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Abstract
We present a contrastive study of argument sharing across three graph-based meaning representation frameworks,
where semantically shared arguments manifest as reentrant graph nodes. For a state-of-the-art graph parser, we
observe how parser performance – in terms of output quality – covaries with overall graph complexity, on the one
hand, and presence of different types of reentrancies, on the other hand. We identify common linguistic phenomena
that give rise to shared arguments, and therefore node reentrancies, through a small-case and partially automated
annotation study and parallel error anaylsis of actual parser outputs. Our results provide new insights into the
distribution of different types of reentrancies in meaning representation graphs for three distinct frameworks, as well
as on the effects that these structures have on parser performance, thus suggesting both novel cross-framework
generalisations as well as avenues for focussed parser development.

1. Introduction

Over the past decade, there has been increas-
ing interest in parsing into graph-based meaning
representations, with a growing field of research
across different linguistic traditions and frame-
works for meaning representation in terms of la-
belled graphs. A range of parsing systems and ap-
proaches have been developed, as well as various
frames of in-depth analyses into particular features
and challenges of the task and individual frame-
works. Unlike widely used representations of syn-
tactic structure in the form of rooted trees, common
meaning representation frameworks employ gen-
eral graphs, which makes parsing into these repre-
sentations more complex, due to, among other fea-
tures, fewer structural constraints on elements of
the graph and on correspondences to the underly-
ing input string (“anchoring”), as well as, of course,
the presence of graph nodes with an in-degree
greater than one (henceforth “reentrancies”).

We follow in this line of research by expanding
the methodologies proposed in Buljan et al. (2022),
and based on English data and systems featured
in the 2020 Shared Task on Cross-Framework
Meaning Representation Parsing (Oepen et al.,
2020). We focus on PERIN (Samuel and Straka,
2020), the top-performing parsing system in the
shared task, and conduct a contrastive error anal-
ysis over three frameworks (elaborated in Section
2) to identify common parsing errors, with a view
to devising potential parser improvements.

Our research shows an unexpected outlier to the
widely accepted wisdom that parsing accuracy de-
teriorates with growing structural complexity. In
an effort to identify potential explanations of this
behaviour, we look into the phenomenon of argu-
ment sharing in meaning representation graphs,
giving rise to the aforementioned reentrant struc-

tures. Following the methodology of Szubert et al.
(2020) and extending it to the two other frame-
works, we attempt to set a foundation for expand-
ing our understanding of the effects of framework
design decisions, which will eventually allow for in-
forming future annotation, as well as more targeted
parser development.

Apart from these empirical findings, the tech-
nical contributions of this paper are: a sub-
stantial augmentation of mtool, the open-source
graph analysis and scoring tool first introduced
in the 2019 MRP (Meaning Representation Pars-
ing) shared task (Oepen et al., 2019), which en-
ables quantitative and qualitative analysis of reen-
trancies and their various subtypes; and a small-
scale manual reentrancy annotation effort over
gold standard data used for parser development
in the shared task. Both contributions will be re-
leased openly upon publication.

The paper is organised as follows: Section 2
gives a broad summary of the methodological and
technological context of our work; Section 3 de-
scribes our approach to parser performance anal-
ysis, presents the results, and motivates further in-
vestigation. In Section 4, we look into the under-
lying framework properties and how they inform
our error analysis. Section 5 discusses different
linguistic causes of reentrancy structures in mean-
ing representation graphs, describes the setup of
our pilot annotation effort, and presents its findings.
Finally, Section 6 concludes the paper, and dis-
cusses pertinent next steps.

2. Background

The MRP 2019 and 2020 shared tasks on cross-
framework meaning representation parsing were
organised with the goal of advancing the state-
of-the-art in parsing into graph-based representa-
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tions of sentence meaning (Oepen et al., 2019,
2020). The task focussed on five semantic graph
frameworks, and required participants to develop
systems that predict sentence-level meaning rep-
resentations for all five frameworks in parallel.

Of the five frameworks present in the shared
task, we narrow our focus (and use development
data pertaining) to three frameworks embodying
distinct approaches to meaning representation, dif-
fering in their level of abstraction from the underly-
ing surface string, as well as in formal construction
and linguistic assumptions. The three frameworks
are exemplified in Figures 1, 2, and 3 with the sen-
tence “Pierre Vinken, 61 years old, will join the
board as a nonexecutive director Nov. 29.” (Oepen
et al., 2020).

Elementary Dependency Structures (EDS;
Oepen and Lønning, 2006, Figure 1) encode
sentence meaning in an unordered semantic
graph that is derived from the underspecified
logical forms of the English Resource Grammar
(Flickinger et al., 2017; Copestake et al., 2005).
EDS nodes are explicitly anchored onto sub-
strings of the underlying sentence, but these do
not correspond one-to-one to surface lexical units,
while edge labels denote argument positions into
semantic predications.

Prague Tectogrammatical Graphs (PTG; Zeman
and Hajic, 2020, Figure 2) present a conversion
from the multi-layered (and somewhat richer) an-
notations in the tradition of Prague Functional Gen-
erative Description (FGD; Sgall et al., 1986), as
adopted (among others) in the Prague Czech–
English Dependency Treebank (PCEDT; Hajič
et al., 2012). PTG nodes are mostly anchored
to surface lexical units, but allowing for empty
(“generated”) nodes and discontinuous anchoring
Edges in PTG denote fine-grained labelled relation
types (“functors”).

Abstract Meaning Representation (AMR; Ba-
narescu et al., 2013, Figure 3), in contrast, makes
no explicit connection between the surface sen-
tence and elements of the graph, and is there-
fore considered unanchored (or free of specific
assumptions about derivation and composition).
Graph nodes are content words most frequently
normalised to verbal senses, and edges are la-
belled with argument positions or more specific se-
mantic relations, including e.g. fine-grained anno-
tations of named entities and some lexical decom-
position.

The MRP 2020 English validation data for the
cross-framework track, from which we draw data
for our work, comprises gold annotated mean-
ing representation graphs of sentences, counting
3302 datapoints for EDS, 1664 for PTG, and 3560
for AMR, respectively (Oepen et al., 2020).

When analysing parser performance, we focus

on the top-scoring, state-of-the-art parser from
the MRP 2020 shared task: PERIN (Samuel and
Straka, 2020). The PERIN parser is a general
neural network architecture for learning to pre-
dict the mapping from surface strings to various
types of linguistic structure in the form of gen-
eral graphs. Using an XLM-R and transformer-
based encoder-decoder architecure, the parser is
language- and framework-agnostic, and therefore
applicable across different meaning representa-
tion frameworks and languages with the adjust-
ment of pre- and post-processing steps. It also
uses a novel permutation-invariant approach to
parallel graph node prediction, which is well suited
to the task of predicting orderless semantic graphs.
Furthermore, as PERIN is not a seq2seq model,
but based on a specialized node, edge, and label
prediction architecture, there is room for follow-up
engineering in light of findings such as those pre-
sented in this study.

In the broader sphere of parsing data analysis,
we build on methodologies inspired by contrastive
approaches introduced in, among other works,
McDonald and Nivre (2011) and Kulmizev et al.
(2019) for dependency treebanks and parsers. We
follow and expand upon the quantitative and qual-
itative approach to error analysis in MRP outlined
in Buljan et al. (2020, 2022). We also look to Szu-
bert et al. (2020) for a discussion of reentrancies
in AMR and underlying linguistic phenomena.

We report performance using mtool1, the cross-
framework graph analyser used in the MRP shared
tasks. Other notable framework-specific graph
similarity metrics are discussed by Cai and Knight
(2013) and Opitz (2023).

3. Analysing Parser Performance

Following the methodology outlined by Buljan et al.
(2022), we examine the performance of the PERIN
parser on the MRP 2020 shared task, retrained on
the official training data, and using the validation
data for our study. To make our results robust to
fluctuation that could arise from random initializa-
tion, we set out to compare five separate training
and testing runs. By and large, our observations
are stable across all runs.

Graph complexity We begin by dividing the
data into ten decile bins, according to sentence-
level graph complexity in terms of the number of
nodes. Following the official metric of the MRP
shared tasks (Oepen et al., 2019, 2020), we fo-
cus on the micro-average F1 score over tuple types
that encode various graph properties, where Bul-
jan et al. (2022) observe that it can be beneficial

1https://github.com/cfmrp/mtool

https://github.com/cfmrp/mtool
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Figure 1: EDS semantic graph for the running example.
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Figure 2: PTG semantic graph for the running ex-
ample.

to tease apart two distinct subtasks in graph predic-
tion: (a) predicting graph nodes and their decora-
tions, e.g. labels and other node-local properties
vs. (b) core graph structure in terms of (labelled)
edges and identification of the top node. Figure 4
reports PERIN performance across frameworks
and decile bins. The top plot of each framework-
specific group charts the overall MRP F1 score;
the middle figure charts F1 considering only node
decoration2; and the bottom figure charts F1 over
structural properties only (root nodes (tops) and
edges).

We observe a drop in parser performance in the
overall F1 score charts, for PTG and AMR partic-
ularly, correlated with rising graph complexity. As
discussed in Section 1 above, this is expected be-

2Prediction of node anchoring is disregarded, for the
sake of result comparability, as it is not applicable to
AMR nodes.
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Figure 3: AMR semantic graph for the running ex-
ample.

haviour given an assumed correlation between out-
put structure size, sentence length, and related
complexity of the parsing problem. However, EDS
subverts these expectations, showing instead only
a drop of a couple percentage points in the first
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Figure 4: Average parser performance per com-
plexity bin, in terms of overall F1(top in each graph),
F1 for node-local properties only (middle), and F1

for structural properties only (bottom), across the
three frameworks.

and last bins – which represent somewhat uneven
groups of very short and very long sentences.

Node-local properties The performance over
all three frameworks is fairly consistent across the
complexity bins when evaluating only on node dec-
oration (node labels and properties). This indi-
cates that node-local information may be easier
(for PERIN) to predict with consistent quality.

Structural properties When we examine the
parser performance on structural properties of the
graphs (edges and root nodes), a clearer picture
emerges of the performance drop with greater
graph complexity for PTG and AMR. Compared

EDS PTG AMR−1

Average Nodes / Graph 23.4 17.9 10.4
Edge Labels 10 67 84
%g Rooted Trees 0.3 23.9 27.0
%g Treewidth One 66.9 23.9 53.7
Average Treewidth 1.33 2.07 1.52
Maximal Treewidth 3 6 5
Average Edge Density 1.02 1.18 1.09
%n Reentrant 33.4 15.7 19.6
%g Cyclic 0.0 29.9 0.3

Table 1: Some graph statistics (validation data).

to a drop of 15 and 9 percentage points, respec-
tively, between the highest and lowest performing
bin in PTG and AMR overall, the drop in perfor-
mance is 26 and 16 percentage points for the struc-
tural properties. Again, though, EDS remains the
outlier, with relatively consistent scores across the
bins (within 3-5 percentage points), and moderate
divergence between the different training and scor-
ing runs.

Complexity in parsing In syntactic parsing, and
to some degree also in semantic parsing, it has
long been established that longer sentences are
more difficult to parse (McDonald and Nivre, 2011;
Van Noord et al., 2018). This is commonly at-
tributed to increasing probability of linguistically
more complex structures, as well as to error prop-
agation. However, in the semantic parsing and
meaning representation sphere, there is (to the
best of our knowledge) little research into what the
possible causes of this behaviour are, and whether
it is a universal phenomenon across frameworks.
Therefore, what we observe with EDS in Figure 4
is more surprising than, intuitively, the PTG and
AMR scores, and raises questions about what
causes these differences. Hypothetically, either
the PERIN parser could be particularly tuned to
parse into EDS with great accuracy (which is, for
all we know, not the case), or there is a specific
property of the EDS framework that differentiates
it from the other two frameworks in parser perfor-
mance related to structural graph complexity.

4. Graph Statistics

In the previous section, we analysed parser per-
formance across three frameworks. Our findings
raised questions about the difference between ex-
pected and observed behaviour with regards to
graph complexity. We now provide a more detailed
analysis of the underlying properties of the three
frameworks.

We begin by presenting an analysis of struc-
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Framework All 01 02 03 04 05 06 07 08 09 10

EDS 33.4 31.15 33.17 33.64 34.01 33.78 33.73 33.55 33.23 33.46 33.39
PTG 15.7 3.65 8.25 11.61 13.41 15.39 15.09 16.42 17.67 17.60 21.52
AMR−1 19.6 0.19 9.65 16.93 16.55 19.29 20.33 20.59 20.95 20.78 21.35

Table 2: Per-framework percentages of reentrant nodes broken down by graph size decile bins.

tural graph statistics, according to Kuhlmann and
Oepen (2016). Table 1 shows a subset of prop-
erties computed by the mtool graph analyser.
EDS graphs, on average, have the largest num-
ber of nodes, with AMR graphs being substan-
tially smaller; in terms of the number of distinct
edge labels, the order is reversed. The next four
rows in Table 1 seek to quantify degrees of “tree-
ness”. Unlike in EDS, about one quarter of PTG
and AMR graphs actually are rooted trees. Con-
versely, the EDS graphs have lower average and
maximal treewidth, with PSG appearing least “tree-
like” in this perspective. The average number of
edges per node and percentage of reentrant nodes
indicate that EDS has comparatively low edge den-
sity but that reentrancies nevertheless occur in one
of three nodes, compared to around 16% and 20%
for PTG and AMR, respectively. Finally, EDS and
AMR exclude cyclic graphs by design, whereas cy-
cles are both allowed and common in PTG.

From the graph structure properties in Table 1,
a noteworthy difference between EDS and the
other two frameworks is the frequency of reen-
trant nodes. As discussed previously, reentran-
cies are central properties that distinguish graph-
based structures from tree-based structures and
make them more challenging to parse into (Szu-
bert et al., 2020). From previous research, one
might assume that this makes reentrant nodes
harder to predict, so this datapoint is, again, some-
what surprising.

In Table 2 we look further into the “%n” row
in Table 1 and break the statistics down by com-
plexity bins. We find that the percentage of reen-
trant nodes is consistently high across bins in EDS,
while the percentage of reentrant nodes grows with
graph complexity for PTG and AMR (in correlation
with a drop in performance). EDS still remains the
outlier, while based on observations on PTG and
AMR, it could be hypothesised that reentrancies
are harder to predict.

To explore this hypothesis, we further refine
the methodology used in Section 3, and com-
pare structural parser performance considering
the reentrant status of edges in the graphs. The
results are charted in Figure 5. The leftmost col-
umn shows parser performance considering only
edges that are not part of a reentrancy, i.e. do
not point to a reentrant node. The rightmost col-

umn shows parser performance considering only
reentrant edges, i.e. edges that point to a reentrant
node. To facilitate comparison, the middle column
repeats the data shown in Figure 4, showing per-
formance on all edges.

We observe that EDS performance drops by
nearly ten percentage points when going from
scoring all edges to only scoring non-reentrant
edges, and furthermore observe a slight improve-
ment when considering reentrant edges only.

In the case of PTG and AMR, while there is little
difference in performance overall across the three
scoring methods, we do see some improvement
in the lower decile bins specifically when scoring
reentrant edges only.

Considering that PTG and AMR show no dete-
rioration in performance on average for reentrant
edges compared to non-reentrant ones, and that
EDS performs much better on reentrant edges
overall, it would appear that our initial hypothesis
is not confirmed – and arguably even disproven.

This motivates a more detailed analysis of reen-
trant nodes – their causes and kinds of manifesta-
tions in the frameworks, which we present in the
following section.

5. Reentrancy

The description papers and annotation guidelines
for each of the three frameworks in focus mention
reentrant nodes to varying degrees, but unlike dis-
cussions of reentrancies in AMR in work such as
Szubert et al. (2020); Van Noord and Bos (2017),
there is (to the best of our knowledge) little in-depth
discussion of linguistic phenomena that give rise to
reentrancies, or the structures in which they mani-
fest, for EDS and PTG.

In this section we investigate the most frequent
and overlapping causes for reentrancies in all
three frameworks, with the hopes of learning more
about the difficulties – or advantages – of parsing
into reentrancies.

To illustrate our approach, Figure 6 shows the
EDS graph for the example sentence

(1) The high interest rates and outlooks an-
nounced today surprised and shocked in-
vestors.

This example exhibits some interesting linguistic
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tops + non-reentr. edges tops + all edges tops + reentr. edges

Figure 5: Graph structure F-score, scoring tops and (left) all edges except incoming reentrancies; (center)
all edges; (right) only incoming reentrancies, over five train-and-test runs of the PERIN parser.

Figure 6: EDS graph for Example (1). Ten automatically annotated reentrant edges are shown as dashed
arrows; three remaining reentrant nodes are highlighted with bold edges. In addition to EDS-specific node
labels, each node indicates (in typewriter font) the corresponding sub-string of the example.

complexity, including a nominal compound, nom-
inal and verbal coordination, where in the lat-
ter both the subject and an extracted object are
shared arguments between the conjuncts, a re-
duced relative clause, and a semantically decom-
posed temporal modifier. Argument sharing in co-
ordinate structures and relative clauses gives rise
to reentrant nodes in the graph, both in EDS and
in the other frameworks in our study. Additionally,
restrictive modification typically causes reentran-
cies in EDS, e.g. the attributive adjective, analy-

sis as the compound structure parallel to an un-
expressed preposition, and the attachment and in-
ternal structure of the temporal modifier. If trans-
lated to a more conventional logical-form repre-
sentation, this would correspond to something like
_high_a_1(x) ∧ _rate_n_of(x). Similar reentran-
cies related to modifier structures will arise in AMR,
though not in PTG, where modifiers tend to be de-
pendents of the nodes they modify. Finally, among
our three frameworks, EDS has the unique prop-
erty of encoding quantificational structure, using
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Framework Type Freq.

EDS quantification .377
compound .062
modification .070
numeric .022
preposition .072
other modification .027

PTG paratactic structures .341

AMR modification .417

Table 3: Relative frequencies of reentrancy types
labelled automatically.)

designated BV (“bound variable”) edges. This ap-
plies to both determiners that introduce quantifica-
tional force (_the_q in our example) and to covert
(unexpressed) quantificational predicates, e.g. on
bare nominals and in the decomposition of today
(udef_q and def_implicit_q). These edges, again,
reflect the underlying logical structure and are a
very frequent source of reentrancies in EDS which
is not present in the other frameworks.

5.1. Pilot Annotation
Based on the methodology of Szubert et al. (2020),
we begin by empirically observing reentrancies in
the frameworks, and assign labels based on the lin-
guistic phenomena they embody. With the goal of
quantifying our findings, we carry out a small-scale
pilot annotation study on sample sets from each
of the three frameworks. For each framework, we
build a sample of 150 sentence graphs, randomly
selected to include at least one reentrant node,
and balanced proportionally across the decile bins.

5.1.1. Predictable reentrancies

From our initial observations of the samples, we
find a number of frequent and predictable reen-
trancy patterns in each of the frameworks that take
up a not inconsiderable portion of the data and hu-
man labour during annotation. We automate the
annotation of these “predictable” reentrancies, and
focus manual annotation efforts on the remaining
reentrant nodes. Table 3 lists these predictable
reentrancies and their relative frequencies in the
sample sets.

In the case of EDS, the largest portion of these is
taken up by determiners and other quantificational
nodes, denoted with the BV edge label (in further
discussion, we label these as “category 1” reen-
trancies). Apart from being a very frequent cause
of reentrancies, this edge type is a framework id-
iosyncrasy and, thus, not a comparable linguis-
tic feature across frameworks. Similarly, we au-

Figure 7: Proportions of edges not involving reen-
trancy vs. automatically and manually annotated
reentrant ones

tomatically annotate compounds, adjectival mod-
ifiers, cardinal and ordinal number, prepositions,
and other predictable instances of what EDS anal-
yses as restrictive modification (appositions, pos-
sessives), all of which we consider “category 2”
reentrancies.

In the case of PTG, the majority of predictable
reentrancies is caused by the framework formality
of introducing member and effective edges for all
paratactic clause-like structures, be they clauses
or compounds, predominantly involving coordina-



84

tion.
Finally, in the case of AMR, a relatively frequent

and predictable cause of reentrancy is restrictive
modification, as uniquely denoted by the domain
edge label.

Figure 7 charts proportions of edges in the full
dataset, by framework and complexity, according
reentrancy status: not reentrant, part of an au-
tomatically annotatable reentrancy (categories 1
and 2 for EDS), or part of a reentrancy requiring
manual annotation. These figures give a sense of
the portion of reentrancies caused by “predictable”
framework formalities like quantification or parat-
actic structures in EDS and PTG, respectively.

5.1.2. Manual annotation

Following the approach of Szubert et al. (2020), we
empirically observe the occurrence of reentrancies
and note their causes, starting with the relation
set discussed in the original paper, and expanding
with more reentrancy type labels as needed. The
results of the manual annotation are presented in
Table 4, highlighting the most frequent reentrancy
phenomena for each of the frameworks.

• Characteristic of EDS, but not captured by the
modification-labelling step of the automatic
annotation, comparative comprises edges in-
coming from nodes denoting comparative and
superlative modifications of adjectives and
verbs, as in the sentence fragment “the largest
and most prized market”.

• The Control structures label encompasses
various types of argument sharing found in
control structures, such as subject and object
control, adjunct control, etc., including nomi-
nal control.

• Both coordination and coreference may give
rise to argument sharing, and hence re-
entrancies, as in the example sentence “the
trust said it has rebuilt reserves and improved
operations”.

• The modal label covers all reentrancies occur-
ring as a result of modal verb structures, such
as “they may rise to mountainous proportions”,
where the subject is the argument of both the
modal verb and the main verb (in the case of
PTG), or the main verb gets an additional in-
coming edge from the modal verb (in the case
of EDS and AMR).

• In EDS and PTG, modification includes reen-
trancies occurring from adjectival participles
in restrictive modification, as in “We make
waves under controlled conditions and learn
where there are buried rock structures.”

• In PTG, named entities and similar compound
structures of proper nouns also give rise to
reentrancies, by linking each constituent to
the predicate node, and each other via a
named entity edge label, such as in the ex-
ample sentence “Goldman, Sachs & Co. will
manage the offering.”

• In AMR, partitive encompasses a wide range
of part-of relations that cause reentrancies, as
the example of finger and king in “I am more
powerful than the finger of a king.”

• Possessive relations give rise to reentrancies
in all three frameworks, by linking the posses-
sor and the object of possession, as in the
sentence fragment “with regard to man’s life
in society”.

• For all three frameworks, the relative clause
is a common cause of reentrancy, with multi-
ple incoming nodes for the shared argument,
as in the fragment “a tile bridge spanning a
stream that flows into the building from out-
side”.

• Most frequent in AMR, reentrancies labelled
verbalisation arise from the annotation con-
vention of maximising the use of predicates.
This most often manifests as adjectival par-
ticiples, or nouns as in the example of the
(govern-01, organization) node pair represent-
ing the noun government.

• Finally, the other label comprises other
causes for reentrancies that had less than five
occurrences in the sample data for all three
frameworks, such as object raising or various
discourse elements.

Since data for the three frameworks are not
drawn from the same source, the relative frequen-
cies in Table 4 are not horizontally comparable.
However, within the frameworks, certain highlights
emerge. For example, both EDS and AMR reen-
trancies prominently feature verbalisation, particu-
larly adjectival participles. Regardless of the dif-
ferent source material, coreference is a frequent
cause of reentrancy in both PTG and AMR, while
the highly reentrant EDS has an arguably more bal-
anced occurrence of many of the discussed reen-
trancy types.

Alongside the relative frequencies of reentrancy
types in the sample data, Table 4 shows the error
rates of the PERIN parser for the respective reen-
trancy types, bringing us back to the original ques-
tion of parser performance and where we might
see particular areas of improvement.

For example, in the case of coreference in PTG
and AMR, the PERIN parser fails to produce the
correct graph structure 38% and 43% of the time,
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EDS PTG AMR

Type Freq. Error Freq. Error Freq. Error

clause-like structures .067 .058 - - .039 .428
comparative .027 .000 - - - -
control structures .063 .250 .136 .291 .106 .342
coordination .127 .125 .165 .258 .134 .166
coreference .027 .142 .401 .382 .243 .436
modal .011 .333 .014 .400 .008 .333
modification .167 .071 .176 .451 - -
named entity - - .031 .818 - -
partitive - - - - .058 .285
possessive .039 .500 .008 .666 .008 .666
relative clause .183 .065 .022 .125 .008 .666
verbalisation .159 .075 .002 .000 .326 .358
other .122 .173 .039 .571 .067 .541

Table 4: Relative frequencies and error rates of manually annotated reentrancy types.

Framework EDS PTG AMR
Missed/Total .106 .345 .405

Table 5: Ratio of reentrant edges the parser failed
to produce vs. total number of reentrant edges, per
framework (sample set).

respectively, implying that, given the prominence
of coreference in the frameworks, correct corefer-
ence resolution has an impact on parser perfor-
mance, especially in longer sentences with more
occurrences of this reentrancy structure.

Similarly, with verbalisation being a frequent
cause of reentrancies in AMR, the parser demon-
strates a 35% error rate on this reentrancy type. As
with the previous example, better performance on
this task would likely significantly increase parser
performance overall.

In the case of possessives, it is interesting to
note that, although this particular reentrancy cause
makes up a relatively small proportion of reentran-
cies observed in the annotation set, the parser
shows an error rate of 50% or greater for posses-
sives in all three frameworks.

Table 5 summarises the error rates over the to-
tal number of reentrant edges per framework, in
the sample annotation set. Note that this view
does not include the “predictable” reentrancies
from the automatic annotation step. Even disre-
garding these frequent reentrancy types that are a
result of framework-specific regularities and, there-
fore, may be somewhat easier for the parser to cor-
rectly predict, the parser retains the lowest parsing
error rate on EDS, with just 11% of reentrant edges
not produced. Unlike for PTG and AMR, EDS
annotations were guided by a large-scale compu-
tational grammar, i.e. automatically confirmed to

obey formal principles of derivation and composi-
tion, which may both lead to higher degrees of pre-
dictability and overal greater consistency of the an-
notations.

6. Conclusion

Building on previous research into parser perfor-
mance for different frameworks of meaning rep-
resentation graphs, we carried out a contrastive
study focussing on patterns of parser behaviour
in sentences of increasing graph complexity, and
the presence and frequency of reentrant nodes
in the target graph. We performed a small-scale,
semi-automated annotation effort over a sample of
our datasets, and discussed observations on com-
mon linguistic phenomena that give rise to reen-
trant structures, and how successful a state-of-the-
art parser is in producing them. This work sets
the foundation for future focussed parser develop-
ment, as well as further discussions of the particu-
larities of framework design and annotation guide-
lines.

We intend to explore both of these tracks in fu-
ture work, specifically to reach out to the PERIN
developers and discuss properties of the parsing
architecture that may explain our findings (and po-
tential revisions to mitigate their negative impact
on parser performance). In the framework anal-
ysis track, we will explore redefining graph com-
plexity (and, subsequently, binning) by reentrancy
count, in contrast to the currently used node-count
approach. We also intend to refine and scale
up the reentrancy annotation effort, to produce a
larger dataset with phenomena categories aligned
across frameworks, and to the highest degree pos-
sible over the same strings.
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