@inproceedings{sarhan-etal-2024-taxocritic,
title = "{T}axo{C}ritic: Exploring Credit Assignment in Taxonomy Induction with Multi-Critic Reinforcement Learning",
author = "Sarhan, Injy and
Toth, Bendeg{\'u}z and
Mosteiro, Pablo and
Wang, Shihan",
editor = "S{\'e}rasset, Gilles and
Oliveira, Hugo Gon{\c{c}}alo and
Oleskeviciene, Giedre Valunaite",
booktitle = "Proceedings of the Workshop on Deep Learning and Linked Data (DLnLD) @ LREC-COLING 2024",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.dlnld-1.2/",
pages = "14--30",
abstract = "Taxonomies can serve as a vital foundation for several downstream tasks such as information retrieval and question answering, yet manual construction limits coverage and full potential. Automatic taxonomy induction, particularly using deep Reinforcement Learning (RL), is underexplored in Natural Language Processing (NLP). To address this gap, we present TaxoCritic, a novel approach that leverages deep multi-critic RL agents for taxonomy induction while incorporating credit assignment mechanisms. Our system uniquely assesses different sub-actions within the induction process, providing a granular analysis that aids in the precise attribution of credit and blame. We evaluate the effectiveness of multi-critic algorithms in experiments regarding both accuracy and robustness performance in edge identification. By providing a detailed comparison with state-of-the-art models and highlighting the strengths and limitations of our method, we aim to contribute to the ongoing"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sarhan-etal-2024-taxocritic">
<titleInfo>
<title>TaxoCritic: Exploring Credit Assignment in Taxonomy Induction with Multi-Critic Reinforcement Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Injy</namePart>
<namePart type="family">Sarhan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bendegúz</namePart>
<namePart type="family">Toth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pablo</namePart>
<namePart type="family">Mosteiro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shihan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Deep Learning and Linked Data (DLnLD) @ LREC-COLING 2024</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gilles</namePart>
<namePart type="family">Sérasset</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hugo</namePart>
<namePart type="given">Gonçalo</namePart>
<namePart type="family">Oliveira</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giedre</namePart>
<namePart type="given">Valunaite</namePart>
<namePart type="family">Oleskeviciene</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ELRA and ICCL</publisher>
<place>
<placeTerm type="text">Torino, Italia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Taxonomies can serve as a vital foundation for several downstream tasks such as information retrieval and question answering, yet manual construction limits coverage and full potential. Automatic taxonomy induction, particularly using deep Reinforcement Learning (RL), is underexplored in Natural Language Processing (NLP). To address this gap, we present TaxoCritic, a novel approach that leverages deep multi-critic RL agents for taxonomy induction while incorporating credit assignment mechanisms. Our system uniquely assesses different sub-actions within the induction process, providing a granular analysis that aids in the precise attribution of credit and blame. We evaluate the effectiveness of multi-critic algorithms in experiments regarding both accuracy and robustness performance in edge identification. By providing a detailed comparison with state-of-the-art models and highlighting the strengths and limitations of our method, we aim to contribute to the ongoing</abstract>
<identifier type="citekey">sarhan-etal-2024-taxocritic</identifier>
<location>
<url>https://aclanthology.org/2024.dlnld-1.2/</url>
</location>
<part>
<date>2024-05</date>
<extent unit="page">
<start>14</start>
<end>30</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TaxoCritic: Exploring Credit Assignment in Taxonomy Induction with Multi-Critic Reinforcement Learning
%A Sarhan, Injy
%A Toth, Bendegúz
%A Mosteiro, Pablo
%A Wang, Shihan
%Y Sérasset, Gilles
%Y Oliveira, Hugo Gonçalo
%Y Oleskeviciene, Giedre Valunaite
%S Proceedings of the Workshop on Deep Learning and Linked Data (DLnLD) @ LREC-COLING 2024
%D 2024
%8 May
%I ELRA and ICCL
%C Torino, Italia
%F sarhan-etal-2024-taxocritic
%X Taxonomies can serve as a vital foundation for several downstream tasks such as information retrieval and question answering, yet manual construction limits coverage and full potential. Automatic taxonomy induction, particularly using deep Reinforcement Learning (RL), is underexplored in Natural Language Processing (NLP). To address this gap, we present TaxoCritic, a novel approach that leverages deep multi-critic RL agents for taxonomy induction while incorporating credit assignment mechanisms. Our system uniquely assesses different sub-actions within the induction process, providing a granular analysis that aids in the precise attribution of credit and blame. We evaluate the effectiveness of multi-critic algorithms in experiments regarding both accuracy and robustness performance in edge identification. By providing a detailed comparison with state-of-the-art models and highlighting the strengths and limitations of our method, we aim to contribute to the ongoing
%U https://aclanthology.org/2024.dlnld-1.2/
%P 14-30
Markdown (Informal)
[TaxoCritic: Exploring Credit Assignment in Taxonomy Induction with Multi-Critic Reinforcement Learning](https://aclanthology.org/2024.dlnld-1.2/) (Sarhan et al., DLnLD 2024)
ACL