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Abstract
Despite Uniform Meaning Representation’s (UMR) potential for cross-lingual semantics, limited annotated data
has hindered its adoption. There are large datasets of English AMRs (Abstract Meaning Representations), but
the process of converting AMR graphs to UMR graphs is non-trivial. In this paper we address a complex piece
of that conversion process, namely cases where one AMR role can be mapped to multiple UMR roles through a
non-deterministic process. We propose a neuro-symbolic method for role conversion, integrating animacy parsing
and logic rules to guide a neural network, thus minimizing human intervention. On test data, the model achieves
promising accuracy, highlighting its potential to accelerate AMR-to-UMR conversion. Future work includes expanding
animacy parsing, incorporating human feedback, and applying the method to broader aspects of conversion. This
research demonstrates the benefits of combining symbolic and neural approaches for complex semantic tasks.

Keywords: Uniform Meaning Representation, Abstract Meaning Representations, Animacy Parsing, Neuro-
Symbolic Learning, Low-Resource Setting

1. Introduction

Meaning representation graphs are hierarchically
structured discrete representations of meaning that
allow for sentence and document-level meanings to
be abstracted away from syntactic structures. They
utilize graphical representations where sentences
with similar meanings share similar graph struc-
tures, even if worded differently. Abstract Mean-
ing Representation (AMR) graphs model sentence-
level meanings (Banarescu et al., 2013), and al-
though they can be applied to different languages,
the annotation guidelines are closely tied to En-
glish, for instance, by not supporting polysyn-
thetic languages. Uniform Meaning Representation
(UMR) (Gysel et al., 2021) addresses this limita-
tion by extending AMR to support both sentence
and document-level representations, and provid-
ing a typologically-motivated, language-agnostic
schema for representing meaning.

Direct human annotation of texts with UMR
graphs is time-consuming and requires consider-
able domain expertise. In order to speed up pro-
duction of data, we take a first step towards auto-
matically converting existing AMR annotations1 to
the more detailed, richer UMR schema.2 Figure 1
shows a side-by-side comparison. Generating a
preliminary graph for annotators to refine, even
if noisy, could significantly reduce the human ef-
fort required. There are roughly 60,000 annotated
English AMR sentences, and parallel UMR annota-

∗Equal Contribution
1AMR site: https://amr.isi.edu/.
2UMR site: https://umr4nlp.github.io/web/

tions previously existed for only about 200 of those.
This means we have minimal parallel data from
which to train a model on the conversion task.

Figure 1: Example of one type of graph conversion
of the AMR :destination role to the UMR role :goal
in "I walked up to the window".

This paper presents an automated method for
partial graph conversion, specifically addressing
non-deterministic changes arising from AMR to
UMR. 3. AMR graphs contain individual semantic
rolesets that convert into multiple rolesets in UMR.
These rolesets between AMR and UMR are known
as “split-roles” and contain a non-deterministic,

3Our codebase can be foud at: https://github.
com/clairepost/AMRtoUMR

https://amr.isi.edu/
https://umr4nlp.github.io/web/
https://github.com/clairepost/AMRtoUMR
https://github.com/clairepost/AMRtoUMR
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1:many relationship. This non-determinism moti-
vates our focus on these rolesets, as previous work
suggested human annotation would be necessary
for their conversion (Bonn et al., 2023).

To address this challenge, we propose a modular,
neuro-symbolic framework that utilizes an animacy
parser to assist logic rules in automatically deter-
mining split roles, minimizing the need for human
input in UMR annotation. Our framework combines
the flexibility afforded by neural methods to iden-
tify patterns in raw data, with a way to promote
the schematic constraints of the conversion task.
To train and evaluate our framework, we curate
a dataset of 587 manually annotated role conver-
sions and 10,635 weakly annotated role conver-
sions, spanning 14 different split role types.

This paper focuses on English AMRs, but the
methods presented can be adapted to AMRs in
other languages. This adaptability stems from the
inherent language-agnostic nature of the underly-
ing graph structure. However, future work in other
languages may encounter additional challenges,
particularly in accessing an animacy parser. While
adapting the approach for AMRs in languages like
Chinese may be more feasible due to the avail-
ability of resources, languages with limited NLP
resources, such as Cherokee, may pose greater dif-
ficulties. We limit the scope of these AMR-to-UMR
conversions to sentence-level, leaving document-
level graph creation for future work.

In summary, we make the following contributions:
(1) We frame AMR to UMR conversion as a pre-
diction task, (2) We curate and annotate a dataset
focused on split role conversion from AMR to UMR,
(3) We propose an extensible, modular framework
that combines neural networks and domain knowl-
edge in the form of rules to make this prediction,
and (4) We show that we can accurately predict the
majority of the non-deterministic roles with limited
supervision.

2. Related Work

While AMR has established itself as a powerful
tool for semantic representation, its limitations in
handling low-resource languages and complex lin-
guistic phenomena hinder its broader applicability.
These limitations include challenges with morphol-
ogy, like polysynthesis, and capturing relationships
beyond the sentence level in document-level an-
notations. UMR, recently proposed by Gysel et al.
(2021), offers a compelling alternative with a richer
semantic framework and multilingual focus. It intro-
duces document-level representations alongside
sentence-level analysis, capturing more nuanced
semantic information such as co-reference, tem-
poral, and modal dependencies that go beyond
sentence boundaries. However, despite its advan-

tages, UMR adoption is currently hampered by the
scarcity of annotated data. This section positions
our work within the context of related efforts bridg-
ing the gap between AMR and UMR, particularly
through automated conversion approaches. Addi-
tionally, our efforts complement the work on boot-
strapping UMR annotations for low-resource lan-
guages, as presented in (Buchholz et al., 2024).
This paper provides a non-neural method for UMR
graph creation from interlinear glossed text, com-
plementing our focus on the conversion process.

Initial work by Bonn et al. (2023) and Wein
and Bonn (2023) provides an analysis of the fine-
grained structural distinctions between AMR and
UMR, delving into key differences like tense, modal-
ity, scope, and document-level dependencies in
monolingual and multilingual settings. Building
upon this foundation, Bonn et al. (2023) offer a
specific road-map for bridging the gap. This paper
meticulously details the structural differences be-
tween AMR and UMR representation techniques for
semantic categories, highlighting crucial aspects
like tense, modality, scope, and document-level
temporal relations. It also sheds light on the fun-
damental differences in graph structure, with AMR
relying on predicate-argument structures and UMR
accommodating polysynthetic and agglutinating
languages with more complex morphologies.

By leveraging these insights, our work aims to
tackle a key piece of this conversion puzzle. We
focus on applying a neuro-symbolic method to ad-
dress the data scarcity challenge by leveraging
domain knowledge and neural learning to facilitate
robust and accurate conversion, paving the way for
wider UMR adoption and enhanced cross-lingual
semantic analysis capabilities. We focus specifi-
cally on the non-deterministic roleset changes, con-
tributing to a more robust and comprehensive con-
version process.

This work proposes a novel data augmentation
approach specifically designed for AMR to UMR
role conversion. Our model builds upon the con-
cept of constrained indirect supervision (Wang and
Poon, 2018), and combines noisy examples with
interdependent label constraints to address data
scarcity. Several studies have explored data aug-
mentation for NLP tasks in low supervision settings,
including active learning (Quteineh et al., 2020) and
rule-based approaches (Zhao et al., 2021). We
leverage active learning principles by selecting in-
formative AMR graphs containing split roles like
:destination, :cause, and :source. Then, we incor-
porate animacy parsing, which is crucial for role
determination, and derive logic rules from UMR
guidelines to generate additional training examples
and guide the neural network towards accurate
role mappings. This combined approach efficiently
utilizes limited labeled data and addresses the chal-
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Documents Number of
Sentences

Number of
Aligned Split
Roles

Lindsay Text 2 1
Phillippines
Landslide
News Text

28 36

Putin News
Text

12 15

Edmund Pope
News Text

9 9

Pear Story 141 30
Total 192 91

Table 1: Parallel AMR-UMR documents with their
sentence counts, and the number of split roles

lenges of low supervision settings.

3. Data

The available published parallel AMR-UMR data
we utilized consists of five documents (Bonn et al.,
2024), all in English, as detailed with sentence
counts in Table 1. These documents vary in length
and sentence complexity, ranging from short ex-
amples, like the Lindsay Text, to longer news
stories with complex sentence structures, such
as the Philippines Landslides News Text. In the
roughly 200 AMR/UMR graphs, only about 100
split-rolesets are available for analysis.

Although prior literature has indicated the ex-
pected split role mapping (Bonn et al., 2023), ini-
tial tests have shown that this mapping is not fully
captured in the data. Figure 2 shows the counts of
AMR and UMR roles from all data overlaying the ex-
pected mapping. The data does not reflect a clean
1:many mapping relation. For example, the AMR
role :destination should split into :goal and :recip-
ient. The AMR documents consist of 2 instances
of the :destination role but the UMR documents
contain 3 instances of a :goal role, meaning that a
different AMR role turned into the UMR role :goal.
This does not reflect the clean splits shown in (Bonn
et al., 2023). This analysis highlights the need for
a more nuanced approach to role conversion.

3.1. Alignment
To gain deeper insights, we perform partial align-
ment of AMR and UMR graphs, focusing on the
role edges. A partial alignment is possible because
the information being captured is just the split-role
in question. The meaning representation graphs
are directed, node and edge-labeled graphs. Each
edge is a semantic relation or role that connects
one concept node (the head node) to another con-
cept node (the tail node). In our data, of the 106
AMR roles that we explore, 90 have their head and

Figure 2: Split role mapping from AMR to UMR with
counts from the data

UMR Label Gold-Standard Silver-Standard
:group 109 1
:source 90 1168
:goal 59 18
:part 59 94
:mod 58 0

:cause 53 4921
:reason 46 1419
:material 43 176

:start 34 552
:condition 16 2286
:recipient 12 0
:Cause-of 4 0
:other-role 3 0
:Material-of 1 0

Total 587 10635

Table 2: Counts of UMR Roles in gold-standard
data (labels created by human annotators) and
silver-star data (labels generated by Rules Model)

tail nodes aligned to corresponding UMR graph
nodes, and 70 have a matching edge in the UMR
graph. Changes in UMR guidelines and structural
differences between the graphs explain most mis-
alignments4.

3.2. Data Augmentation
Because of the small amount of available paral-
lel data, we use data augmentation to produce
more gold-standard evaluation data and a large
amount of silver-standard training data. The re-
sulting dataset statistics are reported in Table 2.

Gold Standard Data To produce additional eval-
uation data, we employ task-specific data augmen-
tation, leveraging elements of active and curriculum
learning techniques (Jafarpour et al., 2021). This
approach efficiently utilizes labeled data by manu-
ally converting AMR graphs containing split-roles

4UMR Guidelines: https://github.com/
umr4nlp/umr-guidelines/blob/master/
guidelines.md

https://github.com/umr4nlp/umr-guidelines/blob/master/guidelines.md
https://github.com/umr4nlp/umr-guidelines/blob/master/guidelines.md
https://github.com/umr4nlp/umr-guidelines/blob/master/guidelines.md
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to provide the most informative samples for train-
ing. We converted 40 additional AMR graphs to
UMR graphs, preferring graphs that include roles
from the less represented splits in the data. Specif-
ically, we focus on the AMR roles of :destination,
:cause, :consist-of, and :source. The sentences
were chosen from the AMR data and guidelines.5

In a second augmentation step, we run additional
data from the published AMR dataset through the
rule-based model detailed in section 4.2. For a tar-
geted set of AMR graphs, an annotator assessed
the UMR role assigned by the rule-based model
and corrected those labels as needed. This ap-
proach yielded 470 additional gold-standard split-
role labels.

Silver Standard Data To generate additional,
automatically-labeled, and thus noisy, training data,
we next run the rest of the non-parallel AMR data
through the rule-based model. This data is com-
prised of around 70,000 additional rolesets. Nearly
60,000 of these are labeled with the :mod role,
which is both over-represented in the data and
nearly always maps to the same role in UMR.
For this reason, we exclude :mod from the silver-
standard training data. The remaining 10,635 role-
sets are used as silver-standard training data in
Experiment 2 (see section 5).

4. Methodology

Within the broader task of automated AMR-to-UMR
graph conversion, we address the specific chal-
lenge of non-deterministic role changes, reducing
the need for intervention from expert human anno-
tators. This section describes our methodologies
for incorporating animacy information and logical
rules into a neural architecture.

System Overview We first extract detailed in-
formation about roles from both AMR and UMR
graphs, including roleset labels, head and tail enti-
ties, and their connection to the original sentence
and graph context, as explained in section 3.1. An
animacy recognition module, detailed in section
4.1, then determines the animacy of each role’s
tail, as animacy plays a crucial role in UMR role
determination.

Next, all of the extracted information serves as in-
put for a rule-based role-labeling component. The
rules were formulated manually through our inves-
tigation of the logic detailed in the UMR guidelines,
and they rely heavily on animacy information, as
explained in section 4.2. The rule-based module

5AMR guidelines: https://github.com/
amrisi/amr-guidelines/blob/master/amr.
md#reification.

outputs potential split-role conversions for the AMR
role, along with their initial weights, which are de-
termined by analyzing the frequency of role splits
based on the implemented rules and the distribu-
tion of such splits within the initial UMR published
data.

Final role predictions are done by three different
models (section 4.3): a baseline rules-only model,
a baseline neural network, and a hybrid model com-
bining rules with neural learning. Each model re-
ceives the extracted role information, animacy data,
and initial weights, utilizing them in different ways
to predict the most likely UMR role.

4.1. Animacy parsing
Accurate animacy depiction is crucial for the rule-
based decision-making module of our framework.
According to the UMR guidelines, certain rolesets
should only be used for animate or inanimate en-
tities. Therefore, we test several existing animacy
parsers and named entity recognizers (NERs), in
addition to using information found within the AMR
graph, to synthesize an animacy recognition mod-
ule tailored to our framework from four components.
Certain split-roles, such as :mod, were excluded
from animacy parsing. Roles such as :mod do not
need animacy information in order to determine
their split, so they were excluded in order to make
the model run more efficiently.

1. BERT-Finetuned-Animacy: The first compo-
nent of the animacy parser is a BERT-finetuned-
animacy model (Tobin, 2022). This model takes
the sentence to be converted as input, and outputs
entities it identifies as persons or animals.

2. BERT-NER: Next, we include a popular NER
model, again taking the sentence as input and out-
putting labeled named entities (person, named or-
ganization, named place, and misc) (Lim, 2023).

3. Pronouns: Next, we search for any pronouns
within the sentence. While pronouns such as “I”,
“you”, and “she” are not always necessarily animate,
they are enough of a proxy for animacy in our data
that we chose to include them in the animacy dis-
tinction, marking them as “person” roles.

4. AMR Named Entities: The AMR guidelines
define various named entities (NEs) in the tails of
many role instances. We manually assign animacy
labels ("animate" or "inanimate") to each of the
NE types. However, akin to the limitations of us-
ing pronouns for animacy prediction, this approach
overclassifies entities as animate. Overprediction
of the “animate” label helps to balance against the
animacy parser’s tendency to default to “inanimate”.

https://github.com/amrisi/amr-guidelines/blob/master/amr.md##reification
https://github.com/amrisi/amr-guidelines/blob/master/amr.md##reification
https://github.com/amrisi/amr-guidelines/blob/master/amr.md##reification
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Even with over-prediction, the model only produced
animate tags as opposed to inanimate tags 2.88%
of the time on the full augmented dataset.

Animacy Integration We use the outputs of
the various components to make a binary ani-
mate/inanimate distinction for each role. First, we
check the tail of each role against the items returned
as animate. If there is no match for the tail, we next
check for a child role, in cases where the tail has a
role sense (e.g., believe-01, leave-14, survive-02).
If there are no matches between the sentence and
the outputs of the animacy parser, we treat the role
as inanimate.

4.2. Split-Role Rules
Both for prediction and for creating silver-standard
data, we encode a set of logical rules capturing ten-
dencies in the mapping of AMR roles to UMR roles.
This section details the rules, organized according
to original AMR roleset. The rules were created
manually as detailed in each section through study
of the AMR and UMR guidelines, as well as by
referencing UMR examples in our training dataset.
In the future, we see the potential to create more
rules-based modules to help with the conversion of
other split-roles.

Destination Roleset Bonn et al. (2023) substan-
tiate that the AMR :destination role splits into the
UMR roles :goal and :recipient. The UMR guide-
lines additionally specify information about the ani-
macy of certain rolesets. For the :recipient role, the
UMR guidelines define :recipient as an “animate
entity that gains possession (or at least temporary
control) of another entity”. The :goal role does not
have specified animacy. The resulting rule is that
if the AMR :destination role is inanimate, the UMR
role must be :goal. If the AMR :destination role is
animate, the UMR role may be :recipient or :goal.

Cause Roleset The second rule addresses the
AMR :cause role. Similar to the :destination role,
this role is split using animacy into :cause and :rea-
son. The UMR guidelines note that the UMR :cause
role is an "inanimate entity that causes the action
to happen." The resulting rule is that if the tail of
the AMR :cause role is animate then the UMR role
must be :reason. Otherwise, if it is inanimate, the
UMR role may be :reason or :cause.

Source Roleset The third rule addreses the
AMR role :source, as illustrated in Figure 3. The
:source role may split into three different UMR roles:
:source, :start, :material. The UMR guidelines give
helpful information about animacy for these roles,

Figure 3: Animacy logic rule for UMR :source, :start,
and :material roles from AMR :source role

as well as guidance on the parent role of the in-
stance. For instance, the guidelines provide that
the tail of the :source roled must be animate. We
encode this information by first checking if the tail
roleset of the AMR role is animate. If so, the UMR
role is set to :source since the other roles are gen-
erally inanimate. Then, we check if the parent node
of the AMR :source is :theme, as the UMR guide-
lines specify that :source is the “entity from which
the :theme detaches”. In this case the UMR role
chosen is :source.

Next, the animacy and NE info from the animacy
parser is checked to see if it contains a location. If
so, the UMR role chosen is :source or :start. Finally,
if the tail roleset of :source is inanimate, then the
role is either :source, :start, or :material. We obtain
initial probabilities for these rule assignments us-
ing the distributions observed in the gold-standard
UMR graphs (e.g., 0.6 for :source, 0.3 for :start,
and 0.1 for :material).

Consist-of Roleset This rule relies on animacy
to determine the AMR :consist-of role-split. The
UMR role :group is the only animate role and will
always be chosen if the tail AMR roleset is animate.
Otherwise, the UMR roles :group, :part, or :material
may be the correct split-role choice.
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Additional Rolesets The roles :part and :condi-
tion deterministically split into the UMR roles with
identical names in English.

The final rule addresses the AMR role :mod. This
role only rarely maps into the UMR role :other-role.
Due to the lack of clear rules for this role, we rely on
the neural methods to improve prediction accuracy.
Initial weights favor :mod over :other-role.

4.3. Models

We investigate three different models: one using
rules alone, one simple neural architecture with no
rules, and one combined model.

Rules-only model: For each AMR role, there are
1-3 possible UMR roles. The possible roles are
determined by the previously-defined rules, given
the AMR role, its predicted animacy, and the AMR
graph information. When there is not enough in-
formation for the rules to narrow down to just one
possible role, the model randomly selects a role
label according to the probability distributions seen
for that AMR role in the gold-standard parallel UMR
data.

Neural Network: Our neural network implemen-
tation is a three layer feed-forward neural network.
It takes as input the Sentence-BERT embedding of
the sentence (Reimers and Gurevych, 2019), con-
catenated with a feature representing the source
AMR role. Although it does not use the animacy
rules to influence training, we incorporate exter-
nal knowledge in constraining the outputs to be
only what is possible for the AMR-role to convert
to given the UMR guidelines. (For instance, :desti-
nation can only be converted to :goal or :recipient).
The constraints can be viewed in Figure 2. To train
the classifier, we use the cross-entropy loss.

NN with Rule Information: We opt for a simple
implementation of a neural network that has access
to the rule information in an attempt to leverage
the logic of the rules with the predictive power of a
neural network. We incorporate the rule information
in two ways: 1) We concatenate the probability
distribution of the possible roles provided by the
rules to the sentence embedding and the AMR
role, as the input to the NNet, and 2) We add an
additional layer to combine the output (argmax) of
the neural network and the rules as: w1∗outputNN+
w2∗outputrules, where w1 and w2 correspond to the
trainable parameters of the additional layer. The
classifier is then trained end-to-end using the cross-
entropy loss.

5. Experiments

We evaluate our three models in two different set-
tings: one training only on gold-standard data, and
one adding noisily-labeled (silver-standard) data
to the training sets. To better understand how per-
formance is influenced by the difficulty of the par-
ticular decision, we categorize the roles into four
bins. The first bin, "easy," includes roles with de-
terministic picks for the English data. The second
bin, "medium," consists of roles for which accurate
animacy information should lead to accurate role
determination. The third bin, "medium/hard," in-
cludes roles with more than one choice within each
animacy category. Finally, roles in the "hard" bin
do not have the benefit of guidance of animacy and
have multiple split-roles they could fall into. See
Table 5 in appendix for further details.

Experimental Settings For all experiments, we
use stratified 5-fold cross-validation and report av-
erage results. In each iteration, we use 4 folds for
training and 1 for testing. The rules-only model in-
volves no training, so the results shown are based
on the predictions for each fold’s test set. Results
are averaged over 5 runs. Experiment 1, our low-
data experiment, uses only the gold-standard data
for training and testing. In experiment 2, we use the
same folds as experiment 1, now augmenting every
fold’s training data with the 10,635 silver-standard
data points (sec. 3.2). With these settings, we eval-
uate only on gold-standard data, always include
some amount of gold data in training, and ensure
comparability across experiments. Our main eval-
uation measure is macro F1. We also report the
weighted F1, which takes into account the label
distribution in the test data.

For training, both neural models use a learning
rate of 0.001 and train over 50 epochs.

5.1. Experiment 1 - Low data
In this experiment, only gold-standard data is used
for training, with an average of just 470 training
instances per fold. Per-fold performance is shown
in Fig. 4. The Rules model and NN_Rules model
perform similarly, and the NN struggles, with high
variation across folds. We aggregate the five test
sets to evaluate per-class performance as reported
in Table 3. The NN_Rules model has the highest
F1 score in 7 classes, more than either the Rules
model or the NN model. In a small data setting like
this, it is not unexpected to see the NN struggle to
perform well.

5.2. Experiment 2 - Weak supervision
This experiment combines the gold-standard and
silver-standard sets for training, allowing for more
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Figure 4: Experiment 1: Macro F1 performance of
the three models across 5 folds.

Difficulty Label NN NN_RULE RULE support
:condition 1.000 1.000 1.000 16
:mod 0.838 0.966 0.956 58easy
:part 0.622 0.778 0.775 59
:goal 0.894 0.873 0.950 59medium :other-role 0.118 0.500 0.000 3
:group 0.724 0.815 0.913 109
:reason 0.000 0.407 0.653 46medium/hard
:source 0.610 0.802 0.689 90
:Cause-of 0.240 0.857 0.000 4
:Material-of 0.000 0.000 0.000 1
:cause 0.637 0.743 0.737 53
:material 0.419 0.582 0.552 43
:recipient 0.000 0.222 0.840 12

hard

:start 0.379 0.351 0.265 34
macro avg F1 0.463 0.635 0.595
weighted avg F1 0.603 0.738 0.761 587

Table 3: Per-class F1-scores from experiment 1, ar-
ranged by the difficulty of the split decision. Bolded
values are the highest in each class.

training data in a low-supervision setting. The
macro-F1 performance of all of the models across
the folds can be seen in Figure 5. Once again, the
Rules model and NN_Rules model perform simi-
larly across the folds, and although the basic NN
shows reduced performance, there is more con-
sistency across the folds. Per-class performance

Figure 5: Experiment 2: Macro F1 performance of
the three models across 5 folds.

(aggregating all folds) is reported in Table 4. In this

Difficulty Label NN NN_RULE RULE support
:condition 1.000 1.000 1.000 16
:mod 0.958 0.948 0.956 58easy
:part 0.652 0.775 0.775 59
:goal 0.894 0.949 0.949 59medium :other-role 0.000 0.333 0.000 3
:group 0.607 0.936 0.913 109
:reason 0.000 0.600 0.653 46medium/hard
:source 0.754 0.685 0.689 90
:Cause-of 0.114 0.000 0.000 4
:Material-of 0.000 0.000 0.000 1
:cause 0.640 0.758 0.737 53
:material 0.182 0.645 0.551 43
:recipient 0.000 0.846 0.840 12

hard

:start 0.207 0.212 0.265 34
macro avg F1 0.429 0.621 0.595
weighted avg F1 0.589 0.767 0.761 587

Table 4: Per-class F1-scores from experiment 2, ar-
ranged by the difficulty of the split decision. Bolded
values are the highest in each class.

experiment, the NN_Rules model scores higher
than the Rules model on summary statistics, and it
achieves the highest score in more classes.

6. Discussion

In this section, we discuss our experimental results,
perform a detailed error analysis, and outline direc-
tions for future work.

6.1. Experimental Results
In our experiments, we observed that the vanilla
neural network struggled to obtain good perfor-
mance across all configurations. While we saw
improvements in the augmented data scenario, the
amount and the quality of the supervision was not
enough to outperform a simple rule based model.
The rule-based model, on the other hand, deliv-
ered good average performance across all configu-
rations. This is in line with the highly constrained
nature of our task. However, we saw that the NN
augmented with rules scored the highest in aver-
age when exposed to additional training data. This
suggests that hybrid models are a good alternative
in weak supervision scenarios, where the neural
network can take advantage of the augmented data,
while the structured knowledge can help guide the
model towards valid answers. For all models, per-
formance was higher for the easy cases than for
the hard cases.

To showcase the impact of having access to high-
quality annotations, we will consider the :cause role.
Within the silver-star data, over 40% of the roles
were labeled :cause. The Rules model performs
well on :cause with an F1-score of 0.737. Having
a large number of high quality labels for training is
reflected in the performance of both the NN and the
NN with Rules in the :cause role. Both models per-
form better for this class in experiment 2 than they
did in experiment 1. Conversely, when examining
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the performance for the class :start, which has over
500 labeled instances in the silver-standard set, we
see that the Rules model’s low performance (0.314)
adversely affects the ability of the neural methods
to predict this class.

6.2. Error Analysis

In this section we discuss specific types of errors
made by various models. Some additional exam-
ples appear in Table 6, in the appendix.

One prevalent error made by the Rules model
comes from adhering to the initial label distributions,
as this model has no ability to take context into ac-
count. For example, in the sentence "I saw a cloud
of dust", the Rules model maps the AMR :consist-
of role to the UMR role :group, for the tail dust. In
contrast, the NN_Rules model correctly identifies
that :consist-of should be mapped to the UMR role
:material. The NN_Rules model leverages learned
information to make more informed predictions. All
roles in the "medium/hard" category are subject to
this type of error.

Another error class occurs when the Rules model
fails to make a correct prediction due to inaccura-
cies in animacy determination. For instance, in
the sentence "A letter from the victim’s family," the
tail role "family" was incorrectly parsed as inani-
mate, leading to an incorrect choice of role label.
However, the NN_Rules model is not affected by
this incorrect animacy parsing, demonstrating bet-
ter performance in "medium" difficulty scenarios,
where correct animacy parsing is needed for the
rules to make accurate labeling decisions.

All models encounter difficulty with inverse par-
ticipant roles such as :Cause-of and :Material-of.
Inverse participant roles, as described in the UMR
Guidelines, involve moves like annotating events as
modifiers or referring expressions, requiring more
complex graph modifications than we currently han-
dle. They are also very infrequent in the data.
These rolesets are part of the "hard" category.

Despite similar overall performance to the Rules
model, the NN_Rules model shows improvements
for roles in "hard," "medium-hard," and "medium"
difficulty scenarios. This result highlights the poten-
tial of combining symbolic and neural approaches
for improved AMR-to-UMR conversion.

6.3. Future Work

Animacy Given the strong influence of the ani-
macy parser, this is an obvious avenue for improve-
ment. Recent studies (e.g. Hanna et al., 2023) high-
light challenges for language models in handling
subtle shifts in animacy cues within text. While our
current approach incorporates animacy information
from UMR guidelines, including context-dependent

animacy shifts for typical entities, it is still under de-
velopment in terms of capturing the full spectrum of
animacy variations. Additionally, treating animacy
as a binary decision might not fully capture the nu-
ances explored in studies like Ji and Liang (2018),
which propose a hierarchical spectrum of animacy
even within inanimate nouns. For example, "robot"
might exhibit more animacy than "chair" due to its
potential for movement and agency.

Alternative Modeling Strategies Our NN_Rules
model incorporates rules into the neural network
in a naive way. In the near future, we intend to
investigate alternatives like combining neural net-
works with Probabilistic Soft Logic (PSL) (Bach
et al., 2017) or employing neuro-symbolic meth-
ods that leverage rules like DRAIL, a deep re-
lational learning framework (Pacheco and Gold-
wasser, 2021). An improvement to our current
implementation could make use of the full graph-
structure of the MRs, instead of just extracting rel-
evant edges. Additionally, different approaches to
using and combining the silver-standard and gold-
standard datasets could prove beneficial. For ex-
ample, curating the silver-standard data to remove
the labels from low-quality classes, and using a
split of the gold-standard data during development,
may leverage the strength of both datasets more
effectively.

Expansion to other UMR Components In the
future, we believe this methodology can be applied
to other parts of the AMR-UMR conversion pro-
cess, starting with expansion to all of the seman-
tic roles, not just this subset of role changes. By
thoughtfully constructing rules, we can potentially
aid annotators throughout the entire annotation pro-
cess. Graph preprocessing approaches like han-
dling inversion and reification could prove beneficial
to more complex changes.

User Study In the spirit of demonstrating the use-
fulness of our tool to the UMR annotator audience
it is intended for, we propose an experiment evalu-
ating its impact on annotation speed and accuracy.
This experiment would involve experienced UMR
annotators working on two sets of AMR graphs
each:

1. Traditional: Annotators complete the conver-
sion task without any additional information or
assistance.

2. Tool-assisted: Annotators leverage our
model’s predicted split-role conversions
alongside the AMR graphs.

By comparing annotation times and accuracy be-
tween the two groups, we can assess the potential
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benefits of our tool in expediting and potentially
improving the UMR annotation process. This eval-
uation aligns with our goal of providing UMR anno-
tators with valuable resources to streamline their
workflow.

7. Conclusion

This work presented a novel, modular methodol-
ogy for automated AMR-to-UMR graph conversion,
with a primary focus on accurately predicting non-
deterministic role changes that often require hu-
man intervention. Our approach integrates ani-
macy parsing, logic rules, and neural learning to
achieve promising accuracy.

Key contributions include introducing a modu-
lar framework for easy integration with future tech-
niques, promoting extensibility and broader appli-
cability. Furthermore, the incorporation of animacy
information enhances decision-making in role pre-
diction, while the fusion of structured knowledge
with neural learning offers flexibility and robustness.
The model’s encouraging performance on the test
data highlights its potential to streamline the conver-
sion process and thus accelerate UMR adoption.

While acknowledging the promising results, we
recognize limitations arising from data scarcity and
the binary representation of animacy. Future work
will involve expanding animacy parsing to capture
richer semantic information and context-dependent
nuances, potentially employing non-binary repre-
sentations to improve accuracy. Additionally, user
studies will be conducted to assess the impact of
our methodology on UMR annotation speed and ac-
curacy, providing valuable insights into its practical
utility. Finally, we envision expanding our approach
to encompass broader aspects of AMR-UMR con-
version, further contributing to the advancement of
cross-lingual semantic analysis and unlocking the
full potential of UMR for multilingual NLP tasks.

This research demonstrates the benefits of com-
bining symbolic and neural approaches for com-
plex NLP tasks in data-constrained scenarios. By
overcoming data scarcity challenges and facilitat-
ing accurate UMR conversion, our method paves
the way for enhanced cross-lingual semantic anal-
ysis capabilities, ultimately impacting various NLP
applications that rely on accurate semantic repre-
sentation and understanding.

8. Limitations

Animacy, the distinction between animate and inan-
imate entities, plays a crucial role in determining
split roles within our rule-based model. It influences
the roles a referent can take on, for instance, re-
quiring animacy for the agent role. While existing
animacy classifiers like those presented in Tobin

(2022); Jahan et al. (2018) exist, they can be imper-
fect and miss participants within sentences where
animacy is nuanced or context-dependent. This
limitation can lead to inaccurate role predictions in
certain cases.

As well, this work faces several data-related chal-
lenges that limit the scope of model development.
The limited availability of parallel AMR-UMR anno-
tations, consisting of an extremely small dataset
of only 200 graphs from five documents (see Ta-
ble 1), constrained our ability to train and evaluate
models effectively. Moreover, inconsistencies be-
tween expected and observed role mappings (as
illustrated in Figure 2) suggest a more nuanced con-
version process than a simple 1:many relationship,
complicating model training and interpretation. Our
current focus on sentence-level conversion also lim-
its the applicability of our model to larger discourse
contexts. And finally, data imbalances, particularly
with over-represented roles like ":mod," created is-
sues in the analysis and data augmentation steps.
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Table 5: Difficulty of the decision of each role, reflected in the number of possible roles the model must
choose from, even with the animacy information and the rules.

Table 6: Error analysis of several common error types ran from Experiment 2.
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