artifacts, the proposed similarity
score, as defined in Equation 2, is utilized to as-
sess the alignment between the candidate source
and the target. Finally, we obtain the clean source
segment by filtering out sentences that fail to reach
a similarity threshold.

A.2. Hallucination examples
Table 7 contains examples for each of the identified
types of model hallucinations. In the first example,
the model incorrectly calculated that 5 out of 17
equates to 17%, which is inaccurate. The second
example highlights a typographical error where the
drug "palbociclib" was mistakenly spelled as "pal-
bocciclib". Finally, in the third case, the model erro-
neously stated that a vaccine had been approved
both in the United States and the European Union
when, in reality, it was only approved in Europe.
These errors demonstrate the importance of care-
fully assessing the outputs of NLP models, as they
can sometimes produce inaccuracies or hallucinate
information that differs from the factual reality.
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Figure 1: An example of source extraction.

Type Example
Numerical Error In this study, 5 out of 17 (17%) participants who received pregabalin 5 mg/kg/day

had at least 1 medical problem ...
Typo This study compared 2 groups of patients to find out if patients taking palbociclib in

combination with letrozole had their cancer get better compared to patients taking a
placebo ... The patients and researchers did not know who took palbocciclib...

Hallucinations Target summary Model Generated Summary
However, invasive meningococcal dis-
ease may be prevented with a vac-
cine. A vaccine is a type of medicine
that helps people fight off germs.
Meningococcal disease is caused by
the meningococcus germ. There are
different types of this germ. For exam-
ple, meningococcal type a disease is
caused by the meningococcus a germ.
Menacwy-tt (nimenrix) is a vaccine ap-
proved in Europe for the prevention of
meningococcal disease.

However, invasive disease may be pre-
vented with a vaccine. A vaccine is a
type of medicine that helps people fight
off germs. Menacwy-tt (nimenrix) is a
vaccine approved in the United States,
the US, and the European Union for the
prevention of invasive disease.

Table 7: Error examples from BARTTAG generated summaries. Model mistakes and hallucinations are
marked in red, while the corresponding correct information is highlighted in blue.
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