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Preface

In her 2023 ACL Lifetime Achievement Award acceptance speech, Dr. Martha Palmer
(University of Colorado, Boulder) sums up her 50 years of research in AI and NLP in six words:
“Finding meaning, quite literally, in words.” Now in its fifth iteration, the International Designing
Meaning Representations Workshop brings together researchers from around the world who
endeavor to do the same.

While deep learning methods have led to many breakthroughs in practical natural language
applications, most notably in Machine Translation, Machine Reading, Question Answering,
Recognizing Textual Entailment, and so on, there is still a sense among many NLP researchers
that we have a long way to go before we can develop systems that can actually "understand"
human language and explain the decisions they make. Indeed, “understanding” natural
language entails many different human-like capabilities, and they include but are not limited to
the ability to track entities in a text, understand the relations between these entities, track events
and their participants, understand how events unfold in time, and distinguish events that have
actually happened from events that are planned or intended, are uncertain, or did not happen
at all. “Understanding” also entails human-like ability to perform qualitative and quantitative
reasoning, possibly with knowledge acquired about the real world. We believe a critical step
in achieving natural language understanding is to design meaning representations for text that
have the necessary meaning “ingredients” that help us achieve these capabilities.

These proceedings showcase the work of researchers who are producers and consumers
of meaning representations, who come together in this forum every year to gain a deeper
understanding of the key elements of meaning that are the most valuable to the NLP community.
The workshop provides an opportunity for meaning representation researchers to examine
critically existing frameworks with the goal of using their findings to inform the design of
next-generation meaning representations. Together, we explore opportunities and identify
challenges in the design and use of meaning representations in multilingual settings, and seek
to understand the relationship between distributed meaning representations (trained on large
data sets using network models) versus symbolic meaning representations (carefully designed
and annotated by CL researchers).

This year’s Designing Meaning Representation workshop honors Dr. Palmer’s 50-year research
journey with a special theme on resources, approaches, and applications that draw upon her
manifold contributions to the field: Treebanks, PropBanks, VerbNets, OntoNotes, Abstract
Meaning Representation (AMR), and Uniform Meaning Representation (UMR). These resources
share attention to semantic detail combined with scalability and, therefore, an ability to
generalize to and support a variety of different NLP applications and tasks. Indeed, the
applicability of Dr. Palmer’s research extends beyond the textual to the multimodal, where
she has broadly contributed to cross-modal event understanding. Thus, DMR 2024 highlights
the depth and the breadth of Dr. Palmer’s contributions and their influence over the field of
natural language processing by including original works that have leveraged, expanded, or been
inspired by the “Marthaverse of Meaning.” With gratitude, we recognize Dr. Palmer’s long tenure
of dedication to outstanding mentorship that has been so powerful for the many students who
have gone on to shape the NLP research community and the field at large.

These proceedings include papers presented at the 5th Designing Meaning Representation
workshop on May 21, 2024, held in conjunction with the 2024 Joint International Conference
on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) in
Torino, Italy. DMR 2024 received 25 submissions, out of which 17 papers have been accepted
to be presented at the workshop as talks (six papers) and posters or virtual short presentations
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(11 papers). The papers address topics ranging from meaning representation methodologies
to issues in meaning representation parsing, to the adaptation of meaning representations to
specific applications and domains, to cross-linguistic issues in meaning representation. In
addition to the oral paper presentations and poster session, DMR 2024 also featured invited
talks by Fei Xia (University of Washington) and Owen Rambow (Stony Brook University), entitled
“If Data Could Talk” and “Propositional Content and Commitment to Truth,” respectively.

Message from the Workshop Chairs

We thank our organizing committee for its continuing organization of the DMR workshops,
and the LREC-COLING 2024 workshop chairs for their support. We are grateful to all of the
authors for submitting their papers to the workshop and our program committee members for
their dedication and their thoughtful reviews. We thank our invited speakers for making the
workshop a uniquely valuable discussion of linguistic annotation research. Finally, we thank
Martha Palmer for her continued innovation, inspiration, motivation, and encouragement in our
research community and in our own lives.

Claire Bonial, Julia Bonn, and Jena D. Hwang

Message from Special Honoree Martha Palmer

First, I want to thank all the workshop chairs, Claire Bonial, Julia Bonn, Jena Hwang, and the
organizing committee, Lucia Donatelli, Jan Hajič, Alexis Palmer, Nathan Schneider, Nianwen
Xue, for this very delightful tribute. They made me cry and I am eternally grateful to them, for
their kindness to me and for their friendship.

I’ve led a charmed life. I’ve gotten to work on these incredibly interesting and challenging
problems, with all of these amazing people, like Jim Martin at CU. What more could anyone ask
for? Every work environment, there have been intelligent, dedicated, curious folks - students,
postdocs, staff and faculty - and together we were able to try to solve the insoluble problems, to
dream the impossible dreams. It doesn’t get better than that.

Over the years I’ve realized there is something special about people who are fascinated by
semantics. They are in awe of the mystery of language, and how it is that we manage to
communicate using it.

Knowledge is fostered by curiosity; wisdom is fostered by awe (Heschel, A, 1965).1

Folks who work on semantics have to have a certain humility, an ability to recognize that they
are never completely sure if they have exactly the right answer. Semantics often defies being
cleanly defined. A large part of this has to do with the ability to be comfortable with uncertainty.
Things that are clearly right or wrong, black or white, are so much easier to deal with. Yet so
much of the world and of life, like semantics, doesn’t fit those categories neatly. Perhaps, if we

1Complete Heschel quote:
Knowledge is fostered by curiosity; wisdom is fostered by awe. Awe precedes faith; it is the
root of faith. We must be guided by awe to be worthy of faith. Forfeit your sense of awe, let
your conceit diminish your ability to revere, and the universe becomes a market place for you.
The loss of awe is the avoidance of insight. A return to reverence is the first prerequisite for a
revival of wisdom, for the discovery of the world as an allusion to God.

Abraham J. Heschel, Who Is Man? (Stanford, CA: Stanford University Press, 1965), 88–89,
isbn=9780804702669
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study semantics long enough with a sufficient quota of awe, we will all gain a tiny modicum
of wisdom. Maybe it is no accident that almost every collaborative project, every student
supervision, has turned into a life-long friendship. It is a privilege to be able to associate with
such exceptional people.

I will end with a quote from a Center for Action and Contemplation meditation from February 24,
2024, by Kate Bowler.

"I had a very tender podcast conversation with theologian and ethicist Stanley
Hauerwas. We have worked together for almost two decades now, and I rely
on him to be incredibly certain about what makes a life good and virtuous. . . .
After describing how many twists and turns that life had taken, he had come
to a conclusion: "The ability to live well is the ability to live without so many
certainties."

We are all living life well, aren’t we?

Martha Stone Palmer
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PropBank-Powered Data Creation: Utilizing Sense-Role Labelling to
Generate Disaster Scenario Data

Mollie Shichman1, Claire Bonial2, Taylor Hudson3,
Austin Blodgett2, Francis Ferraro4, Rachel Rudinger1

1University of Maryland College Park, 2Army Research Lab,
3Oak Ridge Applied Universities, 4 University of Maryland Baltimore County
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Abstract
For human-robot dialogue in a search-and-rescue scenario, a strong knowledge of the conditions and objects a robot
will face is essential for effective interpretation of natural language instructions. In order to utilize the power of large
language models without overwhelming the limited storage capacity of a robot, we propose PropBank-Powered Data
Creation. PropBank-Powered Data Creation is an expert-in-the-loop data generation pipeline which creates training
data for disaster-specific language models. We leverage semantic role labeling and Rich Event Ontology resources
to efficiently develop seed sentences for fine-tuning a smaller, targeted model that could operate onboard a robot for
disaster relief. We developed 32 sentence templates, which we used to make 2 seed datasets of 175 instructions for
earthquake search and rescue and train derailment response. We further leverage our seed datasets as evaluation
data to test our baseline fine-tuned models.

Keywords: PropBank, Object Affordances, Synthetic Data Creation, Fine-tuning

1. Introduction

In dangerous and dynamic problem spaces like
search and rescue, instructing a robot agent in the
field via natural language offers a flexible means
of communication with a low cognitive burden on
rescue workers. However, it is imperative that the
robot agent be able to correctly understand and ex-
ecute natural language instructions from its human
operator. For example, for the instruction “move
past the chair and try to find an entrance,” the robot
agent should be able to determine if the instruc-
tion is related to navigation, interacting with objects
with a mechanical arm, identifying obstacles in its
environment, or a combination of those options.
These instructions are often specific to the disaster
scenario in question, the tools required for search
and rescue for the given disaster, and the overall
environment where the disaster occurred. Finally,
the robot agent needs physical common-sense rea-
soning to effectively follow instructions in such a
precarious environment.

Large language models (LLMs) have shown
great promise for encoding world knowledge
(Petroni et al., 2019), as well as strong perfor-
mance on instruction following tasks (Ouyang et al.,
2022; Wang et al., 2022; Chung et al., 2022). How-
ever, these models have drawbacks for human-
robot interaction in disaster relief. Instruction LLMs
are often unspecialized, aimed at accomplishing
a plethora of diverse written tasks rather than spe-
cializing in a domain-specific task with its own as-
sumptions and peculiarities. Additionally, LLMs are
trained on tasks that do not require a strong basis

in physical common sense, including the potential
usages of objects, which we term ’affordances.’ As
a LLM may not have any specific semantic training,
it is unclear how they will perform on relevant se-
mantic scenarios like reasoning about properties of
objects. Another challenge is that LLM’s reasoning
can be difficult to interpret and predict.

Furthermore, there is a pragmatic limitation of
available hardware in robot systems. As LLMs
vastly increase in size, it becomes more difficult
for smaller hardware systems to use these mod-
els. Most robots use one commercially available
GPU, and assuming the GPU has 24 GB of memory
and the LLM is using 4-bit quantization (Dettmers
et al., 2023), the robot could realistically only run
an LLM with 40B parameters. A robot working in
disaster relief needs many other systems onboard,
so memory space is even further limited down to
smaller 7 billion or 13 billion parameter models.
These smaller models would need fine-tuning to be
competent in the field due to their size. However,
fine-tuning data for specific types of disasters are
not easily available.

We hypothesize a solution to this problem space
is to fine-tune small LLMs with a wide variety of
disaster-specific data. These LLMs should be able
to answer both multiple choice and open ended
questions about how to execute different subtasks
of the disaster. They should be able to reason about
the various objects a robot could come across dur-
ing a disaster relief mission. This includes knowing
the functions of different objects, the different states
an object can be in, the relative size and shape of
objects, etc. Yet another important task is recogniz-
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Figure 1: The workflow for generating gold-standard instructions. After collecting domain knowledge about
different types of questions to be answered, we created templates for the different types of instructions
and categorized them to ensure a relatively even distribution of queried knowledge in our results. We then
determine the terms, roles, and/or vocabulary that could fill in the templates. Creating these templates
allowed us to quickly generate gold standard instructions for object affordances and earthquake search
and rescue. These instructions were then used for both perturbing the embeddings of a language model
during the training data generation stage and evaluating the resulting fine-tuned model. Instructions
corresponding to the occupy.01 ARG1 role are highlighted in yellow. Instructions corresponding to the
go.02 INSTRUMENT role are highlighted in blue. More in-depth examples of seed sentences can be
found in table 1.

ing what objects have the potential to be dangerous.
All of these functionalities are necessary in order
for successful human-robot interaction in these dis-
aster scenarios, both for ease of interaction and
for the robot agent’s successful execution of the
instruction. The goal of this work is to create a
framework for generating data that can provide a
basis for reasoning about this wide variety of tasks.
This process can be seen in Figure 1.

While the tasks we want an LLM to accomplish
are diverse and ambitious, Taori et al. (2023) has
had great success with a similar task to ours. They
instruction fine-tuned the LLaMa 7B model to have
similar instruction following performance to GPT3.5,
a much larger LLM. To do this, they expertly crafted
seed instructions that were fed into OpenAI’s text-
davinci-003 as In-Context Learning (ICL) for
generating high-quality synthetic data (Dong et al.,
2023). While effective, their methodology for creat-
ing seed sentences for synthetic data generation
is not appropriate for our use case for two reasons.
For one thing, the seed instructions used by Taori
et al. (2023) were created by a group of experts
whose broad domain and lack of time constraints
meant they could generate uniquely formatted seed
instructions on a relatively ad hoc basis. We need a

systematized pipeline to ensure that our sentences
are generated quickly as well as accurately, and
that all relevant areas of our disaster domain are
covered by our seed sentences. This is so a robot
agent can be deployed quickly and with high ac-
curacy for disasters that place time constraints on
when relief efforts must happen. Additionally, the
seed instructions were not based in any particu-
lar semantics that Taori et al. (2023) wanted their
model to “understand”, while we need our model to
have semantic understanding of the disaster and
the objects a robot agent could encounter while
navigating it.

To solve these issues, we propose an expert-in-
the-loop data generation pipeline called PropBank-
Powered Data Creation, which can be seen in Fig-
ure 1. In this pipeline, seed sentences are informed
by disaster expert knowledge, then created by a
linguistic expert in one work day. These seed sen-
tences are then used as in-context learning for syn-
thetic data generation to produce a much larger
dataset than would otherwise be possible with a
tight timeframe and a highly specialized domain.
The seed sentences are constructed using tem-
plates rooted in the semantic properties of disaster-
relevant senses from the PropBank lexicon (Palmer

2



et al., 2005). These seed instructions also serve
as a semantically informed evaluation, since they
are not included in the resulting synthetic dataset.

The contributions of this paper are as follows:

1. A process where linguists, with minimal dis-
aster expert input, can quickly generate gold-
standard seed sentences to be used during
synthetic data generation. This includes 35
sentence templates for generating seed sen-
tences.

2. An ontology of over 300 disaster relevant vo-
cabulary terms that are annotated with Prop-
Bank sense-role labels representing the ob-
jects’ affordances and change of state poten-
tials

3. Two sets of 175 seed sentences: one focused
on earthquakes, and one focused on the Ohio
Train Derailment1

2. Background

In the sections to follow, we provide background
information on the source of common-sense object
affordance knowledge that we leverage to seed
the generation of fine-tuning data, followed by the
fine-tuning procedure we adopt.

2.1. Object Properties
As interaction with objects is a major component of
the instructions a robot may be given, it is important
to have a framework for describing different types
of objects and what affordances, or functionalities,
a given object may have, as well as the canonical
changes of state the object may undergo.

We leverage the Affordance Ontology of disaster-
relevant vocabulary terms (Shichman et al., 2023)
that adopts a PropBank-style (Palmer et al., 2005)
representation of the vocabulary’s function and
state changes in terms of semantic roles each term
played with respect to an event. This resource, an
extension of the Rich Event Ontology (Bonial et al.,
2021), is a hub mapping event concepts from differ-
ent semantic role labeling resources and includes
“qualia relations,” and specifically “telic” relations
that denote the affordances of objects in terms of
events (Kazeminejad et al., 2018).

The Rich Event Ontology previously only repre-
sented a limited number of telic qualia relations
expressed between objects and particular events.
The Affordance Ontology extends the vocabulary
and representations of the Rich Event Ontology by

1https://www.reuters.com/world/us/ohio-carry-out-
controlled-release-chemicals-train-derailment-site-
2023-02-06/

representing object affordances in terms of Prop-
Bank sense-role pairings for given senses of events.
For example, within the Affordance Ontology, the
affordance of a bucket is labeled as an ARG0, or
“container” of a contain.01 event, defined loosely
as “hold inside.”2 A box would not only be repre-
sented with this same containing affordance, but
would also be characterized by a representation of
a canonical change of state: to be open (ARG1 of
open.01) or closed (ARG1 of close.01).

The Affordance Ontology provides a basis of a
vocabulary of objects that are likely to be present in
generic search and rescue scenarios. This means
that this resource can serve as a gold-standard set
of object properties within our disaster use cases.
In this research, we not only use the Affordance
Ontology, but also extend it to new objects and af-
fordances leveraging our PropBank-Powered Data
Creation workflow (described in detail in section 3).

There are other resources for defining object
functionality that we considered for our application—
notably the Suggested Upper Merged Ontology
(SUMO) (Niles and Pease, 2003), which includes
axioms and object definitions to indicate object af-
fordances. However, we preferred to use PropBank
because of its elegance in representing the object’s
functionality and because of the amount of data
supporting its approach. Furthermore, SUMO is
more focused on connecting semantic concepts
stored on the word level rather than fully describ-
ing events. Using PropBank, specifically the Prop-
Bank rolesets, also allows for our work to be inte-
grated with other Natural Language Understand-
ing resources like Abstract Meaning Representa-
tion, which shares the same roleset representation
of events (Banarescu et al., 2013) and can distill
instructions into action primitives and their corre-
sponding parameters (Bonial et al., 2020).

2.2. Generating Natural Language
Instructions

Obtaining high quality language for training and
fine-tuning language models is expensive and time
consuming. With the rise and improvement of
LLMs, significant work is being done to examine if
LLMs can do this work with more speed and with
the same level of accuracy as crowd-sourcing.

Notably, Wang et al. (2022) developed a frame-
work for prompting a language model to create a
diverse set of instructions which could be used to
fine-tune said language model. Specifically, the
process begins with writing 175 unique seed in-
structions, then prompting GPT3 to generate a new
set of diverse instructions, then filtering out instruc-
tions of insufficient quality via ROUGE-L score. Af-

2https://propbank.github.io/v3.4.0/
frames/contain.html

3



ter generating approximately 52,000 instructions,
these instructions were then fed back into GPT3
for fine-tuning. This resulted in SELF-INSTRUCT,
a fine-tuned GPT3 model that humans rated sig-
nificantly better on instruction tasks than vanilla
GPT3. Furthermore, though it performed worse
than all versions of InstructGPT, it was close and
still competitive, and required much less human
labor (Wang et al., 2022).

Inspired by the success of Wang et al. (2022) and
the release of LLaMa (Touvron et al., 2023), Taori
et al. (2023) created their own fine-tuned instruction-
following model, Alpaca. Alpaca largely followed
the same algorithm for generating their own instruc-
tions as SELF-INSTRUCT. The major innovation
of Alpaca was that it used the output of GPT3 to
fine-tune the smaller LLaMa 7B model rather than
GPT3 itself. This provided a major performance
boost, with humans rating the Alpaca answer to
be the preferred one just as often as Vanilla GPT3.
We follow the approach of Alpaca, but make use of
PropBank to quickly develop seed instructions.

3. PropBank-Powered Data Creation
Methodology

To quickly turn expert knowledge from both written
and oral sources into a disaster-specific LLM, we
aim to develop an efficient way of generating a set
of gold standard seed instructions. These seed
sentences will then be used as in-context learning
for synthetic data generation, which in turn will be
used to fine-tune a smaller LLM to enhance its
performance on a specific disaster domain.

To create the initial set of seed sentences, we
developed the PropBank-Powered Data Creation
Pipeline, which relies upon sentence templates with
slots that are populated largely by object vocabu-
lary from the Affordance Ontology (Shichman et al.,
2023). The vocabulary that can be used within a
particular slot is constrained by the PropBank-style
representation of properties such as its affordances
and change of state potentials. For example, to cre-
ate a seed sentence querying relative weight, one
would take the template “Which of these objects
is the lightest? [LIST OF OBJECTS]” and fill in
the “blank” with a list of objects that were randomly
generated, then refined to only include objects with
differentiable weights. Template examples can be
seen in Table 1. More complex and elaborate ex-
amples can be found in Table 2.

Thus, templates can be semi-automatically popu-
lated based on linguistic properties of the template
slot, instead of having disaster experts develop
dozens of unique instructions. This decreases time
to robot deployment while maintaining the accu-
racy of the seed sentences. The challenge there-
fore becomes how to effectively template important

properties for downstream use.

3.1. Creating the Templates
To tackle the challenge of creating templates for
generating seed sentences, we developed an anno-
tation workflow in which graduate student linguistic
annotators brainstormed a variety of instructions
and questions that a disaster-relief specialist might
want a robot to be able to execute or answer. The
annotators were instructed not to write instructions
outside of a LLM’s capabilities, like image identifi-
cation or referring to a 3D space the LLM cannot
perceive (e.g. "Get that can from your right"). Some
examples of brainstormed questions include “What
can be used for travel and carry large loads?” and
“How can an adult reach the ceiling?”.

The linguistic annotators then moved from the
hypothetical to real data by incorporating disas-
ter expert knowledge. For the purposes of this
paper, our ‘expert knowledge’ came from written
documents about the response to the Ohio train de-
railment (Air Sampling; Water Sampling; Soil Sam-
pling; Derailment Tools; Yan et al., 2023) and the
search and rescue process after earthquakes (Ar-
ranz et al., 2023; Hydraulic Rescue Tools; Scarbury,
2015; Thermal Cameras). A separate author col-
lected the expert knowledge, and our annotators
reviewed these data before constructing the query
templates. Our queries were focused on a few key
pieces of disaster information. we gathered expert
data about the specific subtasks each disaster had.
For example, for earthquakes, we researched how
to lift and remove rubble from a building collapse,
and for the train derailment the annotators queried
about the types of environmental testing that were
done to detect dangerous chemicals in the area.
We also queried about the specific objects used
in each subtask, what they are used to achieve,
and how to use them safely. Third, we researched
precautions that should be taken for the disaster
as a whole, both by civilians and by rescue work-
ers. Without this expert knowledge, the templates
would not be as useful or cover all relevant infor-
mation. Examples of the resulting disaster-related
questions that came from this research are in step
1 of Figure 1.

The annotators then inspected all of the brain-
stormed instructions, generalized over them, then
wrote original instruction templates, as exemplified
in step 2 of Figure 1. For the example “What can be
used for travel and carry large loads,” the central
notion (here, of having a task (travelling) that needs
completion with the help of an object (a type of vehi-
cle with the affordance of go.02 INSTRUMENT) that
has additional constraints that go beyond the basic
affordance label (ability to carry large loads) was
then “templatized” into prompts of the form, Tell me
which of these can perform [AFFORDANCE] given
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Category Templates Examples Instances
in Seed
Sets

Relative
Size/weight

Biggest Object, Heaviest
Object, Relative Fit

Which of these objects is the lightest? out-
let, broom, pail, orange, screen

15

Would a shoe fit in a bag?
Appropriate Ob-
ject Affordance

Basic Affordance, Size
Restricted, Shape Re-
stricted, General Property
Restricted,

Which of the following can be used to climb
and is bigger than a table? stile, stairway,
stepladder, step, ladder

38

Goal Restricted, Differ-
ence within Affordance,

What should I use if I want to learn some-
thing from the internet?

Difference within Affor-
dance given Criteria

What is the difference between a window
and a pane?

Is-A and Hyper-
nyms

Basic Is-A, Identical Us-
age, Sub-Types

Can you use a shed as a barn? 16

List several types of truck and their use
cases.

Objects in Risky
Situations

Cause Injury, Cause Dan-
ger, Cause Object Dam-
age

Which of the following objects would be the
most dangerous if it hit something? dvd,
screen, wall, drum, mat

16

Required Equip-
ment

How to Use, Equipment for
Scenarios, Role of Equip-
ment in Task

Give a step by step explanation of how to
use a concrete saw.

15

What role does an air canister play in test-
ing air quality?

Primary and
Secondary
Object Facts

Where Object Found, Ob-
jects in Location, Sec-
ondary Uses,

Hey, which of the following can be used
as a lever? art, motorcycle, picture, dvd,
broom

34

Frequency of use, Aver-
age Knowledge of Use,

How well does the average person know
how to use a concrete saw?

Ease of Interaction Given
Object State

Is a raised or lowered drawbridge more
effective at getting cars across the river?

Disaster Spe-
cific Knowledge

Preparations, Warning
Signs, General Informa-
tion

List and explain the different hazards to
look out for besides train cars after a train
derailment.

10

Instruction Fol-
lowing

Instruction Identification,
Follow-Up Questions

Choose the navigation instruction: drink
from the bottle, sail a boat, enter the door-
way

30

Table 1: An overview of the types of templates within each category, some examples of resulting seed
sentences within each category, and the number of instances of each category within the resulting seed
dataset. Note the emphasis on affordances, object knowledge, and instruction knowledge.

[GENERAL OBJECT PROPERTY]?. We then cat-
egorized this resulting template under the general
category of “Appropriate object affordances” along-
side other template instructions focused on query-
ing about objects’ functionalities and affordances
(see step 3 of Figure 1). The complete list of tem-
plate categories with corresponding examples can
be found in Table 1.

After developing the templates, the annotators
used a list of objects from the disaster-specific ex-
pertise and labelled each object with all applicable
PropBank sense-role pairings. We added these
labels to Affordance Ontology previously described
in 2.1. For instance, “Train,” which is relevant to

the Ohio train derailment, was labelled occupy.01
ARG1, go.02 ARG2, and contain.01 ARG0 by our
annotators. This means a train can hold people,
be used for transporting people, and can contain
objects. “Air horn,” which is relevant to Earthquake
search and rescue, was labelled with signal.02
ARG0 and alert.01 ARG1, meaning that an air horn
can both signal information and warn of potential
danger. This extension of the Affordance Ontology
can be seen in step 4 of Figure 1. Examples of how
Affordance Ontology labels connect to vocabulary
used in the templates are in Table 2.
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3.2. From Templates to Seed Instructions
For our next step, we determined what vocabulary
could potentially fill in the blanks for each template.
We examined each template and determined which
vocabulary terms with associated linguistic proper-
ties from the list could appropriately fill in the blanks
of each instruction. For instance, we determined
that the affordance of occupy.01 ARG1 (i.e. an ob-
ject that a human can occupy) can appropriately
fill in the AFFORDANCE slot for the template Tell
me which of these objects can perform [AFFOR-
DANCE] given [GENERAL OBJECT PROPERTY].
We then chose properties corresponding to each
chosen sense-role label to fill in the GENERAL OB-
JECT PROPERTY slot, thus further restricting the
number of correct answer objects. This process
is shown in step 5 of Figure 1, where one exem-
plified PROPERTY slot associated with occupy.01
ARG1 is can move, which restricts the list of po-
tential correct answers from balcony, barn, boat,
building, car, floor (story), house, truck, train to be
boat, car, truck, train. Another exemplified property
slot associated with go.02 INSTRUMENT is holds
one person, which restricts the resulting correct
answers with the go.02 INSTRUMENT affordance
to only motorcycle, bike. This process of choos-
ing appropriate affordances and properties for the
Identical Use Case template is shown in Table 2.

We chose all possible vocabulary terms with
associated linguistic properties for each template,
then randomly selected which vocabulary items
would fill in a particular blank to generate the final
seed questions. An example of a final seed instruc-
tion, arising from the template “Tell me which of
these objects can perform [AFFORDANCE] given
[GENERAL USE CASE]” is “Tell me which of the fol-
lowing are places people can occupy and can move:
car, building, train.”. The resulting gold-standard
instruction is seen in step 6 of Figure 1.

The linguistic annotators each decided on the
correct answers based on context. For disaster
related knowledge and required equipment knowl-
edge, the annotators relied heavily on our disaster
expert sources. In general, answers could not be
automatically generated from templates because
we often tested for linguistic knowledge that went
more in-depth than the knowledge encoded in Prop-
Bank sense-role affordance labels. One example
is in step 7 of Figure 1. Objects that have the label
occupy.01 ARG1 cannot be differentiated by mobil-
ity by affordance label alone. Similarly, in Table 2,
sharing an affordance of store.01 ARG2 does not
indicate or preclude that “barn” and “shed” have
a hypernym or is-a relationship. The annotators
had to use their own common-sense capabilities to
achieve the level of granularity we need for assess-
ing LLM common sense capabilities.

Upon request, we will make available both com-

Populated by...
Template Can you use

[object-slot1] as
a/n [object-slot2]?

Two objects
w/ identical
affordance

Potential
Slot 1
Affor-
dances

Path-of enter.01 doorway, open-
ing, gateway, en-
trance, etc.

ARG2 of store.01 shed, barn,
greenhouse,
silo, etc.

Path-of go.02 road, train track,
floor, doorway,
trail, etc.

Potential
Slot 2
Affor-
dances

same as above same as above

Seed 1 Can you use a doorway as an
opening?

Answer 1 Yes because a doorway is a
type of opening found in build-
ings.

Seed 2 Can you use a shed as a
barn?

Answer 2 No because a shed is too
small to store hay, livestock,
and tractors like a barn can.

Table 2: Population of templates leveraging seman-
tic role labeling linguistic features for quick gen-
eration of domain-specific seed sentences: The
template requires two objects within affordances
that annotators identified contain terms with hy-
pernym relationships. Two objects with the same
sense-role label, or affordance, are then randomly
selected to fill each slot, and a linguistic annotator
uses common sense knowledge to answer the re-
sulting query. By training the model on both correct
and incorrect answers that naturally arise from ran-
dom generation, the deeper linguistic meaning of
use-case hypernyms is expressed in our data.

plete sets of seed questions, which also serve as
an evaluation set for the model tuned for an earth-
quake disaster and the Ohio train derailment, re-
spectively. In Table 2, we demonstrate our work-
flow for developing the disaster-specific seed set
efficiently for the Identical Use Case template. With
our annotation workflow for developing new models
for new disaster scenarios, we can use an expert’s
time to provide only disaster-specific questions and
vocabulary, as well as rating existing template qual-
ity.

4. Resulting Datasets

Our resulting datasets balance between covering
a wide variety of physical object properties, such
as size and weight, and holding specific knowl-
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Figure 2: An example of output from our pre-
liminary model developed using the earthquake
PropBank Powered Data Creation dataset. Here,
text-davinci-003 (A version of GPT 3.5) fails
to choose the correct instruction from the options,
but our much smaller model with PropBank Pow-
ered Data Creation can successfully correlate visi-
bility with the pertinent instruction.

edge for an LLM to draw from when generating
synthetic data based on the dataset. Furthermore,
the datasets thoroughly cover required information
for two very different types of disasters. For earth-
quakes, the priority is rescuing trapped individuals
and clearing away rubble and partially collapsed
buildings. For the Ohio train derailment, the focus
was on monitoring the air, water, and soil for danger-
ous chemicals and ensuring the volatile chemicals
that leaked from the train cars did not explode.

We initially tested PropBank-Powered Data Cre-
ation with our earthquake seed sentence dataset.
This was a lengthy process of determining the types
of templates we wanted, what they would be, and
what vocabulary fit with each template. In contrast,
developing the seed sentences for the Ohio train
derailment took about 10 hours because we built
on the pre-existing templates and potential choices
for each fill in the blank. We are now confident
that a disaster expert would need to give an hour of
their time and some pointers to relevant literature to
make PropBank Powered Data Creation successful.
An expert annotator would then need one work day
to develop the seed sentences. This means that
the time between interviewing the disaster expert
and deploying a model using PropBank-powered
data could be as little as 3-4 days, depending on
computational fine-tuning resources.

5. Baseline Fine-Tuned Model

The next step in our research is to use the
PropBank-powered data as in-context learning ex-
amples for generating a synthetic dataset that will,
in turn, fine-tune a small language model. We have
made a preliminary model using the PropBank-
powered earthquake data as our seed sentences,

text-davinci-003 as the model that generated
a synthetic dataset of 20,000 instructions (OpenAI,
2023), and the LLaMa 7B model for fine-tuning
(Touvron et al., 2023). We then had evaluators
with expertise in linguistics compare the outputs of
text-davinci-003 and our PropBank-powered
model by voting for which LLM won or if there was
a tie and rating the quality of the winning answer
on a scale of 0-3.

While the model our team developed had some
successes, as can be seen in Figure 2, our prelimi-
nary results show we still have work to do. We had 3
annotators vote in our head-to-head testing, which
resulted in our model winning approximately 8% of
the evaluation prompts, tying with text-davinci-
003 for approximately 22.5% of the prompts, and
losing to text-davinci-003 for approximately
69% of the prompts. Further investigation found
this was likely due to poor alignment between the
seed sentences and the synthetic data. We believe
the poor alignment was due to insufficient in-context
learning during the data generation process, and
are looking to improve this in future iterations. Mak-
ing a preliminary model did prove that PropBank
Powered Data Creation can be used both as evalu-
ation and as seeding data, and we are excited to
explore those capabilities as well in future work.

6. Related Work

6.1. Evaluation Datasets for Robots

Ahn et al. (2022) tests LLMs’ abilities to execute
instructions by developing a set of tasks for the
robot agent to learn using reinforcement learning,
then training a model to calculate the probability
of a task being completed successfully paired with
the probability that a natural language instruction
will precede a given task. To do this, the authors
wrote 101 instructions addressing various degrees
of semantic complexity, including following prim-
itive instructions, abstract nouns and verbs, and
long-horizon planning that requires many steps to
accomplish the instruction. The model, called Say-
Can, developed skills that transfered from the mock
kitchen where it was trained to a real kitchen with
minor losses in planning and performance. More
interestingly, the authors also showed that SayCan
performed better when they used larger LLMs with
more linguistic knowledge. They also were able to
utilize chain-of-thought fine-tuning to get a natural
language explanation about the tasks that SayCan
executed in order to fulfill the instruction.

Rather than having the LLM create a policy for a
robot agent to execute itself, Xie et al. (2023) have
GPT 3.5 translate the premise of the instruction
from natural language to Planning Domain Defini-
tion Language (PDDL), an explicit way of defining
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all objects, predicates, and available actions within
an environment. To test GPT 3.5’s abilities to trans-
late tasks, the authors developed tasks related to
block stacking and navigating a kitchen that test an
LLM’s basic parsing competence, object associa-
tion between natural language and entities in PDDL,
numerical reasoning, physical and spatial reason-
ing, and world knowledge. They found that GPT 3.5
was able to perform well when the instructions were
completely explicit and had decent performance at
filling in the blanks for specifying goals and had
decent reasoning about basic real world objects
and relations. However, the authors also found that
GPT 3.5 could not handle the complex and ambigu-
ous physical relationships, and that GPT 3.5 likely
relied extensively on the one-shot example it as
given, rather than reasoning about the domain as
a whole (Xie et al., 2023).

6.2. Robots and Language Models

PaLM-E is a multi-modal model designed to ac-
cept image, text, and sensor data and then output
images, answers, or plaintext robot policy (Driess
et al., 2023). This is achieved by vectorizing images
into the same space as text embeddings, which
allows for multi-modal fine-tuning but makes it un-
clear how the model would determine a particular
robot’s capabilities. RT-2 takes PaLM-E a step fur-
ther by encoding language, vision, and actions into
the same embedding space (Brohan et al., 2023).
This allows for the robot agent to go beyond making
only policy to making specific moves.

Instruct2Act takes a different approach and trains
a LLM to output python code for a closed loop of per-
ception, planning and actions (Huang et al., 2023).
It does this by supplying the LLM with a variety of
APIs for completing perception and action tasks.
The scope of testing was limited to table top simula-
tions, but the framework is inherently more flexible
because the model can be fine-tuned to produce
different python code.

These models all elicit interactions with the phys-
ical world, but Ghaffari and Krishnaswamy (2023)
argue that these connections can’t fully capture the
complexity of the physical world because they don’t
include any physical data beyond images. To solve
this problem, they train a neural network on physical
simulations, then create a LLM embedding affine
transformation matrix from both the physical em-
bedding space and GPT3 embeddings. They find
that LLM embeddings in the physical embedding
space do correlate with the objects they describe,
Most interestingly, nouns have a stronger correla-
tion, and are thus more grounded, than verbs and
attributes, much like how nouns are often learned
first during language acquisition (Ghaffari and Kr-
ishnaswamy, 2023).

7. Future Work

In addition to our immediate goal of improving syn-
thetic data generation techniques and fine-tuning
parameters, we are interested in expanding Prop-
Bank Powered Data Creation to become multi-
modal. While even smaller multi-modal models
are still too large to be useful in our robotics do-
main, there is a clear path for the expansion of
our protocol. Notably, we hope to gather image
data that can reinforce what different objects may
look like in a given environment, how to interact with
relevant equipment, and objects performing their af-
fordances or changing states. These images could
be paired with PropBank labels, vocabulary terms,
and complete instructions. The variety of ways im-
ages can be combined with PropBank Powered
Data Creation makes this an exciting new avenue
for improving transformer model performance on
disaster scenarios.

8. Conclusion

We introduce PropBank Powered Data Creation,
a pipeline for efficiently creating semantically mo-
tivated seed sentences to be used for generating
synthetic data for disaster related scenarios. We ex-
tended our Affordance Ontology and created 2 sets
of 175 seed sentences for the domains of earth-
quake search and rescue and chemical spills fol-
lowing train derailments. These seed sentences
extensively query objects’ affordances, physical
characteristics, changes of state, and fine-grained
properties to ensure thorough evaluation of a LLM
trained on PropBank Powered Data Creation-based
synthetic data. We created a LLM demonstrating
this full pipeline, and will continue to work on align-
ing our synthetic data to our seed sentences to
increase LLM performance in disaster-related do-
mains.

9. Ethical Considerations

PropBank Powered Data Creation is fundamentally
based on biasing a language model towards feed-
back from a small group of selected sources. While
this is for a positive effect within our domain, it may
be harmful in domains that require more social com-
mon sense than ours. Within our templates, we
tried as much as possible to be gender-neutral to
discourage gender bias.

Our biggest form of bias is in assumptions of the
specifics of our objects. We imagined our objects
from a Western perspective, which can affect the af-
fordances assigned to the object and how we query
the object’s properties. For instance, we imagine
“curtains” to be window dressings, but in nomadic
cultures a curtain could be used to separate living
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spaces within a tent. A positive about the structure
of PropBank Powered Data Creation is that it pur-
posefully allows time for adding and editing to the
Affordance Ontology in order to align the data to a
particular disaster and location. However, this is
time consuming and puts the onus on the linguistic
annotator to adjust the ontology both quickly and
with cultural sensitivity.

Though the domain of this project is robots in
disaster relief scenarios, we have not tested any
implementation of this dataset on a robot, let alone
a robot in a dangerous situation. We caution that
extensive grounded testing must be done on any
LLM resulting from these data before any real-world
implementation can occur safely.
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Abstract 

This paper highlights some theoretical and quantitative issues related to the representation and annotation of aspectual 
meaning in the IMAGACT corpus-based multimodal ontology of action. Given the multimodal nature of this ontology, in 
which actions are represented through both prototypical visual scenes and linguistic captions, the annotation of aspect in 
this resource allows us to draw some important considerations about the relation between aspectual meaning and 
eventualities. The annotation procedure is reported and quantitative data show that, both in the English and Italian corpora, 
many verbs present aspectual variation, and many eventualities can be represented by locally equivalent verbs with different 
aspect. The reason why verb aspectual class may vary is investigated. Our analysis makes once more evident that verbs 
may vary their aspectual properties with respect not only to their argument structure but, more precisely, to the inner qualities 
of the eventualities they express. Crucially, when eventualities are expressed by equivalent verbs with different aspectual 
properties, the verbs focus on different parts of the structure of the eventuality.  

Keywords: action ontology, aspect, semantic variability 

1. Introduction 
Since Verkuyl (1972), the importance of considering 
argument structure in the analysis of verbal aspectual 
information has been frequently pointed out. 
Accounts that attribute unique aspectual classes to 
verb lexemes fail to capture the complexity of this 
semantic property. Verbs may show a unique 
aspectual class or vary with respect to their valency, 
different interpretations, and the properties of the 
eventualities they can denote. 

This paper deals with the representation and 
annotation of verbal aspectual properties in the 
IMAGACT ontology (Moneglia et al., 2014), a 
multilingual and multimodal ontology of actions 
derived from English and Italian spoken corpora 
(Moneglia, 2014). This annotation lets us reconsider 
the nature of aspectual properties by deriving the 
aspectual class of each action verb in relation to the 
different actions it can extend, giving a measure of the 
quantitative relevance of aspect variability in 
language usage.  

In particular, it becomes possible for English and 
Italian verbs to observe: a) variation of the aspectual 
class of a verb across the various action types it can 
extend; b) variation of the aspectual class in the same 
action type by locally equivalent verbs, which is the 
peculiar information provided by IMAGACT (Moneglia 
et al., 2018). 

The paper is structured as follows: Section 2 
introduces the IMAGACT ontology, describing the 
methodology used to annotate aspect (2.1) and 
reporting quantitative data on aspectual variations in 
two languages considered in the ontology, English 
and Italian (2.2). Section 3 analyses the cases in 
which a single verb shows variation in its aspectual 
class, together with a theoretical explanation of these 
cases. Section 4 addresses the aspectual variation 
observed on eventualities, i.e., cases where an action 

concept is expressed through locally equivalent verbs 
with different aspectual properties. In 3 and 4, we will 
go through the linguistic and cognitive factors that 
give rise to the two kinds of aspect variability. We will 
only consider emblematic cases taken from the 
English verbal lexicon, leaving Italian and complex 
crosslinguistic variability problems to other occasions. 
In section 5, we draw some conclusions and 
summarize our findings. Table 1 in the Appendix will 
list the verbal entries in the IMAGACT lexicon that 
record both event and process readings and the 
proportion between the two categories across the set 
of eventualities they can extend. 

2. The IMAGACT ontology and the 
annotation of aspect 

IMAGACT is a multilingual ontology of action that 
visually represents the meaning of verbs referring to 
physical actions through scenes rather than through 
linguistic definitions. Each scene represents the 
prototype of an action type in the form of a video or 
3D animation. 

Action concepts were identified by annotating Italian 
and English spontaneous speech corpora using a 
complex induction procedure (Moneglia et al., 2012). 
Starting from the contexts of occurrence of verbs 
related to physical actions, the different activities each 
verb can extend to were highlighted. Each considered 
action verb's occurrence was examined (around 600 
action verbs per language that are high frequency in 
oral contexts). Occurrences referring to physical 
actions were selected and expressed in a 
standardized sentence, in which the verb is linked to 
the minimum number of arguments necessary to 
represent the action. Once all occurrences of the verb 
were processed, the meaning of each became clear 
in its standardization. The semantic variation of a verb 
is thus inducted from corpora. 
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Reconciling the action concepts identified in the two 
corpora into a single ontology, a set of 1,010 scenes 
was generated, each representing a prototype of 
action. This set, being derived from corpora 
representative of oral use, ideally constitutes the 
universe of relevant actions in the current socio-
cultural context and how languages refer to them.1 
For each prototypical scene, the set of verbs referring 
to the same action concept, which are called locally 
equivalent verbs (Moneglia et al., 2018), are then 
mapped. 

In summary, the ontology provides two main pieces of 
information: 

a) the variation of action verbs, often 
general, across different actions. 

b) the set of verbs referring to the same 
action concept, which are locally 
equivalent. 

Figure 1 provides an example of the variation of the 
general verb to push.2 As the figure shows, each 

 
1 The following languages have been further implemented 
in IMAGACT through competence-based judgments (Brown 
et al. 2014): French, Spanish, Portuguese, Greek, German, 
Danish, Swedish, Chinese, Japanese, Hindi-Urdu, Arabic, 
Serbian, and Polish. 
2 The figures included in the paper constitute frames of the 
video or animation provided in IMAGACT. The complete 
scenes can be seen on the web interface of the ontology 
at the following link: 
http://www.imagact.it/imagact/query/dictionary.seam 
3 Relying on a modified version of the semantic roles 

prototype can also be identified by at least another 
verb (reported below the figure), which is equivalent 
in extension to the verb to push for that particular 
case. 

Each prototype scene is described by the best 
example, i.e., a linguistic caption (reported in Figure 1 
above the frames). The best examples were 
annotated with the thematic structure3 and the 
aspectual class that the verb determines in that 
linguistic context, respectively process or event 
according to the traditional Vendler’s typology 
(Vendler 1967).4 This procedure is described in more 
detail in the next subsection.  

The sentences were then grouped into types based 
on two criteria: 

a)  Similarity to the best example chosen to 
represent the class (cognitive constraint) 

b)  Substitutability with verbal occurrences with 
the same locally equivalent verbs (linguistic 
constraint) 

For example, standardized occurrences of the verb 
push are grouped into action types, each headed by 
a best example, as shown in the left box in Figure 4. 

We refer the reader to Gagliardi (2014) for the quality 
assurances on the IMAGACT creation and annotation 
process.  

2.1 The annotation of aspect 
The imperfective paradox test (Bach 1986; Dowty 
1977; 1979; Pustejosky 1991; Bennet-Partee 2004) 
was used to assign the aspectual class.  The test 
identifies as processes all sentences formed with a 
certain verb conjugated in the progressive (PROG) 
that logically implies the corresponding sentence in 
the present perfect (PP). On the contrary, sentences 
formed with verbs that, conjugated in the progressive, 
do not imply the corresponding sentence in the 
present perfect are identified as events5: 

• Processes: Prog (p) > PP(p) 

• Events: Prog (p) >/ PP(p) 

For example, the verb push identifies a process in (ex. 
1) because it implies the corresponding present 
perfect, while the verb climb results in an event in (ex. 
2) because the sentence does not imply the 
corresponding one in the present perfect: 

inventory proposed by Palmer et al. (2005). See Moneglia 
& Varvara (2020) for details. 
4 Focusing specifically on actions, states are not considered 
in the ontology. Moreover, no granular distinction is made 
among the various aspectual classes falling within the 
categories of process and event. For instance, events 
encompass both achievements and accomplishments 
(Vendler 1967). Processes gather continual and iterative 
interpretations.  
5 “If x is V-ing entails x has V-ed, then either the verb or the 
predicate is a process.”(Pustejovsky, 1991: 36) 

Figure 1 The variation of push across action types 
and locally equivalent verbs 
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1) Fabio is pushing the cart > Fabio has pushed the 
cart 

2) Fabio is climbing onto the chair >/ Fabio has 
climbed onto the chair. 

The test allows expert mother tongue annotators to 
easily attribute the aspectual class to the best 
examples of action types extended by all verbs in 
IMAGACT face to each action prototype, which 
ensures its actual interpretation.  

This approach has generated a substantial database 
of correlations between the two aspectual classes and 
verbs. It becomes possible to obtain relevant data 
regarding the many verbs (not all) that exhibit 
aspectual variation in the different action types they 
can predicate.6  For example, the verb push exhibits 
aspectual variation in Figure 2 between action type A 
(a process, as demonstrated by the paradoxical 
inference reported in ex. 3) and action type B (an 
event, as demonstrated by the lack of inference in 4): 

3) Maria is pushing the cart > Maria has pushed the 
cart. 

4) Maria is pushing the box >/ Maria has pushed the 
box. 

However, in many cases, verbs with different 
aspectual qualities can identify the same action event. 
Considering the action in Figure 3 expressed by the 
verb to push, locally equivalent verbs can also be 
applied to that eventuality (press, put, insert), each 
one with different meanings and aspectual qualities, 
being either processive, like push and press in (5) or 
events, like put, insert and place in (6). 

5) Is pushing  (pressing) the stick into the hole > has 
pushed (pressed) the stick into the hole. 

6) Is putting (inserting) the stick into the hole >/ has 
put (inserted) the stick into the hole  

 
6 English verbs that exhibit aspectual variation are reported 
in Table 1 in Appendix. 

Figure 4 illustrates how arguments are annotated, and 
the aspectual class is assigned to occurrences of 
Type 1 (in light blue on the left), where push, in the 
best example "John pushed the stroller along the 
pavement," is locally equivalent to move, marking a 
process (in the central box). Similarly, in the 
annotation of Type 5, where push is equivalent to 
shove, the best example, "Mary pushed the book 
away" is marked as an event. The information 
concerning the possible aspectual class variation of a 
verb in the variety of actions is, therefore, a function 
of this level of annotation. 

The actional concepts represented through visual 
prototypes must ensure that the ontological referring 
object for all locally equivalent verbs in that type is the 
same. For example, in the case of the verb push, the 
type corresponding to the best example, “push the 
plug into the hole," must be mapped onto the same 
scene extended by the locally equivalent verb insert.  
This association provides information about actions 
that locally equivalent verbs can identify, getting, in 
some cases, different aspectual classes for the same 
scene. 

2.2 Quantitative data 
From this annotation, we can derive quantitative data 
from the IMAGACT database, which gives a measure 
of how aspectual variation impacts the interpretation 
of sentences referring to physical actions. 

Considering the English lexical encoding, out of 543 
verbs examined, 393 consistently remain in the same 
aspectual class (301 are always annotated as events 
and 92 as processes). In comparison, 150 verbs 
exhibit variation in the various types they are 
annotated with. Among the 943 actional types 
extended by these verbs, 640 are always identified by 
verbs conveying the same aspect: 478 are 
consistently extended by verbs annotated as events 
and 162 as processes. However, 303 action types can 
be identified by verbs with different aspects. 

Similar results are observed when considering the 
annotation of Italian. Out of 501 annotated verbs, 401 
never vary in aspectual class across the action types 
they extend to. Among these, 260 are marked as 
events and 141 as processes. The remaining 100 
verbs exhibit aspectual variation in the different 
actions each can refer to. Considering the action 
types extended by the Italian verbs in question (920), 
709 prototypes are identified by verbs that give rise to 
a single aspectual class (511 annotated as events 
and 197 as processes), while 211 action types can be 
extended by verbs that exhibit aspectual variation. 
The pie charts in Figures 5 and 6 illustrate the 
quantitative data. 

In short, in English, one out of three action types in 
the ontology undergoes different aspectual 
categorization, and one out of four action verbs may 
change their aspect when applied to different action 
types. The slightly reduced proportions scored in 

Figure 3 One of the eventualities (“John pushes the 
plug into the hole”) expressed by to push, locally 
equivalent to press, put, insert. 

Figure 2 Two eventualities of the variation of to push. 

13



Italian do not change the overall picture.7 Aspectual 
variation is, therefore, a quantitatively significant 
phenomenon when referring to actions. The definition 
of criteria by which a verb can give rise to an event or 
a process, or the same action can be seen as both a 

 
7 The reason for this variation raises complex questions 
concerning the cross-linguistic categorization of action 
concepts, but is not an object for this paper. 

process and an event, is necessary to ensure natural 
language interpretation. In the following paragraphs, 
we will consider the factors influencing aspect 
variability. 

Figure 4 Interface for the Annotation of Thematic structure and Aspectual class of the best 
example of each Action Type 

Figure 5 Aspect variability among English verbs 
(left) and types (right). 

Figure 6 Aspect variability among Italian verbs (left) and 
types (right). 
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3. Aspect Variation of Verbs 
3.1 Aspect Variation and Thematic 

Structure 
In some well-known cases, thematic structure 
changes correlate with aspect changes. For instance, 
activity verbs (Dowty 1979), in their absolute 
structure, get an event interpretation when taking a 
thematic argument. For example, to paint in (7) and 
(8) respectively correspond to a process and to an 
event in prototypes A and B of Figure 7: 

7) Mario paints > PROC8 
8) Mario paints the hood TH > EVENT 

Similarly, motion verbs, which are processes in their 
absolute structure, can exhibit aspectual variation 
when selecting an internal argument. For instance, 
the verb to climb, if it selects an internal argument with 
the role PATH (9), required when applied to prototype 
A of Figure 8, determines the processual 
interpretation. In contrast, the semantic role 
DESTINATION, required by prototype B, determines 
the event interpretation (10).  

9) Fabio climbs the stairs PATH > PROC  
10) Fabio climbs onto the chair DES > EVENT  

 

These cases are, therefore, predictable based on the 
minimal argument structure of the verb necessary for 
the projection of a specific action. 

3.2 Aspect Variation of General Verbs 
across action types 

IMAGACT demonstrates that the aspectual variation 
of a verb is not determined solely in relation to its 
argument / thematic structure but can also be due to 
the verb variation across action typologies. We have 

 
8 For brevity, we leave it to the reader to replicate the 
assignment to the aspectual class through the test of the 
imperfective paradox. 

observed significant changes in the aspectual class of 
the clause in two paradigmatic cases: 

a)  Variations in the typology of the action 
extended by the same verb 

b)  Variations due to the pragmatic relevance of 
the resulting state  

The first case is well identified in IMAGACT by those 
motion verbs that, in their proper meaning, can extend 
to both motion eventualities and eventualities in which 
the verb predicates of object relations. 

Examples (11) and (12), depicted in Figure 9, 
illustrate the change in thematic structure 
(REFERENCE vs LOCATION) recorded by the verb 
to pass. The change occurs specifically when the verb 
predicates about a motion in space or, on the 
contrary, about object relations. In the first case, the 
truth of “the guy is passing the light” does not imply 
that he passed through, and the verb is an event in 
that eventuality. In the second case, the inference 
“Mario passed the paint on the shelf” holds, and 
nothing ensures the work is over. 

11) Mario passes the light REF > EVENT  
12) Mario passes the paint TH on the shelf LOC > PROC 

 

Action verbs can undergo aspectual class variation 
depending on the greater or lesser relevance of the 
modification of the world achieved by the action. 
Consider, for example, the verb tightens. The 
sentences in (13) and (14), represented in the two 
prototypes of Figure 10, show that if the activity does 
not determine a relevant change of state, as in model 
A, the predicate has a processual interpretation, while 
it is interpreted as an event as soon as the activity is 
aimed at achieving functionally relevant goals, as in 
model B. 

13) Fabio tightens the bottle > PROC  
14) Fabio tightens the rope around Maria's neck > 

EVENT 

 

Figure 7: Aspectual variation of the activity verb to paint 
(absolute vs non-absolute reading) 

Figure 9: Aspect variation of to pass in two eventualities 

Figure 10: Two eventualities of the verb to tighten. 

Figure 8: Aspect variation among two eventualities in the 
variation of to climb. 

A B 
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Semantic correlations justify this variation. Tighten is 
a predicate that, when referring to scalar variations, 
has a processual interpretation as in (13), as pressure 
is exerted more or less without determining a final 
result. In fact, when “Mario is tightening the bottle”, 
this implies that he has already tightened it a little bit. 

However, the same verb takes an event reading when 
referring to events where a result emerges 
prominently, as in (14). "Mario is tightening the rope 
around Maria's neck" does not imply that he has 
tightened the rope around Maria's neck, which is true 
only in a state where the rope can be said to be tight. 

We can replicate the phenomenon with other action 
verbs with a scalar application. For example, to raise 
can have a scalar reading or can apply to events in 
which the achievement of a relevant resulting state is 
predicated. 

If I am raising the microphone, it can be inferred that 
it is already more or less raised (as in A of Figure 11), 
and the verb is a process. This is not the case in B, 
where it cannot be said that Maria has raised the 
paddle until the paddle is visible over her head, that 
is, until the state of functional relevance of the 
movement is reached, and the sentence refers to an 
event. 

15) Maria raises the microphone > PROC  
16) Maria raises the paddle> EVENT  

4. Aspect variation of equivalent verbs 
in the same eventuality 

When considering that the same verb can vary its 
aspectual class in different eventualities, it seems 
straightforward the conclusion that aspect depends 
on the nature of the eventuality, which should be an 
entity within the natural language metaphysics, with 
the inner properties of a process or an event (Bach 
1986). However, this conclusion cannot explain why 
the same eventuality can be interpreted as an event 
or a process when referred to by two locally 
equivalent verbs. 

The phenomenon is relevant since, in English, it 
concerns one out of three of the eventualities 
represented in the ontology, as we observed above. 
For instance, consider the local equivalence between 
to compress and to mash (17 and 18, represented in 
the eventuality A in Figure 12) and between to pour 
and to put (19 and 20, represented in the eventuality 
B in Figure 12). Compress and pour lead to 
processive interpretations, while mash and put give 
rise to event interpretations of the same eventuality. 

17) Fabio compresses the bottle > PROC;   
18) Fabio mashes the bottle > EVENT 
19) Maria pours the wine into the glass > PROC  
20) Maria puts the wine into the glass > EVENT  

Given that the eventuality is one and only one, the 
explanation of this phenomenon can only be a 
function of the conditions of application of the verbs in 
question, i.e., the different semantics of these verbs. 
Therefore, we must consider both the semantic 
properties expressed by the verbs and how these 
relate to the properties characterizing the eventuality. 

The structure of an event can be encoded as a 
transition between two states (von Wright 1963). In 
short, the event is a logical entity with two foci: '¬pTp', 
where T is the temporal transition of the state (and 
then) that produces the result (the truth of p) from a 
state in which p is not true. Reasoning in a pragmatic 
form, we can say that, in the domain of natural action, 
when ¬p is true, a set of acts (more or less prolonged 
in the sense of Vendler, 1967) occurs that lead to the 
result. ¬p and p are nothing but "entities of different 
kinds" in the sense of Bach 1986. 

Considering the properties signified by the predicates, 
we identify the event's structure with the notation 
‘informative focus1 T informative focus2', to indicate 
that where ¬p is true, a set of positive pragmatic acts 
occur. The properties characterizing the semantics of 
the verb can, in principle, refer to the focus in 1, the 
focus in 2, or both foci of the event structure. 

In other words, the existence of a positive focus on 
the resulting state, necessary to be an event, can not 
only be determined by what happens, as the impulse 
in Figure 2B or the pragmatic relevance depicted in 
Figure 9B. The emergence of an event reading can 
also depend on how a verb predicates an eventuality. 

Considering the different semantics of the verbs 
applied to the eventuality in B of Figure 11, we can 
hypothesize that put is inherently resultative, as its 
information focus, i.e., the quality characterizing its 
meaning, is 'inserting an entity into a background' 
(Moneglia 2005). In other words, the meaning of the 
verb emphasizes the information focus 2 of the event 
structure, while it does not specify information about 
how this result is achieved (part 1 of the event 
structure). On the contrary, pour has an informational 
focus on the qualities of the object (liquids or mass 
entities) and the manner of the activity (controlled). 
Therefore, pour has an information focus in the first 
part of the event structure. 

Figure 12: Two eventualities with equivalent verbs with 
different aspects 

Figure 11: Aspect variation among two eventualities in the 
variation of to raise. 

A B 
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The same happens in the pair compress/mash in the 
prototype of Figure 12 A.  As the variation of mash 
derived from IMAGACT in Figure 13 shows, this verb 
does not specify any information in the first focus of 
the eventuality. Indeed, forces that produce the result 
can be of whatever kind. Mash focuses on the 
information characterizing the result achieved, 
leading to the event interpretation of the eventuality. 

On the contrary, compress would indicate that the 
qualities of the forces exerted on the object are ‘aimed 
at its reduction'. The object can result in being more 
or less compressed without necessarily reaching a 
final ‘compressed’ state.  

This is clear from the comparison of compress vs. 
mash given by IMAGACT. Compress, but not mash, 
can be applied to elastic objects that cannot reach a 
permanently deformed state, as can be seen from 
Figure 13, where the actions denoted by compress 
and mash are compared (the first column 
comprehends actions denoted only by compress, the 
third column actions denoted only by mash, and the 
column in the middle shows actions that both verbs 
can denote). 

Therefore, the verb meaning characterizes the 
information focus 1 of the event structure, resulting in 
a process interpretation. 

5. Conclusions 
The annotation of Aspect in IMAGACT is achieved in 
connection to the referential variability of action verbs, 
which can be synthesized as: “one verb many actions 
/ one action many verbs”. The resulting database 
sheds light on aspect phenomena, showing that 
aspect variability is a quantitatively relevant 
phenomenon impacting the interpretation of a good 
number of sentences referring to physical activities.  

Variability regards the aspect of the same verb across 
different action types and the same action when 
referred to by different verbs.  

The first phenomenon depends on the inner qualities 
of the various eventualities in the extension of one 
verb. When the relevance of a change of state 
emerges in activities showing continuity, such as 
movement and scalar forces, a granular distinction 
among action types is required, and the 
corresponding activity verb gets the event 
interpretation accordingly. 

The second phenomenon involves lexical semantics. 
The different aspects conveyed by two locally 
equivalent verbs in the same eventuality tell us that 
their meaning picks up different properties of the 
same ontological entity. A verb can identify an 
eventuality indicating what happens in the process 
that leads to a result (information focus in the first part 
of the event structure) or, vice versa, the properties 
characterizing the result (information focus in the 
second part of the event structure). These are 
different ways to refer to an object (Frege 1892). 

Figure 13: the variation of to mash across action types. 

Figure 14: Comparison of the variation of to mash and to compress. 
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Appendix 
Table 1 List of English verbs with aspectual variation, with 
proportion of aspectual classes among the action concepts 
in the IMAGACT ontology. 

Verbs Event Process 
swing 0.09 0.91 
smooth 0.10 0.90 
brush 0.14 0.86 
play 0.17 0.83 
raise 0.17 0.83 
draw2 0.19 0.81 
rub 0.19 0.81 
march 0.20 0.80 
scatter 0.20 0.80 
shorten 0.20 0.80 
warm 0.20 0.80 
smoke 0.22 0.78 
dangle 0.25 0.50 
paddle 0.25 0.75 
pin 0.25 0.25 
shine 0.25 0.75 
trail 0.25 0.75 
travel 0.29 0.71 
chase 0.33 0.67 
compress 0.33 0.67 
dance 0.33 0.67 
eat 0.33 0.67 
follow 0.33 0.67 
gallop 0.33 0.67 
guide 0.33 0.67 
lap 0.33 0.67 
lean 0.33 0.67 
lengthen 0.33 0.67 
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obstruct 0.33 0.33 
scream 0.33 0.67 
sew 0.33 0.67 
shout 0.33 0.67 
sleep 0.33 0.67 
spin 0.33 0.67 
squirt 0.33 0.67 
stand 0.33 0.67 
stroll 0.33 0.67 
support 0.33 0.67 
tow 0.33 0.67 
water 0.33 0.67 
block 0.36 0.27 
gather 0.36 0.64 
drag 0.38 0.62 
feed 0.38 0.62 
rotate 0.38 0.62 
bend 0.40 0.60 
boil 0.40 0.60 
extract 0.40 0.60 
ride 0.40 0.60 
collect 0.44 0.56 
rip 0.45 0.55 
rest 0.46 0.15 
roll 0.47 0.53 
accompany 0.50 0.50 
bear-2 0.50 0.50 
circle 0.50 0.50 
climb 0.50 0.50 
cough 0.50 0.50 
draw 0.50 0.50 
extend 0.50 0.50 
fry 0.50 0.50 
hang 0.50 0.14 
iron 0.50 0.50 
knit 0.50 0.50 
lash 0.50 0.50 
light 0.50 0.50 
pick 0.50 0.50 
pound 0.50 0.50 
puff 0.50 0.50 
read 0.50 0.50 
row 0.50 0.50 
salt 0.50 0.50 
surround 0.50 0.17 
swim 0.50 0.50 
tip 0.50 0.50 
track 0.50 0.50 
trot 0.50 0.50 
whistle 0.50 0.50 
widen 0.50 0.50 
wind up 0.50 0.50 
wrestle 0.50 0.50 
yell 0.50 0.50 
push 0.51 0.49 
join 0.58 0.00 
paint 0.60 0.40 
squeeze 0.60 0.40 
strain 0.60 0.40 
weave 0.60 0.40 
wind 0.60 0.10 
wipe 0.60 0.40 
tear 0.64 0.36 

move 0.66 0.34 
walk 0.66 0.34 
connect 0.67 0.00 
cry 0.67 0.33 
drive 0.67 0.33 
enclose 0.67 0.00 
filter 0.67 0.33 
hammer 0.67 0.33 
knock 0.67 0.33 
load 0.67 0.33 
press 0.67 0.33 
rise 0.67 0.33 
scrub 0.67 0.33 
seal 0.67 0.00 
sing 0.67 0.33 
sit 0.67 0.33 
stride 0.67 0.33 
sweep 0.67 0.33 
type 0.67 0.33 
wash 0.67 0.33 
bring 0.70 0.30 
crack 0.70 0.30 
lay 0.70 0.00 
spread 0.70 0.30 
carry 0.71 0.29 
ring 0.73 0.27 
pour 0.75 0.25 
stick 0.75 0.00 
suck 0.75 0.25 
tap 0.75 0.25 
transport 0.75 0.25 
tumble 0.75 0.25 
pull 0.77 0.23 
dust 0.80 0.20 
lead 0.80 0.20 
link 0.80 0.00 
reach 0.80 0.20 
restrain 0.80 0.20 
run 0.80 0.20 
write 0.80 0.20 
toss 0.81 0.19 
lower 0.83 0.17 
connect up 0.85 0.00 
copy 0.86 0.14 
leave 0.86 0.14 
open 0.86 0.07 
fly 0.87 0.13 
fall 0.88 0.12 
remove 0.88 0.12 
squash 0.88 0.12 
crush 0.89 0.11 
kick 0.89 0.11 
throw 0.90 0.10 
break 0.92 0.00 
turn 0.92 0.08 
hit 0.93 0.07 
lift 0.93 0.07 
put 0.94 0.06 
give 0.95 0.05 
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Abstract
In this paper, we describe NoVRol, a semantic role lexicon of Norwegian verbs. We start from the NorVal valency
lexicon, which describes the syntactic frames of 7.400 verbs. We then enrich each of these frames by annotating,
based on the VerbNet annotation scheme, each argument of the verb with the semantic role that it gets. We also
encode the syntactic roles of the arguments based on the UD annotation scheme. Our resource will faciliate future
research on Norwegian verbs, and can at a future stage be expanded to a full VerbNet.

Keywords:VerbNet, argument structure, semantic roles

1. Introduction

Semantic Role Labeling (SRL) is the task of iden-
tifying Who did what to whom?, i.e. what roles
each of the argument entities bear in the event
described by a predicate. Traditionally used for
semantic representations, precise search, and
in questions-answering systems, SRL has found
new applications in the neural age, e.g., for image
captioning (Chen et al., 2021) and computer vision
(Sadhu et al., 2021), where it serves to structure
the computer’s interpretation of video. At the same
time, the mapping from syntactic structure to se-
mantic roles has also attracted considerable inter-
est in theoretical linguistics with important contri-
butions such as Fillmore (1968) and Levin (1993).
However, for Norwegian – otherwise a relatively
well-resourced language – there are no datasets
available that can support such research, whether
practically or theoretically oriented. In this paper,
we report on NoVRol, a resource which links the
syntactic and semantic patterns of ca. 7.400 Nor-
wegian verbs. For the semantic role annotation,
we draw on the annotation standard of the English
VerbNet (Schuler, 2005), with some modifications.
For the syntactic side, we use the valency lexi-
con developed by Hellan (2022, 2023). In addition,
we map these syntactic patterns to Universal De-
pendencies (UD, de Marneffe et al. 2021), thereby
adding an important, lexical semantic resource to
UD. UD currently containts more than 200 tree-
banks in more than 100 languages and has be-
come the de facto standard for syntactic annota-
tion and parsing. It is therefore a natural starting
point for multilingual semantic parsing and many
recent efforts in this direction have drawn on UD
(Reddy et al., 2017; Poelman et al., 2022; Findlay
et al., 2023).
We believe NovRol will be an important resource
for future work in Norwegian NLP and linguistics.
Moreover, because we follow the VerbNet anno-
tation standard, we can expand the resource to a

full VerbNet in future research by adding other in-
formation found in VerbNets such as selectional
restrictions and event structure/logical form
The structure of this paper is as follows: in Section
2 we discuss related work on VerbNets and on the
Norwegian valency lexicon. In Section 3 we de-
scribe the annotation procedure. Section 4 then
discusses how our work fit in the broader picture of
lexical resources for UD. Section 5 provides statis-
tics about the data set, and Section 6 concludes
and offers perspectives for further research.

2. Related work
2.1. Other VerbNets
The first VerbNet was developed for English
(Schuler, 2005). It contains for each verb the
semantic roles, selectional restrictions, syntactic
frames and a semantic representation, as well as
links to other lexical resources such as WordNet,
PropBank and FrameNet. Also, verbs in Verb-
Net are organized in classes based on their va-
lency alternation patterns, originally following the
classes from Levin (1993) and later extended with
more classes. The English VerbNet is therefore
a comprehensive resource for the exploration of
English verbs and their valency patterns. It has
for example been used for the study of caused
motion constructions (Hwang and Palmer, 2015).
It has also been used in applications for word
sense disambiguation, figurative language detec-
tion and it forms the basis for the semantic roles
used in the Discourse Representation Structures
of the Groningen Meaning Bank (Abzianidze et al.,
2017). The latter was a particularly important mo-
tivation for our work, which is part of a project on
UD-based semantic parsing.
There have been several efforts to create Verb-
Nets for other languages, the most complete ones
probably being those for Arabic (Mousser, 2010)
and French (Pradet et al., 2014). Both of these
started from the information in the English VerbNet
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and transfered this to the target languages semi-
automatically. That is, they build on the idea that
verb classes can be reliably identified across lan-
guages (see Majewska and Korhonen (2023) for
a recent survey of this kind of work). This allowed
for the relatively quick creation of rich resources
with information comparable to that available in the
original English VerbNet.
Our own approach was different, both because the
goals were more modest – the immediate goal be-
ing a standard for semantic roles of Norwegian
verbs for use in semantic parsing – and because
Norwegian already has a rich resource for ver-
bal valency, NorVal. It was therefore more natu-
ral to start from this Norwegian-specific resource
and add information about semantic roles based
on the English VerbNet, even if this meant that
we gave up on structuring the resource around va-
lency classes as in the English VerbNet and also
do not provide much of the other information such
as semantic structure or selectional restrictions.
Some of this information is available in NorVal and
can be more properly integrated in this resource to
yield a richer VerbNet. We will come back to these
opportunities later.

2.2. NorVal
NorVal (Hellan, 2022, 2023)1 is a resource rep-
resenting valency properties of 7,400 Norwegian
verbs, theoretically based on the formal model out-
lined in Hellan (2019), and developed in parallel
to a computational grammar of Norwegian, Nor-
Source,2 from which the verb inventory and many
of the formal specifications have been ported.
The resource identifies 340 types of valency
frames covering the valency properties of the
verbs, and identifies for each verb lexeme which
valency frames it can take. A compact notation
system called Construction Labeling (abbreviated
‘CL’), is used for classifying the frame types. More
than half of the verbs take more than one frame,
and the construct ⟨Verb, Valency frame taken by
the verb⟩ is called a ‘lexically instantiated Frame
Type’, abbreviated lexval. In the overall system
there are currently 17,200 lexvals distributed over
the 7,400 lexemes. Each lexval is illustrated by a
‘Minimal Sentence’ instantiating the lexval. A set
of lexvals belonging to the same lexeme is called
a valpod. To illustrate these constructs and their
notation, (1-b) is the CL representation of the con-
struction type: ‘Expletive subject – direct object -
extraposed declarative clause’, exemplified by the
verb ane (‘dawn on’) in (1-a):

1https://github.com/Regdili-NTNU/NorSource/
tree/master/NorVal_files

2Hellan and Bruland (2015), Beermann and
Hellan (2004), https://regdili.hf.ntnu.no/
linguisticAce/parse

(1) a. Det
it.expl

aner
dawns

dem
them

at
that

krisen
crisis.def

kommer
comes
‘they have a hunch that the crisis is
coming’

b. trExpnSu-expnDECL

The part ‘trExpnSu’ of this label is called the ‘global
label’ of the lexval, indicating the valency frame
as a whole (viz., transitive with an ‘extraposed’
clause linked to subject position), and the part ‘ex-
pnDECL’ is called an ‘argument label’ as it speci-
fies one of the arguments.
The full set of constructions in which ane can be
used, i.e. its valpod, is shown in Table 1. A val-
pod is verb-specific, but if one abstracts away the
lexical item, one gets what may be called a val-
pod type, characterized by the set of frame types;
such sets may be compared across the lexemes,
and may be expected to provide a step toward a
modeling of the notion of verb classes in VerbNet,
based on defining valpod types across verb lex-
emes where a high degree of overlap in the mem-
bers constituting a given set of valpods will qual-
ify the lexemes characterized by these valpods for
membership in a verb class.
NorVal provides syntactic frames for verb lex-
emes. Homonyms are distinguished in the verb list
by hyphenated numbers, so that, e.g., koste-1 rep-
resents the lexeme with meaning ’cost’ and koste-
2 represents the lexeme with meaning ’brush’.
Sub-senses of lexemes, on the other hand, are
not originally recognized, but with the role anno-
tation of this project, many cases are represented
through added lexvals. Many aspects of what may
be called ’basic logical form’ are reflected in the
frame type labels, such as causativity, semantic
government, and infinitival control, and, most rel-
evant to semantic role labeling, participant status,
with semantic role features for directionality and
locativity.3 For example, the construction in (2-a)
has the CL formula in (2-b).

(2) a. katten
cat.def

smyger
slithers

seg
refl

langs
along

muren
wall.def

The cat slithers along the wall.
b. tr-obRefl-obDir

This illustrates how a role specification is made by

3These features are illustrated in the parse inter-
face for NorSource at https://regdili.hf.ntnu.no/
linguisticAce/parse, using the ’Minimal Recursion
Structure’ (’MRS’) (Copestake, 2002) formalism for se-
mantic representation; for a sentence like Gutten løper
til huset ’the boy runs to the house’, for instance, a fea-
ture ’role’ indicates the variable representing huset as
’endpoint’, reflecting the combination of specifications
of the verb and the preposition.
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lexvals explanation
ane intr intransitive
ane tr transitive
ane tr-obDECL declarative complement
ane tr-obINTERR interrogative complement
ane tr-suDECL declarative subject complement
ane tr-suINTERR interrogative subject complement
ane trExpnSu-expnDECL transitive with expletive subject and extraposed declarative complement
ane trExpnSu-expnINTERRwh transitive with expletive subject and extraposed wh-interrogative complement

Table 1: valpod for ane

appending the role indicator (Dir) to the argument
label (ob), indicating that the object plays a direc-
tional role. The system also defines labels like
suAg (subject agent), suTh (subject theme) and
obTh (object theme),4 and therewith valpods such
as (3).

(3) a. <V intr-suTh, V tr-suAg-obTh, …>
b. <V intr-suAg, V tr-suAg-obTh, …>

The constellation in (3-a) could be used to charac-
terize transitivity alternations like those found with
verbs like break, as in he broke the glass vs. the
glass broke, and the one in (3-b) to characterize
alternations residing in constructions of ‘object im-
plicitation’ like in he is eating vs. he eats the bread.
While NoVRol uses a different notation, it provides
a full scale encoding of roles for most aspects
of verb semantics. Thus, two-membered valpods
alone obtain for 1,500 verbs in NorVal, and many
of them could be characterized as either of the op-
tions in (3). An assembly of valpods so annotated
would throw interesting light on how common ei-
ther of these types of transitivity alternations are in
a representative valency inventory of a language.
This illustrates how semantic role annotation, as
undertaken in this project, provides an interesting
addition to the specification inventory of NorVal.

3. Annotation
NoVRol includes every lexval in the NorVal
database. Each verb and its arguments, as in-
dicated in its lexvals, was annotated semantically
according to the annotation guidelines for the En-
glish VerbNet.5 The valpod for ane from Table 1 is

4This system for semantic annotation is extensively
used in a resource for the West African language Ga,
described in (Hellan, 2023) along with situation type la-
bels. An issue for the annotation in that project was that
many labels that had been used in similar applications
for English were not adequate for Ga. We have not en-
countered similar issues in the present context, but, as a
reviewer points out, this is an essential concern to keep
in mind when classification systems in this area are bor-
rowed from one language to another.

5https://verbs.colorado.edu/verb-index/
VerbNet_Guidelines.pdf

shown annotated in Table 2.
We see that sometimes a single lexval needs to
be assigned multiple semantic frames. For exam-
ple, ane tr(ansitive) can take both an experiencer
subject and a stimulus object and the inverse map-
ping. This is a special case because there is no as-
sociated meaning difference; in many other cases,
the verb meaning changes slightly. For example,
the verb fortelle, just like English ‘tell’ has among
its syntactic frames one where it takes a subject,
an object and a complement clause, but semanti-
cally, these can be agent–recipient–topic (‘He told
us that…’) or pivot–experiencer-topic (‘This tells us
that…). Such multiple semantic frames are a ma-
jor source of interannotation disagreement, as we
will see below.
This yields a database of verb classes according
to semantic roles, but without the in-depth listing of
syntactic configurations or event structure specifi-
cation provided by the English VerbNet. These are
both aspects that can be added at a future stage.
For the purpose of VerbNet as a lexical resource
for a syntactic parser, this strategy has the advan-
tage of allowing for the quick annotation of a large
number of verbs. A test set of 800 (ca. 5% of total)
verbs was reserved for evaluating inter-annotator
agreement. In addition to the role annotation, we
also give the Universal Dependencies labels for
the different arguments. This section outlines how
the annotation was done and comments on cer-
tain aspects of the results: differences between
English and Norwegian; semantically ambiguous
slots; inter-annotator agreement and the advan-
tages and drawbacks of the annotation strategy.

3.1. Guidelines for annotation
The annotation process is split in two parts: se-
mantic role assignment and assignment of Univer-
sal Dependencies Relations. Semantic role as-
signment in NoVRol is based on the annotation
guidelines for the English Verbnet. In addition to
annotating the verbs based on the guidelines, Nor-
wegian verbs were compared with English trans-
lations and the semantics of their assigned VN
classes to verify semantic similarity. In cases of
inter-annotator disagreement, English VN classes
were consulted for semantic properties to disam-
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lexvals roles UD
ane intr experiencer nsubj
ane tr experiencer–stimulus nsubj--obj
ane tr stimulus–experiencer nsubj--obj
ane tr-obDECL experiencer–stimulus nsubj--ccomp
ane tr-obINTERR experiencer–stimulus nsubj--ccomp
ane tr-suDECL stimulus–experiencer csubj--obj
ane tr-suINTERR stimulus–experiencer csubj--obj
ane trExpnSu-expnDECL formal–experiencer–stimulus expl--obj-csubj
ane trExpnSu-expnINTERRwh formal–experiencer–stimulus expl--obj-csubj

Table 2: Valpod for ane annotated for semantic roles and UD frames

biguate semantic role assignment. For example,
the annotation of hånflire ‘smirk’, was annotated
respectively as <agent, patient> (following the
English class bully-59.5) and<agent, stimulus>
(following nonverbal_expression-40.2). Only
the latter class allows an interpretation where the
verb is a reaction to a stimulus, which aligns with
the usage of hånflire. The annotation <agent,
stimulus> was chosen.

3.2. Annotation differences between
Norwegian and English

Certain aspects of the English VerbNet do not
straightforwardly align with Norwegian, or contain
certain inconsistencies that this project dealt with.
This section discusses three such examples.

Reflexives The annotation in NorVal pertains
to syntactic properties exclusively, and not the
possible status of seg as a semantic argument,
i.e., a role-bearer; thus, seg in skamme seg ‘be
ashamed’ is counted as an object on syntactic
grounds, but would by most linguists be regarded
as semantically empty. These are annotated as
null-role in NoVRol.
One standard criterion for deciding the status
as role-bearing vs. empty is substitutivity, i.e.,
whether another expression could be used in the
place of seg. For example, seg in skamme seg
cannot be replaced by another NP.
Another, less clear-cut, criterion is whether the sit-
uation type expressed by the construction ‘feels’
as expressing a participant corresponding to the
position of seg. For skamme seg, this criterion
matches the criterion of substitutivity. In contrast,
the situation expressed in Jon vasker seg ‘Jon
washes himself’ might be perceived as having just
a single participant performing some activity, and
thus implying no extra role status corresponding
to seg; however, the object position is here fully
substitutable by other NPs. In such cases the an-
notator will follow his or her intuition as to whether
to assign a role or not to the reflexive.
In the English VerbNet, where the presence of light
reflexives is far less prominent than in Norwegian,
the annotation of reflexives in some cases makes

use of the predicative relation equals. This re-
lation is used in some <agent, patient> verbs,
for example dress oneself (dress-41.1.1), to in-
dicate that multiple arguments have the same
referent. The predicate is absent from <agent,
benefactive> verbs, e.g., cook oneself a meal
(preparing-26.3), where the role annotation is
the same as in the NoVRol.

Different role names The English VerbNet in-
cludes the roles causer, circumstance, eventual-
ity and subeventuality. These roles are used in
the database, but not mentioned in the documen-
tation. causer has been annotated as having the
possibility of being both cause and agent. circum-
stance is annoted as source. eventuality is anno-
tated as theme, and subeventuality as co-theme.
Subject expletives are given a formal role whereas
they are just ignored in the English VerbNet. As
mentioned above, light reflexives are annotated as
null-role. These dummy roles facilitate the match-
ing to UD syntax.

Directionals The English VerbNet contains mul-
tiple syntactico-semantic frames for structures that
include directionals, whose adjunct/argument sta-
tus is not clear in the literature (see for example
Needham and Toivonen 2011 for discussion). One
example is pour where the frame pour-9.5 gives
the following example: ‘Maria poured water from
the bowl into the cup’. In this example, there are
two directionals introduced by prepositions. The
bowl is annotated as initial location and the cup as
destination. In NoVRol, we annotate such direc-
tionals with a lower degree of precision than other
arguments, namely by the role tag orientation. The
reason for this is that the exact role of such PPs
largely depend on the semantics of the preposi-
tion itself, rather than that of the verb. Similar con-
siderations led the GroningenMeaning Bank (Bos,
2013) to annotate the semantic role on the prepo-
sition itself.
Also, most verbs that can take directionals can
take destination, source and path specifications,
or any combinations thereof, yielding six different
frames. Because directional adverbials are often
interchangeable and combinable, this annotation

23



shortcut is a more efficient way to preserve the
information. In an SRL system, this information
could then be used in combination with a lexicon
of preposition senses to derive the actual seman-
tic role in context. Moreover, the NorVal lexvals
suDir, obDir and PresntDir tell us whether the di-
rection specified is that of the subject, the object or
the logical subject in a presentation construction,
enabling a detailed semantic representation of the
event structure. The task will remain challenging,
however, as there are many ambiguous cases.
For example, the verb hoie ‘scream/yell’ contains
the lexval intr-suDir, which maps to the semantic
tag orientation, which is ambiguous between dif-
ferent directionals, which could be realized by the
preposition etter ‘after, (here) at’. However, hoie
also has an entry as a phrasal verb with the prepo-
sition etter ‘scream/yell for’, in which case the ob-
ject of the preposition is invariably understood as
a topic. Therefore only contextual knowledge can
disambiguate examples like (4).

(4) De
they

hoiet
screamed

etter
after

en
a

lege
doctor

‘They screamed at/for a doctor’

However, when the verb does not have a non-
directional frame with a preposition that can intro-
duce a direction, the orientation role makes it pos-
sible to retrieve the semantics of directionals.

3.3. Inter-annotator agreement
To evaluate the annotation quality, we set aside a
test set of 800 lexvals, roughly 5% of the total lex-
val database size. These verbs were annotated by
both annotators without discussion between them.
All instances where the semantic frames differed
in at least one semantic role were counted as dis-
agreement. This could happen if the two anno-
tators had assigned a different role to one of the
arguments, irrespective of the number of seman-
tic roles they agreed on. Another frequent error
source are ambiguous verbs where the annotators
had annotated two different frames, which were
eventually both regarded as correct. Our metric is
therefore relatively harsh, and the inter-annotator
agreement rate was 0.58measured using Cohen’s
kappa, which is relatively low. We nevertheless
think the annotation is of high quality, as a closer
analysis of the annotation mismatches reveals.
Of the 339 annotation mismatches in the test set,
41% of all mismatches were associated with verbs
with multiple senses. Annotators had assigned
different semantic rolesets, but the assigned role-
sets were all valid. The verb senke, for example,
may mean both ‘sink’ (<agent, patient> follow-
ing the English class other_cos-45.4) and ‘lower’
(<agent, theme> – put_direction-9.4). Simi-
larly, the verb overtrekke may mean both ‘with-

draw too much’ and ‘coat’, fitting both funnel-9.3
and spray-9.7.
In the remaining cases, different verb sense inter-
pretations could not account for annotation mis-
matches. 55% of the remaining mismatches were
yet categorized within the same macro-roles out-
lined in the VerbNet guidelines6. For example,
the complement of the verb overutstyre ‘overequip’
was annotated respectively as destination and re-
cipient, both members of the macro role place.
We conclude that most of the errors involve either
annotators missing out on frames that should be
present, in which case they can be added later,
or they disagree on the exact role but agree on
the macro-role, which means that even the wrong
annotation is not too far off.

3.4. Annotating UD syntax
General strategy In addition to the semantic an-
notation, the verbs in the dataset were annotated
for syntactic relations based on the UD scheme.
This annotation was done for the 340 distinct va-
lency frames in NorVal. Whenever possible, the
annotation in the Norwegian UD treebank was
consulted. Although most verbs in NorVal are
not represented in the treebank, it was possible
to find at least one verb from a particular frame
most of the time. In doing this, we only paid atten-
tion to the syntactic labels assigned to the (heads
of the) arguments. So for example, both inter-
rogative and declarative complement clauses get
the label ccomp in UD, and therefore the two Nor-
Val frames trExpnSu-expnDECL and trExpnSu-
expnINTERRwh get mapped to the single UD
frame expl--obj-csubj. Similarly, UD does not
distinguish subject and object control infinitives,
while these are distinguished in the NorVal frames.
As a result, the 340 NorVal frames are reduced to
64 UD frames, which therefore contain less infor-
mation. However, while this is a lossy many-to-
one mapping, the NoVRol does contain informa-
tion about what NorVal frame the UD frame came
from, making it possible at a later stage to extract
more information and enrich the UD frames.
The UD frames of verbs are ordered by a hierarchy
loosely following the Norwegian word order, as in
(5).7

(5) subj ≺ iobj ≺ obj ≺ advmod ≺ obl ≺
xcomp/advcl ≺ ccomp

subj is not a UD relation, but a cover term for
nsubj, csubj and expl, which in Norwegian is
generally subject expletives. One exception to the

6https://verbs.colorado.edu/verb-index/
VerbNet_Guidelines.pdf, p. 18

7See below for why some apparent adjunct functions
are included in the valency.
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above hierarchy happens when expletives cooc-
cur with a displaced subject, which is called a ‘log-
ical subject’ in traditional Norwegian grammar and
is labelled c/nsubj in UD, although it occurs in ob-
ject position (6).

(6) Det
expl

vil
will

tilflyte
flow

oss
us

penger
money

‘There will flow money to us’

Such cases get the UD frame expl–obj–nsubj.
Finally, the syntactic annotation was aligned to the
semantics by arranging syntactic functions and se-
mantic roles in the same order so that the mapping
from function to role is transparent.
Adjuncts and obligatory arguments It is a
common pattern for infinitival clauses in Norwe-
gian to be introduced by prepositions, as in (7).

(7) Han
he

ba
asked

dem
them

om
about

å
to

gå
go

‘He asked them to go’

Such infinitival clauses are treated as adverbial
clauses (advcl) in the Norwegian UD treebank.
This label suggests that they do not belong to
verb’s valency frame at all, but are adjuncts. This
is clearly not the case, however. A related prob-
lem arises with nominal arguments, since UD does
not distinguish arguments and adjuncts, but lump
non-core (not subject or object) dependents as
obliques. These will be given a semantic role in
our annotation if and only if they are considered ar-
guments in NorVal and appear in the frames there.
This means that when our lexicon is used in con-
junction with a UD parse, one cannot know a pri-
ori whether an advcl or obl dependent will be as-
signed a semantic role or not. We see no way
around this problem as long as UD does not distin-
guish arguments and adjuncts, since it is not prac-
ticable to list adjunct roles in a verb-based lexicon.

4. Lexical resources for UD
The UD initiative – and dependency treebanks in
general – have historically been connected with
the success of data-driven dependency parsing,
which by its very nature required the annota-
tion of running text rather than lexical resources.
Dependents are annotated ”as they occur” and
there is no attempt to extract more systematic pat-
terns, unlike grammar-based parsers based on
Head-Driven Phrase Structure Grammar (HPSG),
Lexical-Functional Grammar (LFG) and Combina-
tory Categorial Grammar (CCG), which are typi-
cally based on rich lexicons. This move vastly im-
proved robustness, but currently the very success
of dependency parsing is sparking new interest in
dependency grammar as a theory, which from its
origins in Tesniere (1959) was always interested

phenomena such as valency. We believe the time
has therefore come to enrich UD with lexical re-
sources.
Some moves in this direction are already seen
within UD itself. For example, the UD validator
relies on a list of auxiliary verbs which are actu-
ally annotated with a simple semantics, where they
are marked as either Copula, Perfect, Past, Fu-
ture, Passive, Conditional, Necessitative, Poten-
tial, Desiderative, Other or Undocumented auxil-
iaries. High-level information like this may be all
that is possible to achieve at a universal level, al-
though one can hope that it can be extended to
other functional categories such as determiners,
negators and subordinators.
More realistically, though, the creation of lexical
resources will happen at a language-specific level
and link up to the UD scheme. This is how we see
the present contribution. However, rather than ex-
tracting information from a UD treebank and sys-
tematize and curate it to produce a lexicon, we
have taken the information from resources built
around the Norwegian HPSG grammar, which has
been developed over two decades. Such re-
sources, which have been handcrafted for many
languages, but are often tied to specific linguistic
formalisms (often LFG, HPSG or CCG) and even
specific computational implementations of those
formalism, contain a wealth of information that can
be useful also in a dependency grammar context if
it is made accessible in more theory-neutral forms
as free-standing resources, alongside their func-
tion inside more closed systems such as com-
putational grammmars. In particular, such hand-
crafted lexical resources contain a lot of informa-
tion about the long tail of rare items: as stated
above, NorVal contains ca. 7,400 verbs. By com-
parison, the first 10M tokens of the NoWaC cor-
pus8 contains 5,465 distinct verbs, the first 100M
contains 6,929, and only the full corpus of 687M
tokens surpasses NorVal and has 7,706 verbs.

5. Dataset statistics
The annotated verb set yields a database where
syntactic features are given semantic tags. This
section outlines the characteristics of the verb
classes, their size, content and relations to syntax.

5.1. Number of classes
In our annotation, each lexval has been associated
with a set of semantic roles, one role for each of the
semantic arguments expressed in the frame. Such
a set we may refer to as a roleSet; for each lexval,
we may refer to its roleSet as a lexvalRoleset, and
a roleSet abstracted away from its lexvalRoleset
may be called a roleSetType. Across all the an-
notated lexvals, 250 roleSetTypes are used, and

8Norwegian Web as Corpus, Guevara (2010)
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Figure 1: RoleSetType rank by members

we may define the notion classes of lexvals ac-
cording to which roleSetTypes are aligned with the
lexvals. Semantic role order is preserved – verbs
annotated for the same semantic roles in different
order, e.g., fear and scare, are members of dif-
ferent roleSetTypes. Derivatively we may speak
of classes of verbs according to the verb lexemes
represented in these classes of lexvals.
We name such classes of lexvals or verbs after
the verb lexeme of the alphabetically first lexval
where the roleSetType is found, for instance as in
abonnere: <agent, theme> . This way of nam-
ing classes resembles a bit what is done for ‘verb
classes’ in VerbNet. But note that in VerbNet ‘verb
class’ is constituted by a combination of seman-
tic and syntactic features, where the semantic fea-
tures comprise not only roles but also logical form
and elements of conceptual semantics, whereas
our classes are defined by roles alone, hence the
name roleSetTypes.
The number of members in each roleSetType by
their rank is shown in Figure 1 and shows a Zipfian
distribution. The cumulative distribution is shown
in Figure 2. The three most common, abonnere
(‘subscribe’): <agent, theme>, abbreviere (‘ab-
breviate’): <agent, patient> and abdisere (‘ab-
dicate’): <agent>, occur in in respectively 3,163,
2,344 and 1,307 lexvals. The first of these classes
can broadly be described as representing agen-
tive, bivalent verbs whose second argument does
not undergo a change of state, as in (8).

(8) de
they

hamstrer
hoard

matvarer
foodstuffs

‘they hoard foodstuffs’

The second most common roleSetType repre-
sents agentive bivalent verbs whose second ar-
guments are internally changed – the referent of
the object of the verb abbreviere (‘abbreviate’) is
made shorter. The third class is the class of agen-
tive intransitives, e.g., abdisere (‘abdicate’).
On the tail end of the frequency list, there are 12

Figure 2: Cumulative members of by verb class
index

roleSetTypes with 3 members each, 31 with 2 and
70 with 1. The reason for the large number of role-
SetTypes with one member is found in the source
syntactic annotation. The roleSetTypes trives
<experiencer, location>, for example, represents
one verb: trives ‘thrive’, annotated for location (9).

(9) deltagerne
participants.def

trives
thrive

her
here

‘the participants are thriving here’

The number of rare roleSetTypes follows from the
NorVal tagging, which for trives is intrObl-oblLoc:
an intransitive verb that selects for an oblique loca-
tive. Of 30 verbs with this syntactic tag in NorVal,
trives is the only one that takes an experiencer
subject. Note crucially that the verb trives, with-
out a locative, is also a member of the larger role-
SetType ane <experiencer>, with 94 members,
among them lide ‘suffer’ and koble av ‘relax’. The
large number of classes, then, needs to be seen
in relation with the syntactic tagging of arguments
given in NorVal.

5.2. Class granularity
As already said, our annotation yields a database
where separate verbs are semantically tagged
only for semantic roles. This contrast with the
English VerbNet, where verbs such as hold and
neglect, although annotated using the same se-
mantic roles, belong to different classes based on
semantic definitions: the class hold-15.1 is de-
fined semantically as contact, while neglect-75.1
is defined as ¬handle. Our annotation thereby re-
sults in larger classes – verbs that would belong to
different classes in a semantically richer classifica-
tion, end up in the same class. Verbs like antenne
‘ignite’ and vie ‘marry’, for example, both end up in
abbreviere <agent, patient>.
For the purpose of using the database as a lex-
ical resource for UD graphs, the low semantic
granularity is not an issue. The current stage of
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semantic role freq. semantic role freq.
agent 10,691 topic 946
theme 6,792 recipient 600
patient 3,376 destination 570
null-role 1,667 orientation 521
experiencer 1,226 pivot 451
stimulus 1,134 formal 399

Table 3: The 10 most frequent semantic roles

the database, however, is a suitable point of de-
parture for adding more detailed semantic defi-
nitions, as is done in the English VerbNet, and
for specifying valid syntactic alternations for dif-
ferent verb frames. vie, for example, may be fol-
lowed by the segment <til co-patient> ‘marry x
to y’. This is not possible for antenne. As a
syntactico-semantic resource, syntactic subcate-
gorization of the semantic classes stands out as a
central future endeavour for creating a full Norwe-
gian VerbNet. However, the current stage of the
database provides ample opportunities for exam-
ining syntactico-semantic phenomena. Some key
statistics and possible usage domains are given
below.
The distribution of the 10 most frequently anno-
tated semantic roles is given in Table 3. null-role is
annotated for reflexive pronouns lacking semantic
participant status. The role formal represents syn-
tactically required but semantically vacuous pro-
nouns, as found for instance with weather-related
verbs (Bolinger, 1973).
In total, 31,351 semantic role tokens were anno-
tated for 18,830 sense-distinct lexvals (i.e., among
the 17,200 lexvals in NorVal, the syntactic frame in
many cases hosts more than one sense in terms
of semantic roles, bringing the number of role-
annotated lexvals up to 18,830). On average,
each lexval frame contains 1.7 semantic roles (1.9
if null-roles and formal subjects are not counted).
The database allows for queries about the co-
occurrence of semantic roles in Norwegian: out of
a total of 6,792 instances of the role theme, 141
are followed by a co-theme, tentatively illustrat-
ing the structural frequency of themes co-occuring
with an equally salient undergoer. Out of a total of
1,342 instances of the role experiencer, 1,020 co-
occur in structures with a stimulus, 666 of which
precede the experiencer role (10) and 354 of which
surface after the experiencer (11).

(10) vistim
we

avskrekker
scare.off

villsvineneexp
boars.def

‘we scare off the boars’
(11) viexp

we
frykter
fear

[at
that

huset
house

bygges]stim
build.pass

‘we fear the building of the house’

The database further has the potential to be used

for research in lexical semantics, for example for
the question of what kind of verbs combine with
formal subjects in Norwegian compared to other
Germanic languages. A query that looks for for-
mal subjects formal followed a results role yields
a semantic structure in Norwegian (12) that is not
found for English in the English Verbnet.

(12) detformal

it
slår om til
changes

[å
to

regne]result
rain

‘it is (the weather) changing to rain’

5.3. Semantic roles and UD
As described in section 3.4, the NorVal frames
were mapped to UD frames, and the seman-
tic roles were aligned with UD functions as was
shown in Table 2. In general, the mapping from
VerbNet to UD is many-to-one – different seman-
tic functions maps to a single syntactic annota-
tion. For example, both benefactive objects (he
defended them) and objects of verbs of breaking
(she destroyed the vase) reduce to a single UD
relation obj.
However, we also find – albeit to a lesser extent
– one-to-many mappings from semantics to syn-
tax. This is because semantic rolesets that are
annotated for the same role are distinguished into
multiple syntactic frames based on whether the se-
mantic role is represented by a clausal or nominal
element. The two semantically identical objects
in (13) are assigned different syntactic relations in
UD, respectively obj and ccomp.

(13) I accepted {it / that they wrote novels}

The 250 semantic classes (i.e., roleSetTypes)
map to 63 UD configurations at the syntactic level.
The most common UD configuration is nsubj-obj –
structures with a nominal subject and object – with
7,226 roleSet tokens. The second most common
is the class of argument structures with a single
nominal argument – nsubj – with 2,602 member
frames.
The mapping from semantic frames to syntactic
structures is an overall reductive process. Look-
ing at single frames, however, these often in-
crease. Both of the semantic frames <agent
theme> and <experiencer stimulus>, when fol-
lowing the syntactic conventions in UD, map to
five syntactic frames: nsubj-advcl, nsubj-ccomp,
nsubj-obj, nsubj-obl and nsubj-xcomp. The verb
frykte ‘fear’ selects for three of the syntactic struc-
tures (14), while the phrasal verb fortvile over ‘de-
spair about’ showcases the remaining two (15).

(14) vinsubj
we

frykter
fear

{demobj

them
/ [at
that

huset
house.def

bygges]ccomp

build.pass
/ [å
to

tape]xcomp}
lose
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‘we fear them / that the house is built / to
lose’

(15) hannsubj
he

fortviler
despairs

over
about

{[vår
our

skjebne]obl
destiny

/ [hva
what

som
that

må
must

gjøre]advcl}
done.pass

‘he despairs about our destiny / what must
be done’

6. Conclusion/Outlook
We have presented NoVRol, a semantic role lex-
icon of Norwegian verbs. We started from the
NorVal valency lexicon and identified the seman-
tic roles that the verbs in this database assign to
their arguments, based on the VerbNet annotation
guidelines. In the next step, we encoded the verbs’
valency frames in UD, allowing for an easy map-
ping fromUD functions to semantic roles that could
be used, e.g., in semantic role labeling of running
text.
Going beyond the current annotation, we believe
there are also several exiciting avenues for fur-
ther development of the resource. Integrating
the detailed syntactic information from the Nor-
Val frames, ideally in the same format as in the
English VerbNet, would enable the creation of a
muchmore detailed verb class system. This would
make cross-linguistic studies of argument struc-
ture easier given the common annotation frame-
work. Such a resource could in turn enable more
research into regularities in the syntax-semantics
mapping. Moreover, it would then also be possi-
ble to create detailed semantic representations of
event structure. This could be exploited in seman-
tic parsing, which was indeed the motivating appli-
cation for our work.

Data availability
The dataset is available at https://github.com/
Universal-NLU/NoVRol under the CC BY-SA 4.0
license.

Lasha Abzianidze, Johannes Bjerva, Kilian Evang,
Hessel Haagsma, Rik van Noord, Pierre Lud-
mann, Duc-Duy Nguyen, and Johan Bos. 2017.
The Parallel Meaning Bank: Towards a mul-
tilingual corpus of translations annotated with
compositional meaning representations. In Pro-
ceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Compu-
tational Linguistics: Volume 2, Short Papers,
pages 242–247, Valencia, Spain. Association
for Computational Linguistics.

Dorothee Beermann and Lars Hellan. 2004. A
treatment of directionals in two implemented

hpsg grammars. In Proceedings of the HPSG04
Conference. CSLI Stanford.

Dwight Bolinger. 1973. Ambient it is meaningful
too. Journal of Linguistics, 9(2):261–270.

Johan Bos. 2013. The Groningen meaning bank.
In Proceedings of the Joint Symposium on Se-
mantic Processing. Textual Inference and Struc-
tures in Corpora, page 2, Trento, Italy.

Long Chen, Zhihong Jiang, Jun Xiao, and Wei Liu.
2021. Human-like controllable image captioning
with verb-specific semantic roles. In Proceed-
ings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 16846–
16856.

Ann Copestake. 2002. Implementing Typed Fea-
ture Structure Grammars. CSLI Publications.

Marie-Catherine deMarneffe, Christopher D. Man-
ning, Joakim Nivre, and Daniel Zeman. 2021.
Universal Dependencies. Computational Lin-
guistics, 47(2):255–308.

Charles J Fillmore. 1968. The Case for Case,
pages 1–88. Holt, Rinehart, and Winston, New
York.

Jamie Y. Findlay, Saeedeh Salimifar, Ahmet
Yıldırım, and Dag T. T. Haug. 2023. Rule-
based semantic interpretation for Universal De-
pendencies. In Proceedings of the Sixth
Workshop on Universal Dependencies (UDW,
GURT/SyntaxFest 2023), pages 47–57, Wash-
ington, D.C. Association for Computational Lin-
guistics.

Emiliano Raul Guevara. 2010. NoWaC: a large
web-based corpus for Norwegian. In Proceed-
ings of the NAACL HLT 2010 Sixth Web as Cor-
pus Workshop, pages 1–7, NAACL-HLT, Los
Angeles. Association for Computational Linguis-
tics.

Lars Hellan. 2019. Construction-based composi-
tional grammar. Journal of Logic Language and
Information, 28:101–130.

Lars Hellan. 2022. A valence catalogue for norwe-
gian. In Natural Language Processing in Artifi-
cial Intelligence, pages 49–104, Cham. Springer
International Publishing.

Lars Hellan. 2023. A unified cluster of valence re-
sources. In Logic and Algorithms in Computa-
tional Linguistics 2021, pages 311–347, Cham.
Springer International Publishing.

Lars Hellan and Tore Bruland. 2015. A cluster of
applications around a deep grammar. In Pro-
ceedings from The Language Technology Con-
ference, LTC2015, Poznan, pages 503–508.

28



Jena D. Hwang and Martha Palmer. 2015. Identi-
fication of caused motion construction. In Pro-
ceedings of the Fourth Joint Conference on Lex-
ical and Computational Semantics, pages 51–
60, Denver, Colorado. Association for Compu-
tational Linguistics.

Beth Levin. 1993. English verb classes and alter-
nations: A preliminary investigation. University
of Chicago press.

Olga Majewska and Anna Korhonen. 2023. Verb
classification across languages. Annual Review
of Linguistics, 9(1):313–333.

Jaouad Mousser. 2010. A large coverage verb
taxonomy for Arabic. In Proceedings of the
Seventh International Conference on Language
Resources and Evaluation (LREC’10), Valletta,
Malta. European Language Resources Associ-
ation (ELRA).

Stephanie Needham and Ida Toivonen. 2011. De-
rived arguments. In Proceedings of the LFG11
Conference, pages 401–421. CSLI Stanford.

Wessel Poelman, Rik van Noord, and Johan Bos.
2022. Transparent semantic parsing with Uni-
versal Dependencies using graph transforma-
tions. In Proceedings of the 29th Interna-
tional Conference on Computational Linguistics,
pages 4186–4192, Gyeongju, Republic of Ko-
rea. International Committee on Computational
Linguistics.

Quentin Pradet, Laurence Danlos, and Gaël
de Chalendar. 2014. Adapting verbnet to french
using existing resources. In Proceedings of
the Ninth International Conference on Language
Resources and Evaluation (LREC’14).

Siva Reddy, Oscar Täckström, Slav Petrov, Mark
Steedman, and Mirella Lapata. 2017. Universal
semantic parsing. In Proceedings of the 2017
Conference on Empirical Methods in Natural
Language Processing, pages 89–101, Copen-
hagen, Denmark. Association for Computational
Linguistics.

Arka Sadhu, Tanmay Gupta, Mark Yatskar, Ram
Nevatia, and Aniruddha Kembhavi. 2021. Visual
semantic role labeling for video understanding.
In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition,
pages 5589–5600.

Karin Kipper Schuler. 2005. VerbNet: A broad-
coverage, comprehensive verb lexicon. Ph.D.
thesis, University of Pennsylvania.

Lucien Tesniere. 1959. Éléments de syntaxe struc-
turale. Klincksieck, Paris.

29



5th Workshop on Designing Meaning Representations (DMR 2024) @LREC-COLING-2024, pages 30–38
21 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

Expanding Russian PropBank: Challenges and Insights for
Developing New SRL Resources

Skatje Myers∗, Roman Khamov∗, Adam Pollins∗, Rebekah Tozier∗,
Olga Babko-Malaya†, Martha Palmer∗

∗University of Colorado
{firstname.lastname}@colorado.edu

†BAE Systems
olga.babko-malaya@baesystems.com

Abstract
Semantic role labeling (SRL) resources, such as Proposition Bank (PropBank), provide useful input to downstream
applications. In this paper we present some challenges and insights we learned while expanding the previously
developed Russian PropBank. This new effort involved annotation and adjudication of all predicates within a
subset of the prior work in order to provide a test corpus for future applications. We discuss a number of new
issues that arose while developing our PropBank for Russian as well as our solutions. Framing issues include:
distinguishing between morphological processes that warrant new frames, differentiating between modal verbs and
predicate verbs, and maintaining accurate representations of a given language’s semantics. Annotation issues
include disagreements derived from variability in Universal Dependency parses and semantic ambiguity within the
text. Finally, we demonstrate how Russian sentence structures reveal inherent limitations to PropBank’s ability to
capture semantic data. These discussions should prove useful to anyone developing a PropBank or similar SRL
resources for a new language.

Keywords: Semantic role labeling, Semantically annotated resources, Russian semantics

1. Introduction

The ability to identify the semantic elements of
a sentence (who did what to whom, where and
when) is crucial for machine understanding of
natural language and downstream tasks such as
information extraction (MacAvaney et al., 2017),
question-answering systems (Yih et al., 2016), text
summarization (Mohamed and Oussalah, 2019),
and machine translation (Rapp, 2022). The pro-
cess of automatically identifying and classifying
the predicates in a sentence and the arguments
that relate to them is called semantic role labeling
(SRL).

Using the PropBank schema (Palmer et al.,
2005) (Pradhan et al., 2022), a Russian-language
lexicon and corpus was manually annotated,
called Russian PropBank (which we will refer to
as RuPB1) (Moeller et al., 2020). In this paper,
we present our work expanding RuPB1 (we re-
fer to the expanded version as RuPB2), the chal-
lenges encountered, and our proposed solutions.
We present this discussion to benefit future work
for new PropBanks and semantic representations
in other languages, many of which may encounter
similar challenges during annotation and in repre-
senting the semantics of target languages.

In particular, we have been creating new frames
1 and expanding double-annotated and adjudi-

1https://github.com/cu-clear/RussianPropbank/

cated coverage of the verbs, as well as expand-
ing the scope of annotation to include participles
and both relativizers and their head words. Our
efforts have resulted in a smaller but more thor-
ough dataset. This paper first provides a general
overview of our project’s source material and goals
as well as related projects that facilitated the pro-
cess in Section 2. Next, we distinguish the re-
spective scopes of RuPB1 and RuPB2 in Section
3. Section 4 covers changes made to RuPB1’s
frames and the issues faced when adding frames
to RuPB2. We provide an overview of our infras-
tructure and annotation process in Section 5. In
Section 6, we discuss sources of disagreement be-
tween annotators and the guidelines we devised
to resolve them. Finally, we review how Russian’s
dropped copulas provide a challenge for accurate,
detailed semantic representation in Section 7.

2. Background

Proposition Bank (PropBank) takes a verb-
oriented but very generalizable approach to
representing semantics. The list of permissible
semantic roles is defined by the sense of each
verb using numbered labels, ARG0 through ARG6.
Typically an ARG0 is similar to a Proto-agent (per
Dowty (1991)), and is the Agent or Experiencer,
while ARG1 is usually the Patient or Theme of
the predicate, similarly to a Proto-patient. By
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generalising the arguments in this way, auto-
matic semantic role labelers can produce useful
information even if they misidentify the frame.
Additionally, there are adjunct-like arguments,
called argument modifiers (ARGM), to incorporate
other semantically relevant information such as
location (ARGM-LOC) and direction (ARGM-DIR).

The standard approach to developing a Prop-
Bank for a new language is to begin by defining
a valency lexicon, known as a set of PropBank
Frame Files, that defines the predicate-argument
structure for all predicates to be annotated (Xue
and Palmer, 2009; Zaghouani et al., 2010; Palmer
et al., 2006; Bhatt et al., 2009). Once a suffi-
cient number of frames has been defined, the an-
notation process begins, with the annotators re-
ferring to the frames for guidance for each in-
dividual predicate. In order to maintain com-
plete annotation coverage for each sentence, addi-
tional frames are typically added during the anno-
tation process. Double-blind annotation is recom-
mended, followed by an expert adjudication pass.
It is expected that the annotation process will re-
veal various ways in the which the original frame
definitions need to be revised, sometimes result-
ing in follow-on revisions to previous annotations.

The Low Resource Languages for Emergent In-
cidents (LORELEI) project 2 sought to explore tech-
niques for rapidly developing natural language pro-
cessing technologies for low-resource languages.
The dataset released as part of this project con-
sists of parallel corpora for 23 low resource lan-
guages across many genres, such as newswire,
phrasebooks, and weblogs. A subset of the En-
glish data was manually annotated with PropBank
SRL.

The RuPB1 corpus (Moeller et al., 2020) project
constructed 364 frames and annotated PropBank-
style semantic roles on a portion of the Rus-
sian newswire and phrasebook sentences that
paralleled the English dataset. This consists of
91 newswire sentences (2,228 tokens) and 496
phrasebook sentences (2,471 tokens). The pre-
vious work focused on annotating high-frequency
verbs, which resulted in most sentences in the cor-
pus having partial annotation. Our work has fo-
cused on filling in missing predicate annotations
to produce fully labeled sentences in order to facil-
itate use of this corpus for training and testing SRL
models and for evaluating how well annotation pro-
jection methods, such as those used by the Univer-
sal PropBanks project (UPB) (Jindal et al., 2022),
map to SRL designed for the target language. The
latter requires fully-annotated sentences to deter-
mine which predicates have been missed, added,

2https://www.darpa.mil/program/low-
resource-languages-for-emergent-
incidents

RuPB1 RuPB2
# frames 364 497
# sentences 587 257
# predicates 431 331

Table 1: Comparison of annotation coverage be-
tween the partial annotation of RuPB1 and the
smaller but completely annotated sentences of
RuPB2.

or misplaced by the projection. See Table 1 for
more details.

Russian PropBank is not the only resource for
Russian SRL. Russian FrameBank (Lyashevskaya
and Kashkin, 2015) is a project to develop
FrameNet-style (Baker et al., 1998) frames de-
signed for Russian and annotate examples of
those frames from the Russian National Corpus 3.
Their annotation scheme uses 96 distinct semantic
roles, such as Result or Beneficiary, organised in
an hierarchical graph. Frames for approximately
4,000 target verbs, adjectives, and nouns were
constructed, and over 50,000 examples of these
frames were annotated. There is a fundamental
difference in the approach of both resources: Rus-
sian FrameBank is rooted more in lexical seman-
tics, while PropBanks are more focused on the
syntax-semantics interface (Levin, 1993). As a re-
sult, RuPB offers a coarser-grained, more general
SRL schema. Instead of having 96 specific se-
mantic roles, PropBank uses the numbered argu-
ments described above. For instance, an ARG0
can be either an Agent or an Experiencer depend-
ing on the predicate. Additionally, while FrameNet
accounts for peripheral arguments and modifiers,
Russian FrameBank does not; its annotations fo-
cus only on the core arguments of a given example
predicate. In contrast, for each predicate, RuPB la-
bels both the core arguments and modifiers (Prop-
Bank’s equivalent of peripheral arguments). Addi-
tionally, RuPB2’s goal is to annotate every predi-
cate in a given sentence, instead of only annotat-
ing a specific, example predicate. Unfortunately,
this means there is no automatic way for RuPB to
take advantage of the 50,000 annotated example
sentences in Russian FrameBank without exten-
sive manual review, since the latter’s annotations
only provide partial coverage of the predicates in
a sentence. For the same reason, Russian Frame-
Bank does not provide an appropriate evaluation
corpus for UPB.

3. Scope

As discussed above, while RuPB1 prioritised de-
veloping frames in the order of verb frequency, our

3https://ruscorpora.ru/
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aim was to ensure that sentences have complete
annotations, so that this resource can also be used
as a test dataset. As a result, RuPB2 produced
200 sentences of phrasebook and 57 sentences
of newswire with all predicates annotated.

Besides the additional verb annotation, we also
extended the scope of RuPB from only verbs to in-
clude participles for 36 verbs and 9 relative-head
pairs, such as обнаруженных ‘discovered’. These
are annotated with the same frames that they
would be as verbs (обнаружить ‘to discover’).

RuPB2 also expanded annotations to include R-
ARGs, in alignment with EnPB guidelines. Previ-
ously, the relativizer was the only argument anno-
tated (such as который ‘who’ in this example):

(1) мальчик
mal’čik
boy
-

который
kotoryj
who
ARG0

любит
ljubit
loves
pred

кошек
košek
cats
ARG1

RuPB2 now captures both the relativizer and the
head noun:

(2) мальчик
mal’čik
boy
ARG0

который
kotoryj
who
R-ARG0

любит
ljubit
loves
pred

кошек
košek
cats
ARG1

Our scope is still narrower than than of the cur-
rent EnPB, which extensively annotated nominal-
izations and predicative adjectives. Some of these
additional parts of speech may be added to RuPB
in the future, such as nominalizations and even-
tive nouns, depending on applications. Some
of the eventive nouns were added to EnPB dur-
ing projects that focused on disasters, such as
tornado.01, which captures arguments for things
such as death toll and Fujita scale.

Another type of predication that EnPB includes,
but RuPB does not, are adjectival predicates, such
as blue.01: “He was blue from the cold.”

4. Framing

As discussed above, the development of a high-
quality, comprehensive valency lexicon is the cor-
nerstone of the PropBanking process. Thanks
to RuPB1, we began with a pre-existing set of
Russian Frame Files. Our goal with RuPB2 was
twofold: 1) to add enough frames to get full sen-
tence coverage; 2) and to expand the scope of the
predicates being annotated.

In addition to the expansion, 134 new frames
were added, and many previous frames were re-
examined. During the initial stages of RuPB2, we
ran into the issue of using different terms when
discussing framing decisions, and settled on the
following clarifications for the terms: alias, roleset,
and predicates.

An alias is a grammatical or syntactic form of
a verb. Both drank and drunk are aliases of the
verb drink. A roleset is a particular sense of a verb
as well as a list of its core arguments according
to their semantic roles. Rolesets also include all
aliases of the verb in question.

Roleset id: drink.01
‘ingest liquid’

ARG0 drinker, agent
ARG1 liquid
ARG2 source of liquid

Table 2: Roleset for drink.01

Predicates are collections of rolesets. Many
verbs are polysemous, and each sense or mean-
ing of the verb (predicate) is captured by different
rolesets. The predicate drink can have two role-
sets, drink.01 and drink.02, as in ’I drank water
from a well’ vs ’I drink to your health’. See Tables
2 and 3.

Roleset id: drink.02
‘salute’

ARG0 drinker, agent
ARG1 thing saluted

Table 3: Roleset for drink.02

Determining whether a given token warrants its
own predicate or roleset, or is simply an alias of an
existing roleset, can be challenging, especially in
morphologically rich languages. For additional ex-
amples and details of our framing process, please
refer to the RuPB2 Framing Guidelines on the web-
site.

As discussed by Moeller et al. (2020), Russian
verbs can undergo many morphological processes
that sometimes change the verb’s aspect but can
change semantic meaning as well.

For example, the reflexive affix -ся can simply
change a verb’s grammar (new alias) but can also
add a new sense (new roleset). The verb молить,
‘to beg’ (Table 4), becomes ‘to pray’, молиться (Ta-
ble 5), when the reflexive affix is added. By com-
parison, хотеть and хотеться, ‘to want’, have no
semantic difference.

Often these kinds of differences lead to discus-
sions of semantic domains and analysing frequen-
cies of arguments in the literature. The RuPB2

Roleset id: молить.01
molit’ ‘to beg’

ARG0 asker, agent
ARG1 person being begged
ARG2 thing asked for

Table 4: Roleset for молить.01.
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Roleset id: молиться.01
molit’sja ‘to pray’

ARG0 pray-er, agent
ARG1 prayer
ARG2 deity

Table 5: Roleset for молиться.01.

guidelines err on the side of making different role-
sets as opposed to different aliases when the
framer is unsure. This can be referred to as split-
ting as opposed to lumping.4 There are two main
factors that led to this decision. Firstly, having a
clear golden rule speeds up the process of creat-
ing new frames. Secondly, it means an ill-judged
decision is easily reversible. Should a framer
make two separate rolesets instead of separate
aliases, it is always easier to go back through an-
notations and deterministically merge two different
tags into a single tag. This is simple to implement
and much easier than the reverse: deciding that
two aliases should be separate rolesets and man-
ually re-annotating every occurrence according to
the new senses.

In contrast with EnPB, other PropBank projects
have set a precedent of splitting over lumping, as
seen in the Turkish PropBank (Ak et al., 2018),
where very rich morphological processes result in
lots of very similar rolesets. Verbs with negative or
modal affixes are given their own frames despite
having identical rolesets.

Our suggestion is that any potential PropBank
should have explicit guidelines on splitting vs.
lumping. On the one hand, a liberal approach to
splitting may result in the amount of frames bal-
looning drastically. Yet a conservative approach
may result in much time and effort spent on revers-
ing previous decisions. Both linguistic and compu-
tational factors must be considered.

In the case of RuPB2, aside from some minor ed-
its to existing frames (such as typos and confusing
example sentences), there were a few decisions
that resulted in different annotations compared to
RuPB1. Some involved removing frames entirely.

The first case was the frame мочь.03 ‘can, may’,
which has no core arguments. This differs from
мочь.01 ‘can, have ability’, which has an ARG1
(agent with ability) and an ARG2 (ability itself).
мочь.03 can be seen in the following sentence

in Figure 1:
In RuPB1, может would have been marked as

мочь.03. This sense is contrasted with a sentence
such as Figure 2:

In Figure 2, annotators should mark может as
мочь.01, with ARG1 being ‘Anna’, and ARG2 be-

4Splitting and lumping have long been used by lex-
icographers to illustrate a bias in favor of either more
coarse-grained senses or more fine-grained senses.

Figure 1: Anna can wait here or there

Figure 2: Anna can read books

ing ‘read’. In RuPB2, the может should be marked
as ARGM-MOD for ‘wait’ not as its own predicate,
since it is a modal indicating possibility (see Figure
3). In RuPB2, мочь.03 is removed entirely.

Figure 3: Anna can wait here or there

Likewise, we removed the roleset давай(те).09,
which can be translated into English as ‘let’s’, as
in “let’s look at a few examples”. Instead of hav-
ing a dedicated roleset, the verb will simply be
marked ARGM-MOD, since it is essentially a hor-
tative, modal verb.

Although we initially added быть.08, which
was modeled on EnPB be.03 (the auxiliary verb
‘will/was/were’), we eventually opted to remove this
frame.

(3) Мы
My

будем
budem

есть
est’

We will eat.

EnPB set out to annotate semantic components
including temporal relations as an ARGM (Kings-
bury and Palmer, 2002). One could argue that
быть.08 should be included in RuPB2 to adhere
more closely to its English counterpart. Ultimately,
быть.08 seemed to perform more of a functional,
placeholder role; annotators would label this sense
to avoid confusion with other быть senses. Be-
cause быть.08 lacks significant lexical information,
we opted for its discontinuation.

5. Annotation Process

All RuPB2 annotation and adjudication was com-
pleted through the text-annotation platform INCEp-
TION (Klie et al., 2018). INCEpTION’s interface
streamlines corpus creation, annotation, and ad-
judication (the INCEpTION term for this phase is
‘curation’). Our project required an environment
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Figure 4: INCEpTION Annotation mode.

Figure 5: INCEpTION Curation mode.

that would allow multiple users to annotate a se-
mantic layer of predicates and arguments. This
annotation process was additionally assisted by
being able to simultaneously view dependency
parse and part of speech layers. We automatically
parsed the sentences using UDPipe (Straka and
Straková, 2017) and provided these parses as our
initial data in INCEpTION.

Figure 4 provides an example of the RuPB2 sen-
tences using the annotation feature of the INCEp-
TION platform. Looking more closely at sentences
4 and 5 in Figure 4, these are examples of INCEp-
TION feature layers before RuPB2 annotation was

complete. No semantic roles could be annotated
for sentences 4 and 5 due to the lack of predicates
and arguments. The figure displays the layers that
assisted the annotators: the sentences are writ-
ten in Cyrillic text and further organized by each
word’s part of speech (yellow boxes). In addition,
each sentence is syntactically parsed (e.g., sub-
jects, objects, and sentence roots). In contrast
with 4 and 5, sentences 1 through 3 have seman-
tic predicates (red boxes) and arguments (various
ARG arrows and green SemArg boxes) annotated.
Observe that each predicate takes a specific verb
frame, such as мочь.01, and core (numbered) ar-
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guments are distinguished from ARGMs (e.g., ad-
verbial, ARG-ADV or temporal, ARG-TMP) When
clicking on a predicate, a pane on the right of the
platform also shows the details of the semantic
predicate layer.

Upon completion of a document, annotators
submitted their finished work to an adjudicator for
adjudication (the ‘curation’ pass). The adjudicator
compared the finished annotations between users
to assess inter-annotator agreement, with discrep-
ancies highlighted. Additionally, the adjudication
process resulted in the adjudicator creating a fi-
nal, gold standard, fully annotated sentence. This
process is illustrated in Figure 5; the top sentence
reflects the adjudicator’s gold standard annotated
sentence, whereas the lower two sentences are
the annotators’. For simplicity, only semantic pred-
icate and argument layers are shown in Figure 5,
but the layers included in Figure 4 are also avail-
able during the adjudication process.

Since the annotation guidelines and framing de-
cisions evolved concurrently with the annotation
process itself, all members of the RuPB2 group
participated in the adjudication step. This thorough
process allowed all aspects, framing, annotation
challenges, and future work to be discussed. An-
notation challenges and future work are presented
more thoroughly in the following sections.

6. Annotation Challenges

RuPB annotators rely on an underlying Universal
Dependencies (UD) syntactic parse to resolve am-
biguity (de Marneffe et al., 2021). This parse it-
self sometimes introduces new ambiguity. Unlike
EnPB annotators, who tag arguments as spans
of words, RuPB annotators must identify and tag
the word that corresponds to the argument’s head.
The automatic UD parser’s choice of head is not
always intuitive or consistent, and we observed
it caused annotator disagreement most frequently
in part-whole constructions and phrases that com-
prise more than one temporal modifier. Phrases
containing locative modifiers were another source
of disagreement. The counts of these phenomena
that occurred in the RuPB2 sentences are totaled
in Table 6, largely occurring in the more complex
newswire sentences.

Pseudopartitives 7
Temporal Doublets 4
Locative Modifiers 4

Table 6: Cases of Challenging Annotation

6.1. Part-Whole Constructions
The head of a quantified nominal phrase is usu-
ally the inner nominal, which refers to the whole
entity quantified (e.g., две тысячи людей / two
thousand people). By contrast, the head of a
partitive construction is the outer nominal or part
(tons of rice). When the parser labels a quan-
tifier as a noun instead of a numeral, the quan-
tifier becomes the head of that phrase (тысячи
людей / thousands of people) because the con-
struction appears syntactically partitive. The part
of speech of the quantifier thus changes the head
of the phrase in the parse, though it does not affect
the phrase’s lexical meaning.

These constructions are pseudopartitives, and
should not be analyzed as having the same syntax
as partitives (Falco and Zamparelli, 2019). Their
prevalence varies from one language to another,
but they appear more frequently in Russian UD
parses than in English. Compare English a mil-
lion residents (numeral) and millions of residents
(pseudopartitive) with Russianмиллионжителей
lit. ‘million of residents’ and миллионы жителей
‘millions of residents’ (both pseudopartitive). Anno-
tators must take care to choose the head of each
argument when working with a dependency parse
that does not handle constructions such as pseu-
dopartitives.

6.2. Temporal Doublets
Temporal modifiers occasionally appear in a se-
ries. However, the parser does not always treat
the modifiers either as a single oblique nominal or
as two separate ones, as seen in Figure 6. At first,
annotators tagged according to the parse, but then
noticed these inconsistencies and needed a dif-
ferent solution. In EnPB practice, arguments that
comprise conjuncts are treated as a single argu-
ment and never tagged twice. With this in mind,
we chose to treat these constructions as asynde-
tic coordination, in which the first element is the
head per UD guidelines.5

6.3. Locative Modifiers
Annotators encountered difficulty as they decided
whether to tag locative modifiers as arguments
of the verb or to consider them as modifying a
noun and thus not tagged. Straightforward cases
of both the former type (‘People died in the vil-
lage’) and the latter (‘The head of the program
in Bangladesh expressed his fears’) appeared, in
which annotators agreed.

Yet in ambiguous cases, annotators diverged.
For example, in тысячи людей в Индии и Бан-

5https://universaldependencies.org/u/
dep/conj.html
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ADP NOUN NOUN
в воскресенье вечером
v voskresen′e večerom

case nmod
obl

‘(on) Sunday (in the) evening’

NOUN ADP NOUN
вечером в воскресенье
večerom v voskresen′e

obl obl
case

‘in the evening (on) Sunday’

Figure 6: Two temporal modifier arguments, iden-
tical save word order, with arbitrarily different
parses

гладеше до сих пор обращаются … ‘Thousands
of people in India and Bangladesh are still seek-
ing …’, they did not agree as to whether this loca-
tive was an argument of ‘seeking’ or modified ‘peo-
ple’. We resolved this by tagging the locative as
a modifier of the verb in each ambiguous case,
as we preferred to be thorough and prevent omis-
sions.

7. Implicit Predicates

Russian usually drops the present tense linking
verb, есть.6 A lexical unit is omitted in instances
similar to those in English where be would appear
as am, is or are. For instance, one does not say “I
am a student” in Russian but literally я студент-
ка “I student.” Ten percent of the sentences in
our dataset were affected by dropped copulas (i.e.,
sentences had one less predicate or were com-
pletely unable to be annotated), predominately in
the phrasebook portion.

This issue of dropping copulas is not limited to
Russian; the World Atlas of Language Structures
Online (Stassen, 2013) reports that 45% of the lan-
guages accounted for in their database (175 of 386
languages) allow zero copula constructions with
nominal predicates.

8. Conclusion

We have presented numerous issues that were en-
countered during our endeavor to expand and com-
plete PropBank annotation for RuPB2, a Russian
SRL dataset for training and testing purposes. In

6The phenomenon where a subject and predicate are
not overtly connected through a linking verb is known as
a zero (or null) copula.

the future, RuPB2 can be further expanded to in-
clude nominalizations and light verb constructions
to provide better coverage. We described our ap-
proach to constructing frames for Russian, which
can provide a precedent for other morphologically
rich languages and others with similar characteris-
tics. More particularly, we analyzed the complex-
ity in differentiating between predicates and modal
verbs. We discussed our solutions to frequent
cases of annotator disagreement, as well as the
importance of the parse in settling ambiguities. In
the final section, we discussed the challenges of
implicit predicates that can be found in zero-copula
sentences, which we expand on below. Through-
out the development of RuPB2, there has been an
aim to stay true to this schema and maintain par-
ity with EnPB, all the while reflecting the seman-
tics of Russian with the highest accuracy possible.
These discussions should prove useful to anyone
building a new PropBank for another language.

Although there are many benefits of the Prop-
Bank schema, it is important to also consider limi-
tations when constructing a semantic corpus for a
new language. PropBank can capture shallow se-
mantic information about who did what to whom,
but a deeper complete sentence representation
that includes discourse relations and modality can
be more effective. Uniform Meaning Representa-
tions (UMRs), (Van Gysel et al., 2021), provide a
cross-lingual approach to such a representation.
UMRs are based on the popular Abstract Meaning
Representations project (Banarescu et al., 2013)
which directly incorporates English PropBank for
predicate argument structures. The ability of AMR-
UMR to represent implicit predications yields a
strategy for capturing semantics that is not cov-
ered by PropBank alone. Our Russian PropBank
provides an essential foundational element for this
type of richer, more nuanced semantics. The dis-
cussion and suggestions for how to develop guide-
lines and frame files for a Slavic language that are
contained in this paper should provide a road-map
for anyone else undertaking such an endeavor.
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Abstract
This study evaluates the extent to which semantic information is preserved within sentence embeddings generated
from state-of-art sentence embedding models: SBERT and LaBSE. Specifically, we analyzed 13 semantic
attributes in sentence embeddings. Our findings indicate that some semantic features (such as tense-related
classes) can be decoded from the representation of sentence embeddings. Additionally, we discover the lim-
itation of the current sentence embedding models: inferring meaning beyond the lexical level has proven to be difficult.

Keywords: sentence embedding, transformation vector, semantic information

1. Introduction

Word embeddings have frequently been used as
input in deep neural networks. Sentence em-
beddings are supposed to encapsulate sentence
meanings into vectors. However, representing an
entire sentence as a vector of fixed length poses
significant challenges. Obtaining sentence embed-
dings is not as straightforward as extracting word
embeddings based on contextual information from
text. Embeddings merely based on surrounding
text can be less representative at the sentence
level.

Additionally, evaluating the quality of sentence
embeddings or assessing whether these embed-
dings effectively encapsulate the meanings of sen-
tences often requires a human-annotated corpus
with well-defined semantic categories or sentence
similarity scores.

In this study, we convert Czech sentences in the
COSTRA dataset into sentence embeddings us-
ing SBERT and LaBSE models. COSTRA dataset
(Barančíková and Bojar, 2020) is a collection of
Czech sentences with semantic labels. Each set
consists of a ‘seed’ sentence and transformation
sentences that are derived from the seeds. The ob-
jective of this study is to assess whether sentence
embeddings trained by SBERT and LaBSE retain
semantic information and whether vectors in the
same transformation class (with some similarity in
semantics) show affinity in high dimensional space,
which is tested by using clustering and classifica-

= Authors with equal contribution.

tion algorithms to investigate whether vectors from
the same class can be distinguished from vectors
of other classes in high dimensional space.

The content of our paper is structured as follows:
Section 3 presents a detailed introduction to the
COSTRA dataset and an overview of our evalua-
tion methods. In Section 4, we implement the di-
mension reduction technique to visualize sentence
embeddings in 2D graphs. Section 5 attempts to
predict new sentence embeddings with extracted
transformation vectors. Section 6 implements clus-
ter separation tests to assess within-class cohesion
and between-class separation for 13 transforma-
tion classes. In Section 7, supervised methods
are employed to train and predict transformation
labels. Finally, Section 8 compares the results in
all evaluation tasks and discusses the separability
of transformation vectors.

2. Previous Studies

In this section, we introduce previous research on
sentence embeddings, as well as the evaluation
methods employed for assessing sentence embed-
dings.

2.1. Previous Studies on Sentence
Embeddings

Word embeddings represent word meanings in
space, and sentence embeddings are supposed
to encapsulate sentence meanings into vectors,
ideally of fixed lengths. There are two approaches
to generating sentence embeddings. One is unsu-
pervised learning of sentence embeddings. For
instance, Yang et al. (2018) and Arora et al.
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Class Description Example (Translated from Czech)

seed original sentence Four members of my family lost their lives.
ban negative imperative Four members of my family cannot lose their lives!
possibility possibility modality Four members of my family probably lost their lives.
past past tense In those days, four members of my family lost their lives.
future future tense Four members of my family will one day lose their lives.
opposite meaning opposite sense Four members of my family were born.
generalization make it more general Four people died.
minimal change minimal alteration Four members of that family lost their lives.
nonsense by shuffling words Life lost members of my family.
different meaning by shuffling words Four members of my family lost a member.
formal sentence a more formal style Four members of my family closed their eyes forever.
simple sentence a simplistic style Four people of my family died.
nonstandard a colloquial style Almost my whole family died there.
paraphrase paraphrase Four of my relatives died.

Table 1: Seed and Transformation classes in COSTRA

(2019) proposed an unsupervised method to con-
struct sentence embeddings. They calculate the
weighted sum of word embeddings1 and then re-
move principal components to enhance embedding
quality.

Nevertheless, the dominant method in prior re-
search for generating sentence embeddings is su-
pervised learning towards the relations (e.g. natu-
ral language inference, Conneau et al., 2017) we
want to get from the embeddings.

The sequence-to-sequence architecture was
used to generate sentence embeddings in machine
translation tasks, with the encoder’s output serving
as the sentence representation. LASER (Artetxe
and Schwenk, 2019) is an instance. It is a multilin-
gual LSTM-based encoder-decoder model trained
on parallel corpora across 93 languages (Goswami
et al., 2021). However, it is challenged due to the
suboptimal semantic representation. Reimers and
Gurevych (2020) state that LASER fails in assess-
ing the similarity of sentence pairs, despite its good
performance in identifying exact translations.

More recently, transformer and BERT-based
models have received increased attention. SBERT
(Reimers and Gurevych, 2019) stands as a state-
of-the-art model for generating sentence embed-
dings (Ham and Kim, 2021). Multilingual models
have also been studied in recent years. Reimers
and Gurevych (2020) fine-tune the monolingual
SBERT model (Reimers and Gurevych, 2019) with
a parallel corpus that includes 50 languages and
leveraged knowledge distillations. Chidambaram
et al. (2019) propose mUSE (Multilingual Universal

1The actual deep learning tasks in which the word
embeddings obtained can vary, such as autoregressive
(e.g. LSTM) or non-autoregressive language modelling.

Sentence Encoder), trained on parallel data in 16
languages. LaBSE (Feng et al., 2022) is another
multilingual BERT-based model, trained on a dual
encoder with 6 billion sentence translation pairs
across 109 languages. These three multilingual
models have demonstrated strong performance
in previous studies (Devine et al., 2021; Reimers
and Gurevych, 2020; Ham and Kim, 2021). In our
study, we use SBERT and LaBSE, two models that
support the Czech language to generate sentence
embeddings.

2.2. Sentence Embedding Evaluation

The evaluation of sentence embeddings in previ-
ous studies includes linguistic probing tests, se-
mantic similarity tests, and other downstream clas-
sification tests (Conneau and Kiela, 2018).

Linguistic probing tasks start with investigat-
ing surface information, like decoding sentence
lengths or assessing whether the original words
can be detected from a sentence embedding (Adi
et al., 2016). The syntactic evaluation examines
whether sentence embeddings can detect neigh-
bouring word shifts, part of speech tags, coordina-
tion inversion, number or gender agreement, depth
of the syntactic tree, etc. (Perone et al., 2018; Pi-
mentel et al., 2020; Hupkes et al., 2018). Other
downstream classification tasks involve sentiment
analysis and opinion polarity (Perone et al., 2018,
Conneau et al., 2018).

The semantic similarity test is also popular in
sentence embedding evaluation. Models are as-
sessed by computing the correlation between the
human-labeled similarity scores of sentence pairs
and the model-predicted distance (e.g. cosine dis-
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Figure 1: Visualization of sentence embeddings (1A) & (1B) and transformation vectors (2A) & (2B).
(1A) & (1B) illustrate sentence embeddings of 10 randomly selected seeds and their corresponding
transformed sentences. Each set of a seed sentence and its derived sentences is indicated by a seed
index and represented with a distinct colour.

tance) of two sentence embeddings.
However, many semantic studies on sentence

embeddings often fall short in providing insights
into instances where models consistently under-
perform. Our research adopts a novel approach,
potentially serving as a controlled experiment. By
maintaining consistency in the seed sentences’ in-
formation while altering only specific features in 13
classes, our research offers advantages in examin-
ing embedding transformations in detail.

3. Dataset and Sentence Embeddings

COSTRA (Barančíková and Bojar, 2020) is the
evaluation dataset in our study. It comprises 6,968
Czech sentences, out of which 126 are seed sen-
tences. The remaining sentences are transforma-
tion sentences derived from the seed sentences.
These transformation sentences are categorized
into 13 classes. Table 1 presents the descrip-
tions of the 13 transformation classes and exam-
ple sentences translated from the Czech COSTRA
dataset.

In our study, we use SBERT2 and LaBSE, two
multilingual models with Czech language support
to generate sentence embeddings. We differenti-
ate two types of vectors: sentence embeddings
and transformation vectors. Sentence embed-
dings are generated directly from SBERT and
LaBSE models. Transformation vectors are vec-
tors with their corresponding seed embeddings
subtracted, in order to remove additional informa-
tion from the seed sentence. In other words, given
a transformed e.g. generalized sentence (with its
embedding denoted as generalizationi for short),
we also consider the corresponding seed sentence

2To produce SBERT Sentence embeddings we used
pre-trained multilingual model ‘paraphrase-multilingual-
MiniLM-L12-v2’.

(with the seed embedding denoted as seedi) The
transformation vector of this sentence pair is repre-
sented as generalizationi - seedi.

In the following sections, we aim to study
whether transformation vectors in one class demon-
strate a clustering tendency (within class cohesion)
and whether they can be distinguished from trans-
formation classes of other types (between-class
separation).

4. Dimension Reduction and
Visualization

This section presents a preliminary study of sen-
tence embeddings and transformation vectors
through dimension reduction and visualization.
UMAP (Uniform Manifold Approximation and Pro-
jection) (McInnes et al., 2018) was employed as
our dimension reduction technique and visualiza-
tion tool.3

Firstly, we explore the spatial distribution of the
sentence embeddings. Our assumption is that
a seed sentence, sharing more identical words
with its derived sentences, may lead to closer
proximity to its transformed sentences than sen-
tences belonging to other seed sets. To test the
hypothesis, we randomly visualize 10 seed sen-
tences along with sentences that are derived from
them. Secondly, our analysis aims to explore
whether transformation vectors (obtained by sub-
tracting seed embeddings from their sentence em-
beddings) within the same transformation class
(e.g. future transformation vectors) tend to group
together.

Sentence embeddings from SBERT and LaBSE
are depicted in Figure 1 (1A) & (1B). Each set

3PCA and T-SNE are also tested in the initial experi-
ments, while the performance is much worse than UMAP,
thus not presented in the paper.
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Figure 2: Cosine Similarity Computation between True and Predicted Sentence Embeddings

of sentence embeddings (the seed sentence and
sentences derived from it) generally forms a cluster,
suggesting that sentences tend to be situated close
to their seed sentences.

In the results in Figure 1 (2A) & (2B), the ten-
dency of the transformation vectors of the same
class clustering together is observed only for cer-
tain classes, particularly tense-related classes
(‘past’ and ‘future’). Some classes form a cluster
with only a part of the sentences, such as ‘opposite
meaning’ and ‘simple sentences’. However, trans-
formation vectors of other classes (e.g. ‘nonstan-
dard sentence’ and ‘generalization’) are dispersed
across the space.

Additionally, it is worth noting that despite
the different model architectures, and different
lengths/dimensions of sentence embeddings of
SBERT and LaBSE, their visualization results af-
ter the dimension reduction display comparable
behaviour.

5. Predictive Capacity of
Transformation Vectors

Section 4 demonstrates that transformation vectors
in some (though not all) transformation classes
are grouped together after dimension reduction.
This section further evaluates the potential of trans-
formation vectors to predict other sentence em-
beddings based on their seed embeddings. We
assume the following property holds for transforma-
tion vectors: given a future-tense transformation
vector (futurei - seedi), and the embedding of a
different seed (seedj), we can predict the embed-
ding future_sentencej (sentence of its future tense)
using Equation 1.

futurej = futurei − seedi + seedj (1)

In the actual experiment, 80% of the sentences
in each class are used to extract transformation
vectors. We compute the average of the 80% trans-
formation vectors to predict the sentence embed-
dings for the remaining 20% of the sentences (as

class SBERT LaBSE

possibility 0.94 0.95
past 0.93 0.91

future 0.92 0.91
different meaning 0.91 0.91

nonsense 0.90 0.90
formal sentence 0.88 0.88
minimal change 0.87 0.92

ban 0.85 0.91
paraphrase 0.82 0.81

nonstandard sentence 0.81 0.82
simple sentence 0.81 0.79

opposite meaning 0.75 0.83
generalization 0.70 0.66

Table 2: Cosine Similarity of predicted embeddings
and true derivation sentence embeddings

shown in the illustration in Figure 2). The quality
of transformation vectors is assessed using the
cosine similarity between the predicted sentence
embeddings and the true sentence embeddings.

5.1. Cosine Distance between Predicted
and True Embeddings

The results in Table 2 show that the majority of
the transformation classes have a cosine similar-
ity score above 0.8. These findings imply that a
number of predicted vectors lie close to their true
sentence embeddings, especially those in ‘possibil-
ity’ and ‘past’ classes, both with very high scores.

However, in contrast, the ‘generalization’ class
exhibits the lowest score (0.70 in SBERT and 0.66
in LaBSE), falling below the baseline (ranging from
0.72 to 0.78), obtained by using the same dataset
but with shuffled transformation labels within each
seed set.

This could be attributed to the varying degrees
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of transformation when a seed sentence is trans-
formed into multiple generalization forms. If the
transformation vectors do not align in a consistent
vector direction, relying on the average of 80% of
the vectors is inaccurate in predicting sentence
embeddings. It is also worth mentioning that the
cosine distance of the baseline with shuffled trans-
formation labels reaches 0.72, suggesting that the
embeddings of any arbitrary sentence and the ar-
bitrary transformation of the sentence are close to
each other.

5.2. Cosine Distance across Classes

To deal with the aforementioned challenge of vary-
ing transformation degrees within a class and
the limitation of assessing transformation vectors
solely relying on cosine distance from their true
embeddings, we extend our assessment to the co-
sine distance of predicted sentence embeddings
with actual embeddings across 13 classes.

Our underlying assumption is that although trans-
formation vectors with varying degrees might not
exhibit a consistent vector direction in space, trans-
formation vectors in one class may still be re-
stricted within a region that is distinguishable from
the regions of other transformation classes. As
a result, predicted sentence embeddings should
show the highest cosine similarity with sentence
embeddings of the target class, compared to those
from other classes. For example, the sentence
embedding predicted by the ‘generalization’ trans-
formation vector, is compared with the true em-
bedding generalizationi (with the assumed highest
cosine similarity), as well as with sentence embed-
dings of other classes derived from seedi, such
as pasti, bani, nonsensei, etc. (with an assumed
lower cosine similarity).

Figure 3 displays the results of the comparison
across classes. Each row is normalized using min-
max normalization. Darker hues indicate closer to
1, while lighter hues indicate scores near 0. We
call it normalized predictability score, measuring
how well the embeddings of the target classes are
predicted from the transformation vectors of the
source class.

The results suggest that the diagonal cells typi-
cally get the darkest hue and the remaining cells
in the same row often display lighter shades. It im-
plies a generally higher cosine similarity between
the predicted embeddings and the actual embed-
dings of the target class compared to embeddings
of other classes. In particular, the sentence embed-
ding of ‘ban’ is the best-predicted class, although
its cosine similarity score discussed in Section 5.1
does not rank high among the 13 classes.

However, the predictability varies across transfor-
mation classes. In the results of SBERT, the predic-
tions of four classes (‘different meaning’, ‘minimal

Figure 3: Cosine similarity between true and pre-
dicted embeddings. (Each row is normalized
with min-max normalization. Darker hues indi-
cate scores closer to 1, while lighter hues indicate
scores near 0.)

change’, ‘non-sense’, and ‘paraphrase’) display the
highest cosine similarity scores with embeddings
in a different class. For instance, the predicted
embeddings of ‘different meaning’ show the high-
est cosine similarity with ‘minimal change’ embed-
dings, while the predicted ‘non-sense’ embeddings
correlate most strongly with the true embeddings
of ‘different meaning’. Additionally, the cosine sim-
ilarity values of the ‘formal sentence’ and ‘simple
sentence’ classes are not sufficiently distinguished
from the values of other classes.

We note that LaBSE outperforms SBERT in this
experiment. There is only one instance of incongru-
ence: predicted ‘paraphrase’ embeddings exhibit
the highest cosine similarity with sentence embed-
dings of ‘different meaning’. The generally better
performance of LaBSE can also be observed in
Figure 3.

6. Cluster Separation Test

This section analyzes whether the transformation
vectors of the same class cluster together and
are separated from other classes in space. We
present a cluster separation test using the Calinski-
Harabasz index.

CH =

[∑K
k=1 nk∥ck − c∥2

K− 1

]
/

[∑K
k=1

∑nk
i=1∥di − ck∥2

N−K

]
(2)

The Calinski-Harabasz index4 (Equation 2) mea-
sures the ratio of between-cluster dispersion to

4K means the number of clusters; nk is the number of
points in kth cluster; ck represents the number of points
and centroid of the kth cluster; c is the global centroid;
N is the total number of data points.
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Figure 4: Pairwise Calinski-Harabasz index of transformation vectors from SBERT and LaBSE.

SBERT LaBSE mixSBERT mixLaBSE

28.415 44.885 0.563 0.565

Table 3: Cluster separation test on 13 classes

inter-cluster dispersion. A higher value signifies
well-separated clusters (Caliński and Harabasz,
1974).

In this study, we compute CH-Index in two ways.
Firstly, we compare the performance of the two
models by assessing transformation vectors in the
13 classes. Secondly, we conduct a pairwise test to
assess the degree of separation of transformation
classes in pairs.

We establish benchmarks for the CH Index by
mixing up the transformation labels of the dataset.
The CH index scores for 13 classes are shown in
Table 3. LaBSE has a better performance than
SBERT. Nevertheless, both models significantly
outperform the baselines. Figure 4 presents the
results of pairwise testing. Two baselines of mixed
transformation labels have CH index values rang-
ing from 0.392 to 0.899 for SBERT, and from 0.332
to 1.556 for LaBSE.

We observed that ‘ban’ and ‘future’ generally
exhibit higher values, suggesting their better sepa-
ration from other classes and within-class cohesion.
In the results of LaBSE model, ‘simple sentence’ is
the class with the highest CH-index scores, fol-
lowed by ‘ban’, ‘future’ and ‘possibility’. While
for SBERT, the advantages of ‘simple sentence’
and ‘possibility’ classes are not observed. It indi-
cates the discrepancies in the distribution patterns
of transformation vectors in space obtained from
SBERT and LaBSE.

Additionally, pairwise tests also show that other
classes such as ‘different meaning’, ‘minimal
change’ and ‘paraphrase’ often fall below the

benchmark in both SBERT and LaBSE, suggest-
ing insufficient separability of their transformation
vectors in these classes.

7. Classification Task

In previous experiments, we utilized methods such
as visualization, sentence embedding prediction,
and clustering separation to assess the quality of
transformation vectors from SBERT and LaBSE.
This section introduces supervised methods to in-
vestigate whether transformation vectors can be
decoded to predict transformation labels.

The classifiers used in our experiments con-
sist of Random Forests, Support Vector Machine
(SVM), and K-Nearest Neighbors (KNN). Depend-
ing on their unique strengths, these classifiers
may decode transformation vectors in distinct ways.
Random Forests use specific criteria and feature-
based splitting to classify data (Breiman, 2001;
Cutler et al., 2012). SVM has the ability to map in-
puts into high-dimensional spaces using the kernel
trick (Schölkopf et al., 1999; Smola and Schölkopf,
2004). KNN adopts a local distance-based ap-
proach and assigns labels based on the known
labels of neighbouring data points. We intend to
investigate the potential of these diverse methods
to extract semantic information (transformation la-
bels) from transformation vectors.

In addition to the sentence embeddings from
SBERT and LaBSE, we also generated TF-IDF
weighted encoding of all vocabulary in COSTRA.
The additional TF-IDF embeddings aim to assess
the influence of lexical factors on classification per-
formance. In other words, we aim to test whether
certain words are unique to a particular transforma-
tion class, thereby potentially enhancing the predic-
tion accuracy. Similarly to other tasks in our study,
we use the mixed-up SBERT as our baseline.

The results in Figure 5 indicate high F1 scores
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Figure 5: F1-scores for transformation label prediction

for four transformation classes: ‘ban’, ‘possibility’,
‘past’, and ‘future’. The comparably high F1 score
of TF-IDF embeddings suggests the substantial
impact of the lexical factor on the predictability of
these classes. In other words, sentences in these
four classes tend to contain particular words that
are unique to a class, contributing to their superior
predictability.

Additionally, ‘generalization’ from LaBSE exhibits
F1 scores higher than those of SBERT and TF-IDF.
It on the one hand suggests that LaBSE outper-
forms SBERT in these two instances. On the other
hand, it also implies that LaBSE may have a better
ability to capture semantic information beyond the
word level.

8. Discussion

In this section, we compare the results of the eval-
uation tasks implemented in our study and then
discuss the separability of transformation vectors
and to what extent the semantic features can be
decoded from sentence embeddings.

8.1. Summary of Results in Evaluation
Tasks

Transformation vectors in four transformation
classes (‘ban’, ‘possibility’, ‘past’, and ‘future’)
demonstrate good performance in almost all eval-
uation tasks: dimension reduction & visualization,
sentence embedding prediction, cluster separation,
and classification, and show consistent results in
both models. This is in line with their pronounced
separability from other classes. In contrast, some
classes exhibit weak performance in almost all eval-
uation tasks, for instance, ‘paraphrase’, ‘minimal
change’, ‘formal sentence’, and ‘nonsense’.

Nevertheless, certain classes display varying
performance across our four evaluation tasks and
two models. For example, the LaBSE transforma-
tion vectors in the ‘simple sentence’ class excel in
the sentence embedding prediction task (Figure 3)

and the cluster separation test (Figure 4), but not
in the classification task as shown in Figure 5.

The dimension reduction and visualization tech-
niques may provide insight to speculate the rea-
sons for such variations. Figure 1 displays that
the clusters of the ‘opposite meaning’ and ‘sim-
ple sentence’ classes are formed only by some of
the vectors in these two classes. The remaining
data points within these two classes are dispersed
throughout the space. This property (some data
gathered together but some dispersed in space
for a class) introduces complexity when assessing
their separability with a single value in evaluation
tests. Different evaluation methods may emphasize
distinct properties of the vectors in a class and de-
code them in different manners. This could provide
insight into the observed variations in performance
for these classes across different evaluation tasks.

This analysis also suggests that while dimension
reduction is criticized for the loss of information in
high-dimensional spaces, it can instead offer sup-
plementary insights when combined with visualiza-
tion.

8.2. Separability Analysis

In the section above, we discussed that transforma-
tion vectors in some classes are not separable from
others. It could be attributed to at least two factors.
One factor is the inherent difficulty in distinguishing
these classes from the rest, while the other factor is
related to the limitations of the models themselves.

We notice that certain classes are inherently
challenging to separate. For instance, sentences
in the ‘minimal change’ class are less distinguish-
able from those in the ‘different meaning’ class.
‘Paraphrase’ is less distinguishable from ‘simple
sentence’, ‘formal sentence’ and ‘nonstandard sen-
tence’, simply because all of them are also a form
of a paraphrase. The models’ poor performance in
evaluation tests may potentially correspond to the
uncertainty inherent in human judgment. In other
words, these classes might also pose difficulties in
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differentiation even for human assessors.

The second reason for weak performance in
some tests lies in the models’ limitations in cap-
turing semantic information. For example, both
models show relatively low prediction accuracy
for ‘nonsense’ and ‘opposite meaning’ (with F1 for
‘nonsense’ < 0.4; ‘opposite meaning’ < 0.5), two
types that are easy to detect for human assessors.

The good classification results of TF-IDF embed-
dings also reveal that the separability of classes
can to a considerable extent stem from purely lexi-
cal factors. This observation suggests that inferring
meaning beyond the lexical level is difficult for the
two models, and sentence embeddings generated
by current models lack a comprehensive represen-
tation of sentence meaning.

9. Conclusion

Our study analyzed sentence embeddings gener-
ated from two multilingual models: SBERT and
LaBSE, evaluating using the Czech COSTRA
dataset to test whether some semantic information
is preserved and can be decoded from sentence
embeddings.

Our visualization firstly demonstrates that trans-
formation sentences are situated in proximity to
their respective seed sentences in the vector space.
To assess the semantic attributes of 13 transforma-
tion classes exemplified in the COSTRA dataset,
we examined transformation vectors, obtained by
subtracting seed embeddings from sentence em-
beddings to eliminate the original seed sentence
information.

In addition to dimension reduction and visual-
ization, we conducted three other evaluation tasks:
sentence embedding prediction, cluster separation,
and transformation label classification. Our find-
ings indicate that both models exhibit comparable
performance, with LaBSE slightly outperforming
SBERT in certain evaluation tasks.

Furthermore, our analysis highlights that trans-
formation vectors for some classes show better
separability from other classes and reach better
evaluation scores in evaluation tasks. However,
the good outcome may be attributed to specific
words that are exclusive to a particular class, as
suggested by similarly good results obtained using
simple TF-IDF. Although the lower performance ob-
served in other transformation types may be due
to their inherent difficulty in class detection, the
limitations of the current models are not negligi-
ble: inferring meaning beyond the lexical level has
proven to be challenging for them.
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Abstract 
This article discusses the challenges to meaning representation of terms posed by a quantum theory of terms (QTT) that 
was recently reported. We first summarize this theory and then highlight the difficulties of representing quanterms, which is 
the name we coined for the view that the QTT has of terms as quantum systems by analogy with quantum objects in quantum 
mechanics. We briefly summarize the representation practices followed to date to record and represent terminology. We 
use findings reported in the literature to model both terms and quanterms and found that current representations of terms in 
specialized repositories are collapsed quanterms at the expense of other states of the original quanterm. In this work, both 
quanterms and collapsed quanterms are mathematically modelled following formulations used in quantum mechanics. 
These formulations suggest that representations of quanterms need to include information about the probabilities of 
quanterm states and the role they play in the entanglement of terms for phenomena such as specialized collocations.  

Keywords: terminology, quantum theory of terms, meaning representation 

 

1. Introduction 

In terminology, a term is operatively defined as a 
conventional, non-compositional lexical unit linked to 
a meaning exclusively used in a specialized domain, 
e.g., medicine, architecture, etc. (Burgos & Vásquez 
2024). Traditionally, mainstream terminology theories 
and models define the term as a bidimensional object 
(see, for example, ISO 704, 2013, pp. 36-37; Cabré, 
1999, p. 35; Faber and L’Homme, 2022, p. 355) with 
the term and a linked concept or meaning as the two 
dimensions of this representation. 

However, Burgos et al. (2024) recently reported a 
quantum theory of terms (QTT), which models the 
term as a dynamic, multidimensional object with the 
characteristics of a quantum system. Quanterms, as 
they could be called, challenge the representation 
models that have been so far used to represent terms 
and their meanings. The implications of this quantum 
model may have a significant impact in computational 
linguistics, language engineering, lexicography and 
terminography, terminology theory and other fields 
related to knowledge representation, understanding 
and generation. 

This paper highlights these challenges in the light of 
the QTT. In order to attain this, we summarize the 
most common representations of the term that have 
been used to date. Then, we briefly introduce the QTT 
as well as an abstract representation of quanterms. 
This background helps pave the way for a discussion 
section about the challenges of operative meaning 
representation of quanterms. We close with some 
conclusions and ideas for forms of representation. 

2. Representation of terms 

One of the most widespread representations of terms 
is the lexicographic representation, that is, the 
definition of terms in specialized dictionaries. 
Likewise, this representation has been the starting 
point of other forms of representation (e.g., Adelstein 

2007, p. 72; Mahecha & De Cesaris 2011; Berri, 2013; 
Burgos & Vásquez 2024). For example, the 
lexicographic definition is frequently turned into 
Pustejovsky's generative lexicon model (1995, 2011), 
which, in turn, uses feature structures akin to those 
proposed by Carpenter (1992) to represent lexicon 
entries based on meaning features. These structures 
have also been utilized in other frameworks such as 
unification grammars (see, for example, Francez & 
Wintner, 2011) or semantic theories (e.g., naive 
semantics, Dahlgren, 1988). Naturally, terms also are 
represented in terminological databases generally 
following an onomasiological philosophy. This 
basically means that each term has one single sense 
and that each database entry or record hosts only one 
concept or sense together with the term or terms that 
denote it (cf. WordNet, Fellbaum 1998). Specialized 
taxonomies or ontologies such as SNOMED CT follow 
a similar approach. 

According to Burgos et al. (2024), what these 
representations have in common is that they are static 
and limited, like pictures of a particular state of the 
term. While we acknowledge the importance of the 
role played by these representations throughout the 
history of knowledge management and 
representation, we believe that a quantum view of the 
term, which we summarize below, calls for 
representation of terms reflecting the complexity of 
quantum systems. 

3. Quantum theory of terms and 
quanterms 

Burgos et al. (2024) view the term as a complex, 
multidimensional object with dynamic properties. This 
complexity is the result of a number of states and 
dimensions, in which the same term exists 
simultaneously. At the moment of observation or 
measurement, the term collapses into a particular 
state and updates or freezes a set of its properties 
according to the collapsed state. We will see below 
that this collapse may also happen due to the term’s 
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interaction with its environment because of a quantum 
phenomenon known as decoherence. The property of 
having several states at the same time is called 
superposition, which is described below.  

3.1 Superposition of terms 

It is this complex nature described above that 
motivates Burgos et al.’s Quantum Theory of Terms 
(QTT) by analogy of terms with instances of quantum 
superposition. Superposition in quantum mechanics 
describes an object that has several different 
simultaneous states (Miret 2015, p. 83). In the 
medical domain, this superposition was exemplified 
by Burgos (2024) with two instances of a medical 
condition, which were given two distinct 
denominations, namely, alien hand and anarchic 
hand. These two terms turn out to be not just simple 
variants, but they seem to be motivated by two states 
of the term, each with its own configuration of features 
in the conceptualization of the syndrome at two 
different observation moments. Thus, the first state 
and its denomination reflect the sensation that the 
hand belongs to another person, while the latter 
indicates that the hand appears to refuse to obey its 
owner.  

Additional evidence was reported by Burgos and 
Vásquez (2024) based on an experiment with a 
language model in the form of word embeddings also 
in the clinical domain in Spanish. They observed that, 
while alteration is the prototypical semantic class for 
the term mutation in specialized repositories, the data 
show semantic class variation for the same term in the 
same domain. Two additional semantic classes were 
detected, namely entity and process. Each of the 
contexts in which each variant of mutation occurs 
makes a distinct observation in the dimension of 
conceptual variation with effects on the term’s 
properties. It is interesting to note that this variation 
may also impact the agency of the unit, i.e., whether 
mutation semantically acts as experimenter or agent.  

One interesting trait of quantum superposition is that 
some of the possible states of a quantum system may 
be mutually exclusive. This happens, not only with the 
two perceptions of alien hand and anarchic hand, but 
also with the case of mutation above, since entities 
and processes are mutually exclusive. This non-
coexistence of feature values has a significant impact 
in the way these terms are represented using, for 
example, a concept tree of the domain.   

The quantum superposition of terms suggests the 
existence of basic conceptual variants, i.e., variants 
that do not change into another concept, but rather 
undergo a change in some of the features of the same 
concept. Using mutation as an example, and 
assuming we could map each of its states and assign 
its features a numerical value, we would have a first 
graphic model of term superposition, that is, three 
observations or states of mutation as a quanterm, 
which we illustrate in Figure 1. 

The figure shows three different states of mutation on 
the z-axis where the values of features 1, 3, 4, and 6 
(e.g., part of speech, predicativity, composition, and 
form) remain constant across states, but the values of 

features 2, 4, and 7 (e.g., class, agency, and function) 
change depending on the moment of observation. 
Visually, this variation can be seen as a change in the 
color tones for changing features compared to the 
uniform tones of the stable features. Theoretically, the 
term in isolation simultaneously has a number of 
states whose properties can only be determined at the 
moment of observation. Thus, the model in Figure 1 
represents that three states of mutation coexist in the 
conceptual dimension and that, in each of these 
states, its class, agency, and function can change 
depending on the moment and dimension the 
quanterm is observed.  

 

Figure 1. Model of mutation as a quanterm of three 
states 

The model in Figure 1, however, can become more 
complex as the number of features, feature values, 
observations, and dimensions increase. The potential 
states of the quanterm in a more intricate scenario 
could therefore be represented by a matrix that 
combines these four factors. Regarding the possible 
number of dimensions, it is reasonable to think that it 
can always increase as more is known about the 
terminological phenomenon. However, we currently 
can predict six dimensions: dialect, level of 
specialization, social function, concept, domain, and 
time (see Table 1). 

 

Superposition dimensions 

  

  

 

 

 

Time 

  

Dialect 

Specialization 

Social function 

Concept 

Domain 

Table 1: Dimensions where superposition can take 
place. 
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The reader may notice that these dimensions, except 
for domain, are related to a particular type of 
terminological variation reported in the literature (see 
Freixa, 2005). Time is an overarching dimension and 
accounts for diachronic aspects of the other five, 
including metaphorical phenomena. On the other 
hand, the domain dimension accounts for terms that 
can be at a crossroads between two or more domains 
or subdomains (e.g., cell in biology, veterinary 
science, and medicine). In each of these dimensions, 
the term can potentially take on a new feature or a 
different feature value in a particular observation. 

As the quanterm becomes more complex, Figure 2 
attempts to represent multiple states and features of 
a hypothetical quanterm in multiple dimensions. 

 

Figure 2. Hypothetical quanterm 

For the model in Figure 2, we use a normal distribution 
of hypothetical feature values. It is a conservative 
representation based on the assumption that the 
quanterm is reasonably stable even though its 
features can be variable; otherwise, it would end up 
being a different concept. Visually, this stability can be 
seen as a lot of green and blue in the middle area of 
the graph with some peaks of color variations for 
significant changes in feature values that occur in 
particular states.  

An example of the potential growth in the number 
features of a quanterm can be seen in palatine tonsil. 
The fact that that this term can be defined from a 
number of different subdisciplines increases the 
number of features that make up this quanterm. 
Depending on when and where the measurement of 
this term happens, its feature configuration would 
change. This occurs because a dentist, for example, 
gives prominence to features that may not be relevant 
to an anatomist, a pathologist, or a speech therapist, 
who would in turn highlight other features of the term 
when they use it in their respective domains while 
being the same quanterm. 

A caveat is necessary here that the model in Figure 2 
does not capture yet another layer of complexity 
added by the interaction or interdependence between 

quanterms. We describe such interaction below, 
which the QTT calls term entanglement. 

3.2 Term entanglement 

In quantum mechanics, entanglement refers to the 
interaction between particles such that the state of an 
object can be used to predict the state of another 
object (Miret 2015, p. 126). This property of 
quanterms allows for measuring the state of one term 
anticipating at the same time information about the 
state of other terms. A hypothetical example of this 
interaction can be the impact that a variation in the 
semantic class of a term in the conceptual dimension 
may have on, say, the agency of another term in the 
same dimension or in a different one. The QTT 
predicts that entanglement can happen even if the 
involved terms are far away from each other.  

 

Figure 3. Entanglement of quanterms 

Figure 3 illustrates possible effects of entanglement 
between two quanterms. The first observation of term 
1 (Obs. 1, Term. 1) predicts that the state of Term 2 
(Obs. 1, Term. 2) changes in a positive correlation. 
That is, if we assign numerical values to the features 
of Term 1, the values of Term 2 would change in the 
same direction. In the second observation of the same 
term, however, the correlation is negative. In other 
words, if the values of Term 1 increase, those of the 
other one decrease. 

Besides other phenomena, entanglement of 
quanterms can explain specialized collocations. For 
example, a predicative term like cancer often selects 
terms referring to organs or tissues, such as breast, 
prostate, stomach, skin, etc., to produce collocations 
such as breast cancer, gastric cancer, prostate 
cancer, etc. Entanglement allows for predicting a 
correlation between the feature values of cancer and 
those of its collocation bases. Thus, we could 
reasonably anticipate that if cancer has a high value 
for the feature alteration (i.e., disease), the value of 
the feature disease target will proportionally increase 
in terms like prostate or breast. Let us use the 
definition of prostate in the Mosby Medical Dictionary 
(Villanueva et al. 1999) to clarify this point. Prostate is 
defined and anatomically described as a male gland, 
but there is no feature in its definition indicating that 
this gland is a target of cancer, perhaps because its 
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value in this measurement of the term is very low. The 
feature disease target, however, is activated or its 
value increases in the domain dimension of oncology 
in positive correlation with the value of the feature 
alteration of terms like cancer. This entanglement, 
though, may not occur to the same extent for prostate 
in other domains such as anatomy or urology, which 
seems to be the state defined by the Mosby Dictionary 
above. The QTT attributes particular definitions or 
conceptualizations of terms to quantum decoherence, 
a phenomenon that is described below. 

3.3 Decoherence 

There are two reasons why a quantum system may 
collapse into one of its states, namely, the mere act of 
measuring it and its interaction with its environment. 
In quantum mechanics, this collapse is known as 
decoherence. The term is considered a quanterm, 
i.e., a quantum system, because, in isolation, it is in 
an indetermined number of different states at the 
same time, that is, it can be defined in multiple ways, 
even though some of those definitions may seem to 
conflict with each other. Any term in abstract, without 
any further definition or textual context, is a quanterm. 
Measuring a term may take the form of defining it or 
conceptualizing it, which involves determining the 
semantic features that delimit its specialized meaning. 
When this measuring operation takes place, the 
multiple states of the quanterm collapse into the 
meaning or conceptualization that it has been given, 
and it becomes a collapsed term, like the ones we 
currently see represented in dictionaries or 
ontologies. 

Decoherence also happens as soon as the quanterm 
interacts with its environment, that is, with other terms 
and expressions in the context of a specialized text. 
The more specialized and specific the context, the 
more delimited its state is. We have an example of 
this explained above; the quanterm “mutation” 
collapses into a different state (entity, alteration, or 
process) depending on what environment it interacts 
with. It must be considered also that decoherence 
may sometimes be conditioned by a term 
entanglement.  

4. Quanterm representation challenges 

It is important to clarify that quanterm superposition 
does not refer to polysemy, but to the same term, 
concept or sense, which undergoes at a higher level 
a number of states (i.e., variations) at the same time, 
even if they are mutually exclusive, without changing 
into another concept. Polysemy has been 
successfully handled by lexicographic 
representations with a semasiological orientation (i.e., 
general dictionaries) and semantic networks, such as 
WordNet, as well as by formalisms based on qualia 
structures, such as the one in Figure 4 reported by 
Núñez Torres (2013). 

 

 
1 SNOMED CT Starter Guide at 
https://confluence.ihtsdotools.org/display/DOCSTAR
T 

[Door (x ˅ y)  
QUASTR [ FORM: physical_object´ (x), frame´ (y)  

CONST: obstruction´ (x), aperture´ (y)  
TELIC: BECOME closed´ / open´ (x), do´ (z, 
[go.through´ (z, y)])  

          AGENT: artifact´ (x ˅ y)]] 

Figure 4. Representation of a collapsed state of the 
polysemous term door 

Of a similar nature are onomasiological specialized 
resources such as terminological databases and 
ontologies. All these resources, however, always 
record collapsed states of quanterms. See, for 
example, the representation of the collapsed concept 
myocardial infarction in SNOMED CT in Figure 51, 
which, interestingly, seems to be also an instance of 
term entanglement, also known as a specialized 
collocation. 

 

Figure 5. Representation of a collapsed state of 
myocardial infarction 

The extended practice of representing terms in a 
collapsed form may be due to the difficulty of 
representing more complex systems, but the likely 
reason for this appears to be that terms had not been 
seen before as the quantum systems proposed by the 
QTT. Due to their complexity, the representation of 
quantum systems is generally mathematical. The 
mathematical formulation of a quantum system is 
independent of the type of system; therefore, we can 
represent a quanterm of an undetermined number of 
states with the equation in Figure 6: 

 

Figure 6. Mathematical formulation of a quanterm 

The psi symbol at the left of the equation is the 
conventional notation for a system in superposition, 
that is, a quanterm in our case. It is equal to the sum 
of the amplitude probabilities of observing particular 
states, where n stands for the number of states of the 
system.  
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In contrast, the mathematical formulation of collapsed 
quanterm representations, such as the ones in 
Figures 4 and 5, is simpler: 

 

Figure 7. Mathematical formulation of a collapsed 
quanterm 

This equation uses the projection operator Pj to show 
the projection of the quantum system onto the state 
|aj⟩ associated with the measurement outcome aj (i.e., 
a definition, conceptualization, feature structure, etc.). 

The main challenges related to the QTT are, then, 1) 
to represent quanterms either by using traditional 
formats, which seem to be limited for this purpose, or 
by innovating more sophisticated formats and 2) to 
take advantage of such representations to use the 
potential of quanterms for faster and more efficient 
and intelligent language processing tasks. In quantum 
mechanics, an electromagnetic wave is sent to the 
quantum object to verify superposition and to learn 
about the potential states of the object. According to 
the equation in Figure 6, the key knowledge learned 
seems to be the probability of a state happening at a 
given observation of the object. In times of deep 
learning and artificial intelligence, language models 
may play the role of this wave to determine such 
probabilities.  

The representation of a quanterm like mutation should 
include, then, the probabilities to predict not only its 
potential classes but also other variations in its 
features. These probabilities will make even more 
sense if they are conditioned by and linked to any 
relevant entanglement with other quanterms and with 
its context itself.  

On the other hand, the potential combination of 
efficient representation of quanterms with modern 
supercomputing may be necessary. The optimal 
utilization of quanterms and their representation may 
add to the newly born quantum semantics landscape 
(see an example of a work that attempts term 
entanglement in Surov et al., 2021).  

5. Conclusions 

This paper presents some of the challenges of 
meaning representation of terms in the light of a 
quantum theory of terms (QTT) recently reported by 
Burgos et al. (2024). Due to the novelty of the QTT, 
we summarized the theory and coined the expression 
quanterm to denote terms viewed as quantum 
systems. Our focus in this work, however, was on the 
limitations of representation forms traditionally used in 
terminology and on the need for innovative 
representations to respond to the nature of 
quanterms. We highlighted that those traditional 
representations of terms actually record collapsed 
quanterms at the expense of other potential states 
(i.e., conceptual variations) of the documented terms.  

A comparison of the mathematical formulation of 
quanterms versus collapsed quanterms showed the 

complexity that is being lost in current 
representations. It was noted that the probabilities to 
predict particular states of a quantum system are key, 
not only to this mathematical formulation, but also to 
potential envisioned forms of quanterm 
representations. Finally, term superposition and 
entanglement may play an important role not only in 
term extraction and collocation identification but also 
in text categorization and knowledge representation, 
understanding, and generation.  
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Abstract
In this paper, we introduce a novel meaning representation, which is based on AMR but extends it towards a visual
ontological representation. We visualize concepts by representative images, and roles by emojis. All concepts are
identified either by PropBank rolesets, Wikipedia page titles, WordNet synsets, or Wikidata lexeme senses. We have
developed a Web-based annotation environment enabled by augmented browsing and interactive diagramming. As
first application, we have implemented a multilingual annotation solution by using English as anchor language and
comparing it with French and Japanese language versions. Therefore, we have extended our representation by a
translation deviation annotation to document the differences between the language versions. The intended user
groups are, besides professional translators and interpreters, students of translation, language, and literary studies.
We describe a first use case in which we use novels by French authors and compare them with their English and
Japanese translations. The main motivation for choosing Japanese is the soaring popularity of Japanese courses at
our university and the particular challenges involved with trying to master this language.

Keywords: meaning representation, AMR, visual annotation, Web-based annotation environment, multilingual
annotation, translation annotation, Japanese

1. Introduction

In recent years, there have been many significant
developments in the field of designing meaning
representations. The most influential approach
has been Abstract Meaning Representation (AMR),
which again has inspired a wealth of research work
to develop parsers and other tools for AMR.

Building on these great efforts, we have ex-
tended AMR towards a multilingual representation
by adding a translation deviation annotation. Orig-
inally, its main intended use has been within the
scope of a more far-reaching international research
initiative with the aim to assist interpreters and trans-
lators with the task of familiarizing themselves with
new domain-specific topics (Wloka et al., 2022).

Beyond that we also target educational applica-
tions for students of translation, literary, and lan-
guage studies. In this context we intend to en-
able classroom scenarios with individual annota-
tion tasks, where the personal knowledge bases
can be compared and aggregated for instructional
use.

We have implemented a use case of a Web-
based annotation environment, which makes it pos-
sible to study novels by French authors and com-
pare them with their English and Japanese trans-
lations. Japanese was chosen mainly because of
the global manga craze, which led to an unprece-
dented increase in demand for Japanese language
courses and, consequently, technological support.

As an important prerequisite for such a scenario
we use English as anchor language and map all
concepts to disambiguated unique sense identifiers.

Each concept is visually represented by an image.
For Wikipedia pages, we allocate and download
the image through the corresponding Wikidata en-
try. Other concepts are associated with images
from a collection, which we created in our previous
research (Winiwarter and Wloka, 2022). This im-
age database contains currently over 3,500 images
from Wikimedia Commons of which more than 60%
represent abstract concepts. All images are manu-
ally selected and annotated with semantic tags and
links to WordNet synsets. We also visually repre-
sent all roles by using emojis. For that purpose, we
map core roles to suitable thematic roles.

For the rendering at the Web client, we use an
interactive diagramming library so that the user
can freely edit any aspect of the annotation to of-
fer optimal customizability. For example, the user
can update the mapping rules from AMR concepts
to uniquely identifiable sense definitions, the links
between concepts and links, as well as the links
between roles and emojis.

After the successful evaluation of our use case
implementation in university courses and with pro-
fessional translators and interpreters, we will make
our Web-based annotation environment freely avail-
able at GitLab.

This paper is organized as follows. In Sect. 2
we provide related work on topics relevant for this
research including some background on Japanese
as far as it is helpful for a better understanding; in
Sect. 3 we first discuss the design of the meaning
representation and user interface; in Sect. 4 we
then describe implementation details; and in Sect. 5
we finish with an outlook towards future work.
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2. Related Work

2.1. Meaning Representations
The annotation of sentences with meaning repre-
sentations has established itself in the last decade
as a thriving research field in computational lin-
guistics (see Abend and Rappoport, 2017). The
most influential and most actively promoted ap-
proach has been the Abstract Meaning Represen-
tation1 (AMR) (Banarescu et al., 2013). There are
many parsers available, the best2 parser being
at the moment Lee et al. (2022). The SPRING
parser (Bevilacqua et al., 2021) can be tried via
a Web interface3, which also offers a nice visual-
ization. One point of criticism concerning AMR’s
reliance on numbered, not directly interpretable
core arguments, is addressed by the WISeR mean-
ing representation (Feng et al., 2023), which maps
them to thematic roles. There also exist several
AMR annotation tools, one recent Web-based solu-
tion is CAMRA (Cai et al., 2023).

AMR has been recently extended to the Uni-
form Meaning Representation4 (UMR) (Gysel et al.,
2021). It enhances AMR by adding support for
other languages (in particular low-resource lan-
guages), and a document-level representation
capturing intersentential coreference and tempo-
ral/modal dependencies. There is an upcoming
workshop to kick-start the development of UMR
parsers5.

According to the UMR guidelines6, UMR fully
embraces radical construction grammar as a theo-
retical foundation (Croft, 2001, 2022), which was
designed with typological (Croft, 2002) applicabil-
ity as main motivation, i.e. to study and classify
languages according to their structural features to
allow their comparison. Radical construction gram-
mar considers word classes and other syntactic
structures as language-specific and construction-
specific (Croft, 2023).

2.2. Multimodality
Multimodal enhancements of lexical resources
have a long history but only recently gained new mo-
mentum due to the strong interest in research on vi-
sual question answering (VQA) (Lerner et al., 2024)
or multimodal large language models (MLLMs) (Be-
wersdorff et al., 2024). One example of an attempt

1https://amr.isi.edu/
2https://paperswithcode.com/task/

amr-parsing/latest
3http://nlp.uniroma1.it/spring/
4https://umr4nlp.github.io/web/
5https://umr4nlp.github.io/web/

UMRParsingWorkshop.html
6https://github.com/umr4nlp/

umr-guidelines/

towards a multimodal semantic representation is
VoxML (Pustejovsky et al., 2016).

Regarding the mapping of images to Word-
Net synsets, there exists the ImageNet collection,
which maps ca. 1,000 images to each synset (Deng
et al., 2009). Another effort to assign cliparts to
synsets was discontinued after illustrating only 581
synsets (Bond et al., 2009). A much more influential
resource is Wikipedia, which has been increasingly
enhanced with visual representations. However,
the number of images varies widely across lan-
guage versions. The most comprehensive recent
effort is certainly BabelNet7 (Navigli et al., 2021)
with the annotation tool Babelfy8 (Moro et al., 2014)
and the latest BabelPic9 (Calabrese et al., 2020)
dataset targeting non-concrete concepts.

There also exists a subfield of cognitive linguis-
tics dealing with identifying and analyzing language-
image relations in multimodal texts, e.g. research
on intersemiotic convergence (Hart and Queralto,
2021). One central term in this context is grounding,
which is interpreted in quite different ways by natu-
ral language processing and cognitive science re-
searchers (see Chandu et al., 2021). Whereas nat-
ural language processing emphasizes the linking of
text to other modalities, cognitive science focuses
on how speakers build the common ground to share
mutual information. During this cognitive process,
a set of abstract symbols acquire meaning through
perceptions and situated actions (Chen et al., 2023)
in analogy to the concept of construal in cognitive
linguistics (Langacker, 2008), which accounts for
choosing alternative linguistic expressions for ex-
pressing the same situation (Divjak et al., 2020).

The use of pictorial illustrations has a long his-
tory in language teaching didactics and there ex-
ist numerous empirical studies that show their ef-
fectiveness at all levels of proficiency, e.g. Tahiri
(2020). Nonetheless, to the best of our knowledge,
we are not aware of any related work with the aim
of creating visual representations of meaning rep-
resentations of sentences.

2.3. Translation Deviations
While there is an ample supply of tools for transla-
tors (Rothwell et al., 2023), there have been com-
paratively few research efforts on annotating trans-
lation deviations. One example is Deng and Xue
(2017), who analyzed deviations between Chinese
and English texts produced by machine transla-
tion. There exists a related research work on creat-
ing corpora of machine translated documents with
annotated translation errors (Fishel et al., 2012),

7https://babelnet.org/
8http://babelfy.org/
9https://sapienzanlp.github.io/

babelpic/
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and a more recent work on creating an English-
French-Chinese corpus annotated with translation
relations (Zhai et al., 2018).

2.4. Japanese Language
Japanese is an agglutinative SOV language with
topic-comment sentence structure. Phrases are ex-
clusively head-final, and compound sentences are
strictly left-branching. The most noticeable char-
acteristics for language students are the missing
articles, no distinction between singular and plural,
no gender, no conjugation for person, a complex
system of honorifics, and a high level of ambiguity,
e.g. by omitting the subject or using zero anaphora.
There exist many excellent reference grammars,
e.g. Kamermans (2010); Kaiser et al. (2013), and a
lot of research activity on Japanese linguistics (see
Hasegawa, 2015, 2018).

One of the main obstacles for getting proficient in
Japanese is the complex writing system (see Mat-
sumoto, 2007; Mori, 2014; Paxton, 2019). It uses
a combination of logographic kanji and two syl-
labaries hiragana and katakana. Kanji are adopted
Chinese characters, since 2010 Japanese students
are required to learn 2,136 so-called jōyō kanji in
primary and secondary school. Most kanji have
more than one reading depending on the context.

The most important lexical resource for
Japanese is the Japanese Multilingual dictionary
(JMdict) (Breen, 2004), which can be searched
online in combination with many other lexical
resources via the Online Japanese Dictionary
Service (WWWJDIC)10.

Another very useful online service is Honyaku
Star11. It references numerous dictionaries and cor-
pora and shows translations in context. Honyaku
Star includes currently over 2 million translations.
Japanese is also part of the Open Multilingual Word-
net (OMW) (Bond and Paik, 2012)12, which makes
it possible to assign Japanese words to English
synsets. OMW is easily accessible via the NLTK
toolkit13.

The most prolific linguistic tool for Japanese is
certainly the CaboCha dependency parser (Kudo
and Matsumoto, 2002), which includes the MeCab
part-of-speech and morphological analyzer (Kudo
et al., 2004). More recently, trained pipelines have
been added to the popular natural language toolkit
SpaCy14, another similar solution is UniDic2UD15.

10http://wwwjdic.se/
11http://honyakustar.com/
12https://omwn.org/
13https://www.nltk.org/
14https://spacy.io/models/ja
15https://github.com/KoichiYasuoka/

UniDic2UD

3. User Interface

In this section, we introduce our meaning represen-
tation by providing examples of the visual rendering
in the user interface. The technical details are ad-
dressed later in Sect. 4.

The choices leading to the current user inter-
face design are mainly based on practical experi-
ence and user feedback from previous research
on meaning representation (Wloka and Winiwarter,
2021a), kanji acquisition (Wloka and Winiwarter,
2021b), and multimodal analogies (Winiwarter and
Wloka, 2023) as part of a Web-based Japanese
language learning environment. In all three cited
publications we exclusively used images from Wiki-
media Commons which are embedded in Wikipedia
pages. The decision to restrict ourselves to this
image source was mainly motivated by licensing
issues but also by the valuable contextual seman-
tic information accessible through the links to the
original Wikipedia page(s).

The idea of using emojis to represent roles orig-
inated from our previous research work on using
kanji within educational strategic games to foster
incidental learning (Winiwarter, 2017). In recent
implementations we increasingly relied on emojis
to communicate additional gameplay information.
This way we successfully assisted the user in focus-
ing on kanji by eliminating other textual elements
from the display. For a recent survey of research
on emojis we refer to Bai et al. (2019).

As running example text for showcasing our user
interface design, we use “From the Earth to the
Moon”16, an 1865 novel by Jules Verne, together
with its English17 and Japanese18 translations. Fig-
ure 1 shows the AMR of the first sentence of the
English version displayed in the AMR Editor19. The
corresponding VOLARE representation is shown
in Fig. 2. Each concept is visualized by a repre-
sentative image. Whenever the user hovers over
a concept, a tooltip with the concept identifier is
displayed. For the ease of the reader, we have
added the tooltip texts to Fig. 2 and the following
user interface figures. A click on a concept shows
an enlarged version of the image as well as the con-
cept identifier and gloss in the bottom right corner
of the screen.

In addition to PropBank rolesets, color-coded in
teal, we can also observe Wikipedia page titles as
concept identifiers shown in magenta:

• club → Club_(organization),

16https://fr.wikisource.org/wiki/De_la_
Terre_à_la_Lune

17https://en.wikisource.org/wiki/From_
the_Earth_to_the_Moon

18https://ja.wikisource.org/wiki/地球から月へ
19https://amr.isi.edu/editor.html
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Figure 1: Example AMR.

Figure 2: Example of user interface.

• Baltimore → Baltimore,

• Maryland → Maryland,

• War of the Rebellion → American_Civil_War.

As can be seen, this leads to a more concise and
uncluttered representation of named entities.

AMR roles are visualized using emojis, the orig-
inal roles are available as tooltips. For core argu-
ments, we choose the emoji according to the role
indicated in the PropBank frame file and show the
gloss as tooltip. Inverse roles are indicated by in-
verted arrows and the line color violet. On the right
side in Fig. 2 we display the sentence in English,
French, and Japanese. By clicking on a word in
either the French or Japanese version, lexical infor-
mation with English glosses can be displayed, e.g.

for the French word “pendant” in this case.
One important extension of AMR are the two

translation deviation annotations (TDAs) in Fig. 2.
The left one represents the word “très” in the French
original, which is missing in the English translation.
It is mapped to the WordNet synset very.r.01
and therefore color-coded in yellow.

To keep the representation manageable, we only
show an emoji, however, the detailed information
can still be displayed in the bottom right corner.
The relation for the role :degree ( ) is drawn
as dashed line in the color cyan to indicate the
language French.

In the same way, we map the two additional
expressions “en plein” and “真ん中” to the synset
center.n.01 and link it to Maryland by the role
:part ( ). This line is drawn in purple to indicate
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Figure 3: Example of user interface with co-reference.

Figure 4: Example AMR with co-reference.

both French and Japanese (just Japanese would
be orange).

In VOLARE, we only use variables for co-
reference. Figure 3 and Fig. 4 give an example. We
use animal emojis as variables (e.g. , ). To
avoid overloading the display, we draw the variable
at the top right corner of the concept and duplicate
it as target of co-referential links.

As can be seen, we visualize negation of con-
cepts with a ⊖ symbol in the top left corner. Ad-
ditional concept types used in this example are
Wikidata lexeme senses (violet) and special AMR
frames (orange).

Finally, the wastebaskets ( ) in the bottom right
corners are translation deviation annotations that
indicate concepts that are missing in the respective
languages. The lexical information shown in Fig. 3
is for the Japanese word “範囲”. It provides the
pronunciation【ハンイ】in katakana, which corre-
sponds to “han'i”, and the English glosses “extent,
scope, sphere, range”.

One common case of translation deviation is the
substitution of one or several concepts in the source
language by alternative concepts in the target lan-
guage. An example of a simple concept substitu-
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tion is shown in Fig. 5. The concept displayed in
the image for the English text is Pocket_pistol,
which is an exact translation of the French original
“pistolets de poche”. However, in Japanese it is
translated as 拳銃, which can be mapped to the
concept Pistol. This deviation is indicated by the
symbol ⇄ in the bottom right corner. By clicking
on the symbol, the user can inspect the detailed
information about this concept.

Figure 5: Example of simple substitution.

A more complex situation is depicted in Fig. 6.
The corresponding AMR snippet is:

(b / become-01
:ARG1 (t / taste

:topic (m / matter
:topic (m2 / military)))

...

In this case, the original French expression for
“the taste for military matters” is “ l’instinct militaire”.
This is indicated by a substitute concept Instinct
with the relation :ARG1 (entity changing) from
become-01 and a relation :mod to Military.
Since the Japanese text offers a precise transla-
tion of the French original, the deviation from the
English version concerns both languages.

4. Implementation

In this section we will describe some details about
the implementation of our Web-based annotation
environment. We first provide a top-level overview
of the system architecture, before we zoom in on
the three subtasks Preprocess, Annotate, and
Customize in separate subsections.

Figure 7 highlights the main components of our
architecture. The users can access the server
through a Web browser by using augmented brows-
ing enabled through Chrome extension APIs20, and
the jQuery21 and jQuery UI22 libraries.

If a student loads a new Wikisource document
in one of the three languages English, French, or
Japanese, it is automatically analyzed and seg-
mented into individual sentences. Each sentence is

20https://developer.chrome.com/docs/
extensions/reference/api

21https://jquery.com/
22https://jqueryui.com/

Figure 6: Example of complex substitution.

Figure 7: System architecture.

augmented with an event handler so that whenever
a student then clicks on a sentence, it is transferred
to the server.

If the Web document is a new text, we use the
interlanguage links to retrieve the other two lan-
guage versions and Preprocess the resulting doc-
ument triplet. For existing texts, we use the sen-
tence index to identify the selected sentence and
Annotate it to produce the VOLARE annotation,
which is sent back to the user. The rendering at
the Web client is realized using the JavaScript in-
teractive diagramming library JointJS23 based on
SVG. Among the many available diagramming solu-
tions, we chose JointJS mainly because it is open

23https://www.jointjs.com/
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Figure 8: Subtask Preprocess.

source software24, feature-rich, compatible with our
augmented browsing scenario, and offers excellent
documentation with many tutorials and demos.

The interactive diagramming library makes it pos-
sible to freely edit any aspect of the presented an-
notation. Each user input is sent to the server and
leads to an update of the personal knowledge base
used to Customize the annotation.

The annotation server is implemented in SWI-
Prolog25 (Wielemaker et al., 2012), which is not
only an obvious choice for natural language pro-
cessing tasks but also provides a scalable Web
server solution (Wielemaker et al., 2008) and li-
braries for efÏciently handling RDF and XML files.

4.1. Subtask Preprocess
Figure 8 gives an overview of the individual steps to
preprocess a new document. In general, we have
mainly written Python scripts for that purpose. In
addition, we make use of the popular NLP toolkits
NLTK and SpaCy. The latter provides trained mod-
els and pipelines for several languages including
English, French, and Japanese.

24https://sourceforge.net/projects/
jointjs/

25https://www.swi-prolog.org

The first step for a new English, French,
or Japanese document is to Retrieve the
document triplet by downloading the other
two language versions from Wikisource. The three
documents are then parsed by using the Python
library Beautiful Soup26 to Extract the individual
sentences. Based on the resulting sentence col-
lection, we can start to Create the AMR and the
lexical information. These two steps can
therefore be performed in parallel. We use the
Python library amrlib27 to produce the AMR, which
is available as SpaCy extension28.

To create the lexical information, in particular
English glosses for French and Japanese words
and expressions, we use the Python library py-
stardict29 to access the French-English and the
Japanese-English StarDict dictionaries30. The lat-
ter is based on the popular JMdict dictionary. In
addition, we look up the personal user dictionaries
(see Sect. 4.3) to include customized entries.

26https://www.crummy.com/software/
BeautifulSoup/

27https://github.com/bjascob/amrlib
28https://spacy.io/universe/project/

amrlib
29https://github.com/lig/pystardict
30https://stardict-4.sourceforge.net/
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Figure 9: Subtask Annotate.

Finally, we use the Python library Pykakasi31

based on the transliteration tool kakasi32 to add
the correct pronunciation to Japanese words with
kanji characters. The last preprocessing step is
to Create the bilingual alignments between
the language pairs English-French and English-
Japanese. Based on the lexical information we
calculate a similarity value to align sentences de-
pending on the comparison with threshold values.
Although 1 : 1 and 1 : 2 are the most common
cases, we are able to handle all theoretically possi-
ble 0 . . . n : 0 . . .m patterns.

For performance reasons, we first execute the
necessary preprossing steps for the sentence that
the user wants to inspect so that the annotation
subtask can start without any significant delay for
the user. This means that the remainder of the
document is analyzed as background process while
the user can already interact with the annotation
at the client. We also keep all the required SpaCy

31https://pypi.org/project/pykakasi/
32http://kakasi.namazu.org/

models and pipelines preloaded to save valuable
initialization time.

4.2. Subtask Annotate
The details of this subtask are depicted in Fig. 9.
Based on the resources created in the previous
subsection, we generate JSON objects for the in-
dividual components of the annotation. We apply
various types of customization data provided by the
user (see Sect. 4.3) in several processing steps.

To produce the list of concepts for rendering in
VOLARE, we first Retrieve the AMR and correct
it according to the AMR revisions. The next step is
to Map the concepts in the AMR to uniquely iden-
tifiable sense definitions. For PropBank rolesets,
we only have to add glosses from our PropBank
KB, which we extracted from the PropBank Frame
Files, which are in XML format. All other concepts,
we first try to match with Wikipedia pages and the
corresponding Wikidata items. The necessary in-
formation is stored in our Wikimedia KB, which we
generated with the use of DBpedia (Lehmann et al.,
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2015) datasets. Next, we attempt to find compati-
ble WordNet (Princeton University, 2012) synsets
via WNprolog. Since existing word sense disam-
biguation solutions such as pywsd33 produced un-
satisfactory results, we have developed our own
model, which we continuously improve based on
user input stored as mapping rules. Any remaining
concepts are mapped to Wikidata Lexemes. Fi-
nally, the user can add domain ontologies to this
collection of ontological resources.

The last missing task for creating the concept
description is to Retrieve the representative
images. We store for all Wikipedia pages in our
Wikimedia KB the Wikimedia Commons download
info so that we can download any images for con-
cepts that are accessed for the first time. WordNet
synsets are mapped to images in our image collec-
tion according to the available synset associations.
The users can add their own concept-image links
to personalize their visualization.

For the relation description, one important task
is to Create the role for display by mapping core
roles to thematic roles according to the defined core
role mappings, and to translate the role names to
emojis by following the role-emoji links. Both can
be freely adjusted to suit the preferences of the
user. The role glosses for the tooltips are retrieved
from the PropBank KB. Finally, if there exists any
translation deviation annotation for this sentence,
we Retrieve the TDA and add it to the JSON array
to complete the VOLARE annotation.

4.3. Subtask Customize
All the processing steps in Fig. 8 and Fig. 9 are
carried out fully automatically. However, in many
cases there is still room for improvement or the de-
sire for adjustments to better adapt the annotation
results to individual needs and preferences.

Since we have already covered many aspects of
customization in the previous subsections, we can
keep the presentation here brief and just summa-
rize the numerous possibilities offered to the user.
Enabled by the interactive diagramming functional-
ity of JointJS, the users can freely edit any VOLARE
annotation to fine-tune it to better suit their personal
preferences. Any user input is sent to the server
where it is processed and leads to an update of the
affected resources.

Any changes to the original AMR are stored in the
AMR revisions and used to correct the AMR if the
sentence annotation is displayed again in future. In
the same way, any translation deviation annotation
is saved and can be reviewed at a later time. The
users can also change concepts in the annotation
leading to an update of the mapping rules; they can
add domain ontologies; and add new images to the

33https://github.com/alvations/pywsd

image collection or use existing images to repre-
sent a concept, which changes the concept-image
link. Similarly, they can choose different roles for
core arguments, which updates the core role map-
pings, as well as other emojis, which results in an
actualized role-emoji link. Finally, the users can
also improve the display of the lexical information
by adding new entries to their user dictionaries.

An important aspect is that in classroom or com-
pany environments, the individual customization
data can be collected, analyzed, and consolidated
to create integrated resources at the organizational
unit level.

5. Conclusion

In this paper, we have presented a Web-based
annotation environment, which extends AMR with
visual and ontological elements. The addition of
TDAs enables the comparative analysis of the dif-
ferent language versions of a document.

We will evaluate our use case implementation
with several volunteer professional translators and
interpreters. Based on the achieved results includ-
ing user feedback concerning functionality and us-
ability aspects, we will further improve our system
and draw up annotation guidelines for the users.

Interesting aspects for the evaluation will be the
impact of adding representative images on the qual-
ity of the translation process, a detailed analysis
of the customizations performed by the users, and
experiments from a cognitive linguistic perspective,
e.g. regarding the question whether a multilingual
speaker has a single cross-lingual visual represen-
tation of a concept or different visual representa-
tions depending on the language currently used.

We have also already planned classroom sce-
narios in university courses to investigate the edu-
cational benefits of our environment and the chal-
lenges/opportunities that arise from aggregating
and harmonizing the individual customization data.

The extension to other languages is straightfor-
ward as long as StarDict dictionaries and SpaCy
models and pipelines exist. We can also easily ac-
commodate more than three languages, however,
this will require some filtering regarding the TDAs,
otherwise the display will become too cluttered.

The main challenge for future work is to switch
the foundation of VOLARE to UMR, which is also
much better suited for multilingual annotations. The
incorporation of the UMR document-level represen-
tation will make it possible to model intersentential
dependencies, which will at the same time lead to
new requirements for our environment and TDAs.
We have already started with some first considera-
tions and preparatory work. Thus, we eagerly await
the availability of UMR parsers to begin with real
experiments and implementation work.
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Abstract
In this paper, we present the first version of YARN, a new semantic representation formalism. We propose this
new formalism to unify the advantages of logic-based formalisms while retaining direct interpretation, making it
widely usable. YARN is rooted in the encoding of different semantic phenomena as separate layers. We begin by
presenting a formal definition of the mathematical structure that constitutes YARN. We then illustrate with concrete
examples how this structure can be used in the context of semantic representation for encoding multiple phenomena
(such as modality, negation and quantification) as layers built on top of a central predicate-argument structure.
The benefit of YARN is that it allows for the independent annotation and analysis of different phenomena as they
are easy to “switch off”. Furthermore, we have explored YARN’s ability to encode simple interactions between
phenomena. We wrap up the work presented by a discussion of some of the interesting observations made during
the development of YARN so far and outline our extensive future plans for this formalism.

Keywords: semantics, semantic framework, formalisation, layered semantic representation

1. Introduction

Current semantic representation formalisms can
be split into two broad categories - those in-
spired by Logic (Kamp and Reyle, 1993; Mon-
tague, 1970), and those stemming from a graph-
based perspective (Banarescu et al., 2013; Abend
and Rappoport, 2013; White et al., 2016; Van Gy-
sel et al., 2021). While powerful in terms of encod-
ing, logic-based representations can be difficult to
read without prior training in Logic. Graph-based
ones, on the other hand, are easier to read, but
often lack when it comes to expressing scope or
being compositional.

In this work, we aim to find a way to “medi-
ate” between the two and find a representation
which is both powerful in terms of encoding as
the first group is, but also easier to read and an-
notate, as the second group is. Thus, we fo-
cus on the differences stemming from the logic-
based vs graph-based view. Reviews of further
differences between various deep-syntax or se-
mantic representation formalisms can be found in
the literature (Žabokrtský et al., 2020; Abend and
Rappoport, 2017; Pavlova et al., 2023b; Giordano
et al., 2023).

We present here the first version of a new se-
mantic representation formalism, YARN (from “laY-
ered meAning RepresentatioN”), with a predicate-
argument structure (PA-structure) based on Ab-
stract Meaning Representation (AMR) (Banarescu
et al., 2013), and a layered approach to encode se-
mantic phenomena. We provide proof-of-concept
examples which demonstrate how the layered
structure can be used to encode phenomena such

as negation, modality, temporality and quantifica-
tion, and how they can interact with each other.
Considering the interactions between diverse phe-
nomena presents a challenge that existing for-
malisms do not explicitly address. This question
is undeniably complex, yet significant if we aspire
to provide a realistic outlook on the practical appli-
cation of representations. Our initial tests for the
cases of modality and temporality show a promis-
ing start for YARN’s ability to model these.

The main motivation for our approach is to al-
low the user of the formalism to focus on phenom-
ena that they are interested in exploring, by allow-
ing them to “switch off” the ones they are not inter-
ested in as to not clutter the representation. This
gives the opportunity to encode specific properties
needed for a general interpretation, but still anchor
in a global meaning representation. The main con-
tributions of this article are (1) to position the im-
portance of considering the modelling of several
semantic phenomena at the same time (2) as well
as their interactions in order to (3) propose a rich
representation that remains accessible for annota-
tion and use.

In section 2, we present some of the existing
semantic representation formalisms which are cur-
rently the most developed and have a similar out-
look. To fully present the representation power
of layers, in section 3, we provide the formal def-
inition for our formalism, followed by annotation
examples in section 4. In section 5, we provide
a number of discussion points regarding our pro-
posal, as well as aspects concerning the broader
topic of semantic representation. This is followed
by an outline for our future work in section 6.
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2. Semantic Formalisms

In this section we outline some existing seman-
tic representation formalisms that we later com-
pare to our proposal. We focus here on AMR
as our proposal uses its PA-structure as a base.
We then describe Uniform Meaning Representa-
tion (UMR) (Van Gysel et al., 2021) as it is an exten-
sion of AMR that addresses many of its shortcom-
ings. Finally, we mention Discourse Representa-
tion Theory (DRT) (Kamp and Reyle, 1993) as an
example of a logic-based formalism.

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a formalism that is meant
to be simple enough to allow for large-scale an-
notation. As such, it focuses on the PA-structure
of a sentence, annotating core arguments of each
predicate according to PropBank’s (Palmer et al.,
2005) predicates and argument roles, as well as a
closed set of non-core roles, to annotate additional
arguments such as time1, location or manner.
However, to keep the simplicity, many semantic
phenomena such as tense, plurality or scope are
not accounted for. AMR has been developed with
English in mind and does not claim to be universal.
That being said, AMR-annotated datasets exist in
multiple languages.

Uniform Meaning Representation
(UMR) (Van Gysel et al., 2021) is currently
the broadest extension of AMR and can be con-
sidered a formalism in its own right. It combines
a number of AMR extensions proposed over
the years (Donatelli et al., 2018; Pustejovsky
et al., 2019) to annotate phenomena such as
temporal information, aspect, quantifier scope
and co-reference. One of UMR’s goals is to keep
the simplicity and ease of annotation of AMR,
while enriching the set of phenomena it accounts
for. UMR is a relatively new formalism and no
large corpora exist yet, but annotation work is
underway, including annotation procedures for
low resource languages.

Discourse Representation Theory
(DRT) (Kamp and Reyle, 1993) was introduced
with the idea of preserving the principles of com-
positionality introduced by Montague (Montague,
1970, 1973) while making the representation more
accessible. One of the main contributions of DRT
is to consider the semantic contribution of an utter-
ance or one of its components as a function that
updates the general representation. In this way, it
takes into account the process of representation
construction. Based on logical representation, it
makes the concept of scope explicit by means
of boxes containing information in the form of
predicates. The logical relationships between

1When temporal adverbials are present as separate
surface tokens.

them are encoded in such a way that a semantic
structure emerges, a structure that is useful, for
example, for expressing the accessibility of the
variables used. This structure is also extended for
discourse representation with SDRT (Asher and
Lascarides, 2003). The combination of semantic
representation, logical properties and readability
makes it a useful formalism. A large corpus of
DRT-annotated data exists in the form of the
Parallel Meaning Bank (PMB) (Abzianidze et al.,
2017). There is also a recent proposal to simplify
the notation to foster easier annotation (Bos,
2021).

3. Description

We propose a structure with a central graph, rep-
resenting the PA-structure, on top of which various
layers can be defined. We provide examples to
demonstrate how layers can be used to encode se-
mantic phenomena, be it by interacting with nodes
in the graph, or between themselves.

We follow the neo-Davidsonian tradition of plac-
ing a variable at the centre of the representation,
representing the event being described (Davidson,
1967; Parsons, 1990). Our goal is to represent the
semantics of an event, encompassing its core PA-
structure, and modifiers in a readable and as sim-
ple as possible framework.

3.1. Formal Definition
Here is the formal mathematical definition. A YARN
is an 8-tuple < S, V, F,E, Ê, EFÊ , EÊV , Es >
where:

• S and V are sets of vertices

• F is a set of features

• E is a set of edges between pairs of vertices
v1, v2 ∈ V

• EFV , which we will also call Ê, is a set of
edges between a feature f ∈ F and a vertex
v ∈ V

• EFÊ is a set of edges between a feature f ∈ F

and an edge e ∈ Ê

• EÊV is a set of edges between an edge e ∈ Ê
and a vertex v ∈ V

• Es is a set of edges between a pair of vertices
s1, s2 ∈ S

We can imagine a layer-based solution using hy-
pergraphs instead, as they are sufficiently expres-
sive, but in order to maintain direct readability we
prefer this solution.
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One way of approaching these definitions is to
consider that the central element of the represen-
tation is a simple graph around the predicate defin-
ing the main event. This gives us a very readable
base representation. To avoid making the repre-
sentation more cumbersome, we don’t modify it di-
rectly, but allow other information to be added in
the form of layers. These new elements lead to
the use of new objects that operate either on the
graph nodes or on the layer edges.

3.2. From Definition to Semantic View

With the formal definition given, let us look at how
YARN can be applied to semantic representation.
The vertices from S can be thought of as event
nodes, with one defined for each event in the text2.

The vertices of V and edges of E can be thought
of as the ones used in the graphs of AMR and
AMR-derived representations. Vertices in V rep-
resent predicates and concepts. Edges in E
represent core argument roles. In this part of
the representation, our focus is on the core con-
cept that constitutes the central event. The sub-
categorisation in a meaning bank helps to iden-
tify the mandatory arguments, as for AMRs. Con-
sequently, the representation is lucid and easy to
comprehend.

However, concepts representing non-core argu-
ments and their modifiers are not always linked to
the main predicate (see Figure 5). This results in
elements of V and E making up the PA-structure
of the sentence, which is a connected component
within the graph, but also a number of (smaller)
connected sub-graphs for some of the non-core ar-
guments. Thus, the resulting graph formed by V
and E is not necessarily connected.

The vertices of F represent various semantic
phenomena, such as temporality, quantification
and modality. The vertices are connected by lines
that run between the feature nodes and V nodes,
resembling strands of yarn. Each phenomenon is
assigned a colour to simplify the reading.

The edges in Ê, EFÊ andEÊV are used to repre-
sent the linking between the semantic phenomena
being annotated and the predicates and concepts
of the sentence, as well as between the semantic
phenomena themselves. We will see in section 4
how these three different types of edges are used
for the different phenomena.

Finally, edges in ES represent relations between
different events, which can be thought of as repre-
senting discourse relations.

2In this paper, we mainly use simple texts, each con-
taining only one event. See section 5 for a discussion
on annotating more complex examples.

3.3. Hello World Example
To bridge the formal definition and the pictorial ex-
amples that will follow, we will present the first such
example also in the mathematical notation that fol-
lows naturally from the formal definition.

Let us consider the sentence “I found a newspa-
per”. Its formal representation, ensuing from the
YARN definition is the following:

S = {S1} V = {find−01, i, newspaper}
F = {temp, quant}
E = {(find−01, ARG0, i),

(find−01, ARG1, newspaper)}
EFV = {(quant, ∃, newspaper),

(temp, past, find−01)}
EFÊ = ∅ EÊV = ∅ Es = ∅

We note that for these examples we have cho-
sen PropBank (Palmer et al., 2005) as our predi-
cate sense and argument role bank, utilising Prop-
bank’s Frame Files (Choi et al., 2010) to collect the
relevant senses and argument roles.

Figure 1 is the YARN graphical representation of
the same sentence. The PA-structure of the sen-
tence is a graph which appears in the dotted box,
where nodes are predicates and concepts, and
edges are relations between a predicate and its
arguments. For this sentence, as the vertices of
type V , we have the predicate find-01 and two
concepts, i and newspaper, representing the two
arguments of the predicate. The two arguments
are linked to the predicate via two labeled edges of
type E, annotating their argument roles as ARG0
and ARG1, respectively. Up to this point (and in
this example, but not in general), the PA-structure
of YARN coincides with the entire AMR.

Figure 1: YARN for “I found a newspaper”, featuring
temporality and quantification.

In addition, we have a vertex S1 ∈ S, that repre-
sents the event, to which two features of type F are
linked: temp for temporality and quant for quan-
tification. An edge of type Ê, labeled past links
the temp to the main predicate find-01, indicat-
ing the event happened in the past. Another edge
of type Ê, labeled ∃ links quant to newspaper, in-
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dicating existential quantification. For readability’s
sake, we put a box around the PA-structure, but
this is not a part of the formal representation.

Here, we limit the representation to two features
to demonstrate their operation. YARN’s modularity
is advantageous since only specific semantic as-
pects of modelling can be considered. If the analy-
sis also encompasses others, for example modal-
ities, a modality feature can be added with a new
“thread of yarn”. We can selectively activate the
features that interest us.

4. Towards Multi-Layered Examples

In this section, we demonstrate how the structure
described in section 3 can be used to encode vari-
ous semantic phenomena, with the help of a num-
ber of examples. In the following we will concen-
trate only on a handful of semantic phenomena,
but enough to cover the ways to combine different
types of elements of YARN. For the sake of clar-
ity, we will use only the graphical representation of
the formalism from here on, but the mapping from
these representations to the formal one is direct.

Figure 2 is the YARN for “I couldn’t find the news-
paper”. The PA-structure for this sentence is the
same as in Figure 1, but differs from the AMR of
the sentence, where there are additional nodes
and edges to account for the possibility and the
negation. Aside from the PA-structure, we have
annotated three phenomena: modality, introduced
by could, negation introduced by n't, and the
temporality of the main predicate. For each, a
feature that connects to S1 is added. Could in-
dicates possibility, so we add an EF edge
linking modal with the corresponding label to the
main predicate. The possibility is then negated,
with an unlabeled EFÊ edge from neg to the
possibility edge. Finally, since the impossibil-
ity was in the past, we add anEFÊ edge from temp
to the possibility edge, with a label past.

Temporality classes include past, present
and future for now and modality classes:
possibility and necessity. We kept this sim-
ple as the choice of classes for each phenomenon
is not the focus of this work. These will be ex-
tended and made to account for different granulari-
ties across languages via lattices (Van Gysel et al.,
2019). This approach has already been adopted
for meaning representations by UMR.

To discuss EÊV , we will use the example in Fig-
ure 3. This very simple example helps us to show-
case how YARN deals with a classical logical is-
sue, quantification. Figure 3 is one of the possi-
ble representations for the sentence “Every cow
ate an apple”. This sentence has two quantifiers
- universal for cow and existential for apple, thus
giving rise to scope ambiguity. Two readings ex-

Figure 2: YARN for “I couldn’t find the newspaper”,
featuring temporality, negation and modality.

ist: one where “every cow” takes wider scope, en-
coding the meaning where every cow ate a differ-
ent apple, and one where “an apple” takes wider
scope - where all cows ate the same apple. The
representation in Figure 3 is for the latter. Here,
aside from the temp feature, we have introduced
a quant feature, linked as usual to S1. An edge
of type EF links quant to the wider-scope taking
entity, namely apple, labeled with the appropriate
quantifier, in this case ∃. Finally, an edge of type
EÊV is introduced linking the ∃ edge to the nar-
rower scope entity cow. The appropriate label, ∀,
is given to this edge. Thus, when annotating multi-
ple quantifiers in a representation, we introduce a
quant feature, then link it to the outermost scope-
taking argument. Moving inwards, each argument
is linked to the previous scope-defining edge.

A key issue in representing quantifiers semanti-
cally is the potential for combining scopes in var-
ious orders. The fundamental inquiry is whether
every cow consumes an apple that is its own, or
whether every cow consumes the same apple. Un-
doubtedly, pragmatics directs us towards a pre-
ferred interpretation for cows and many apples.
Figure 4 provides an illustration of how quantifier
scopes can be reversed. It appears that the type
of link used for the quantifiers has changed, with
the link for ∃ deriving from an element of type EÊV

and the link for ∀ from type EF . The entity now tak-
ing wider scope is the cow. The continuous link in
the graphical representation represents the wider
scope, while the link starting from the junction cir-
cle represents narrow scope. This approach fully
utilises the expressiveness of YARN enabling the
retention of readability whilst explicitly addressing
logical constraints.

To represent some non-compulsory arguments,
such as manner or location, we propose a so-
lution as the one in Figure 5. Here, we have
the representation of the sentence “Every cow ate
an apple in the garden”. In addition to the two
predicate-specific arguments of eat-01, an op-
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Figure 3: YARN for “Every cow ate an apple”,
featuring quantification and temporality. Reading
where all cows ate the same apple.

Figure 4: YARN for “Every cow ate an apple”,
featuring quantification and temporality. Reading
where every cow ate a different apple.

tional argument for location, namely “in the gar-
den”, is specified. In AMR, optional arguments
are attached to the predicate using the so called
non-core roles in the same manner as predicate-
specific ones. In our proposal, we annotate some
of them as separate nodes (or subgraphs, in the
case of more complex modifiers) that appear in the
same box as the main predicate. To specify that
argument’s role, we introduce a feature of type F ,
and an unlabeled edge of type EF from the feature
to the argument. In the example in Figure 5, a
new feature loc is added that links S1 to the node
garden that has been added to the predicate box.
The same can be done for other kinds of modifiers
that are typically annotated with non-core roles in
AMR.

In the preceding examples, we demonstrated
how to formulate the control component that
characterises the event, how to append non-
compulsory parameters, and how the yarn princi-
ple straightforwardly encompasses distinct seman-
tic phenomena, by integrating aspects of scope.
The addition of a variable s ∈ S, which stands

Figure 5: YARN for “Every cow ate an apple in the
garden”, featuring an additional argument for loca-
tion.

for the event, is a beneficial realisation for mod-
elling other occurrences, including those that are
conventionally encountered in discourse represen-
tation. Figure 6 is a sample representation of the
sentence “I entered the room, because the phone
rang”, where we have a causal relation between
the two events “enter” and “ring”. For simplicity,
we have chosen not to show the quantification an-
notation here. However, this is entirely possible
and would result in a more extensive sample, al-
lowing the reader to select certain features for anal-
ysis. We introduce an edge of type ES , labeled
CAUSE, between the two event nodes S1 and S2.
This example shows that this representation also
provides a solution for annotating discourse re-
lations, taking the representation beyond seman-
tics. Discussion of labelling the links between
the S type elements that construct a higher level
structure is beyond the scope of this work. Com-
mon discourse theories, such as SDRT (Asher and
Lascarides, 2003) or RST (Mann and Thompson,
1986), can be utilised. YARN remains theory ag-
nostic. In YARN, variables can represent elemen-
tary discourse units (EDUs) which creates a struc-
ture that covers the entire document, similar to
SDRT. Alternatively, we can introduce relations be-
tween specific elements, as is done in RST.

Having seen the definition of the structure in sub-
section 3.1, and the examples above demonstrat-
ing how each can be used in the context of se-
mantic representation, we sum up the character-
istics for each element of our YARN 8-tuple in the
context of semantic annotation. These elements
demonstrate the technical nuances of formalisa-
tion, which can be linguistically interpreted.

• Edges in E and ES are directed. For the rest
of the edges, while there is an implicit direc-
tion - from a feature f ∈ F towards either a
vertex or another edge, or from an edge in
EFV , EFÊ or EÊV towards a vertex, there is
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Figure 6: YARN for “I entered the room, because
the phone rang”, featuring a discourse relation be-
tween two events.

no need to draw it.

• Not all relations need to be labeled, only the
information needed to disambiguate the inter-
pretation is required.

• Each element f of F is linked to the event
node of the representation, which means that
it can be considered as the reification variable
on which all the properties are applied.

• V is not a closed set. While users can choose
the specific lexicon for the predicate senses
and even the concepts, there is no restriction
to do so - predicate senses and concepts can
be used freely as the context in which the for-
malism is used requires it.

• F is a closed set of semantic phenomena. We
have only briefly addressed some of these
principles, deferring in-depth discussion to the
future.

• Labels in E are a closed set – they can come
from semantic role lexicons like VerbNet (Kip-
per et al., 2008), or be the set of core + non-
core roles from AMR, just as two possible ex-
amples.

• Labels in EF are a closed set, made up of the
subsets defined for each feature. For these,
we’ll use lattices for each feature, inspired
by (Van Gysel et al., 2021).

• Quantifiers are expressed as labels on Ê or
EÊV edges. In the examples, we have solely
employed common quantifiers, but it is possi-
ble to expand the list to encompass additional
forms of more precise quantification.

These formal characteristics are crucial since
they enable us to have a controlled representation
that can be projected onto a logical representation
by means of a simple algorithm, as in the case of
DRT, while at the same time offering an adaptation
to the needs of the linguistic representation without

mixing up the different elements, allowing us to fo-
cus on particular points.

5. Discussion

Here we discuss some of the observations we
made while designing YARN. These concern fea-
tures of the formalism itself and more general ob-
servations and questions about the kinds of phe-
nomena we may want to include moving forward.

5.1. Yarn interactions
The introduction of these “strands of yarn” gives us
a flexible structure for the representation and intro-
duces a level where new interactions are possible,
either through their non-explicitation with the sub-
specification or through the swapping of relations.

Some semantic representation formalisms,
such as Minimal Recursion Semantics (Copes-
take et al., 2005) allow for underspecification, for
example in the case of scope ambiguity. While
not present in the current version, as part of future
work, we intend to offer the possibility for under-
specification in the representation. In Figure 7 we
provide a graphical representation of one possible
solution for scope ambiguity/underspecification.
As can be seen in the figure, the scope prece-
dence between “an apple” and “every cow” has
not been resolved. When the precedence be-
comes apparent from context, the representation
can be updated in order to accommodate for that.
As part of our future work, we intend to formalise
this new structure, and investigate if the same one
can be used for other types of underspecification.

Figure 7: “Every cow ate an apple” - YARN with
underspecified scope.

In the example in Figure 2 we saw that the layers
belonging to different phenomena can be stacked
on top of one another. This property is not com-
mutative. In Figure 2, modality is applied to the
main predicate, followed by a negation applied
to the modality in order to encode “couldn’t [do
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something]”. Compare this to the example in Fig-
ure 8, where the modality and negation have been
swapped. If we try to build the meaning from the
representation, we end up with “Maybe/[It is possi-
ble that] I did not find the newspaper”.

As our focus lies on the formal aspects of the
framework, we will reserve the analysis and dis-
cussion of the stands of yarns’ interactions for fu-
ture research. For instance, we have yet to exhaus-
tively investigate how modality and temporality in-
teract and significantly alter the resulting interpre-
tation.

Figure 8: YARN of “Maybe I did not find the news-
paper”.

Our goal with this proposal is to really separate
the various semantic phenomena into different lay-
ers, and the focus is to make them easier to see
at first glance. This is the reason why we prefer to
disconnect optional arguments from the core PA-
structure where that is linked to semantic phenom-
ena. However, the mapping between this discon-
nected version and the AMR-style version is pre-
served, at least for what we have tested so far:
simple combinations of the modifiers for time and
location. Transformation functions between our
“disconnected” version and the “connected” AMR-
style one will be the subject of future work, allow-
ing an easier transition between our formalism and
AMR-based structures.

5.2. Comparison to other formalisms
AMR is the basis for our representation, but, as we
have shown, YARN differs from it substantially in
the way it encodes semantic phenomena. Thanks
to this, we are able to achieve a richer representa-
tion, without making the reading too complex.

Bos (2020) points out that the proposal to ex-
tend AMR for quantification and scope presented
in (Pustejovsky et al., 2019) suffers from the so
called bound variable problem: the way sentences
such as “Every snake bit itself” are represented,
can be interpreted also as “Every snake bit every
snake”. Since UMR (Van Gysel et al., 2021) im-

plements the above-mentioned extension, it faces
the same issue. To tackle this, we need different
representations for the two sentences. The YARN
for “Every snake bit itself” is straightforward: in Fig-
ure 9a, the presence of a single quantifier indicates
that the same entity participates both as an ARG0
and ARG1 in each occurrence of the biting event.
Thus, for “Every snake bit every snake”, we per-
force need two quantifiers. Figure 9b shows such
a representation. However, we face another issue
here: we cannot tell whether the wide-scope tak-
ing entity is the biter or the bitee. In the example
with two universals, however, explicit resolution of
the ambiguity is not required: the two options have
different representations, but, when resolved, the
interpretation is the same. However, in a case
where we have this same representation but differ-
ent quantifiers, this information is necessary. One
possible solution for the same case but with differ-
ent quantifiers, would be to include the name of the
argument to which it is applied to the quantification
edge, for instance ∀ : ARGO. It does, however, still
seem strange, to have two quantifiers pointing to
the same entity (or set of entities). What is more, if
we explore the other three quantifier combinations
for two entities, we see that two universals is a spe-
cial case: in all other cases, it is more natural to
have separate entities for each participant. Thus,
we propose the solution in Figure 9c. Here, we
split the biters and bitees into two separate nodes
and acknowledge, via a new type of edge (the dot-
ted link in the figure) that in this special case it hap-
pens that the two nodes refer to the same set of
entities, via the = sign. This new type of relation
is yet to be formalised in the next version of YARN.
This can be useful not only here, but also for linking
co-referents (see Figure 10). Lastly, the represen-
tation in Figure 9b can still remain, purely for ease
of readability, with the caveat that it is simply a vi-
sualisation, equivalent to the one in Figure 9c and
in the background, the latter is the canonical form.

Aside from this, for formalisms where all events
remain in the same graph, the representation be-
comes difficult to follow, especially for longer texts,
as can be seen with UMR (Zhao et al., 2021).
We believe our solution to represent each event
as its own substructure makes our representation
more easily readable, even for larger texts, mak-
ing it easy to spot the phenomena applying to each
event and the interactions between events thanks
to the discourse-style relations between them.

This is illustrated by the annotation in Figure 10
for the sentence “I couldn’t find the newspaper un-
til you told me where it suddenly appeared”. Here,
we have three events: finding, telling and appear-
ing, each represented by its own S-type node.
Thanks to these, we can easily differentiate the
features that apply to each event, and also track
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(a) “Every snake bit itself” (b) “Every snake bit every
snake”

(c) “Every snake bit every snake”

Figure 9: YARN for snake examples

the relationships between events. This example
also illustrates that while subordinate clauses in-
troduced by subordinating conjunctions such as
“before”, “until” or “because” can be modelled by
edges from ES (as we see between S1 and S2),
where a predicate permits it, they can be modelled
by argument roles from E (as with tell-01 from
S2 and the empty node marking the location from
S3). Finally, by using the same type of edges as
the ones proposed for the equality between sets
in Figure 9c, we can also model co-reference, as
shown by the links between the i’s in S1 and S2,
and newspaper in S1 and it in S3.

It is worth noting that YARN also draws inspira-
tion from DRT, although it is not a direct repre-
sentation of it. As a result, the algorithmic prin-
ciple is used to convert the representation into a
standard logical formula, which induces the same
structure as DRT. The crucial elements primarily
lie in “stands” of quantification. The conversion
from one to the other is a task for future work. Fur-
thermore, thanks to the S nodes, we can imagine
an expansion of the depiction from a standpoint
comparable to SDRT’s expanding of DRT.

5.3. Some broader questions
We can have a broader discussion on what consti-
tutes an event and how events are deduced from
the surface form of a sentence. If we take the
sentence from the WSJ (Paul and Baker, 1992),
“Edmond Pope tasted freedom today for the first

time in more than eight months.”, we have the
main event E, “tasted [freedom]”, but also a refer-
ence point to something that happened “more than
eight months ago”. Thus, we may ask whether
apart from E, we also have another (possibly static)
event, E’ of “having tasted freedom”, or “having
been free” more than eight months ago. We may
argue whether such implication (the one of E’) is
or should be part of the semantic representation of
the sentence, or whether we should only annotate
events that appear explicitly in the sentence.

Our annotation experiments so far demonstrate
that it is easy to extend the formalism with new se-
mantic phenomena. Adding a new one so far has
consisted in adding a new feature to F and de-
ciding on the appropriate type of relations to use
for edges of that layer. To test our proposal, we
are currently analysing sentences in English from
the Parallel Universal Dependencies (PUD) cor-
pus3. Although our proposal is currently robust,
we may encounter issues when annotating more
complex phenomena or sentences. It is yet to be
determined, following the expansion of the range
of observable occurrences, whether working on a
larger dataset will help to test the ease of use of the
framework. The annotation of a substantial corpus
will enable us to assess the capabilities of YARN.

6. Conclusion and Future Work

In this paper, we presented the first version of
YARN, a proposal for encoding multiple semantic
phenomena with layers. The framework differs
from others in that it maintains a logical structure,
while remaining clear to the reader. The incorpora-
tion of diverse levels allows for the comprehensive
modelling of various phenomena, whilst still main-
taining their distinctiveness and potential intercon-
nections.

We have shown, through examples, that our ini-
tial annotations show a promising structure that
manages to encode difficult phenomena and keep
the representation visually simple. Analysis is fur-
ther aided by the fact that “switching off” layers is
straightforward. We have highlighted interesting
discussion points that were raised during the de-
sign of our formalism, and have outlined the future
work directions for this project.

As we have shown, the thus proposed structure,
YARN, is capable of representing a range of se-
mantic phenomena, namely: temporality, modal-
ity, negation, quantifier scope. While not pre-
sented here due to space limits, we have also
tested definiteness, number and questions. In
the preceding section, we presented various view-

3https://github.com/
UniversalDependencies/UD_English-PUD
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Figure 10: YARN of “I couldn’t find the newspaper until you told me where it suddenly appeared”.

points on the evolution of specific phenomena. We
now go back to more general aspects.

As a first step, in our future work, we plan to add
more phenomena to the formalism, such as com-
parison, gender, predicates whose arguments are
events (such as “begin”, “stop”), etc. For each phe-
nomenon, a set of possible classes will be defined.
We do not intend to limit the classes, but rather al-
low lattices as presented in (Van Gysel et al., 2019)
and used in UMR in order to enhance comparison
between languages without limiting the possible
classes to those available in a specific language.

In parallel to this, we will formalize annotation
guidelines and develop annotation tools, with the
help of which to carry out annotation experiments.

As mentioned earlier, one of our goals is to pro-
vide a formalism where “switching off” layers is sim-
ple, which is a major difference from others such
as UMR. This is straightforward in cases where lay-
ers do not interact with each other (as in Figure 1).
However, in more complex cases such as in Fig-
ure 2, the process is not straightforward. Remov-
ing the temp layer would not necessarily affect the
modal layer as it is attached on top of it. However,
what would it mean for the temp feature and the in-
terpretation of the whole representation if only the
modal feature were to be removed? Understand-
ing this interaction and defining procedures on how
to “switch off” a layer that interacts with other layers
will be the subject of another future work.

As we want our representation to be able
to “communicate” with both logic-based and es-
tablished graph-based formalisms, we envision
two further future work directions: (1) make ex-
plicit the formal procedure to convert a YARN
into first-order logic and vice-versa, and (2) cre-
ating transformation systems between ours and
other graph-based formalisms, in the spirit other
transformation-based comparison works (Hersh-

covich et al., 2020; Pavlova et al., 2022, 2023a).
Finally, we want to propose a textual representa-

tion format for YARN, in the spirit of the PENMAN
notation (Matthiessen and Bateman, 1991), widely
used for AMR, and AMR-derived formalisms. We
expect having such a representation will be use-
ful for developing parsing algorithms for our formal-
ism, both with symbolic and hybrid approaches.

7. Ethical Considerations

While Universality is one of the desired features
for the presented meaning representation, we note
that there is likely an inherent bias towards phe-
nomena which are more prevalent in occidental lin-
guistic culture, and English in particular, which is
the main language we have used so far for YARN’s
development. While we have not had the chance
to do this for the current version of the formalism,
we acknowledge that a more thorough study and
discussion of non-occidental languages is neces-
sary for a less biased representation. This is fur-
ther affected by our use of PropBank, a sense lexi-
con, an equivalent of which is not available for the
majority of world languages. Thus, we also need
to employ strategies for either a resource agnos-
tic resource development or follow UMR’s steps in
proposing strategies on how to build and extend
such resources for low-resource languages.
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Abstract
We present a contrastive study of argument sharing across three graph-based meaning representation frameworks,
where semantically shared arguments manifest as reentrant graph nodes. For a state-of-the-art graph parser, we
observe how parser performance – in terms of output quality – covaries with overall graph complexity, on the one
hand, and presence of different types of reentrancies, on the other hand. We identify common linguistic phenomena
that give rise to shared arguments, and therefore node reentrancies, through a small-case and partially automated
annotation study and parallel error anaylsis of actual parser outputs. Our results provide new insights into the
distribution of different types of reentrancies in meaning representation graphs for three distinct frameworks, as well
as on the effects that these structures have on parser performance, thus suggesting both novel cross-framework
generalisations as well as avenues for focussed parser development.

1. Introduction

Over the past decade, there has been increas-
ing interest in parsing into graph-based meaning
representations, with a growing field of research
across different linguistic traditions and frame-
works for meaning representation in terms of la-
belled graphs. A range of parsing systems and ap-
proaches have been developed, as well as various
frames of in-depth analyses into particular features
and challenges of the task and individual frame-
works. Unlike widely used representations of syn-
tactic structure in the form of rooted trees, common
meaning representation frameworks employ gen-
eral graphs, which makes parsing into these repre-
sentations more complex, due to, among other fea-
tures, fewer structural constraints on elements of
the graph and on correspondences to the underly-
ing input string (“anchoring”), as well as, of course,
the presence of graph nodes with an in-degree
greater than one (henceforth “reentrancies”).

We follow in this line of research by expanding
the methodologies proposed in Buljan et al. (2022),
and based on English data and systems featured
in the 2020 Shared Task on Cross-Framework
Meaning Representation Parsing (Oepen et al.,
2020). We focus on PERIN (Samuel and Straka,
2020), the top-performing parsing system in the
shared task, and conduct a contrastive error anal-
ysis over three frameworks (elaborated in Section
2) to identify common parsing errors, with a view
to devising potential parser improvements.

Our research shows an unexpected outlier to the
widely accepted wisdom that parsing accuracy de-
teriorates with growing structural complexity. In
an effort to identify potential explanations of this
behaviour, we look into the phenomenon of argu-
ment sharing in meaning representation graphs,
giving rise to the aforementioned reentrant struc-

tures. Following the methodology of Szubert et al.
(2020) and extending it to the two other frame-
works, we attempt to set a foundation for expand-
ing our understanding of the effects of framework
design decisions, which will eventually allow for in-
forming future annotation, as well as more targeted
parser development.

Apart from these empirical findings, the tech-
nical contributions of this paper are: a sub-
stantial augmentation of mtool, the open-source
graph analysis and scoring tool first introduced
in the 2019 MRP (Meaning Representation Pars-
ing) shared task (Oepen et al., 2019), which en-
ables quantitative and qualitative analysis of reen-
trancies and their various subtypes; and a small-
scale manual reentrancy annotation effort over
gold standard data used for parser development
in the shared task. Both contributions will be re-
leased openly upon publication.

The paper is organised as follows: Section 2
gives a broad summary of the methodological and
technological context of our work; Section 3 de-
scribes our approach to parser performance anal-
ysis, presents the results, and motivates further in-
vestigation. In Section 4, we look into the under-
lying framework properties and how they inform
our error analysis. Section 5 discusses different
linguistic causes of reentrancy structures in mean-
ing representation graphs, describes the setup of
our pilot annotation effort, and presents its findings.
Finally, Section 6 concludes the paper, and dis-
cusses pertinent next steps.

2. Background

The MRP 2019 and 2020 shared tasks on cross-
framework meaning representation parsing were
organised with the goal of advancing the state-
of-the-art in parsing into graph-based representa-
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tions of sentence meaning (Oepen et al., 2019,
2020). The task focussed on five semantic graph
frameworks, and required participants to develop
systems that predict sentence-level meaning rep-
resentations for all five frameworks in parallel.

Of the five frameworks present in the shared
task, we narrow our focus (and use development
data pertaining) to three frameworks embodying
distinct approaches to meaning representation, dif-
fering in their level of abstraction from the underly-
ing surface string, as well as in formal construction
and linguistic assumptions. The three frameworks
are exemplified in Figures 1, 2, and 3 with the sen-
tence “Pierre Vinken, 61 years old, will join the
board as a nonexecutive director Nov. 29.” (Oepen
et al., 2020).

Elementary Dependency Structures (EDS;
Oepen and Lønning, 2006, Figure 1) encode
sentence meaning in an unordered semantic
graph that is derived from the underspecified
logical forms of the English Resource Grammar
(Flickinger et al., 2017; Copestake et al., 2005).
EDS nodes are explicitly anchored onto sub-
strings of the underlying sentence, but these do
not correspond one-to-one to surface lexical units,
while edge labels denote argument positions into
semantic predications.

Prague Tectogrammatical Graphs (PTG; Zeman
and Hajic, 2020, Figure 2) present a conversion
from the multi-layered (and somewhat richer) an-
notations in the tradition of Prague Functional Gen-
erative Description (FGD; Sgall et al., 1986), as
adopted (among others) in the Prague Czech–
English Dependency Treebank (PCEDT; Hajič
et al., 2012). PTG nodes are mostly anchored
to surface lexical units, but allowing for empty
(“generated”) nodes and discontinuous anchoring
Edges in PTG denote fine-grained labelled relation
types (“functors”).

Abstract Meaning Representation (AMR; Ba-
narescu et al., 2013, Figure 3), in contrast, makes
no explicit connection between the surface sen-
tence and elements of the graph, and is there-
fore considered unanchored (or free of specific
assumptions about derivation and composition).
Graph nodes are content words most frequently
normalised to verbal senses, and edges are la-
belled with argument positions or more specific se-
mantic relations, including e.g. fine-grained anno-
tations of named entities and some lexical decom-
position.

The MRP 2020 English validation data for the
cross-framework track, from which we draw data
for our work, comprises gold annotated mean-
ing representation graphs of sentences, counting
3302 datapoints for EDS, 1664 for PTG, and 3560
for AMR, respectively (Oepen et al., 2020).

When analysing parser performance, we focus

on the top-scoring, state-of-the-art parser from
the MRP 2020 shared task: PERIN (Samuel and
Straka, 2020). The PERIN parser is a general
neural network architecture for learning to pre-
dict the mapping from surface strings to various
types of linguistic structure in the form of gen-
eral graphs. Using an XLM-R and transformer-
based encoder-decoder architecure, the parser is
language- and framework-agnostic, and therefore
applicable across different meaning representa-
tion frameworks and languages with the adjust-
ment of pre- and post-processing steps. It also
uses a novel permutation-invariant approach to
parallel graph node prediction, which is well suited
to the task of predicting orderless semantic graphs.
Furthermore, as PERIN is not a seq2seq model,
but based on a specialized node, edge, and label
prediction architecture, there is room for follow-up
engineering in light of findings such as those pre-
sented in this study.

In the broader sphere of parsing data analysis,
we build on methodologies inspired by contrastive
approaches introduced in, among other works,
McDonald and Nivre (2011) and Kulmizev et al.
(2019) for dependency treebanks and parsers. We
follow and expand upon the quantitative and qual-
itative approach to error analysis in MRP outlined
in Buljan et al. (2020, 2022). We also look to Szu-
bert et al. (2020) for a discussion of reentrancies
in AMR and underlying linguistic phenomena.

We report performance using mtool1, the cross-
framework graph analyser used in the MRP shared
tasks. Other notable framework-specific graph
similarity metrics are discussed by Cai and Knight
(2013) and Opitz (2023).

3. Analysing Parser Performance

Following the methodology outlined by Buljan et al.
(2022), we examine the performance of the PERIN
parser on the MRP 2020 shared task, retrained on
the official training data, and using the validation
data for our study. To make our results robust to
fluctuation that could arise from random initializa-
tion, we set out to compare five separate training
and testing runs. By and large, our observations
are stable across all runs.

Graph complexity We begin by dividing the
data into ten decile bins, according to sentence-
level graph complexity in terms of the number of
nodes. Following the official metric of the MRP
shared tasks (Oepen et al., 2019, 2020), we fo-
cus on the micro-average F1 score over tuple types
that encode various graph properties, where Bul-
jan et al. (2022) observe that it can be beneficial

1https://github.com/cfmrp/mtool
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Figure 1: EDS semantic graph for the running example.
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Figure 2: PTG semantic graph for the running ex-
ample.

to tease apart two distinct subtasks in graph predic-
tion: (a) predicting graph nodes and their decora-
tions, e.g. labels and other node-local properties
vs. (b) core graph structure in terms of (labelled)
edges and identification of the top node. Figure 4
reports PERIN performance across frameworks
and decile bins. The top plot of each framework-
specific group charts the overall MRP F1 score;
the middle figure charts F1 considering only node
decoration2; and the bottom figure charts F1 over
structural properties only (root nodes (tops) and
edges).

We observe a drop in parser performance in the
overall F1 score charts, for PTG and AMR partic-
ularly, correlated with rising graph complexity. As
discussed in Section 1 above, this is expected be-

2Prediction of node anchoring is disregarded, for the
sake of result comparability, as it is not applicable to
AMR nodes.
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Figure 3: AMR semantic graph for the running ex-
ample.

haviour given an assumed correlation between out-
put structure size, sentence length, and related
complexity of the parsing problem. However, EDS
subverts these expectations, showing instead only
a drop of a couple percentage points in the first
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Figure 4: Average parser performance per com-
plexity bin, in terms of overall F1(top in each graph),
F1 for node-local properties only (middle), and F1

for structural properties only (bottom), across the
three frameworks.

and last bins – which represent somewhat uneven
groups of very short and very long sentences.

Node-local properties The performance over
all three frameworks is fairly consistent across the
complexity bins when evaluating only on node dec-
oration (node labels and properties). This indi-
cates that node-local information may be easier
(for PERIN) to predict with consistent quality.

Structural properties When we examine the
parser performance on structural properties of the
graphs (edges and root nodes), a clearer picture
emerges of the performance drop with greater
graph complexity for PTG and AMR. Compared

EDS PTG AMR−1

Average Nodes / Graph 23.4 17.9 10.4
Edge Labels 10 67 84
%g Rooted Trees 0.3 23.9 27.0
%g Treewidth One 66.9 23.9 53.7
Average Treewidth 1.33 2.07 1.52
Maximal Treewidth 3 6 5
Average Edge Density 1.02 1.18 1.09
%n Reentrant 33.4 15.7 19.6
%g Cyclic 0.0 29.9 0.3

Table 1: Some graph statistics (validation data).

to a drop of 15 and 9 percentage points, respec-
tively, between the highest and lowest performing
bin in PTG and AMR overall, the drop in perfor-
mance is 26 and 16 percentage points for the struc-
tural properties. Again, though, EDS remains the
outlier, with relatively consistent scores across the
bins (within 3-5 percentage points), and moderate
divergence between the different training and scor-
ing runs.

Complexity in parsing In syntactic parsing, and
to some degree also in semantic parsing, it has
long been established that longer sentences are
more difficult to parse (McDonald and Nivre, 2011;
Van Noord et al., 2018). This is commonly at-
tributed to increasing probability of linguistically
more complex structures, as well as to error prop-
agation. However, in the semantic parsing and
meaning representation sphere, there is (to the
best of our knowledge) little research into what the
possible causes of this behaviour are, and whether
it is a universal phenomenon across frameworks.
Therefore, what we observe with EDS in Figure 4
is more surprising than, intuitively, the PTG and
AMR scores, and raises questions about what
causes these differences. Hypothetically, either
the PERIN parser could be particularly tuned to
parse into EDS with great accuracy (which is, for
all we know, not the case), or there is a specific
property of the EDS framework that differentiates
it from the other two frameworks in parser perfor-
mance related to structural graph complexity.

4. Graph Statistics

In the previous section, we analysed parser per-
formance across three frameworks. Our findings
raised questions about the difference between ex-
pected and observed behaviour with regards to
graph complexity. We now provide a more detailed
analysis of the underlying properties of the three
frameworks.

We begin by presenting an analysis of struc-
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Framework All 01 02 03 04 05 06 07 08 09 10

EDS 33.4 31.15 33.17 33.64 34.01 33.78 33.73 33.55 33.23 33.46 33.39
PTG 15.7 3.65 8.25 11.61 13.41 15.39 15.09 16.42 17.67 17.60 21.52
AMR−1 19.6 0.19 9.65 16.93 16.55 19.29 20.33 20.59 20.95 20.78 21.35

Table 2: Per-framework percentages of reentrant nodes broken down by graph size decile bins.

tural graph statistics, according to Kuhlmann and
Oepen (2016). Table 1 shows a subset of prop-
erties computed by the mtool graph analyser.
EDS graphs, on average, have the largest num-
ber of nodes, with AMR graphs being substan-
tially smaller; in terms of the number of distinct
edge labels, the order is reversed. The next four
rows in Table 1 seek to quantify degrees of “tree-
ness”. Unlike in EDS, about one quarter of PTG
and AMR graphs actually are rooted trees. Con-
versely, the EDS graphs have lower average and
maximal treewidth, with PSG appearing least “tree-
like” in this perspective. The average number of
edges per node and percentage of reentrant nodes
indicate that EDS has comparatively low edge den-
sity but that reentrancies nevertheless occur in one
of three nodes, compared to around 16% and 20%
for PTG and AMR, respectively. Finally, EDS and
AMR exclude cyclic graphs by design, whereas cy-
cles are both allowed and common in PTG.

From the graph structure properties in Table 1,
a noteworthy difference between EDS and the
other two frameworks is the frequency of reen-
trant nodes. As discussed previously, reentran-
cies are central properties that distinguish graph-
based structures from tree-based structures and
make them more challenging to parse into (Szu-
bert et al., 2020). From previous research, one
might assume that this makes reentrant nodes
harder to predict, so this datapoint is, again, some-
what surprising.

In Table 2 we look further into the “%n” row
in Table 1 and break the statistics down by com-
plexity bins. We find that the percentage of reen-
trant nodes is consistently high across bins in EDS,
while the percentage of reentrant nodes grows with
graph complexity for PTG and AMR (in correlation
with a drop in performance). EDS still remains the
outlier, while based on observations on PTG and
AMR, it could be hypothesised that reentrancies
are harder to predict.

To explore this hypothesis, we further refine
the methodology used in Section 3, and com-
pare structural parser performance considering
the reentrant status of edges in the graphs. The
results are charted in Figure 5. The leftmost col-
umn shows parser performance considering only
edges that are not part of a reentrancy, i.e. do
not point to a reentrant node. The rightmost col-

umn shows parser performance considering only
reentrant edges, i.e. edges that point to a reentrant
node. To facilitate comparison, the middle column
repeats the data shown in Figure 4, showing per-
formance on all edges.

We observe that EDS performance drops by
nearly ten percentage points when going from
scoring all edges to only scoring non-reentrant
edges, and furthermore observe a slight improve-
ment when considering reentrant edges only.

In the case of PTG and AMR, while there is little
difference in performance overall across the three
scoring methods, we do see some improvement
in the lower decile bins specifically when scoring
reentrant edges only.

Considering that PTG and AMR show no dete-
rioration in performance on average for reentrant
edges compared to non-reentrant ones, and that
EDS performs much better on reentrant edges
overall, it would appear that our initial hypothesis
is not confirmed – and arguably even disproven.

This motivates a more detailed analysis of reen-
trant nodes – their causes and kinds of manifesta-
tions in the frameworks, which we present in the
following section.

5. Reentrancy

The description papers and annotation guidelines
for each of the three frameworks in focus mention
reentrant nodes to varying degrees, but unlike dis-
cussions of reentrancies in AMR in work such as
Szubert et al. (2020); Van Noord and Bos (2017),
there is (to the best of our knowledge) little in-depth
discussion of linguistic phenomena that give rise to
reentrancies, or the structures in which they mani-
fest, for EDS and PTG.

In this section we investigate the most frequent
and overlapping causes for reentrancies in all
three frameworks, with the hopes of learning more
about the difficulties – or advantages – of parsing
into reentrancies.

To illustrate our approach, Figure 6 shows the
EDS graph for the example sentence

(1) The high interest rates and outlooks an-
nounced today surprised and shocked in-
vestors.

This example exhibits some interesting linguistic
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tops + non-reentr. edges tops + all edges tops + reentr. edges

Figure 5: Graph structure F-score, scoring tops and (left) all edges except incoming reentrancies; (center)
all edges; (right) only incoming reentrancies, over five train-and-test runs of the PERIN parser.

Figure 6: EDS graph for Example (1). Ten automatically annotated reentrant edges are shown as dashed
arrows; three remaining reentrant nodes are highlighted with bold edges. In addition to EDS-specific node
labels, each node indicates (in typewriter font) the corresponding sub-string of the example.

complexity, including a nominal compound, nom-
inal and verbal coordination, where in the lat-
ter both the subject and an extracted object are
shared arguments between the conjuncts, a re-
duced relative clause, and a semantically decom-
posed temporal modifier. Argument sharing in co-
ordinate structures and relative clauses gives rise
to reentrant nodes in the graph, both in EDS and
in the other frameworks in our study. Additionally,
restrictive modification typically causes reentran-
cies in EDS, e.g. the attributive adjective, analy-

sis as the compound structure parallel to an un-
expressed preposition, and the attachment and in-
ternal structure of the temporal modifier. If trans-
lated to a more conventional logical-form repre-
sentation, this would correspond to something like
_high_a_1(x) ∧ _rate_n_of(x). Similar reentran-
cies related to modifier structures will arise in AMR,
though not in PTG, where modifiers tend to be de-
pendents of the nodes they modify. Finally, among
our three frameworks, EDS has the unique prop-
erty of encoding quantificational structure, using
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Framework Type Freq.

EDS quantification .377
compound .062
modification .070
numeric .022
preposition .072
other modification .027

PTG paratactic structures .341

AMR modification .417

Table 3: Relative frequencies of reentrancy types
labelled automatically.)

designated BV (“bound variable”) edges. This ap-
plies to both determiners that introduce quantifica-
tional force (_the_q in our example) and to covert
(unexpressed) quantificational predicates, e.g. on
bare nominals and in the decomposition of today
(udef_q and def_implicit_q). These edges, again,
reflect the underlying logical structure and are a
very frequent source of reentrancies in EDS which
is not present in the other frameworks.

5.1. Pilot Annotation
Based on the methodology of Szubert et al. (2020),
we begin by empirically observing reentrancies in
the frameworks, and assign labels based on the lin-
guistic phenomena they embody. With the goal of
quantifying our findings, we carry out a small-scale
pilot annotation study on sample sets from each
of the three frameworks. For each framework, we
build a sample of 150 sentence graphs, randomly
selected to include at least one reentrant node,
and balanced proportionally across the decile bins.

5.1.1. Predictable reentrancies

From our initial observations of the samples, we
find a number of frequent and predictable reen-
trancy patterns in each of the frameworks that take
up a not inconsiderable portion of the data and hu-
man labour during annotation. We automate the
annotation of these “predictable” reentrancies, and
focus manual annotation efforts on the remaining
reentrant nodes. Table 3 lists these predictable
reentrancies and their relative frequencies in the
sample sets.

In the case of EDS, the largest portion of these is
taken up by determiners and other quantificational
nodes, denoted with the BV edge label (in further
discussion, we label these as “category 1” reen-
trancies). Apart from being a very frequent cause
of reentrancies, this edge type is a framework id-
iosyncrasy and, thus, not a comparable linguis-
tic feature across frameworks. Similarly, we au-

Figure 7: Proportions of edges not involving reen-
trancy vs. automatically and manually annotated
reentrant ones

tomatically annotate compounds, adjectival mod-
ifiers, cardinal and ordinal number, prepositions,
and other predictable instances of what EDS anal-
yses as restrictive modification (appositions, pos-
sessives), all of which we consider “category 2”
reentrancies.

In the case of PTG, the majority of predictable
reentrancies is caused by the framework formality
of introducing member and effective edges for all
paratactic clause-like structures, be they clauses
or compounds, predominantly involving coordina-
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tion.
Finally, in the case of AMR, a relatively frequent

and predictable cause of reentrancy is restrictive
modification, as uniquely denoted by the domain
edge label.

Figure 7 charts proportions of edges in the full
dataset, by framework and complexity, according
reentrancy status: not reentrant, part of an au-
tomatically annotatable reentrancy (categories 1
and 2 for EDS), or part of a reentrancy requiring
manual annotation. These figures give a sense of
the portion of reentrancies caused by “predictable”
framework formalities like quantification or parat-
actic structures in EDS and PTG, respectively.

5.1.2. Manual annotation

Following the approach of Szubert et al. (2020), we
empirically observe the occurrence of reentrancies
and note their causes, starting with the relation
set discussed in the original paper, and expanding
with more reentrancy type labels as needed. The
results of the manual annotation are presented in
Table 4, highlighting the most frequent reentrancy
phenomena for each of the frameworks.

• Characteristic of EDS, but not captured by the
modification-labelling step of the automatic
annotation, comparative comprises edges in-
coming from nodes denoting comparative and
superlative modifications of adjectives and
verbs, as in the sentence fragment “the largest
and most prized market”.

• The Control structures label encompasses
various types of argument sharing found in
control structures, such as subject and object
control, adjunct control, etc., including nomi-
nal control.

• Both coordination and coreference may give
rise to argument sharing, and hence re-
entrancies, as in the example sentence “the
trust said it has rebuilt reserves and improved
operations”.

• The modal label covers all reentrancies occur-
ring as a result of modal verb structures, such
as “they may rise to mountainous proportions”,
where the subject is the argument of both the
modal verb and the main verb (in the case of
PTG), or the main verb gets an additional in-
coming edge from the modal verb (in the case
of EDS and AMR).

• In EDS and PTG, modification includes reen-
trancies occurring from adjectival participles
in restrictive modification, as in “We make
waves under controlled conditions and learn
where there are buried rock structures.”

• In PTG, named entities and similar compound
structures of proper nouns also give rise to
reentrancies, by linking each constituent to
the predicate node, and each other via a
named entity edge label, such as in the ex-
ample sentence “Goldman, Sachs & Co. will
manage the offering.”

• In AMR, partitive encompasses a wide range
of part-of relations that cause reentrancies, as
the example of finger and king in “I am more
powerful than the finger of a king.”

• Possessive relations give rise to reentrancies
in all three frameworks, by linking the posses-
sor and the object of possession, as in the
sentence fragment “with regard to man’s life
in society”.

• For all three frameworks, the relative clause
is a common cause of reentrancy, with multi-
ple incoming nodes for the shared argument,
as in the fragment “a tile bridge spanning a
stream that flows into the building from out-
side”.

• Most frequent in AMR, reentrancies labelled
verbalisation arise from the annotation con-
vention of maximising the use of predicates.
This most often manifests as adjectival par-
ticiples, or nouns as in the example of the
(govern-01, organization) node pair represent-
ing the noun government.

• Finally, the other label comprises other
causes for reentrancies that had less than five
occurrences in the sample data for all three
frameworks, such as object raising or various
discourse elements.

Since data for the three frameworks are not
drawn from the same source, the relative frequen-
cies in Table 4 are not horizontally comparable.
However, within the frameworks, certain highlights
emerge. For example, both EDS and AMR reen-
trancies prominently feature verbalisation, particu-
larly adjectival participles. Regardless of the dif-
ferent source material, coreference is a frequent
cause of reentrancy in both PTG and AMR, while
the highly reentrant EDS has an arguably more bal-
anced occurrence of many of the discussed reen-
trancy types.

Alongside the relative frequencies of reentrancy
types in the sample data, Table 4 shows the error
rates of the PERIN parser for the respective reen-
trancy types, bringing us back to the original ques-
tion of parser performance and where we might
see particular areas of improvement.

For example, in the case of coreference in PTG
and AMR, the PERIN parser fails to produce the
correct graph structure 38% and 43% of the time,
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EDS PTG AMR

Type Freq. Error Freq. Error Freq. Error

clause-like structures .067 .058 - - .039 .428
comparative .027 .000 - - - -
control structures .063 .250 .136 .291 .106 .342
coordination .127 .125 .165 .258 .134 .166
coreference .027 .142 .401 .382 .243 .436
modal .011 .333 .014 .400 .008 .333
modification .167 .071 .176 .451 - -
named entity - - .031 .818 - -
partitive - - - - .058 .285
possessive .039 .500 .008 .666 .008 .666
relative clause .183 .065 .022 .125 .008 .666
verbalisation .159 .075 .002 .000 .326 .358
other .122 .173 .039 .571 .067 .541

Table 4: Relative frequencies and error rates of manually annotated reentrancy types.

Framework EDS PTG AMR
Missed/Total .106 .345 .405

Table 5: Ratio of reentrant edges the parser failed
to produce vs. total number of reentrant edges, per
framework (sample set).

respectively, implying that, given the prominence
of coreference in the frameworks, correct corefer-
ence resolution has an impact on parser perfor-
mance, especially in longer sentences with more
occurrences of this reentrancy structure.

Similarly, with verbalisation being a frequent
cause of reentrancies in AMR, the parser demon-
strates a 35% error rate on this reentrancy type. As
with the previous example, better performance on
this task would likely significantly increase parser
performance overall.

In the case of possessives, it is interesting to
note that, although this particular reentrancy cause
makes up a relatively small proportion of reentran-
cies observed in the annotation set, the parser
shows an error rate of 50% or greater for posses-
sives in all three frameworks.

Table 5 summarises the error rates over the to-
tal number of reentrant edges per framework, in
the sample annotation set. Note that this view
does not include the “predictable” reentrancies
from the automatic annotation step. Even disre-
garding these frequent reentrancy types that are a
result of framework-specific regularities and, there-
fore, may be somewhat easier for the parser to cor-
rectly predict, the parser retains the lowest parsing
error rate on EDS, with just 11% of reentrant edges
not produced. Unlike for PTG and AMR, EDS
annotations were guided by a large-scale compu-
tational grammar, i.e. automatically confirmed to

obey formal principles of derivation and composi-
tion, which may both lead to higher degrees of pre-
dictability and overal greater consistency of the an-
notations.

6. Conclusion

Building on previous research into parser perfor-
mance for different frameworks of meaning rep-
resentation graphs, we carried out a contrastive
study focussing on patterns of parser behaviour
in sentences of increasing graph complexity, and
the presence and frequency of reentrant nodes
in the target graph. We performed a small-scale,
semi-automated annotation effort over a sample of
our datasets, and discussed observations on com-
mon linguistic phenomena that give rise to reen-
trant structures, and how successful a state-of-the-
art parser is in producing them. This work sets
the foundation for future focussed parser develop-
ment, as well as further discussions of the particu-
larities of framework design and annotation guide-
lines.

We intend to explore both of these tracks in fu-
ture work, specifically to reach out to the PERIN
developers and discuss properties of the parsing
architecture that may explain our findings (and po-
tential revisions to mitigate their negative impact
on parser performance). In the framework anal-
ysis track, we will explore redefining graph com-
plexity (and, subsequently, binning) by reentrancy
count, in contrast to the currently used node-count
approach. We also intend to refine and scale
up the reentrancy annotation effort, to produce a
larger dataset with phenomena categories aligned
across frameworks, and to the highest degree pos-
sible over the same strings.
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Abstract
For many years, there have been attempts to compare predicate-argument labeling schemas between formalisms,
typically under the dependency assumptions (even if the annotation by these schemas could have been performed
on constituent-based specifications). Given the growing number of resources that link various lexical resources to
one another and thanks to parallel annotated corpora (with or without annotation), it is now possible to do more
in-depth studies of those correspondences. We present here a high-coverage pilot study of mapping the labeling
system used in PropBank (for English) to Czech, which has so far used mainly valency lexicons (in several closely
related forms) for annotation projects, under different levels of specification and different theoretical assumptions.
The purpose of this study is both theoretical (comparing the argument labeling schemes) and practical (to be able to
annotate Czech under the standard UMR specifications).

Keywords: predicate-argument structure, valency, syntax, semantic, semantic roles, PropBank, Prague
Dependency Treebank, SynSemClass, Unified Verb Index

1. Introduction

PropBank (Kingsbury and Palmer, 2002; Palmer
et al., 2005), as it is usually referred to, is an En-
glish treebank (usually meant to be the Penn Tree-
bank, Marcus et al., 1993, in its many [later] ver-
sions) annotated with a predicate-argument struc-
ture, and in addition, with semantic roles, as defined
in (Palmer et al., 2005). The individual verbs (fur-
ther sub-divided into verb senses, and assembled
in so-called “PropBank Frame Files”), form a lex-
icon containing proper set of argument labels for
each of their senses. The corpus and the lexicon
(frame files), with the annotation guidelines as the
main source of the underlying theoretical descrip-
tion, form a specification of a fundamental view of
the predicate-argument structure as applied to En-
glish. The success of such predicate-argument an-
notation has led to the creation of several treebanks
in other languages annotated in the Penn-Treebank-
style, and “propbanked” using the specification for
English, such as Arabic, Basque, Chinese, Finnish,
Hindi, Persian, Portuguese, Turkish and Urdu, as
well as the multilingual collection of the IBM Uni-
versal Proposition Banks for 23 languages (Jindal
et al., 2022).1 The PropBank scheme of labeling
predicate-arguments has been also used for the
Abstract Meaning Representation (AMR) annota-
tion (Banarescu et al., 2013) (with some specific
predicates added) and recently, also for the Uni-
form Meaning Representation (UMR) annotation

1The UP 2.0 project creates the resulting annotated
files, at least for some languages, by an automatic con-
version from the UD-style annotation. This includes all
the Czech UD treebanks as well, which means that the
resulting labeling depends almost purely on the UD syn-
tactic scheme.

(Van Gysel et al., 2021; Wein and Bonn, 2023)
(with even more abstract predicates added). Both
AMR and UMR guidelines2 call, in principle, for the
same predicate-argument labeling scheme as in
the original PropBank.

The Czech language valency scheme, essen-
tially also a predicate-argument labeling scheme,
is however based on the Functional Generative De-
scription (dependency) theory (Sgall et al., 1986),
which treats especially the first two verb arguments
differently than PropBank and uses a different spec-
ification and labeling style for the remaining argu-
ments. It is used in the main Czech valency dic-
tionaries (Urešová et al., 2014; Lopatková et al.,
2022): VALLEX (Žabokrtský and Lopatková, 2007;
Lopatková et al., 2016) and PDT-Vallex (Hajič et al.,
2003). The latter has been used in the Prague
Dependency TreeBank (PDT) in the annotation of
the four PDT-C (Hajič et al., 2020) subcorpora an-
notated on the so-called Tectogrammatical Layer,
or Tectogrammatical Representation (TR), which
is “deeper” than the traditional dependency syn-
tax used in the Analytical Layer (surface syntax) of
the PDT(-C) (Hajič et al., 2020) or in the Universal
Dependencies annotation scheme.

At the same time, lexical semantic resources3

have been increasingly available in an interlinked
form. That covers both linking across such lexicons,
and/or linking them across languages. An example

2https://umr4nlp.github.io/web/guidelines.html
3We are interested primarily in verbal lexical re-

sources, but other resources are being linked together
too, e.g., in the Linguistic Linked Open Data project
https://pret-a-llod.github.io.

88



of such linking4 is the Unified Verb Index5 (Palmer
et al., 2014; Stowe et al., 2021) and the multilin-
gual SynSemClass ontology and lexicon6 (Uresova
et al., 2020), which has a rich set of links to Prop-
Bank, FrameNet, VerbNet, WordNet for English,
and to the VALLEX and PDT-Vallex lexicons for
Czech. In addition, the CzEngVallex lexicon7 (Ure-
šová et al., 2015a) links Czech and English verb
entries,8 using the PDT scheme for Czech. It is also
important to note that the EngVallex lexicon, used
as a basis for the bilingual CzEngVallex, was built
upon PropBank - albeit it also uses the PDT argu-
ment labeling scheme - and contains (some) links
back to the original PropBank frame files (Cinková,
2006).

The goal of this paper is to describe a recent
attempt at a large-scale, large-coverage mapping
of the predicate-argument labeling schemas: the
PDT-based valency approach and the PropBank
approach, applied to Czech. Mapping means to try
to capture the same predicate-argument relations
(as found in the Czech valency dictionaries) using
the PropBank specifications (by mapping the labels
of predicate-argument relations). The results will
help to see the theoretical differences, and will per-
haps also lead to an easier annotation of Czech
within the UMR scheme (which also uses the Prop-
Bank argument labeling).9 While there are several
theoretical questions to answer, there are also more
practical issues and open questions (and benefits
if the differences can be explicitly and formally de-
scribed):

• How is the PropBank approach different from
the semantic point of view, especially in the
labeling of the first two arguments?

• Can an algorithm be designed to convert, for
a particular verb sense, its PDT-based va-
lency structure into the PropBank predicate-
argument labeling scheme?

• If yes, what are the biggest differences that
cause complications or lead to the impossibility
of mapping to the PropBank scheme exactly?

• What information from the richly annotated
lexical resources, such as SynSemClass and

4Among others, such as BabelNet (Navigli and
Ponzetto, 2012), Predicate Matrix (Lopez de Lacalle et al.,
2016), LLOD etc.

5https://uvi.colorado.edu
6https://lindat.mff.cuni.cz/services/SynSemClass50,

http://hdl.handle.net/11234/1-5230
7http://hdl.handle.net/11234/1-1512
8https://lindat.mff.cuni.cz/services/CzEngVallex
9While UMR does not strictly require the PropBank

approach, it is understood that having a unified argument
labeling scheme is an advantage.

PropBank, and the associated bilingual cor-
pora between Czech and English can be used?

2. Related Work

Mapping the (English) PropBank scheme to other
languages has been researched previously. The
PropBanks mentioned in the Introduction have
used some form of mapping. For example, Xue
et al. (2002) describes a mapping for Chinese. The
first comparative study on English and Czech va-
lency draws a comparison between PropBank, LCS
Database, and PDT (Hajičová and Kučerová, 2002).
Further, for English, the relations between the Prop-
Bank arguments and the valency slots as defined in
the PDT scheme have been described by Cinková
(2006). The resulting EngVallex lexicon has then
been used for the tectogrammatical annotation of
English in the Prague Czech-English parallel De-
pendency Treebank (PCEDT,10 Hajič et al., 2012).

Studies on English-Czech valency using tree-
bank examples or treebank token alignment are de-
scribed in (Šindlerová and Bojar, 2009; Bojar and
Šindlerová, 2010) and resulted in the creation of a
bilingual Czech-English valency lexicon - CzEng-
Vallex - described in (Urešová et al., 2015b, 2016).
Detailed studies on aligning English and Czech
arguments also exist, such as (Šindlerová et al.,
2015). However, all these studies compare the
valency solely under the PDT labeling scheme.

A comprehensive description comparing Czech
PDT-based valency and the English PropBank la-
beling schema is presented in the papers (Ure-
šová et al., 2014) and (Xue et al., 2014). They
provide a detailed inspection of argument labeling
differences between Czech and English annotation
within the AMR scheme. As the study (Urešová
et al., 2014) reveals, the by far most frequent mis-
match is caused by different argument labeling.
While there is a complete match for most purely
transitive verbs, there is a discrepancy for most
other verbs since PropBank continues to number
arguments of corresponding verbs consecutively
but PDT-Vallex attempts the semanticization of ar-
gument labels: ADDR (addressee), EFF (effect) and
ORIG (origin). These two studies have been made
on a very small subset of verb frames: Xue et al.
(2014) use only 100 sentences and verbs found in
them.

Finally, a detailed study of mappings between the
structures used in AMR and those used in UMR are
presented in (Bonn et al., 2023). However, here the
Czech AMR annotation uses the Czech PDT-Vallex
valency lexicon labels, while the English AMR uses
the standard English PropBank Roleset Lexicon
(Frame Files).

10http://hdl.handle.net/11858/00-097C-0000-0015-
8DAF-4
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3. Data Sources

The datasets used for pre-assigning the PropBank-
defined arguments to the PDT-based valency
frames and their individual slots have been the fol-
lowing:

• PropBank Frame Files taken from the current
github version of PropBank;11 see Sect. 3.1,

• CzEngVallex bilingual valency lexicon avail-
able in the LINDAT/CLARIAH-CZ repository12

(Urešová et al., 2016), see Sect. 3.2,

• SynSemClass ontology 5.013 (Urešová et al.,
2023), see Sect. 3.3.

In the following sections, we will present the basic
structure of these resources stressing the predicate-
argument labeling scheme and properties.

3.1. PropBank and PropBank Frame
Files scheme

The original Proposition Bank project (Palmer et al.,
2005) “took a practical approach to semantic rep-
resentation, adding a layer of predicate-argument
information, or semantic role labels, to the syntac-
tic structures of the Penn Treebank” (Marcus et al.,
1999). In fact, one of the original motivations was to
define semantic roles for the annotation for each
verb used in the corpus, with the alterations ap-
pearing in the corpus being one of the important
points. It was clearly stated that syntax alone is not
sufficient to generalize (or, better to say, uniformly
annotate) over various forms of expressions to rep-
resent the same meaning in relation to the verb
arguments. This approach can be demonstrated
on the verb break appearing in two syntactically dis-
tinguished constructions: John broke the window.
and The window broke. In both cases, the affected
object is the window, syntactically expressed as an
Object in one case and Subject in the other. There
are many verbs behaving similarly, such as play
(The sergeant played taps. vs. Taps played quietly
in the background.)14 or load (He loaded the truck
with hay. vs. He loaded hay onto the truck.).

As a result, PropBank uses an approach (at the
top-level abstraction) similar to that of the PDT
(Sect. 3.2), i.e., using a list of arguments specific
for each verb. However (as opposed to the PDT),
PropBank, while using numbered argument roles,
defines Arg0 for a prototypical Agent and Arg1 for
a prototypical Patient (or Theme), following (Dowty,
1991). I.e., in the aforementioned example of the
two uses of break, the window argument will always

11http://propbank.github.io/v3.4.0/frames/index.html
12http://hdl.handle.net/11234/1-1512
13http://hdl.handle.net/11234/1-5230
14Examples from the (Palmer et al., 2005) paper.

be marked as Arg1 to signal the same semantic “po-
sition” relative to the verb break, regardless of the
syntactic structure; as a consequence, in the case
of the second example sentence, the verb break
will have no argument labeled Arg0. Furthermore,
each sense of the verb lemma has a separate role-
set (denoted by an ordinal number attached to the
lemma, such as kick.02), and they are collected in
one frame file for a given lemma.

The original definition of a roleset in the frame
files required a description associated with each ar-
gument, such as “sayer” for Arg0 of the verb (sense)
suggest.01 or “utterance (suggestion)” for its Arg1,
or “chart-maker” for Arg0 of chart.01 or “thing being
charted” for its Arg1.15 However, these descrip-
tions are not formally defined, so they are unique
for each roleset, and not related (much) to the same
description at a different roleset.16 Also, they do
not generalize over “content” synonymy (as in buy
and sell, as the original FrameNet did by putting
them to a single frame labeled COMMERCE)17 -
the description of Arg0 for sell is “seller” while the
same description is used for Arg2 of buy. Similarly,
PropBank does not group what would be called
synonyms, e.g., in WordNet (Fellbaum, 1998) - it
keeps each lemma (and word sense) separately.
However, thanks to mappings from PropBank to
VerbNet (Schuler and Palmer, 2005), available in
PropBank v3.418 or in the UVI index,19 at least the
broadly defined semantic classes as represented
in VerbNet can be determined.

3.2. CzEngVallex: Parallel Czech-English
Valency Lexicon and the PDT
Valency Scheme

CzEngVallex (also CEV) is a bilingual Czech-
English verbal valency lexicon (Urešová et al.,
2015). It includes 20,835 aligned valency frame
pairs20 and their aligned arguments. This lexicon
uses data from the PCEDT corpus and also takes
advantage of the existing valency lexicons for both

15https://github.com/propbank/propbank-
frames/blob/main/frames/chart.xml

16This is similar to the approach of FrameNet, which
also declares that a semantic role defined or used in two
different frames should not be taken to mean the same.
See SynSemClass (Sect. 3.3) for a different approach.

17Currently, FrameNet v2 uses two separate frames,
Commerce_buy and Commerce_sell, corresponding to
the PropBank approach.

18http://propbank.github.io/v3.4.0/frames/index.html
19https://uvi.colorado.edu/uvi_search
20Each valency frame in the PDT-based valency ap-

proach essentially corresponds to one verb sense, there-
fore, the term “verb sense” and the term “valency frame”
are used interchangeably (simplifying the matter some-
what given that there are some cases where the differ-
ence matters).

90



languages (PDT-Vallex and EngVallex).

FGD valency theory. The PDT-Vallex and Eng-
Vallex lexicons, and subsequently the CzEngVallex,
are built upon the valency theory developed within
the Functional Generative Description approach
(FGD). As described in detail in (Urešová et al.,
2016; Lopatková et al., 2016), in this dependency
approach, valency is seen as a property of (some)
lexical items, mainly the verb being the core of the
sentence, to select for certain complementations
in order to form larger units of meaning (sentence,
phrase, etc.). The valency characteristics (i.e., the
number or arguments and morphosyntactic surface
realization of the selected dependent elements con-
stituting the valency structure) are represented in
the form of (PDT-)valency frames; these frames are
listed in valency lexicons.

The basic characteristics of the FGD valency the-
ory can be found in (Panevová, 1994): it combines
the syntactic and semantic approach for distinguish-
ing valency elements. The relation between the
governor (primarily verb) and its dependent is char-
acterized by so-called functors at the tectogram-
matical layer: a functor is a label representing the
semantic values of a syntactic dependency rela-
tion.21 There are two axes of classifying the valency
modifications in the FGD valency theory: the first
axis distinguishes inner participants (arguments)
and free modifications (adjuncts), and the other
axis distinguishes between obligatory and optional
complementations.

There are five “inner participants” (arguments):
Actor/Bearer (functor ACT), Patient (PAT), Ad-
dressee (ADDR), Origin (ORIG) and Effect (EFF).
Out of the five argument types, FGD states that the
first two are connected with no specific semantics,
contrary to the remaining three ones. The first argu-
ment is always the Actor (ACT), the second one is
always the Patient (PAT). The Addressee (ADDR) is
the semantic counterpart of an indirect object that
serves as a recipient or simply an “addressee” of
the event described by the verb. Effect (EFF) is the
semantic counterpart of the second indirect object
describing typically the result of the event (or the
contents of an indirect speech, for example, or a
state as described by a verbal attribute – the com-
plement). Origin (ORIG) also comes as the second
(or third or fourth) indirect object, describing, not
surprisingly, the origin of the event (in the “creation”
sense, such as to build from metal sheets, not in
the directional sense).

FGD valency theory has further adopted the con-
cept of shifting of “cognitive roles”. According to this
special rule, semantic Effect, semantic Addressee

21For a full list of all PDT dependency relations and
their labels (functors), see (Mikulová et al., 2005).

and/or semantic Origin are being shifted to the Pa-
tient (PAT) position in case the verb has only two
arguments.22

In addition to the inner participants, FGD distin-
guishes about 50 types of semantically determined
adjuncts (free modifications), such as temporal,
locative or causal. Due to the “free nature” of ad-
juncts, only the presence of arguments (obligatory
or optional) and obligatory adjuncts is recorded in
verbal valency frames.

The FGD-based valency lexicons (PDT-Vallex,
EngVallex, and CzEngVallex). CzEngVallex
(CEV) has been developed together with the
PCEDT corpus23 (Hajič et al., 2012), i.e., a
sentence-parallel treebank based on the sentences
of the Wall Street Journal section of Penn tree-
bank24 and their manual translations. This annota-
tion includes also verb sense annotation by links
to valency frames in PDT-Vallex (for Czech) and
EngVallex (for English).

PDT-Vallex (Urešová, 2011) has been developed
as a resource for valency annotation in the PDT.
This lexicon is publicly available as a part of the
PDT version 2 published by the Linguistic Data
Consortium and also separately.25 The version of
PDT-Vallex used for CzEngVallex contains 11,933
valency frames for 7,121 verbs.

EngVallex (Cinková, 2006) was built within the
same FGD valency theory and makes use of
PropBank, from which it was automatically pre-
converted and subsequently manually refined and
used for the tectogrammatical annotation of the
Wall Street Journal section of the Penn Treebank.
EngVallex contains 7,148 valency frames for 4,337
verbs.

3.3. SynSemClass Ontology
SynSemClass (SSC) (Urešová et al., 2023) is an
event-type ontology for multiple languages. It in-
cludes Czech, English (Urešová et al., 2019a)),
German (Urešová et al., 2021) and Spanish words
and definitions (Fernández-Alcaina et al., 2022).
In SynSemClass, contextually-based synonymous
verbs in various languages are classified into event-
type concepts, or multilingual synonym classes

22This can be illustrated on the sentence The teacher
asked the pupil where the semantic Addressee (the pupil)
is shifted to the Patient position and thus gets the PAT
functor. This rule, when viewed from the annotation point
of view, helps to keep consistency at the expense of
lower “semantic adequacy”.

23http://hdl.handle.net/11858/00-097C-0000-0015-
8DAF-4

24https://catalog.ldc.upenn.edu/LDC99T42
25https://lindat.mff.cuni.cz/repository/xmlui/handle/11858/00-

097C-0000-0023-4338-F
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according to the semantic and syntactic properties
they display. To have empirical evidence for such
classification, SynSemClass is being developed
in a “bottom-up” fashion: The candidate verbs for
synonym classes are taken from actual examples
from parallel English-Czech, English-German, or
English-Spanish corpora.

As described in detail in (Urešová et al., 2020,
2019b, 2018a,c,b), SSC synonym classes are char-
acterized by the following main features:

• The name of each class stands for a single
concept (e.g., of eating)26 and corresponds to
the verb that represents the prototypical sense,
in each of the languages included.

• Each class is provided with a brief general
class definition in each language included,
which characterizes the meaning (concept) of
the class.

• For each class, SynSemClass also provides a
fixed set of “situational participants”, labeled
with SSC semantic roles common for all the
class members in that class. The roles are
mapped to the predicate-argument (valency)
structure of the individual class members.
Thus, they are characterized both meaning-
wise (semantic roles) and structurally-wise (va-
lency arguments). When mapping the roles
from a given set of participants, each one must
be realised as “something” taken from the va-
lency frame of a verb in that class.

• Each verb (sense) included in a given SSC
synonym class is linked to one or more lex-
ical resources for the given language. In
SSC, there are links to e.g., VALLEX27 for
Czech, FrameNet28 and VerbNet29 for English,
E-VALBU30 for German, AnCora31 for Spanish,
among others.
Further, each verb is exemplified by instances
of real texts extracted from translated or paral-
lel corpora. Specifically, data is extracted from
the Prague Czech-English Dependency Cor-
pus (PCEDT)32 for Czech-English, from the
Paracrawl corpus33 for German-English and
from the X-SRL dataset34 for Spanish-English.

26This is different from the commonly used term of
“semantic classes of verbs” as represented, for example,
in VerbNet, where the class is defined much more broadly
– such as for all verbs of movement.

27https://hdl.handle.net/11234/1-3524
28http://framenet.icsi.berkeley.edu/
29http://verbs.colorado.edu/verbnet/index.html
30https://grammis.ids-mannheim.de/verbvalenz
31http://clic.ub.edu/corpus/es/ancoraverb_es
32https://ufal.mff.cuni.cz/pcedt2.0/en/index.html
33https://paracrawl.eu
34https://catalog.ldc.upenn.edu/LDC2021T09

4. Mapping PDT to PropBank

Given the plethora of richly interlinked resources,
as described in Sect. 3, one might wonder why the
mapping between arguments of verbs in these re-
sources is ever worth investigating and not just a
simple technical problem. The reason is first of all
the richness of the language itself and its ambiguity
as well as redundancy. In addition, the usual prob-
lems related to manually annotated and curated
resources are present, too: ambiguous guidelines,
(low) inter-annotator agreement, not enough details
in lexical resource descriptions, evolving resources
over time with changing approaches and annotator
teams, and their insufficient coverage (Fučíková
et al., 2024).

As an example, let’s take the Czech word sídlit
(lit. to reside).35 It has two core arguments (in the
base PDT-Vallex resource): ACT for the thing resid-
ing somewhere, and LOC for the location. In the
CzEngVallex resource (Sect. 3.2), the entry for sídlit
is linked to seven different English verbs (anchor,
base, be, ensconce, house, locate, and reside),
as collected (and manually filtered and annotated)
from the annotated parallel PCEDT corpus. The
conflicting argument mappings, when traced from
CzEngVallex to PCEDT to PropBank, are shown in
Fig. 1.36

In the SynSemClass ontology (Sect. 3.3), the
Czech verb sídlit appears in the class named (in
English) locate. On top of the aforementioned En-
glish equivalents coming from CzEngVallex, there
are also some additional English verbs (lie, settle,
spread, sit) presumably bearing the same meaning
as sídlit, with yet another set of mappings traced
from the original PDT-like ones to PropBank argu-
ments.

The natural question is whether these mappings
can be (automatically) consolidated somehow to
serve as a basis for a (manually-based) filtering and
editing process to arrive at such a set of PropBank-
style arguments for sídlit that would respect the
PropBank guidelines as much as possible. An algo-
rithm that tries to do exactly that and which makes
use of the input resources (as presented in Sect. 3)
plus the of parallel Czech-English annotated cor-
pus PCEDT for getting corpus-based preferences,
is described in the next section.

35sídlit is relatively simple example, given that from the
Czech language perspective, there is only one meaning;
cf. the old Dictionary of Standard Czech Language, or
SSJČ, at https://ssjc.ujc.cas.cz.

36The verb “be” has been left out, since it was treated
as auxiliary in the corpus.

92



Figure 1: Source mapping for the arguments of the Czech verb sídlit to its English counterparts
sídlit

(PDT-based reside anchor base house
arguments) locate ensconce

ACT →Arg0 →Arg1 →Arg1 →Arg1
LOC →Arg1 no mapping →ArgM-LOC →Arg2

5. The Mapping Algorithm

The automatic mapping is created in two steps, for
all Czech verb senses (valency frames) as found
in the PDT-Vallex lexicon:

• collecting, for each frame, all possible map-
pings by tracing the available resources for
each argument separately to get its possible
PropBank argument label(s), together with fre-
quencies of these mappings in available cor-
pora (Sect. 5.1), and

• consolidating and creating the new, com-
plete PropBank-style rolesets for Czech verb
senses, with the right number of arguments
and their labels (Sect. 5.2).

For cases where the final roleset cannot be de-
termined unambiguously, we collect statistics from
the parallel PCEDT corpus,37 which is annotated
by both the Czech and English valency frames and
their arguments. These numbers of corpus occur-
rences are then used in determining the preferred
mapping when displaying it to the annotator for
making the final decisions.

5.1. Collecting Instances of Argument
Mappings from Existing Resources

There are two main sources where the traces lead-
ing from the Czech PDT-based valency frame and
its individually taken arguments to the PropBank
ones come from: CzEngVallex (CEV, Sect. 3.2)
and SynSemClass (SSC, Sect. 3.3).

CEV mapping. The mapping(s) of the PDT-style
labels (functors), as listed for each PDT-Vallex
valency frame, to the PropBank argument labels
are collected from CzEngVallex entries, together
with the PCEDT corpus frequencies. For exam-
ple, the Czech verb asistovat (one sense only, with
two arguments: ACT and PAT) is linked to two
single-sense EngVallex entries assist and support

37https://ufal.mff.cuni.cz/pcedt2.0/publications
/eng_pb_links.txt - actually, only from the English side as
the target side of each of the possible mappings, since
the Czech frequencies are irrelevant for this task, given
we go through all of the verbs found in the lexicon.

in CEV.38 From these two entries and their occur-
rences on the English side of the PCEDT, the fol-
lowing PropBank arguments39 have been identified
(numbers in parentheses indicate occurrences of
these mappings in the English part of the PCEDT):

asistovat assist support
ACT →Arg0 (16x) →Arg0 (102x)
PAT →Arg1 (20x) →Arg1 (149x)

→Arg2 (3x)
Thus by performing three “hops” - from PDT-

Vallex to CzEngVallex to PCEDT to PropBank - we
are getting, for asistovat, an unambiguous mapping
from ACT to Arg0 (attested 118 times in the corpus)
and an ambiguous mapping from PAT to both Arg1
(169 times in data) and Arg2 (three times).

SSC mapping. While using CEV gives us tech-
nically simple means to arrive at (unambiguous,
or ambiguous (frequency-annotated)) mappings
to PropBank argument labels, it only covers the
PCEDT data. To exploit another highly relevant
resource, we are using SSC to collect mappings for
more verbs (verb senses/frames) from PDT-Vallex
to PropBank argument labels. Instead of using the
direct frame-to-frame mappings available in CEV,
we use one of the major SSC features, namely the
mapping between the semantic roles (common for
each multilingual class, and thus shared by the
verbal lexical units in several languages, includ-
ing Czech and English) and the original verb ar-
guments, taken from PDT-Vallex and EngVallex.
From these mappings, we can extract direct functor-
to-functor mapping (as if from CEV) and conse-
quently the PropBank argument labels based on
the links in EngVallex. Given that the SSC classes
are much broader than the direct bilingual verbal
links in PCEDT, we can get bigger coverage, but
also more ambiguity.

Let’s start with the SSC class “commit / do-
pustit_se” in which all verbs (including the English
verbs blunder and commit) share two semantic
roles, “Perpetrator” and “Deed”. For blunder, SSC
maps these roles to ACT and PAT, respectively, and

38... because asistovat had these two translational
counterparts in PCEDT.

39Please recall that the English side of the PCEDT is
in fact the original WSJ portion of the Penn Treebank
with PropBank annotation on top of it, see Sect. 3.2.
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afterwards EngVallex traces them to PropBank’s
Arg0 (2 instances) and Arg1 (1×), respectively;
for commit, “Perpetrator”→ACT and “Deed”→CPHR
are traced to Arg0 (9x) and Arg1 (12x), respectively.
In this case (since no ambiguity arises), the Args
can then be easily mapped to the arguments of
all the Czech verbs from the same class, namely
dopustit_se, dopouštět_se, páchat and spáchat,
because we know which of their valency frame
functors correspond to “Perpetrator” and which to
“Deed”.

However, it is common that the resulting map-
pings are (even highly) ambiguous. Fig. 2 illustrates
the case for the Czech verb “líbit se”, which is one
of the Czech verbs in the class “appeal / líbit_se”
(meaning to “like” or “be pleased by” something).

5.2. Mapping PDT Valency Frames to
PropBank Rolesets

The final steps are to suggest the mapping for the
whole valency frame to the PropBank-style role-
set, incorporating the procedure described above
for the individual arguments. Since these are the
last steps before the manual pass of obtaining a
PropBank-style Czech rolesets, we are describing
them more technically by referring to the actual
worksheet (table)40 that will be used by the annota-
tors.

Mappings for individual functors. Each verb
record consists of several rows – one identifying the
verb sense (roleset) and then one for each (original)
functor / PDT argument, followed by an empty row.
A description of how the rows and columns are filled
is described below.

1. For each verb sense (frame) from PDT-Vallex,
create its PropBank ID (column A, UMR ID).
Example: spolknout “swallow; eat_up”: PDT-
Vallex spolknout (v-w6385f1) –> spolknout-
001.

2. Copy the PDT-Vallex ID and its frame members
(functors) to column B (PDT frame), with the
verb lemma and frame ID on the same line as
the PropBank ID, and the argument functors
immediately under that.
Example: spolknout-001 “swallow; eat_up”
gets link to the PDT-Vallex spolknout (v-
w6385f1), its two functors are indicated in sep-
arate lines, ACT (in nominative) and PAT (in
accusative).

3. If the verb sense occurs in some SSC
class(es), put its class ID and its semantic
roles to the appropriate rows corresponding to
the role-to-argument mapping as recorded in

40http://hdl.handle.net/11372/LRT-5480

the SSC (column C, Role_mapping). Each
mapping has the form functor→role, e.g.,
PAT→Deed for dopustit se from the SSC class
“commit / dopustit_se”, see above.
If the verb belongs to more SSC classes, cre-
ate one record for each class (see, e.g., the
bouchnout-002 records with the ACT→Agent
& PAT→Instrument mapping for the “bang /
praštit” SSC class and the ACT→Assailant
& PAT→Target mapping for the “hit / třís-
knout” SSC class).

4. Copy the mappings retrieved via CEV
(Sect. 5.1) to column L (mapping via
CzEngVallex), with aggregated PCEDT
occurrences for each Argx.
Example: for the verb asistovat, “assist;
support” this column indicates the ACT→Arg0
mapping with 118 occurrences (102 “inherited”
from the verb support and 16 from assist);
further, two mapping options for PAT are
identified, 169 cases of PAT→Arg1 (149 from
support and 20 cases from assist) and 3
occurences of PAT→Arg2 (from assist), see
Sect. 5.1.

5. Copy the mappings retrieved via SSC
(Sect. 5.1) to column N (mapping via
SynSemClass5.0), with aggregated PCEDT
occurrences for each Argx.
Example: for asistovat “assist; support”, this
column indicates ambiguous mappings of both
ACT and PAT functors:

asistovat
ACT→Protagonist →Arg0 (166x)

→Arg1 (128x)
→Arg2 (1x)

PAT→Event →Arg1 (53x)
→Arg2 (295x)

Based on the retrieved mappings, the algorithm
tries to resolve ambiguities:

6. If SSC and/or CEV provide an unam-
biguous mapping of individual PDT func-
tors to PropBank arguments, put it to
column G, Unambiguous mapping - SSC
and/or CEV. This is, e.g., the case of the
verb svolat “assemble” and its PAT func-
tor where both CEV and SSC suggest the
PAT→Arg1 mapping (with 197 occurrences
collected in CEV and 418 in SSC, the later via
“Event” semantic role).

7. If the mappings offered by the SSC and/or
CEV lexicons are ambiguous but some pre-
vail (based on PCEDT counts), show them in
column H (Prevailing mapping - SSC
and/or CEV; multiple suggestions are sepa-
rated by #) and report ambiguity in column J.
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Figure 2: Mapping PDT functors via the SSC roles for the class “appeal / líbit se” to PropBank arguments
appeal / “Experiencer” “Stimulus”
líbit se →ACT →PAT
appeal →PAT→Arg1 (19) →ACT→Arg0 (12)
displease →ACT→Arg0 (1) →PAT→Arg1 (2)
sit no PB mapping no PB mapping
like →ACT→Arg0 (57) →PAT→Arg1 (61)
please →PAT→Arg1 (14) →ACT→Arg0 (3), Arg2 (4)

→MEANS→Arg0 (1), Arg2 (5)
Summary for ACT→ PAT→
líbit se: Arg0 (58), Arg1 (33) Arg0 (16), Arg1 (63), Arg2 (9)

The mapping of a functor is “prevailing” when-
ever the number of PCEDT instances of the
respective mapping is within 10 percentage
points of the immediately more frequent sug-
gestion, starting from the highest count.
Example: for svolat “assemble”, there are two
possible mappings for ACT (both correspond-
ing to the “Host” semantic role), namely 310
occurrences of Arg0 and just 1 occurrence
of Arg1; the prevailing mapping ACT→Arg0
is suggested as the relevant mapping in col-
umn H.

8. If SSC offers an unambiguous mapping for at
least some of the functors that differs from the
mapping suggested by CEV, the SSC map-
pings go into column I (Unambiguous SSC
mapping (other than CEV)) as SSC is
considered more relevant due to its more “se-
mantic” nature. If the SSC mapping is ambigu-
ous, no suggestion is made and disagree is
noted in column J.)
Example: with střetnout_se “compete” the
mapping ACT→Arg0 unambiguously sug-
gested in SSC with 72 occurrences in PCEDT
(with the “Competitor” role) is considered as
the relevant mapping and copied to column I,
disregarding Arg1 mapping suggested in CEV
(6 cases).

Final mappings for the whole rolesets. After
the above rather bookkeeping steps (providing, at
the same time, relevant background information
for the annotators), the algorithm continues by de-
ciding which suggestions to actually make to the
annotators.

The suggested mapping is a union of those in-
dividual argument mappings inserted in the above
steps to columns G, H and I (unambiguous,
prevailing, and SSC-only mappings), ful-
filling these additional “well-formed roleset” criteria:

• The indices of automatically proposed argu-
ment labels must be continuous, starting with
Arg0 or Arg1 (per PropBank rules); e.g., the

sequence Arg0, Arg2, and Arg3 is not a valid
roleset (in such a case, the discontinuous
Args note is put in column J).
Example: the valency frame corresponding
to hnát-001 “drive; force” consists of three
functors, ACT for “Stimulus”, PAT for “Affected”
and DIR3 for “State_final”). The mapping re-
trieved from the relevant SSC class “bring
/ dovést” suggests their correspondence to
Arg0, Arg1, and Arg3, respectively, which is
not considered “well-formed roleset”; thus, no
final mapping is suggested. However, the an-
notators get highly useful information about
prevailing ACT→Arg0 mapping, unambiguous
PAT→Arg1 mapping, and possible mappings
of DIR3 to (already taken) Arg1 (attested 19x
for the given SSC class in PCEDT), Arg2 (at-
tested 22x), and (inapt) Arg2 (attested 37x).

• The PDT-based valency frame as a whole (i.e.,
all its functors) must be mapped onto argu-
ments (if not, the partial note is put in col-
umn J).
Example: with donášet-003 “inform; snitch”,
only for one functor (out of 4), possible
ACT→Arg0 mapping is suggested in CEV
(with 3 occurrences); no roleset is proposed.

• Argument labels do not repeat; e.g., the roleset
(Arg0, Arg1, Arg1) is not a valid one (reported
as repeated in column J).
Example: the valency frame of the verb donést-
002 “carry” consists of three functors, ACT for
“Transporter” semantic role, PAT for “Trans-
ported” and DIR3 for “Area 2”. While in SSC,
ACT is unambiguously mapped to Arg0 (40x in
PCEDT) and the PAT→Arg1 mapping prevails
(80x), the only suggestion for DIR3 comes
from CEV, repeating Arg1. Thus no final role-
set is proposed (and information on partial
mappings is provided to the annotators).

Mappings that satisfy these criteria are copied to
the AUTOMATIC MAPPING column (column D; the
SSC-only mappings are preceded with ?). Column
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K (source) contains the source of the suggested
mapping (czengvallex, ssc or both).41

To summarize, the final output has a form of a
simple table identifying, for each Czech verb sense
from the PDT-Vallex lexicon (columns A, B), its func-
tors/arguments (column B), its SSC class and se-
mantic roles for individual functors (column C), and
their automatic mapping to PropBank arguments,
whenever such mapping has been considered as
reliable enough (column D, with column K substan-
tiating the decision).

Finally, columns E (CORRECTION) and F (COM-
MENTS) serve as the editable columns for the an-
notators to eventually fill in. The other columns
store the source information from CEV and SSC
(whenever available) plus information why it was
not possible to suggest the reliable mapping auto-
matically (where relevant, in column J).

6. Statistics And Limitations

While we cannot yet report on the amount of man-
ual work necessary to fill in the gaps caused by the
missing, ambiguous or otherwise unusable data,
we present here overall statistics about the major
cases, especially those mappings where the level
of certainty of producing the correct mapping auto-
matically is high.

For the individual functors, as found in the
source valency lexicon, PDT-Vallex, and regardless
in which valency frame they occur, the following
results have been obtained:

unamb- pref- un-
iguous erred mapped total

functors 9,465 8,579 24,072 42,116
percent 23 20 57 100

The above table shows that about 43 percent
of arguments was possible to map to a PropBank
argument label automatically with certainty (or as a
preferred variant based on corpus usage statistics).

From the full roleset point of view, the situation
is less favorable, albeit expected since for a
valency frame to be fully mapped to a PropBank
roleset, all arguments must be reliably mapped
(with an avg. of 2,69 arguments per valency frame):

auto- un-
suggested assigned total

rolesets 5,085 10,569 15,654
percent 32 68 100

It is however important to note that most of the
unassigned rolesets are simply due to missing

41For technical reasons, some valency frames recently
edited, the older version of which should rather be deleted
in the resulting roleset list (greyed rows), are marked as
copy in column K.

source-side mappings (in CEV and SSC). When
some mapping was available, then the problem-
atic cases have only been a few: 117 ambiguous
mappings for a functor to Argx link, 328 for non-
continuous numbering or Agrxs in the roleset, 354
for repeated Argx in a roleset, and 1,123 for only
partially mapped frames.

Limitation. There is an important limitation for
the approach to argument mapping as described
in this paper: it needs the richly linked resources
as described in the paper, in order to have reli-
able indications for what frames can be mapped
automatically and which can only be proposed as
preferred mappings, with the preferences coming
from a corpus annotated by the very valency frames
that have been used as a starting point.

However, the limitation might be relieved by us-
ing only one input resource, which however must at
least be linked to PropBank, such as the SynSem-
Class one. While it can produce ambiguous or par-
tial rolesets, and given the lack of checks against
another resource, less reliable results, it can still be
considered a good starting point as demonstrated
by the fact that slightly more of the extracted map-
pings came from the SSC than from CEV (by about
200, or 1.3/3.9% from all/auto-suggested rolesets).

7. Conclusions

We have demonstrated that a carefully designed
preprocessing for finding automatic mappings from
a Czech valency dictionary which is based on a dif-
ferent theoretical approach can still produce many
reliable PropBank-style rolesets (32 percent of the
original full frames) to be included in a PropBank
frame files for Czech. Additionally, the preprocess-
ing produces a table (spreadsheet) with the nec-
essary valency / predicate-argument information
and clickable links for the annotators to finish the
work manually in an efficient manner. In the future,
the resulting Czech PropBank frame files will be
used for Czech UMR annotation that follows the
original guidelines requiring PropBank-style argu-
ment labels. In addition, it will also allow for more
direct, large-scale comparison between the two
approaches to predicate-argument labeling.
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Abstract

This paper presents an adaptation of the Abstract Meaning Representation (AMR) framework for European
Portuguese. This adaptation, referred to as Lexicalized Meaning Representation (LMR), was deemed necessary
to address specific challenges posed by the grammar of the language, as well as various linguistic issues
raised by the current version of AMR annotation guidelines. Some of these aspects stemmed from the use of
a notation similar to AMR to represent real texts from the legal domain, enabling its use in Natural Language
Processing (NLP) applications. In this context, several aspects of AMR were significantly simplified (e.g., the
representation of multi-word expressions, named entities, and temporal expressions), while others were intro-
duced, with efforts made to maintain the representation scheme as compatible as possible with standard AMR notation.

Keywords: Lexicalized Meaning Representation (LMR), Abstract Meaning Representation (AMR), Natural
Language Processing (NLP), Portuguese

1. Introduction

This paper aims to contribute to the development of
a theoretical and formal framework for the semantic
annotation of natural language texts, facilitating the
creation of tools for computational language pro-
cessing. Semantic annotation of natural language
texts aims to establish a representation of meaning
that is valuable for developing various tools and
applications (Damonte et al., 2017; Damonte and
Cohen, 2018; Seno et al., 2022), particularly in
Natural Language Processing (NLP). These appli-
cations include automatic sense disambiguation,
machine translation, text summarization, and the
generation of multilingual documents.

Various initiatives have been developed for this
purpose. The Universal Networking Language
(UNL) (Uchida et al., 1996)1 provided a version
of the novella The Little Prince (TLP) by Antoine de
Saint-Exupéry (Martins, 2012) with the explicit aim
of comparing representations of the same text in dif-
ferent languages. More recently, Abstract Meaning
Representation (AMR) (Banarescu et al., 2013) has
gained popularity in the NLP community. Originally
proposed for English, this model aims to represent
the meaning of sentences in a simplified form.

In a nutshell, each sentence’s meaning is repre-
sented as a directed acyclic graph without a root.
In this graph, nodes correspond to semantic predi-
cates (operators) and their arguments, while arcs
represent the semantic relations between the sen-
tence elements. These relations, known as seman-
tic roles, are defined in OntoNotes (Weischedel
et al., 2013) and are associated with the arguments
of (mostly) verbal predicates.

The frames of these verbal predicates form an

1http://www.unlweb.net/

ontology acting as a ‘catalog’ of meanings, serving
as a reference for the various meanings of pred-
icative elements represented in the graph. Addi-
tionally, other semantic relations are expressed by
labeled arcs, linking predicates to different types of
elements and circumstances, sometimes replacing
textual elements that convey these relations. Gram-
matical elements such as auxiliary verbs, copulas,
or support verbs are simply omitted. Many lexi-
cal elements are replaced either by verbs listed
in OntoNotes or by other elements (e.g., adverbs
ending in -ly are replaced by the morphologically as-
sociated adjectives and linked to an operator by the
labeled arc :MANNER). Figure 1 illustrates the stan-
dard AMR graph representation of a simple English
sentence extracted from the mentioned novella –
Draw me a sheep ... [TLP:id=65], produced by the
AMREager parser (Damonte et al., 2017)2.

Figure 1: Standard AMR graph

The graph representing the meaning of the sen-
tence can also be built in an equivalent PENMAN
formalism (Matthiessen and Bateman, 1991). Such
a PENMAN graph is shown in Figure 2 taken from
the AMR annotation of the novella.3 (The differ-

2https://bollin.inf.ed.ac.uk/amreager.
html

3https://amr.isi.edu/download/
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(d / draw-01
:ARG0 (y / you)
:ARG1 (s / sheep)
:ARG2 (i / i)
:mode imperative)

Figure 2: AMR graph in PENMAN formalism

ences between the PENMAN graph and the AMR
parser’s output are deemed irrelevant for the pur-
pose of this paper.)

Although AMR has been initially conceived for
the English language and explicitly rejects the clas-
sification of inter-language (Banarescu et al., 2013),
it naturally lends itself to the comparison of anno-
tations of the same text in various languages (Xue
et al., 2014). This annotation scheme was, rightly,
adapted for the representation of texts, either by
different annotators, or translations of the same
text in different languages. Examples include an-
notations of the same novella in English, Chinese
(Li et al., 2016), Spanish (Migueles Abraira, 2017),
Turkish (Azin and Eryiğit, 2019; Oral et al., 2024),
Vietnamese (Linh and Nguyen, 2019), Brazilian Por-
tuguese (Anchiêta, 2020), and Persian (Takhshid
et al., 2022).

On the other hand, the initial version of AMR
aimed at describing individual sentences inde-
pendently. Recently, however, the AMR guide-
lines were extended to the Unified Meaning Rep-
resentation (UMR) formalism (Pustejovsky et al.,
2019; Wein and Bonn, 2023) to encompass the
annotation of sequences of sentences forming dis-
courses (O’Gorman et al., 2018). Naturally, the
original guidelines were occasionally reviewed and
expanded to incorporate concepts that had not
been sufficiently considered in the original pro-
posal (Bonial et al., 2018). As recently mentioned
by (Seno et al., 2022), following (Hovy and Lavid,
2010), these reformulations and extensions seek to
achieve “the necessary balance between the depth
of linguistic theory to be used and the stability of
the annotation process”, which does not prevent
“critics within the community interested in this se-
mantic representation, regarding some decisions
made originally” (Seno et al., 2022, p. 51).

The primary objective of this work is to estab-
lish an annotation scheme, inspired by the AMR
guidelines4, which aims to address a set of diffi-
culties and problems encountered in the solutions
adopted thus far (see Section 2 and Table 1 for an
overview).

To achieve this goal, we compared available
Abstract Meaning Representation (AMR) annota-

amr-bank-struct-v3.0.txt
4AMR 1.2.6. Specification (2019): https:

//github.com/amrisi/amr-guidelines/blob/
master/amr.md

tions from parts of Antoine de Saint-Exupéry’s
work The Little Prince in English, Spanish (Migue-
les Abraira, 2017)5, and Brazilian Portuguese (An-
chiêta, 2020)6, along with a Lexicalized Meaning
Representation (LMR) annotated version of the
same work in European Portuguese. We occa-
sionally consulted the original French edition of the
novella to verify any changes introduced by the
translators.

Our focus was on the 50 Spanish sentences
translated from the English version by Migue-
les Abraira (2017), ensuring a 4-tuple comparison.
We conducted a critical analysis of these 50 sen-
tences, considering observed phenomena and the
annotation solutions adopted, comparing the sim-
ilarities and differences between the annotations.
Note that the translators’ choices regarding the Por-
tuguese or Spanish sentences are not considered
here. Instead, the focus is solely on the structure
and meaning of the translation output and the cor-
responding semantic representation (AMR/LMR).
Due to space constraints, this paper provides only
a succinct overview highlighting the main findings.

Figure 3: Comparing AMR/LMR annotations: align-
ment, annotation and analysis.

Figure 3 outlines the procedural stages of this
study: (1) Alignment of sentences in different lan-
guages/varieties, considering translations from the
original edition of the work (the English edition in
the case of the Spanish version; the French edition
in the case of the Portuguese translations) and re-
solving encountered alignment mismatches. (2) An-
notation of sentences in the European Portuguese
version of The Little Prince (Baptista, 2024b)7, inde-

5https://github.com/ixa-ehu/
amr-corpus-spanish/blob/master/
es-Little-Prince-Corpus-50-AMR.txt

6https://github.com/rafaelanchieta/
amr-br/blob/master/amr_br-v1.0.xml

7The European Portuguese, LMR-annotated
sentences can be found at: https://gitlab.
hlt.inesc-id.pt/u000803/lmr4pt/-/blob/
master/public/LMR4PT_Principezinho.pdf.
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pendently performed by two annotators and based
on a set of LMR Guidelines autonomously devel-
oped by Baptista (2024a). These guidelines aim
to: (a) adapt AMR to linguistic situations observed
in Portuguese but not observed in English; (b) sys-
tematically make explicit and consistent the relation
between text elements and annotation; and (c) ad-
equately account for relevant linguistic phenomena
not contemplated by the AMR framework. (3) Fi-
nally, a critical and systematic comparison of the
annotations of sentences in the different languages
was conducted.

2. Comparing AMR and LMR

Considering specific aspects of European Por-
tuguese, as well as other fundamental require-
ments of semantic annotation, LMR introduces sev-
eral extensions and reformulations of the standard
AMR annotation scheme proposed by (Banarescu
et al., 2013). Table 1 schematically presents the
main differences between AMR and LMR annota-
tions.

The Abstract Meaning Representation (AMR)
annotation scheme is grounded in a ‘catalog’ of
meanings derived from the verbal constructions
present in OntoNotes (Weischedel et al., 2013).
This methodology accepts both the reconstruction
and suppression of textual elements, such as the
insertion of pronouns in lexically unfilled syntactic
positions or the replacement of conjunctions and
prepositions with the semantic relations they con-
vey. However, it does not encompass the analysis
of auxiliary verbs, including copulative verbs (Vcop)
and support verbs (Vsup) (or so-called light verbs).
In fact, only some constructions with Vsup are con-
sidered, as most predicative nouns are assimilated
into the corresponding verbal predicates (for exam-
ple, [a] purchase → [to] buy). Additionally, AMR
represents complex named entities (NE), particu-
larly for denoting temporal and quantity values.

Lexicalized Meaning Representation (LMR), on
the other hand, emphasizes a representation
closely tied to the text, effectively constituting an
annotation process where representation is directly
anchored on the words of the sentences rather than
merely appended to them as a whole. Furthermore,
LMR strictly adheres to the principle of not replac-
ing words in the text with arbitrary or theoretical
constructs, instead anchoring relations on surface
forms — the only visible elements that provide ac-
cess to the meaning of the sentence8.

8Certain types of zeroing, such as appropriate zeroing
(Harris, 1976, 1991), pose serious challenges to this
approach, for example, John enjoyed (reading) the book.
These challenges must be addressed differently, though
they are outside the scope of this paper.

As a semantic ontology or ‘catalog’ of word
senses, LMR relies on the Dicionário Gramati-
cal de Verbos do Português [Grammatical Dictio-
nary of Portuguese Verbs] (DGVP; Baptista and
Mamede, 2020a), built on the database of the
lexicon-grammar of European Portuguese verbs
(ViPEr; Baptista, 2012; Baptista, 2013 (Baptista
and Mamede, 2020c)), as the ‘catalog’ of mean-
ings of verbal constructions. For nominal predi-
cates, the lexicon-grammar of predicative nouns
(SNIPER; Baptista and Mamede, 2020b) is used.
Since both resources indicate adjectival counter-
parts of these verbal and nominal predicates, and
in the absence of a lexicon-grammar of adjectives
proper for Portuguese, the adjective is referenced
to either one or the other (or both) (for simplicity,
these references were not provided in this paper).

For a semantic ontology or ‘catalog’ of word
senses, LMR relies on the Dicionário Gramati-
cal de Verbos do Português (DGVP; Baptista and
Mamede, 2020a), which is built on the database
of the lexicon-grammar of European Portuguese
verbs (ViPEr; Baptista, 2012; Baptista, 2013), serv-
ing as the ‘catalog’ of meanings of verbal con-
structions. For nominal predicates, the lexicon-
grammar of predicative nouns (SNIPER; Baptista
and Mamede, 2020b) is utilized. Since both re-
sources indicate adjectival counterparts of these
verbal and nominal predicates, and in the absence
of a lexicon-grammar of adjectives specific to Por-
tuguese, the adjective is referenced to either one or
the other (or both) (for simplicity, these references
were not provided in this paper).

One of the major differences, thus, between AMR
and LMR is that LMR adopts a homologous strategy
for representing the predicate-argument relations
from different grammatical categories, that is, verbs,
nouns and adjectives. In this way, words in the
texts are represented in LMR respecting their part-
of-speech, keeping the representation closer to the
text. For example, the sentence TLP id=348 is
represented in AMR as shown in Figure 4:

One of the major differences, therefore, between
AMR and LMR is that LMR adopts a homologous
strategy for representing the predicate-argument
relations from different grammatical categories —
verbs, nouns, and adjectives. This approach en-
sures that words in the texts are represented in
LMR according to their part-of-speech, maintaining
a representation closer to the text. For example,
the sentence TLP id=348 is represented in AMR
as shown in Figure 4.
In this case, the adjective important in under the
main predicate think, and the copula verb be is
ignored. In turn, in the corresponding Portuguese
sentence: – Isso não é importante?! ‘That is not
important?!’ [TLP id=348], the copula verb is linked
to the adjective it auxiliates (Figure 5):

103



Abstract Meaning Representation (AMR) Lexicalized Meaning Representation (LMR)
(Banarescu et al. 2013)
A catalog of senses (semantic predicates) for verbs
can be found in OntoNotes by Weischedel, R. et al.
(2013). Other categories such as nouns and adjectives
are represented by verbal predicates.

A catalog of senses is available in the Lexicon-Grammar
of Portuguese. For verbs, references include ViPEr by
Baptista (2012, 2013) and the Dictionary of Portuguese
Verb Grammar by Baptista & Mamede (2020a). Pred-
icative nouns are covered in SNIPER by Baptista &
Mamede (2020b).

Directed acyclic graphs lack a root node, instead em-
ploying an arc labeled :TOP looping over the main pred-
icative element node of the sentence.

Directed acyclic graphs feature a ROOT node, which
is connected to the main predicative element (:MAIN),
serving as the node to which elements with scope over
the entire sentence are connected.

Reduced elements are reconstructed. No reconstruction of reduced elements is performed.
A graph representation is appended to the entire sen-
tence, without establishing a direct relation between
the graph nodes and the text forms.

There exists an explicit relation between text forms and
their representation, treating text forms as nodes of the
graph.

Predicative elements in the text are replaced by verbal
lemmas (especially verbs represented in OntoNotes).

Predicative elements in the text are preserved in the
graph, with the association of lemmas and construc-
tions being carried out in the post-processing phase.

Some textual elements undergo substitution, especially
grammatical ones (such as conjunctions, prepositions,
etc.), by the semantic relations they express.

All textual elements undergo maintenance, alongside
explicit representation of the semantic relations they
convey; these include conjunctions, prepositions, sub-
ordinate gerund -ndo ‘-ing’ morpheme, etc.

Auxiliary verbs, copulative verbs, or support verbs (light
verbs) are not considered.

All types of auxiliary verbs are considered, including ver-
bal auxiliaries (temporal, modal, and aspectual), adjec-
tival auxiliaries (copulative verbs), nominal auxiliaries
(support verbs), and auxiliaries of passive constructions.
Additionally, constructions with (causative, linking and
agentive) operator verbs are also taken into account.

Multi-word expressions (MWE) of varying complexity
are represented, with a sophisticated representation
of named entities (NE), and particularly temporal and
quantification expressions.

Very simplified representation of multi-word expres-
sions (MWE), named entities (NE), as well as temporal
and quantification expressions. MWE and NE are iden-
tified in the pre-processing phase and integrated as
nodes in the LMR graph.

Intra-phrasal anaphoric relations are represented,
alongside an extension of notation (O’Gorman et al.,
2018) for trans-phrasal anaphoric relations through
coreference chains at the text level.

Intra-phrasal anaphoric relations are represented solely
between explicit elements in the text, with anaphora
resolution addressed as a post-processing task (trans-
phrasal anaphoric relations are not yet considered).

Verbal predicates (standard representation) and adjec-
tival (:DOMAIN) are treated distinctly, while nominal
constructions are represented by verbal constructions
if present in OntoNotes.

Verbal, nominal, and adjectival predicates feature a
homologous representation of argument structure, cor-
responding to the standard representation: predicate
(:ARG0, :ARG1, . . . ).

Table 1: Summarized comparison between Abstract Meaning Representation (AMR) and Lexicalized
Meaning Representation (LMR)

You think that is not important ! . [id=348]
(t / think-01

:ARG0 (y / you)
:ARG1 (t2 / that

:ARG1-of (i / important-01
:polarity -)))

Figure 4: AMR Representation of sentence id=348

When the main predicative element is the cor-
responding predicative noun importância ‘impor-
tance’, it appears in an equivalent support verb con-
struction with support verb ter ‘have’, represented
by LMR as shown in Figure 6.

Isso não é importante ?! ‘That is not important?!’ [id=348]
ROOT :MAIN (i1 / importante

:VAUX (ser / é)
:NEG (n / não)
:ARG0 (i2 / isso))
:MODE-EXCLAMATIVE)

Figure 5: AMR Representation of sentence id=348

Notice that the role of the negation adverb is explic-
itly encoded and attached to the negation adverb
não ‘not’. This solution, however, is arguably equiv-
alent to the AMR notation, though it avoids zeroing
the negation adverb and anchors the negation con-
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Isso não tem importância . lit.: ‘That doesn’t have
importance’

ROOT :MAIN (i1 / importância
:VSUP (t / tem)
:NEG (n / não)
:ARG0 (i2 / isso)))

Figure 6: LMR Representation: a predicative noun
in a support-verb construction

struct on a textual element. Notice also that the
exclamative mode of the sentence is attached to
the :ROOT node, which is theoretically seen here
as a more adequate representation (Harris, 1991)
as it bears on the entire sentence. The lack of a
root node in AMR forces the modality to be attached
to the main predicative element (though the AMR
notation, shown in Figure 4, fails to do).

A similar representation is also proposed for the
corresponding verb, if it exists in the language
(these triplets are not rare in Portuguese), e.g. –
Isso não importa?! ‘That [does] not matter?!’:

(i1 / importa . . . :ARG0 (i2 / isso)).
LMR maintains the equivalence relation between

lexical elements by offering analogous representa-
tions for full verbs, predicative adjectives, and pred-
icative nouns. It maintains notation closely tied to
the text, anchoring semantic representation directly
on its elements. While these paraphrastic equiv-
alence relations (transformational, in the sense of
Harris (1964, 1976, 1991)) should indeed be estab-
lished, they are better suited for higher-order repre-
sentation to minimize ad hoc interpretations during
human annotation. Ideally, the “catalog of senses”
or semantic predicates underlying the AMR/LMR
notation should provide such equivalence. This
is indeed the case for the works by Baptista and
Mamede (2020a,c).

A notable contrast between the two schemes is
that in LMR, a root node (ROOT) is instantiated for
each sentence, with a :MAIN dependency linking
this node to the main predicative element. This
resolves a technical issue previously highlighted by
Anchiêta (2020) regarding the evaluation of com-
peting semantic representations for the same sen-
tence. Still, this also affects the adequacy of rep-
resenting elements that operate on the entire sen-
tence, such as sentence-external adverbial mod-
ifiers, as defined by Molinier and Levrier (2000).
For instance, in the sentence But my drawing is
certainly very much less charming than its model
[TLP id=52], the adverb certainly imparts a modal-
ity value to the entire sentence, akin to It is certain
that my drawing is very much less charming than
its model. In such cases, and unlike AMR that
hinges the :mod (c / certain) under another
node of the graph, LMR suggests representing the
adverb as a modifier on the ROOT node:

(ROOT :MOD (c / certainly) . . .

By closely adhering to the text and preserving the
words’ part of speech, LMR effectively distinguishes
between the main types of adverbial constructions:
sentence-external and sentence-internal adverbs.
Moreover, astute readers may have observed the
conjunction but at the sentence’s outset, serving
to connect it with preceding discourse in a man-
ner akin to conjunctive adverbs (or discourse con-
nectives). Consequently, the identical descriptive
approach is employed for both scenarios.

(ROOT :MOD (b / but) . . .

(ROOT :MOD (b / furthermore) . . .

Furthermore, LMR incorporates auxiliary verbs,
encompassing copulative and support verbs, into
its analysis. This inclusion is justified by the sig-
nificance attributed to these elements as integral
components of textual meaning units. Indeed, Por-
tuguese features a particularly rich system of aux-
iliary verbs (Baptista et al., 2010; Baptista and
Crismán Pérez, 2021), particularly for expressing
aspectual nuances. For instance, in the sentence:
– Começo a compreender, disse o principezinho.
‘I begin to understand, said the little prince.’ [TLP
id=1080], the auxiliary começar a ‘begin to’ is rep-
resented as:

(ROOT :MAIN (d / disse
:ARG0 (p / principezinho)
:ARG1 (c1 / compreender

:VAUX (c2 / começo
MWE-CONT (a / a))

:ARG0 p)

The auxiliary construction is depicted as a mul-
tiword expression, with a :MWE-CONT arc linking
the auxiliary verb to the preposition it introduces.
This enables distinguishing its precise aspectual
value from other nuanced constructions involving
the same verb but with a different preposition (e.g.,
começar por for ‘begin by’). The representation of
modal auxiliaries is particularly relevant for legal
domain texts, where deontic modality is essential.
Two domain-specific relations were devised solely
for this purpose, :dever ‘must/ought’ and :poder
‘may/can’, corresponding to the verbs most com-
monly used with that function. Besides, a similar no-
tation was devised for all types of auxiliary verbs. In
many situations, it is possible to keep LMR compat-
ible with AMR (except for modal auxiliaries, treated
as full predicates in AMR).

LMR also adopts a simplified representation both
of multi-word expressions (e.g., compound nous,
idioms) and of named entities (e.g. people, orga-
nizations, and places), as well as temporal and
quantification expressions, delegating this task to
a pre-annotation step, prior to the semantic anno-
tation.

Other differences of detail were envisaged. For
instance, in relative sub-clauses, e.g. the girl who
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adjusted the machine, while AMR eliminates the
relative pronoun:
(g / girl

:ARG0-of (a / adjust-01
:ARG1 (m / machine)))

LMR keeps the relative pronoun in the representa-
tion, maintaining consistency in the representation
of the predicate-argument structure of sub-clause’s
predicate:
(g / girl

:ARG0-of (a / adjust-01
:ARG0 (w / who)))
:ARG1 (m / machine)))

An aspect of language-specific adaptation is the
existence of the so-called gerundive reduced sub-
clauses. Here, we analyse the gerund morpheme
(the -ndo ‘-ing’ verb ending) as having a function
similar to that of an adverbial subordinative conjunc-
tion, but with an underspecified semantic value. In
fact, the nexus between the main clause and the
gerundive subclause is often difficult to determine
(cause, time). In order not to ‘force’ any interpreta-
tion, a generic :NDO is proposed (Figure 7).

O vaidoso recomeçou a agradecer, tirando o chapéu.
‘The vain person started to thank again, tipping his hat.’
[TLP id=620]
(ROOT :MAIN (a / agradecer

:VAUX (r / recomeçou
:MWE-CONT (a / a))

:ARG0 (v / vaidoso)
:NDO (t / tirando

:ARG0 v
:ARG1 (c / chapéu))))

Figure 7: Gerundive subclauses and :NDO

In the Brazilian Portuguese annotation of
the same construction, one finds either the
:subevent-of relation9, or :manner, or even an
:arg2-of (id=344). AMR deals with English sim-
ilar gerundive sub-clauses (for example, id=631)
in the same way as with relative subclauses, v.g.
"I admire you," said the little prince, shrugging his
shoulders slightly, . . .:
(s / say-01

:ARG0 (p / prince :mod (l / little)
:ARG0-of (s2 / shrug-01
:ARG1 (s3 / shoulder :part-of p)
:degree (s4 / slight))) ...

This is not, arguably, a representation exactly equiv-
alent to the meaning that the gerund subordinate
operator -ing introduces in the sentence (two simul-
taneous actions). In fact, the equivalent relative
clause would be: The prince that shrugged his
shoulders said “I admire you” . . .

9https://www.isi.edu/~ulf/amr/lib/
amr-dict.html#:subevent

On the other hand, the gerund bound morpheme
is, in fact, present in the sentence, and in spite of
not being able to “detach” it from the base (or host)
verb, its value, vague as it is, is made explicit with
the notation :NDO.

These methodological differences between AMR
and LMR result from partly distinct approaches in
the semantic representation of texts: although each
presents its specific advantages and challenges,
LMR distinguishes itself by seeking to reconcile the
precision of semantic representation and fidelity to
the underlying text, suggesting a potentially more
precise approach in semantic analysis.

3. Contrastive analysis

To illustrate the systematic contrastive analysis
of the notations of The Little Prince in the four
languages here considered, we present a case
study by commenting on the following sentence
with id=300:
FR: J’étais très soucieux car ma panne commençait
de m’apparaître comme très grave, et l’eau à boire
qui s’épuisait me faisait craindre le pire.

In the English version, this sentence is split into
two (id=299 and id=300), which we present below.
EN: I was very much worried, for it was becoming
clear to me that the breakdown of my plane was
extremely serious. And I had so little drinking-water
left that I had to fear for the worst.

In the case of the Spanish translation (Migue-
les Abraira, 2017), which faithfully follows the En-
glish version, only the AMR representation of the
second sentence is available.
ES: Y me quedaba tan poca agua potable que me
temía lo peor. [SP id=15]

For Brazilian Portuguese (Anchiêta, 2020), which
was based on the French version of the text, we
find a very losely translated equivalent sentence:
BR: Minha pane começava parecer demasiado
grave, e em, breve já não teria água para beber ...

Finally, for European Portuguese, the translator
faithfully follows the French original:
PT: Estava bastante inquieto, pois a avaria
começava a parecer grave, e a pouca água que
restava para beber fazia-me temer o pior.

We start the analysis by commenting the stan-
dard AMR representation, made for the English
version (Figure 8).

The first observation is the replacement of the
causal subordinated conjunction for by the abstract
construct cause-01. This construct takes the fol-
lowing arguments: as :ARG0, the causal subordi-
nate clause (it was becoming clear to me that . . .);
and as :ARG1 the main clause (I was very much
worried).
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I was very much worried, for it was becoming clear to me
that the breakdown of my plane was extremely serious.
And I had so little drinking-water left that I had to fear for
the worst. [EN id=299.300]
(c2 / cause-01

:ARG0 (c / clear-06
:ARG1 (s / serious-02

:ARG1 (b / break-down-12
:ARG1 (p / plane

:poss i))
:degree (e / extreme))

:ARG2 (i / i))
:ARG1 (w / worry-01

:ARG1 i
:quant (m / much
:degree (v / very))))

(a / and
:op1 (h3 / have-degree-91

:ARG1 (w / water
:purpose (d / drink-01)

:ARG1-of (l2 / leave-17)
:ARG1-of (h / have-03

:ARG0 (i / i)))
:ARG2 (l / little)
:ARG3 (s / so)
:ARG6 (o / obligate-01

:ARG1 i
:ARG2 (f / fear-01

:ARG0 i
:ARG1 (t / thing

:ARG1-of (h2 / have-degree-91
:ARG2 (b / bad-07)
:ARG3 (m / most)))))))

Figure 8: English AMR representation of sentence
id=299.300

In the case of the adjectival construction of
clear-06, where a subject clause is extraposed,
the subject is linked by an :ARG1 arc, as indicated
in the directives10. However, the 3-argument frame
of clear-06 (a verb?) had been defined with
a “cause” role for its :ARG0 (?), which is now ex-
pressed by an independent node cause-01.

On the other hand, representing the construc-
tion of serious-02 as a predicate with only one
argument – something is serious – raises difficul-
ties in justifying the semantic relation of :ARG1 to
the subject (break-down-12) of this adjective. In
the Ontonotes11, serious-02 does not even have
an ARG0 role. This highlights how the association
of adjectival predicates with verbal lemmas may
not be entirely appropriate. The notation of these
arguments as :ARG1 is more of an artifact of the
Ontonotes representation scheme than a regular

10https://amr.isi.edu/doc/amr-dict.
html#:domain

11https://propbank.github.io/v3.4.0/
frames/serious.html#serious.02

(and generalizable) configuration between seman-
tic predicates and their arguments.

In the case of the adjectival predicate worry-
01 (worried), such perplexity does not arise. Its
predicative structure could effectively be described
by the corresponding verbal construction, given its
classification as a so-called ‘psychological’ verb
(class 04, (Baptista and Mamede, 2020a)). This
would correspond to the structure something cause
somebody to worry = something worries somebody.
In this construction, the verb exhibits a causative
subject and an experiencer complement, filled by
a human noun, here represented by the pronoun I,
to which the :ARG1 relation could correspond.

Regarding the second sentence, the AMR an-
notation relies on an abstract conceptualization of
predicates such as have-degree-9112, which is
associated with adjectival constructions expressing
gradable predicates, and have-0313, correspond-
ing to the full verb have in the sense of “possession”.
However, interpreting the representation of this sen-
tence, simplified below, remains challenging:
h3 / have-degree-91

:ARG1 (w / water
:ARG1-OF (h / have-03

:ARG0 (i /i)))

This configuration does not match the sentence we
are analyzing: we encounter the verb have with the
object water, quantified by so little. Moreover, the
second verb have (have-03) typically represents
the meaning associated with ‘possession’, making
the presence of both operators appear redundant,
at the very least.

In the sentence I had to fear, the modal auxiliary
have is replaced by the operator obligate-01.
However, this replacement ignores the nature of
the modal auxiliary, which, being transparent to the
selection restrictions of the main verb fear, should
have the same subject as this verb. Consequently,
the operator appears with its subject marked as an
:ARG1, a consequence of the substitution of the
auxiliary by obligate-01.

Lastly, the expression fear for the worst is rep-
resented in a manner that attempts to analyze its
idiomatic value, rather than recognizing its non-
compositional semantics, which is already lexical-
ized.

Regarding the sentence in Spanish, correspond-
ing only to the second sentence of the English ver-
sion (id=300), the notation closely follows the stan-
dard AMR representation, as usual (Figure 9).

The conjunction y (and) is used here to connect
the current sentence to the previous one. However,

12https://amr.isi.edu/doc/amr-dict.
html#have-degree-91

13https://propbank.github.io/v3.4.0/
frames/have.html#have.03
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Y me quedaba tan poca agua potable que me temía lo
peor. [SP id=15]
(y2 / y

:op1 (c / causar
:ARG0 (q / quedar

:ARG1 (a / agua
:mod (p / potable)
:mod (p2 / poco

:grado (t / tan)))
:ARG2 (y / yo))

:ARG1 (t / temer
:ARG0 y
:ARG1 (m / malo

:grado (m2 / máximo)))))

Figure 9: Spanish AMR representation of sentence
SP id=15

this conjunction is treated like any other coordina-
tion situation. Since there is no second coordinated
element, only one conjunctive operator :OP1 is
given The operator :OP1 should connect the con-
junction to the first member of the coordination. No
second member of the coordination exists, since it
is the entire sentence that is being put in relation
to a previous discourse. Now, accepting this to be
the function of y (as well as that of and, in the En-
glish version), the first member of the coordination
should be the previous sentence. As AMR does
not currently handle this type of cross-sentential
relations (but see (O’Gorman et al., 2018)), any no-
tation would always be incomplete. Nevertheless,
the choice of :OP1 seems somewhat ambiguous.

Another interesting aspect is the simplification
(and closer adherence to the text) of the representa-
tion of the constituent tan poca agua potable ‘so lit-
tle drinking water’, an argument of quedar ‘to be left’,
which is based on the words of the text and does
not resort to the type of constructs seen in standard
AMR. Nevertheless, we analyze this quedar con-
struction as a predicate with two arguments, where
agua ‘water’ should correspond to the :ARG0, while
the first-person dative pronoun me corresponds to
an :ARG1.

Finally, as in English, the annotator intended to
represent the expression lo peor ‘the worst’, making
it corresponds to elements that are not present in
the text (malo máximo).

Now, let’s examine the analysis of the transla-
tion in Brazilian Portuguese, comparing it with the
original French version. In this sentence, the trans-
lator omitted the main clause, with the predicate
soucieux ‘worried’ and the causal conjunction car
‘for’ that links it to the rest of the sentence. Similarly,
there was a profound transformation of the second
subordinate clause under car: et l’eau à boire qui
s’épuisait me faisait craindre le pire is translated
as e em, breve já não teria água para beber... The

construction with the operator-verb faire ‘to make’
disappears, as well as the construction of the verb
s’épuiser ‘to run out/exhaust’. The idiomatic ex-
pression craindre le pire ‘to fear the worst’ also
disappears. In this case, this creative translation
does not allow for a direct comparison between
the annotation solutions adopted among the differ-
ent languages, but only a generic comment on the
AMR representation produced (Figure 10).

Minha pane começava parecer demasiado grave, e em,
breve já não teria água para beber ... [BR id=299;300]
(c / começar-01

:ARG0 (p / pane
:poss (m / minha))
:ARG1 (p1 / parecer-01

:ARG2 (g / grave
:degree (d / demasiado)))

:cause (t / ter-01 :polarity -
:ARG0 (e / eu)
:ARG1 (a / água)))

Figure 10: Brazilian Portuguese AMR representa-
tion of sentence id=300

Let’s start by noting the treatment of começar
‘begin’, here an auxiliary verb of parecer ‘seem’,
as well as the verb parecer itself, that are repre-
sented as full verbs. It is difficult to entertain the
idea of começar and parecer as full verbs, deviating
from the more conventional analysis as a copula-
tive verbs in an adjectival construction. The rela-
tion (:ARG2) between this verb parecer and the
adjective grave ‘serious’ presents an even greater
challenge to comprehension.

As previously mentioned, the principle of dis-
tributional transparency of auxiliaries regarding
the selection restrictions imposed by the elements
they ‘modify’ (Baptista et al., 2010; Baptista and
Crismán Pérez, 2021) suggests an analysis in
which grave ‘serious’ functions as the main predica-
tive element of this clause, with pane ‘breakdown’
as its :DOMAIN, as follows, while consistency with
AMR guidelines would lead to eliminate both copula
verbs:

(g / grave :DOMAIN (p / pane))

The second interesting aspect is that the coordi-
native conjunction e ‘and’ has been removed and
replaced bay a causal relation, as denoted by the
operator :CAUSE. While not implausible, this in-
terpretation seems unmotivated. Finally, note the
suppression of the temporal adverbial phrase em
breve ‘soon’, without any apparent reason.

Finally, let’s look at the translation in European
Portuguese and the proposal for its annotation in
LMR (Figure 11). This translation is much more
‘faithful’ to the original French version, only taking
the liberty to modify l’eau à boire qui s’épuisait into
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Estava bastante inquieto, pois a avaria começava a pare-
cer grave, e a pouca água que restava para beber fazia-
me temer o pior. [PT id=300]
ROOT :MAIN (i / inquieto

:ARG0 m
:VAUX (e / estava)
:DEGREE (b1 / bastante)
:CAUSE (p1 / pois

:OP2 (e / e
:COORD1 (g / grave

:ARG0 (a / avaria)
:VAUX (p2 / parecer

:VAUX (c / começava
MWE_CONT (a / a))))

:COORD2 (f / fazia
:CAUSE (a / água

:QUANT (p3 / pouca)
:ARG0-OF (r / restava

:ARG0 (q / que)
:PURPOSE (p4 / para

:OP2 (b2 / beber)))
:VOPC (top / temer_o_pior

:ARG0 (m / me))))))

Figure 11: European Portuguese LMR representa-
tion of sentence id=300

a pouca água que restava para beber. This modifi-
cation alters the dependency of the verb beber ‘to
drink’ and inserts the quantifier pouca ‘little’ associ-
ated with the use of the verb restar ‘to be left’. This
sentence allows us to present several interesting
aspects of the LMR annotation scheme. Firstly, the
use of the :OP2 operator, ‘repurposed’ from stan-
dard AMR to link the conjunctions pois ‘for’ and
para ‘to’ to the sentences they introduce. Since the
precise semantic value these conjunctions convey
are (mostly) lexically determined, LMR keeps the
conjunctions and the link they establish between
the main clause and the sub-clause. Notice that
standard AMR notation simply abstract away from
the conjunction proper.

A second aspect is the explicit representation
of coordination relations using the :COORD1 and
:COORD2 operators, rather than the generic :OP1
and :OP2 in standard AMR. These :COORD oper-
ators fulfill the same function, maintaining close
parallelism between the two notations.

We also analyze the verb parecer ‘seem’ follow-
ing a fairly traditional approach, as a copulative
verb, i.e. an auxiliary of the adjective grave ‘seri-
ous’ and the recursive auxiliary verb chain começar
a parecer ‘begin to seem’.

Another notable aspect is the treatment of rela-
tive clauses. These are connected by linking the
antecedent of the relative pronoun to the verb of
the relative clause via an ‘inverted’ ARGn-OF rela-
tion, where ‘n’ denotes the semantic relationship
of this element in the base clause of the relative.

Subsequently, this relation is reiterated, without in-
version, between the verb of the relative clause and
the relative pronoun.

Lastly, we introduce the concept of the causative
operator-verb (Vopc; (Gross, 1981), (Baptista,
2005, 202 ff.)). This concept entails an operator
applied to a sentence, augmenting it with an addi-
tional argument, and establishing a causal relation
between this extra argument and the base sen-
tence. In our example, the verb fazer (to make)
fulfills this function: A água fazia/Vopc # eu temia o
pior (The water made/I feared the worst). For such
operators, LMR suggests delineating two relations:
firstly, :CAUSE, connecting the operator-verb to its
subject; secondly, the relation :VOPC, linking the
operator-verb to the embedded sentence. Notice
also the recognized idiomatic verbal expression
temer o pior (to fear the worst) as a single node
(Galvão et al., 2019b,a).

4. Conclusion

Throughout this article, we have underscored the
challenges inherent in implementing standard AMR
directives and have explored the potential of the
LMR annotation proposal. It is evident that dis-
crepancies arise not only from variations in original
versions or translator choices but also from incon-
sistencies in applying AMR directives (particularly
pronounced in translations into Spanish and Brazil-
ian Portuguese). LMR’s approach, which anchors
directly to the text, offers a promising solution by
providing a representation that is closer to the text
and less susceptible to the inherent inconsistencies
in the process of abstracting the meaning of a text.

In our future endeavors, we intend to expand the
annotated texts in LMR, completing the annotation
of O Principezinho (The Little Prince) and incor-
porating texts from various genres and domains,
including more legal texts.

We plan to develop tools to facilitate faster and
more efficient annotation implementation, including:
(a) a lemmatizer to associate text forms with lem-
mas and unique identifiers in the lexicon-grammar;
(b) a tool for constructing LMR graphs, which instan-
tiate argument positions of predicative elements
and mark positions for anaphora resolution, en-
suring formal consistency; (c) a tool for converting
graphs into graphical or PENMAN format to facili-
tate interpretation; (d) a tool for comparing annota-
tions and assessing agreement among annotators,
and subsequently, across translations in different
languages. With a more extensive corpus, our ob-
jective is to develop an LMR parser for automatic
representation generation, with the potential for
several NLP applications.
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Abstract
We evaluate the ability of large language models (LLMs) to provide PropBank semantic role label annotations
across different realizations of the same verbs in transitive, intransitive, and middle voice constructions. In order to
assess the meta-linguistic capabilities of LLMs as well as their ability to glean such capabilities through in-context
learning, we evaluate the models in a zero-shot setting, in a setting where it is given three examples of another
verb used in transitive, intransitive, and middle voice constructions, and finally in a setting where it is given the
examples as well as the correct sense and roleset information. We find that zero-shot knowledge of PropBank
annotation is almost nonexistent. The largest model evaluated, GPT-4, achieves the best performance in the
setting where it is given both examples and the correct roleset in the prompt, demonstrating that larger models can
ascertain some meta-linguistic capabilities through in-context learning. However, even in this setting, which is simpler
than the task of a human in PropBank annotation, the model achieves only 48% accuracy in marking numbered
arguments correctly. To ensure transparency and reproducibility, we publicly release our dataset and model responses.

Keywords: PropBank, Semantic Role Labeling, LLM Evaluation

1. Introduction

The increasing generative power of LLMs
presents ample opportunity for NLP resource prac-
titioners to employ it for large-scale annotation ef-
forts, which have traditionally been costly and labor
intensive. Various studies have touted the promises
of these large scale language models’ capabili-
ties for syntactic and semantic analyses (c.f. Tan
et al. 2024; Savelka and Ashley 2023; Shin and
Van Durme 2022). Other works suggest that they
are still yet to achieve the type of capabilities that
are needed to make them truly useful in language
resource building capacities (Lu et al., 2023; Et-
tinger et al., 2023; Bonial and Tayyar Madabushi,
2024). In this work,1 we empirically test the feasi-
bility for using state-of-the-art LLMs for conducting
large scale linguistic annotation, using PropBank
as a test bed. More concretely, we ask, do GPT-
3.5 and GPT-4, which excel in language generative
capabilities, possess the ability to produce viable
PropBank annotation?

Our choice of PropBank annotation as the
testbed is motivated by the ways in which PropBank
annotation is rooted in both syntax and semantics.
Although the task of PropBank is primarily semantic
role labeling, the semantic roles assigned depend
upon the choice of a given relation’s coarse-grained

*Equal contribution
1Dataset and model responses available at

https://github.com/H-TayyarMadabushi/
Adjudicating-LLMs-as-PropBank-Annotators

sense. Sense distinctions in PropBank were made
based upon differences in semantic roles as well as
syntactic behaviors—namely the subcategorization
frame of a relation or the ways in which the seman-
tic arguments are realized syntactically (e.g., as
subjects, direct objects, or obliques). Thus, Prop-
Bank senses or “rolesets” reflect a set of seman-
tic roles that are realized in a syntactically distinct
way. As a result, PropBank is a powerful resource
that provides explicit mappings between particu-
lar syntactic patterns of argument expression and
the semantic roles of those arguments, enabling
a shallow semantic analysis facilitated by clearly
recognizable syntactic patterns. Given that LLMs
have been touted for their abilities with respect to
both syntax and semantics, we seek to test whether
the mapping of syntactic constituents to particular
semantic roles can be accomplished by LLMs.

The primary contribution of this research is an
initial assessment of the meta-linguistic capabilities
of LLMs, where we design three prompts meant to
dissect LLMs’ abilities with respect to the PropBank
tasks of both argument annotation and sense or
roleset annotation. We test LLMs’ ability to accom-
plish roughly the equivalent task as human Prop-
Bank annotation via few-shot in-context prompting.
We also test two additional settings: a more diffi-
cult setting testing LLMs’ zero-shot knowledge of
PropBank (no in-context examples); and an easier
setting, where the LLM is provided with not only the
few-shot examples but also the correct roleset with
expected roles.

Our findings show that even GPT-4 (best model)
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Match Types
Model Setting Exact Core-Arg Num-Arg

GPT-3.5
0-shot 8.6% 8.6% 17.1%
3-shot 11.4% 17.1% 37.1%
3-shot+rs 2.9% 2.9% 20.0%

GPT-4
0-shot 8.6% 17.1% 34.3%
3-shot 14.3% 20.0% 42.9%
3-shot+rs 22.9% 22.9% 48.6%

Table 1: We report on positive matches for GPT-
3.5 and GPT-4 over three prompt settings: 0-shot,
3-shot, and 3-shot with roleset (3-shot+rs).

generally struggles to assign correct semantic roles
to the arguments across syntactic realizations,
achieving 42.9% accuracy in the few-shot setting
(Table 1). When the roleset is predefined alongside
examples, the model performance does improve to
48.6%; however, that is abysmally low in compar-
ison to the reported PropBank human average of
88.3%. As expected, the zero-shot setting is the
most difficult for the LLMs (34.3%).

Furthermore, we show that GPT-4’s relatively
poor performance stems from its apparent inability
to generalize semantics across the various syn-
tactic realizations. The highest successes are at-
tributed to the transitive construction (best 85.7%)
where syntax maps canonically to PropBank’s ar-
gument numbering (i.e. Arg0-5). For intransitive
and middle voice constructions, performance drops
considerably (best 25.0%).

2. Background & Motivation

2.1. PropBank Annotation
Born in the early 2000s, The Proposition Bank
(PropBank) changed the world of lexical semantics
in NLP by using syntactic parses as a scaffolding
for the much more difficult problem of parsing mean-
ing. The underlying idea was that English verbs
exhibit patterns in the way they structure their par-
ticipants both syntactically and semantically, and
so by tagging syntactic arguments of a verb with
semantic role labels, a system could be trained to
understand fundamental propositional semantics
(i.e. who did what to whom, when and how?) using
syntactic cues (Palmer et al., 2005).

PropBank’s main innovation was in creating a
large scale inventory of rolesets (sense disam-
biguated predicate argument structures) for English
verbs, and then having expert human annotators
apply them to syntactic parse trees from the Penn
TreeBank (Taylor et al., 2003). The PropBank role-
set lexicon consists of verb lemmas organized into
frame files. Each frame file contains one or more
rolesets representing the different semantic senses

Match Types
Construction N Exact Core-Arg Num-Arg
Transitive 14 50.0% 50.0% 85.7%
Intransitive 13 7.7% 7.7% 23.1%
Middle 8 12.5% 12.5% 25.0%

Table 2: We report the percentage of positive
matches for our best-performing prompt and
model combination: GPT-4 with the few-shot
prompt that includes the correct roleset. N refers
to the number of instances available for each con-
struction.

associated with the verb, with each roleset pro-
viding a predicate label, a written sense definition,
and a list of roles corresponding to the semantically-
essential participants of the event. PropBank roles
are numbered and given short written descriptions
rather than more traditional thematic role labels as
a way of splitting the difference between semantic
and syntactic primacy of the argument. For ex-
ample, Arg0s correspond to proto-agents (Dowty,
1991), which also tend to occur as syntactic sub-
jects on verbs, and Arg1s generally correspond to
proto-patients, which often occur as syntactic ob-
jects. Consider, for example, the following rolesets
for the verb deal:2

Verb: deal
Roleset: deal.01 (handle, deal with, transaction)
ARG0: dealer (or all dealers)
ARG1: co-dealer
ARG2: subject/type of transaction
ARG3: value of transaction

Roleset: deal.02 (play cards, distribute something)
ARG0: distributor
ARG1: cards, thing distributed
ARG2: other player(s), distributed to
The annotation schema itself was relatively sim-

ple. For every instance of a verbal relation in a
corpus sentence, annotators would first select a
roleset and then tag the nodes in the parse tree
governed by the verb with either a) a numbered
argument from the roleset, or b) one of a small in-
ventory of general semantic modifier args (ArgMs,
e.g., ArgM-LOC (location), ArgM-DIS (discourse
markers), ArgM-MNR (manners and instruments))
(Bonial et al., 2010). Annotators were presented
all of the instances of a given verb lemma from
the corpus as a single task, and were able to see
all of the rolesets associated with that lemma in
a dropdown menu (Choi et al., 2010). For each
roleset, they were able to see the definition, the
roles with their descriptions, and they were able to

2All rolesets provided in this paper are copied directly
without changes from https://propbank.github.
io/v3.4.0/frames/.
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open a window that showed a variety of annotated
example sentences.

One of PropBank’s greatest successes was that,
across a wide range of corpora and domains, hu-
man annotators were able to make these judgments
easily and consistently. Inter-annotator agreement
(IAA) was consistently high for PropBank—Bonial
et al. (2017) report “exact match” (all constituents
and arguments match precisely) IAA for English ver-
bal relations at 84.8%, and “core-arg match” (num-
bered arguments match and ArgMs match, but the
specific ArgM, such as Temporal or Locative, need
not match) of 88.3%.

2.2. Related Works & Motivation
The benefits of being able to produce annotations
with little training data has become an alluring
prospect for resource practitioners in NLP. In the
recent years, LLMs have been used to collect large-
scale datasets (c.f. Liu et al. 2022; Shin et al. 2020)
or to distill data to enable smaller models (c.f. Bha-
gavatula et al. 2022; West et al. 2021) as a means
of reducing the cost burden that large-scale an-
notation efforts may incur. These achievements
have been made possible by LLMs’ capability to
produce impressive generations, which have been
attributed to an emergent capability to do semantic
reasoning (Srivastava et al., 2023; Wei et al., 2022).

Recently, however, several works have cast
scrutiny over the LLM capabilities for grasping se-
mantic components of language and for targeted
semantic analysis. Lu et al. (2023) have suggested
that ability to tackle complex tasks is not necessarily
emergent. Rather, models are adept at leveraging
in-context learning to tackle complex tasks.3 To
refine our understanding and better delineate the
parameters necessary to prompt LLMs to exhibit
complex analytical abilities, we undertake exper-
iments employing prompts both with and without
illustrative examples. These experiments aim to
establish the optimal prompt format conducive to
eliciting LLM abilities that enable us to solve meta-
linguistic tasks such as this, while also serving as
a method for exploring the capabilities of and limi-
tations of LLMs.

In terms of the level of semantic analysis LLMs
are able to accomplish, some research shows that
larger LLMs are able to sort sentences by semantic
similarity based on constructional semantics (e.g.,
grouping together She blinked the tears off of her
eyelashes and She wiped the flour off of the table),
while smaller LLMs are only able to sort sentences
by lexical semantics (e.g., grouping together blink,
cough, breathe regardless of their broader construc-
tional setting) (Li et al., 2022). However, recent

3In-context learning refers to the capability of LLMs
to perform tasks based on minimal examples.

research suggests that even the largest models
(GPT-4) are unable to recognize the semantic sim-
ilarity of events expressed in argument structure
constructions (Goldberg, 2003), such as the resul-
tative, when non-canonical verbs are found in these
constructions (e.g., He yelled himself hoarse as op-
posed to He made himself hoarse by yelling) (Bonial
and Tayyar Madabushi, 2024). Even if LLMs are
able to group some sentences by semantic and con-
structional similarity, there is evidence suggesting
that the models are not able to infer the appropriate
semantics from constructions such as The more I
study it, the less I understand it (Weissweiler et al.,
2022).

Wilson et al. (2023) evaluate the extent to which
models in the BERT family are able to generalize
different types of linguistic knowledge, including
what they call “Type 2 knowledge,” which allows
speakers to predict word occurrences in new, struc-
turally related contexts they have not explicitly en-
countered before, based on their understanding of
how thematic roles are typically assigned across
different grammatical structures. The authors use
fine-tuning and introduce novel tokens in a fixed
structural context to evaluate the extent to which
pre-trained language models generalize to Type 2
knowledge. The authors find that PLMs can gen-
eralize to Type 2 knowledge only to a very small
extent, and do not generalize across active and
passive sentences. While these results are cer-
tainly relevant to our own research question, we
emphasize that we are testing much larger models,
where research has suggested distinct potential for
in-context learning (Wei et al., 2023).

Moreover, Ettinger et al. (2023) have shown that
LLMs can readily achieve surface level semantic
analysis such as locating the main predicate and its
core arguments (i.e. retrieving the “who-did-what-
to-whom”). However, when tasked to capture a
more complex semantic analysis as required by
the structured AMR framework, the models fail mis-
erably even when presented with a diverse set of
in-context examples. Thus, in this work we turn
to PropBank, which provides a relatively simple
semantic annotation framework revolving around
identifying the who-did-what-to-whom information
of a verb, which may be a more reasonable level
of semantic decomposition for LLMs to grasp.

However, despite the simplicity of the PropBank
framework, we also recognize the annotation de-
mands a level of comprehension beyond that of
mere pattern recognition. It requires the compre-
hension of the elements of the sentence and their
associated forms. Thus, we hypothesize that the
effectiveness of LLMs on this task is likely to be
limited, especially due to the complexity of this
task which requires a certain “understanding” of
the meaning of sentences. This is especially likely
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given the propensity of LLMs to generate linguis-
tically fluent, but factually or logically inconsistent
sentences (Rawte et al., 2023).

In light of the evolving discourse surrounding
LLMs and their capabilities, this work aims to ex-
plore the utility of LLMs in generating PropBank
annotations. Specifically, we aim to answer the
following research questions: a) How effective are
LLMs at generating PropBank annotations, and b)
What is the most effective way of prompting LLMs
for the purpose of PropBank annotation?

3. Evaluation Framework

3.1. Verb and Construction Targets
To capture a wide variety of semantic and syntactic
realizations, we select 7 verbs from 7 distinct Verb-
Net Classes (Schuler, 2005) for the evaluation and
analysis of LLM capability for PropBank annotation.
The verbs are listed in Table 3. While PropBank an-
notations are inclusive of both verb and non-verbal
relations (e.g., pitch.04 serves both the White
House pitch and the proposal pitched by the White
House), for the purposes of this work, we specifi-
cally focus only on verbal relations.

These verbs are selected on the basis of their
ability to participate in three syntactic realizations
(henceforth, constructions): transitive, intransitive,
and middle voice. These constructions map se-
mantic arguments to their syntactic element quite
distinctly. As such, they allow us to evaluate if
LLMs can appropriately assign what are generally
Arg0 prototypical agents and Arg1 prototypical pa-
tients to the correct arguments, despite these fun-
damental constructional differences. For example,
in intransitive realizations, the subjects may be ani-
mate Agents or Causes (e.g., John writes well), but
we may also see inanimate Patients undergoing
a change of state (e.g., The chair broke). In the
middle voice, it is the Theme or Patient that sits in
the subject position with the Agent unmentioned
(e.g., the cards deal smoothly). Further details on
the data collection and distinction between intransi-
tive and middle voice can be found in Appendix A.
Thus, each evaluation instance requires the model
to cue on both the syntactic and lexical semantic
information to determine whether it is Arg0 or Arg1
that likely sits in the subject position. From Prop-
Bank IAA, we know that human annotators can
easily track these alternations. In this work, we
investigate whether the models can do so as well.

3.2. Evaluation Set and Data Source
For compiling our exploratory corpus for evaluating
LLMs, we leverage the Corpus of Contemporary
American English (COCA) (Davies, 2008), which
enables targeted search for particular verb in the

syntactic realizations of our interest. As COCA
does not furnish PropBank annotations, the ex-
tracted sentences are annotated for verbal relation
targets by three of the authors previously trained
extensively in PropBank annotation standards.

From COCA, we extract sentences for each of
the 7 verbs with 5 usages per verb (aiming for 2
transitive, 2 intransitive, and 1 middle voice con-
struction) resulting in a total of 35 sentences in
the evaluation set. Additionally we extract 3 in-
stances corresponding to the three constructions
for in-context examples used in our few-shot setting.
Further details are included in Appendix A.

The purpose of this annotated dataset is an ini-
tial exploration of LLM capabilities; it is not large
enough to serve as a full diagnostic evaluation set.
Although we considered leveraging some of the
existing PropBank corpus annotations, we opted to
annotate new sentences not included in any past
PropBank release to avoid the possibility that the
model’s training data included the existing anno-
tated corpora.

3.3. Models & Prompting Strategies
The capabilities of LLMs are inherently determined
by the extent of their training and the scale of their
parameters. As such, in assessing the proficiency
of LLMs as effective PropBank annotators, our
analysis centers on two prominent and powerful
language models, GPT-3.5-turbo-0301 and GPT-
4-0613. The experiments are conducted via the
OpenAI API using a temperature setting of 0. A
temperature of 0 is chosen to enforce determinis-
tic output generation, wherein the models select
the most probable next token thus ensuring repro-
ducibility. Due to the deterministic nature of our
experiments, we run each of them once.

The choice of the specific prompts employed
when interfacing with LLMs has been identified as
a critical factor influencing their performance. We
employ the following three prompting formats:

• 0-shot setting: The model is instructed to an-
notate the provided sentence using PropBank
annotations. This is a setting we expect to be
harder than human PropBank annotation as no
examples nor rolesets are made available.

• 3-shot setting: The model is provided with 3 ex-
amples in a setting that is roughly equivalent to a
human PropBank annotation set up—examples
are given and, in addition to completing annota-
tion, the annotator must decide on the roleset.

• 3-shot roleset setting (3-shot+rs): Along with
the examples, the model is provided with the role-
set associated with the input sentence. This set-
ting is easier than human annotation—examples
and the rolesets with expected roles are provided.
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Verb VerbNet Class Corpus Example (corresponding construction in parenthesis)
break Break-45.1 I think you were badly cut when the chair broke under you. (intransitive)
pour Pour-9.5 The beer pours a hazy yellow color with a huge white head. (middle)
write Say-37.7-1 It was due to illness and the doctor wrote a letter saying I couldn’t fly. (transitive)
deal Give-13.1 I saw that dude dealing drugs. (transitive)
smell See-30.1 Butterflies smell with their feet. (intransitive)
parse No VN Entry Spivak is the most gender-free pronoun that parses well in English. . . (middle)
rain Weather-57 In spring and fall it rains occasionally. (intransitive)
hike Run-51.3.2 This trail hikes through a portion of the historic area...(middle)

Table 3: We focus on 7 verbal relations for evaluation set with 5 usages for each verb for a total of 35
sentences. We use the 8th verbal relation ("hike") for in-context examples for prompting.

In addition to the specific prompt format, the ex-
act wording of the prompt itself has been found to
have an effect on the output generated by LLMs.
Given the inexact nature of prompt engineering, we
conduct preliminary tests focused on subjective as-
sessments of output variations on a small number
of test samples. While there could always be a
more effective prompt, identifying such an optimal
prompt is not straightforward. Additionally, our aim
is to assess how annotators typically would interact
with LLMs.

In human annotation, examples provided during
annotation do not necessarily use the same verb or
voice as the sentence being annotated. Thus, in se-
lecting examples, we always use the same (static)
set of examples, involving the verb hike, which dif-
fer from the evaluation dataset.4 We conducted
experiments using a range of prompts aimed at
identifying the most effective wording and format,
using a small subset of our data. The final prompt
we use is shown Appendix B.

We also note that providing in-context examples
allows us to evaluate models that may not have
been explicitly trained with PropBank annotations.
By incorporating in-context examples, we circum-
vent the need for models to undergo specific fine-
tuning (also called instructional fine-tuning) for un-
derstanding instructions pertaining to PropBank.

3.4. Metrics for Evaluation
We use three evaluation metrics that mirror evalua-
tion metrics used to report human IAA for PropBank
annotation (see Albright et al. (2013) for a summary
of metrics). Exact match represents the strictest
match, while the rest are more relaxed measures.
• Exact Match: LLM annotation matches the man-

ually produced, gold standard annotation with

4While the hike examples are provided in transitive,
intransitive, and middle constructions, we acknowledge
that there may be an effect of using a single verb across
the few-shot examples. We provide a follow-on experi-
ment in Section 5 that examines results where the prompt
verb and voice match the test usage.

respect to constituent boundaries as well as the
same role number or the same ArgM type identi-
fied for each phrases.

• Core-Arg Match: LLM’s constituent boundaries
match and have the same numbered roles la-
beled as the human annotation. ArgMs also
match in terms of being argMs, although the dis-
tinctions between the individual ArgM labels is
ignored. This relaxed measure allows for ArgM
type differences as observed in human annota-
tion. For example, The paper presented at a
2020 ACL could plausibly be marked as either
ArgM-TMP or ArgM-LOC.

• Number-Arg Match: LLM and human annota-
tions are matched with respect to the heads of
argument phrases (correct participant is iden-
tified, ignoring precise constituent boundaries),
and with respect to numbered arguments only,
ignoring ArgM annotations. Here, we are are
primarily interested in the correct assignment of
Arg0 and Arg1 despite syntactic differences in
their realization or their omission.5

4. Results

Here we report results for both GPT-3.5 perfor-
mance and GPT-4 performance across our three
different prompt settings: zero-shot, 3-shot without
the roleset information given, and 3-shot with the
correct roleset given in the prompt. In Table 1, we
report the percentage of positive matches across
each of the match types from strictest to loosest:
Exact, Core-Arg, and Numbered-Arg match. In the
sections to follow, we discuss and provide match

5The roleset specification in the 3-shot+rs setting in-
cludes the description of the core arguments only, with-
out reference to the various ArgMs that PropBank allows.
Thus, outside of the ArgMs included in examples in the
few-shot setting, the model is given no guidance on ArgM
annotation, whereas human PropBank annotators would
be trained to identify ArgM types. Number-Arg Match
is designed to assess the generation without unfairly
penalizing the model for mistakes in ArgM.
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and error examples for each prompt setting and
finally for the different sentence types (transitive,
intransitive, middle voice).

4.1. Zero-Shot Setting
In the zero-shot setting, we prompt the model,
“Given the following verb and sentence, produce
a PropBank annotation of the verb sense and its
arguments.” In this setting, we provide only the tar-
get verb and sentence, we do not provide potential
rolesets or the correct roleset. With this prompt,
GPT-3.5 is only able to provide exact and core-arg
matches for two relatively straightforward transitive
sentences:

1. (This reporter)-Arg0 smells-Rel (another
Emmy)-Arg16

2. (A fringe of activists)-Arg0 broke-Rel (some
doors and windows of the halls)-Arg1 and
committed two minor assaults.

The numbered-arg matches that GPT-3.5 is able
to obtain are also largely (5 of 7 matches) of the
transitive type.

GPT-4 performs much better than GPT-3.5 in the
zero shot setting. GPT-4 matches on the same tran-
sitive sentences that GPT-3.5 was able to match
in this setting, and it is also able to provide core-
arg matches for 2 intransitives and 2 middle voice
usages, including, for example:

3. GPT-4 Annotation: Use the heavy floss
because (the fine floss)-Arg1 breaks-Rel
(easily)-ArgM-Adverbial

4. GPT-4 Annotation: (This fellow)-Arg0 writes-
Rel (abominably)-ArgM-Adverbial

Note that the above sentences are only core-arg
matches, as opposed to exact matches, due to dif-
ferences in the specific ArgMs marked. The gold
standard marks what was annotated by GPT-4 as
ArgM-Adverbial instead as ArgM-Manner. Interest-
ingly, as we describe in the next section, GPT-4 is
not able to correctly annotate the above sentences
in the few-shot setting.

4.2. Few-Shot Setting
In the few-shot setting, we prompt the model in the
same way, but we also provide three example anno-
tations that all use the verb hike, exemplified in tran-
sitive, intransitive, and middle voice constructions.
We then provide the target verb and sentence. We
do not provide any information regarding the rel-
evant roleset. Thus, this setting is very similar to

6We use this notation to express the gold standard
annotation, we did not expect or require the LLMs to
output in this format.

what a human annotator would face, as they would
not have seen the particular target annotation in-
stance before, though they may have seen variety
of other PropBank annotation examples during their
training. Note that some generalization is required
in moving from the examples of a different verb and
the alternations in Arg0 and Arg1 seen for that verb,
and the parallel syntactic alterations for the target
verb.

While both GPT-3.5 and GPT-4 show improve-
ment in this setting, the improvement is not as
straightforward as one might expect. Specifically,
the gains are made primarily with respect to supe-
rior annotation of transitive usages. For example,
GPT-4 in particular fails to match on the middle and
intransitive sentences (3) and (4) above by shift-
ing the Arg1, the fine floss, to an Arg0, while also
shifting the manner adjunct, abominably to an Arg1.
We hypothesize therefore that adding the examples
for comparison causes the model to overgeneralize
where numbered arguments should be used, and
specifically where Arg0 should be used, perhaps
given that most of the hike examples involve an
Arg0 subject.

4.3. Simplified Annotation Task in
Few-Shot Setting

In the final prompt setting we provide the most infor-
mation, simplifying the annotation task by including
the correct roleset in the prompt. Thus, in addition
to examples of how argument numbers are applied
across the three constructions from the verb hike,
we also describe explicitly how the argument num-
bers map to the semantic roles, expressed in nat-
ural language (as opposed to traditional thematic
role labels), for the target verb.

We find that GPT-3.5 performs worse in this set-
ting, with the numbered-arg matches falling from
37.1% in the few-shot setting to 20.0% when we
now provide the roleset. When we examine where
new errors were introduced in this setting, we find
that example (2), which was consistently annotated
correctly in the zero-shot and few-shot (without the
roleset) settings, is no longer annotated correctly.
Instead, the model over-extends the application of
the numbered arguments specified in the roleset
(see Figure 1), which was provided to the model .

5. (A fringe of activists)-Arg0 broke-Rel (some
doors and windows of the halls)-Arg1 (away
from the halls)-Arg4

Note that the phrase GPT-3.5 assigns as the Arg4
(thing broken away from) is not present in the orig-
inal sentence. The model adds this to the anno-
tation despite explicit prompting to only use the
words found in the sentence. Similarly, the in-
clusion of the roleset seems to have entirely de-
railed GPT-3.5’s annotation, resulting in particularly
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Verb: break
Roleset: break.01 (break, cause to not be
whole)
ARG0: breaker
ARG1: thing broken
ARG2: instrument
ARG3: pieces
ARG4: arg1 broken away from what?

Verb: smell
Roleset: smell.02 (emit an odor)
ARG1: stinky thing
ARG2: attribute of arg1

Figure 1: PropBank rolesets break.01 and smell.02

widespread (and incorrect) application of the num-
bered arguments:

6. GOLD annotation: I think you were badly cut
when (the chair)-Arg1 broke-Rel (under you)-
ArgM-Location

7. GPT-3.5 annotation: I think you were (badly)-
Arg3 cut when (the chair)-Arg0 (broke)-Rel
under (you)-Arg1

GPT-4, in contrast, achieves the best perfor-
mance in this setting for all match types, with a
best result of 48.6% numbered-arg matches over-
all. Notably, most of this improvement comes in
adding matches for the intransitive and middle voice
usages, for example, achieving an exact match
(whereas no other settings produced any type of
match) on this usage of smell (see Figure 1).

8. (Our guy)-Arg1 smells-Rel (incredible)-Arg2
Thus, we hypothesize that when the mapping from
the roleset to the usage in question is particularly
simple and clear, the model is able to precisely ap-
ply the roleset information. However, we acknowl-
edge that it cannot handle cases beyond the simple
with much success.

4.4. Constituent Matching
A key difference between our prompt setup and
the information presented to human annotators is
that humans are asked to place the PropBank argu-
ment labels on top of Penn TreeBank constituency
parses (Marcus et al., 1994). The annotators are
instructed place labels only on constituents that are
sisters to the verb phrase (i.e. the subject) and
sisters of the verb (i.e. the direct object) (Bonial
et al., 2010), which is enforced by the PropBank
annotation tool (Choi et al., 2010).7 Pradhan et al.

7This training follows generative assumptions that the
verbal relation assigns theta roles to its arguments, and
that its arguments appear in these positions and only
these positions.

Verb: rain
Roleset: rain.01 (rain)
ARG0: metaphorical agent
ARG1: metaphorical rain
ARG2: rained upon

Figure 2: PropBank rolesets rain.01

(2022) attribute some of the high IAA to the fact that
the placement of annotations is clearly constrained
by the syntactic tree.

In our prompting experiments, we do not provide
the syntactic tree corresponding to the sentence.
Thus, in this section we explore the extent to which
our best-performing model, GPT-4, is able to pro-
vide constituent matches with the gold standard. A
constituent match is based solely on what phrases
are treated as annotated arguments, where the
argument labels themselves are entirely ignored.
We find that in the zero-shot setting, GPT-4 obtains
positive constituent matches in 42.9% of the annota-
tions. In the 3-shot setting where no roleset is given,
constituent matches are made for 51.4% of the
sentences. Finally, in the 3-shot setting where the
roleset is given, constituent matches drop slightly
to 48.6%. The fact that constituent matches are
hovering around 50% is a trend that suggests that
constituent matching is likely a large source of an-
notation error.

To gain a sense of what the constituent mis-
matches look like, consider the following example,
given the following roleset for rain (Figure 2):

9. GOLD annotation: On days (when)-ArgM-
Temporal (it)-Arg0 rains-Rel (nonstop)-
ArgM-Temporal, they throw sheets of plastic
over their hung wash.

10. GPT-4 annotation: (On days when)-ArgM-
Temporal (it)-Arg0 rains-Rel (nonstop)-
ArgM-Adverbial, they throw sheets of plastic
over (their hung wash)-Arg2

Note that their hung wash is what might have been
rained upon, had they not thrown sheets of plastic
over it. Thus, while there may be some plausible
justification for calling this Arg2, it is not in a syntac-
tic position to be considered a PropBank argument
for rain.

The numbered-arg match type does not require
constituent matches, but instead asks if the num-
bered arguments are assigned correctly to phrases
with the same head. Thus, there are instances in
our data where the constituents annotated do not
match, but the annotation is assigned a numbered-
arg match. Generally, these are cases where
the model fails to annotate an adjunct argument
altogether, or when constituent boundaries are
slightly off; for example, consider the following case
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of numbered-arg match that is not a constituent
boundary match:

11. GOLD annotation: (The Palestinians)-Arg0
rained-Rel (stones)-Arg1 (down)-ArgM-
Direction (onto Jews praying at the Western
Wall below)-Arg2, (injuring 11)-ArgM-
Adverbial

12. GPT-4 annotation: (The Palestinians)-Arg0
rained-Rel (stones)-Arg1 down (onto Jews
praying at the Western Wall below, injuring
11)-Arg2

4.5. Trends Across Transitive,
Intransitive, Middle

A key research question in this evaluation is
whether or not LLMs can act as PropBank anno-
tators, where the most critical aspect of the an-
notation is correctly assigning argument numbers
across different syntactic realizations of the same
relation. Thus, in this section, we focus on perfor-
mance across transitive, intransitive, and middle
voice constructions. Note that our evaluation in-
cludes the same 7 verbs exhibited in each of these
construction types, and the few-shot examples are
also one of each construction. For this analysis,
we focus on our best-performing model and prompt
combination—GPT-4 in the 3-shot setting with the
correct roleset provided.

As we can observe in Table 2, the model
achieves by far the most matches (85.7%
numbered-arg matches) for transitive usages. The
model can only achieve the most relaxed measure,
numbered-arg match, about 25% of the time across
intransitive usages (23.1 %) and middle voice us-
ages (25.0%). Again, our dataset is small, but from
this trend, we conclude that even at its best perfor-
mance, GPT-4 cannot identify the same semantic
roles arising in distinct syntactic realizations. Over-
all, we see that even for transitives, the best per-
forming model and prompt combination achieves
a core-arg match of only 50.0%. We contrast this
with the human IAA reported in Bonial et al. (2017),
where people achieve an exact match IAA of 84.8%
for verbal relations and a core-arg match IAA of
88.3%—and those agreement rates are for verbal
relations realized in a wide variety of syntactic real-
izations.

5. Discussion & Follow-On
Experimentation

We started out our study by asking two questions
regarding LLM capabilitily with respect to its (in-)
ability for to perform PropBank annotation: (a) How
effective are LLMs at this task, and (b) What is
the most effective way of prompting LLMs for this

task. Based on our results, we observe that there
is little evidence of any zero-shot meta-linguistic
knowledge enabling PropBank annotation. There
is some evidence that the larger model can do bet-
ter with more information—in-context learning is
certainly required for the ability to do PropBank
annotation. Specifically, we conclude that LLMs
are not a good replacement for expert linguistic an-
notators in generating PropBank annotations, and
the use of in-context examples is helpful in better
guiding LLMs towards the kind of annotations that
are more accurate.

To further validate this conclusion, we conducted
additional in-context experiments: Concretely, we
assessed the models’ ability to correctly perform
PropBank annotation when in-context examples
have the same verb and voice as the target us-
age to be annotated. This enabled us to gauge
the model’s capability in a scenario with minimal
variation between the in-context example and the
model’s requirements. Our findings consistently
demonstrate that both GPT-3.5 and GPT-4 perform
better on this version of the task than on the origi-
nal one. In fact, we observed that providing explicit
information related to the roleset helps models cor-
rectly complete the task in instances where they
previously do not. Overall, these results indicate
that models seem to be effective in following ex-
plicit instructions in the form of templated in-context
examples, as opposed to being able to generalize
from generic instructions akin to those presented
to humans.

Importantly, this indicates that resources such as
PropBank continue to be useful and, indeed, essen-
tial despite the effectiveness of LLMs, regardless
of their size. Not only are these datasets helpful
in probing the capabilities and limitations of LLMs,
they are also likely to be useful in augmenting LLMs
with additional capabilities including, for example,
a sample-efficient and nuanced interpretation of
input sentences.

6. Conclusion and Future Work

Our research indicates that while LLMs may excel
at producing natural language text, they also show
astonishingly poor capabilities to generalize seman-
tically, especially when it comes to the capacity to
produce meta-linguistic annotations that adhere to
the annotation standards of the PropBank frame-
work. However, we also show the utility of in-context
examples and positive effect of carefully designed
prompts in producing better LLM meta-linguistic
generations. As PropBank and other linguistic re-
sources remain valuable for semantic analysis, our
work suggests that continued research and invest-
ment is needed in exploring how to best support
in-context learning of meta-linguistic knowledge.
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It’s worth underscoring that the goal of this study
was to assess current model capabilities to do basic
meta-linguistic annotation, rather than developing
methods by which we can empower models to do
PropBank annotation. Our finding that models fail
to perform even for manually-selected prototypical
constructions with sufficiently clear prompts indi-
cates a failure in meta-linguistic capabilities. Future
works to expand on evaluation dataset size will be
required to reveal the prevalence of this problem
and further explorations with prompt engineering
would be necessary to assess the depth of brittle-
ness of model capabilities.

Thus, an immediate future work includes the ex-
pansion of the evaluation dataset. While the small
size of this dataset is appropriate for the present
work that is aimed at an initial exploration of LLM
capabitilies, the expansion of this dataset would be
necessary to scale up to a full diagnostic set for
evaluating models. We expect that a larger evalua-
tion set will be helpful to discover further insights,
giving us the capability to make more robust gener-
alizations with regard to model capabilities. Also,
the present work was limited to GPT-3.5 and GPT-4.
Future directions include expanding the evaluation
over other models of varying scale and attested
capabilities.

In this work, we have specifically focused on
the inclusion of 3-shot and roleset information for
prompting experiments. Future studies include an
expansion on the prompting types and varieties to
better assess and categorize the errors observed
in models with the goal of providing more insightful
recommendations for meta-linguistic prompting for
PropBank annotation.

A broader application of this work is the possi-
bility of leveraging LLMs for building up seman-
tic resources for lower-resource languages with
limited capacity for mass-annotation efforts like
crowdsourcing. It is yet unclear what the extent
of multilingual meta-linguistic capabilities of LLMs
are. However, a wider net of experiments that in-
clude verb-argument behavior different from that
of English is a compelling future direction of this
research.

7. Ethical Considerations and
Limitations

Dataset Size. The goal of the work was to take
pulse of LLM capabilities regarding PropBank anno-
tation for the purpose of a close-up manual analysis
of the successes and mistakes the LLMs make in
the annotation process. For this purpose, the size
of the dataset was suitable. However, because
the dataset used in this work is indeed very small,
we do not recommend the set to be used as a full
diagnostic evaluation set.

English Centricity. PropBank is available not
only for English, but a wide number of languages
and domains. PropBank lexicons and/or corpora
now exist for for Chinese (Xue, 2006), Korean
(Palmer et al., 2006), Arabic (Zaghouani et al.,
2010), Hindi (Vaidya et al., 2013), Portuguese (Du-
ran and Aluísio, 2012), Finnish (Haverinen et al.,
2014), and Turkish (Şahin and Adalı, 2018), just to
mention those we know well. This work, however,
focuses on the aspects of PropBank annotation
that is relevant to English only. The findings we
offer may not hold for other languages.
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9. Language Resource References

A. Data Collection Details

For each verb, we leveraged COCA search to find
instances of the verbs in transitive, intransitive, and

middle voice usages. This allowed us to specify,
for example, expected noun phrases in both the
preverbal and postverbal positions for the transitive
voice, the expected subject noun phrase and gen-
erally a prepositional phrase for intransitives, and
finally the expected subject noun phrase and gen-
erally a postverbal adverbial phrase for the middle
voice. From the search results, we attempted to
select relatively simple sentences where the target
verb was the matrix verb. We selected 2 instances
of both transitive and intransitive usages, where
one usage was relatively concrete (e.g., ...a fringe
of activists broke some doors and windows of the
halls and committed two minor assaults and one
usage was more abstract (e.g., ...this number broke
all records for a single registration day. Note that
because PropBank senses are relatively coarse-
grained, such usages are generally classed as the
same sense as their semantics are similar as is the
argument structure (Bonial et al., 2010).

Finding middle voice usages was more challeng-
ing, as these are less frequent and often isolated to
advertising language. If we were unable to find the
target verbs in middle voice usages in COCA, we
completed secondary web searches and were able
to find such usages in product reviews. Given that
these usages are less frequent, we included and
annotated only one middle voice usage for each
verb, with the exception of the verb parse, for which
we could find only one intransitive usage but many
middle voice usages. Thus, we included one in-
transitive and two middle voice usages in addition
to two transitive usages for it.

We acknowledge that the defining criteria of both
intransitive and middle voice can be challenging.
Although our defining criteria may be debatable,
we note that we do not necessarily believe that a
mis-classification would significantly alter the find-
ings of our primary research question here, as we
were primarily searching for distinct syntactic re-
alizations of the same verb to determine if LLMs
could track the semantic roles across those distinct
realizations. Middle constructions are both particu-
larly challenging and particularly interesting as they
can be syntactically identical to intransitives (e.g.,
This cake cuts beautifully), but are semantically
distinct as the cake is not doing the cutting.

B. Full Prompts

We present our full prompts, where curly brack-
ets are placeholders for instances from our
35-sentence evaluation set.

Version 0 - “zero-shot-NoRoleset” (less info
than given to an annotator)
Given the following verb and sentence, produce
PropBank annotations of the verb sense and its
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arguments. Limit your annotation to the words in
the sentence provided.

Annotate this:
Sentence:
Verb:

Version 1 - “3-examples-NoRoleset” (same info
given to an annotator)
Given the following verb and sentence, produce
PropBank annotations of the verb sense and its
arguments. Limit your annotation to the words in
the sentence provided.

Example 1:
Sentence: They went to India and Nepal, stayed in
hostels and hiked mountains.
Verb: hike
Sense: hike.01 (walk for pleasure or exercise)
Arguments:
Arg0: They
Rel: hiked
Arg1: mountains

Example 2:
Sentence: Connor Kobal hikes regularly in Boulder
Mountain Park.
Verb: hike
Sense: hike.01 (walk for pleasure or exercise)
Arguments:
Arg0: Connor Kobal
Rel: hikes
ArgM-TMP: regularly
ArgM-LOC: in Boulder Mountain Park.

Example 3
Sentence: This trail hikes through a portion of the
historic area and then up to a ridge overlooking
Stone Valley.
Verb: hike
Sense: hike.01 (walk for pleasure or exercise)
Arguments:
Arg1: This trail
Rel: hikes
ArgM-DIR: through a portion of the historic area
and then up to a ridge overlooking Stone Valley.

Annotate this:
Sentence:
Verb:

Version 2 - 3-examples-Roleset (more info than
given to an annotator)
Given the following verb and sentence, produce
PropBank annotations of the verb sense and its
arguments. Use the roleset information provided
to produce the annotation. Limit your annotation to
the words in the sentence provided.

Example 1:
Sentence: They went to India and Nepal, stayed in
hostels and hiked mountains.
Verb: hike
Sense: hike.01 (walk for pleasure or exercise)
Roleset:
ARG0: causer of motion
ARG1: path of motion; location
Arguments:
Arg0: They
Rel: hiked
Arg1: mountains

Example 2:
Sentence: Connor Kobal hikes regularly in Boulder
Mountain Park.
Verb: hike
Sense: hike.01 (walk for pleasure or exercise)
Roleset:
ARG0: causer of motion
ARG1: path of motion; location
Arguments:
Arg0: Connor Kobal
Rel: hikes
ArgM-TMP: regularly
ArgM-LOC: in Boulder Mountain Park.

Example 3
Sentence: This trail hikes through a portion of the
historic area and then up to a ridge overlooking
Stone Valley.
Verb: hike
Sense: hike.01 (walk for pleasure or exercise)
Roleset:
ARG0: causer of motion
ARG1: path of motion; location
Arguments:
Arg1: This trail
Rel: hikes
ArgM-DIR: through a portion of the historic area
and then up to a ridge overlooking Stone Valley.

Annotate this:
Sentence:

Verb:
Sense:
Roleset:
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Abstract
This work proposes expanding the thematic role selectional preferences used in the lexical resource VerbNet as a
way to increase the available semantic information in the resource, induce semantically-based subclasses for the
more generic VerbNet classes, and create new links across classes. The addition of verb-specific features in the
latest version of VerbNet provides a means for adding more specific selectional preferences based on the meaning of
a class’s individual member verbs. These features could refine both the instantiated class roles and the new implicit
roles introduced in VerbNet version 4. We suggest 49 classes that would benefit from 111 verb-specific selectional
preferences and explain how they would enhance VerbNet’s semantic representations.

Keywords: semantic representations, VerbNet, thematic roles

1. Introduction

Deep learning has revolutionized natural language
processing (NLP) in recent years, but problems
with explanability and portability to low-resource
languages or subject domains have led to the de-
velopment of neurosymbolic methods. These new
methods have made symbolic representations of
meaning more relevant than ever for NLP. Lexical
resources like VerbNet (Schuler, 2005), FrameNet
(Baker et al., 1998) and PropBank (Kingsbury and
Palmer, 2002) have a long history of contributing
to NLP tasks that require rich semantic information,
such as question answering, inferencing, and event
and entity tracking. All three resources provide in-
formation on semantic roles, but VerbNet alone
provides semantic representations for classes of
verbs. These use Generative Lexicon subevent se-
mantics (Pustejovsky, 1995, 2013) in a loosely neo-
Davidsonian representation (Brown et al., 2019,
2022).

VerbNet’s combination of syntactic and seman-
tic regularities in the construction of its classes of
verbs has resulted in some classes that are more
syntactically than semantically coherent. Recent
work (Kazeminejad et al., 2022) has added verb-
specific features to the members of many VerbNet
classes, allowing the formation of semantically co-
herent subclasses. We propose the addition of
new verb-specific features that can both aid in that
effort and enhance the semantic representations.
These features would add more specific selectional
preferences on the thematic roles based on the
meaning of the individual member verbs (such as

the Theme role in Build-26.1 class having the se-
lectional preference fiber for the verbs knit and
weave but metal for the verbs hammer and forge).
These could refine both the traditional class roles
and the implicit roles (e.g., V_Instrument) added to
the semantic representations in VerbNet version 4.
We suggest 49 specific classes that would bene-
fit from 111 verb-specific selectional preferences
and explain how they would enhance the semantic
representations.

2. Background

VerbNet (Schuler, 2005; Schuler et al., 2009) is a
large-scale English verb lexicon that uses similari-
ties in verbs’ syntactic and semantic behaviors to
create hierarchical classes. Based on the classes
created by Levin (1993), each class includes mem-
ber verbs, general thematic roles that represent
the arguments in the typical predicate-argument
patterns of those verbs, and selectional restrictions
on the class’s thematic roles. The diathesis alterna-
tions that are the backbone of VerbNet’s structure
are listed in each class as syntactic patterns, and
each syntactic pattern is accompanied by a se-
mantic representation that incorporates the class’s
thematic roles (Bonial et al., 2011a,b).

The semantic representations list a series
of semantic predicates, such as has_location,
desire or cause, and an event variable E. The
neo-Davidsonian representation uses the class’s
thematic roles as the arguments of the predicates
and traces the progression of the event through
subevent variables (Brown et al., 2022). The
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Escape-51 class, for example, has a syntactic
frame with the semantic representation seen in (1).

(1) He came from France to Colorado.

Agent V Initial_Location Destination

has_location(e1, Theme, Initial_Location)
motion(e2, Theme, ?Trajectory)1

¬has_location(e2, Theme, Initial_location)
has_location(e3, Theme, Destination)

The semantic representations are general enough
to fit with all member verbs in a class. For classes
with semantically very similar verbs, the represen-
tations can be quite specific. For other classes,
the member verbs are semantically diverse, with
only general semantic features applying to all
verbs. For example, the Entity-Specific_COS
(change of state)-45.5 class includes verbs as
diverse as blossom, spoil, and tarnish. It has
one thematic role (i.e., Patient), the selection
preference +concrete on that role, and a simple,
generic semantic representation that highlights the
change in the Patient from not being in a particular
state to being in that state:

(2) The roses bloomed.

¬has_state(e1, Patient, V_Final_State)
has_state(e2, Patient, V_Final_State)

This example illustrates the two types of thematic
roles in VerbNet: those instantiated as arguments
(e.g., Patient) and those that are incorporated into
the meaning of the verb (e.g., V_Final_State). The
first type are the roles that have been widely used
for semantic role labeling (Shi and Mihalcea, 2005;
Giuglea and Moschitti, 2006; Palmer et al., 2011),
such as Agent, Patient, and Location. Each class
lists the roles that get instantiated in sentences us-
ing the class’s verbs. VerbNet has 39 roles, related
hierarchically (Bonial et al., 2011b).

The other type of role was introduced with new
semantic representations and is used to describe
roles that are semantically necessary but that never
appear as arguments in sentences using the class’s
verbs (Brown et al., 2022). They instead are in-
corporated into the verb itself, as indicated by the
initial V_ in the role name. The V_Final_State role
in the example above is a one example. Most
of these uninstantiated roles are based on roles

1The question mark indicates a role that is semanti-
cally entailed and used in other syntactic frames within
the class but not instantiated in this syntactic frame.

in the set of usual, instantiated roles. For exam-
ple, the V_Instrument role in the Wipe_Instr-10.6.2
class (example verbs: iron, shovel, sponge corre-
sponds to the instantiated thematic role Instrument
in the Carve-21.2 class (example verbs: dice, grind,
slit. V_Final_State is unusual in that there is no
Final_State role in any VerbNet class. However,
V_Final_State is used frequently as an argument
in the semantic representation of change of state
classes.

Although the syntactic and semantic generaliza-
tions provided by VerbNet classes have proved
useful for numerous NLP tasks over the years, the
option of accessing more specific semantic fea-
tures for individual verbs or subsets of verbs in a
class was often suggested as desirable (Gao et al.,
2016; Clark et al., 2018). Kazeminejad et al. (2022)
describes an effort to do that through the addition of
fine-grained semantic features to individual verbs
in a class. These features usually provide values
for an attribute that several of a class’s verbs share.
For example, the Run-51.3.2 class has verbs (e.g.,
scurry and whiz) with the attribute velocity and the
value +fast. For classes that are already semanti-
cally coherent but quite large, such as Run-51.3.2,
these features can tie together the many verbs into
helpful subgroups, such as all the verbs that re-
fer to types of walking. For very general classes,
such as Other_COS (change of state)-45.5, the fea-
tures add more semantically coherent subgroups
of verbs.

3. Adding Verb-Specific Selectional
Preferences

VerbNet’s regular 39 thematic roles are used across
all its classes with the same, consistent definitions.
Within each class, however, the thematic role may
be further specified with a selectional restriction that
indicates the type of entity that usually fulfills that
role (Table 1). As explained in Palmer et al. (2016),
the selectional restrictions are to be interpreted not
as strict constraints but as preferences. Because
VerbNet’s roles are organized into a hierarchy in
which more specific roles inherit all the qualities
of their parent roles, the selectional preferences
can be seen as a further subordinate level of that
hierarchy.

Although the VerbNet selectional preferences
have been used for various purposes in the past,
such as disambiguating prepositional phrase at-
tachment (Bailey et al., 2015) and metaphor detec-
tion (Wilks et al., 2013), some have found that they
needed to use information from other resources to
reach the desired level of specificity (Wilks et al.,
2013; Di Fabio et al., 2019). For example, the cre-
ators of Verb Atlas (Di Fabio et al., 2019) used
VerbNet thematic roles for their resource but substi-

125



tuted WordNet hypernym synsets for the VerbNet
selectional preferences on those roles to expand
the possible set of preferences.

The current set of selectional preferences (Table
1) contain types that vary widely in the extent of their
usage. The type animate is used with roles in 147
classes, organization in 127 classes, and con-
crete in 75. However, 61% of types are used in 5 or
fewer classes. The ubiquity of the very general se-
lectional preferences (e.g., concrete) results from
the same semantic diversity of the verbs in some
classes that lead to very generic semantic represen-
tations. In a class like Entity-Specific_COS-45.5,
the most you can say about the types of entities
that fulfill the Patient role (and still be true for every
verb in the class) is that they are concrete. For
other classes, like Calibratible_COS-45.6.1, the Pa-
tient cannot be further constrained at all using the
current set of selectional preferences.

selectional
restriction

No.
of
classes

selectional
restriction

No.
of
classes

abstract 4 int_control 25
animal 3 location 32
animate 147 machine 14
biotic 1 nonrigid 1
body_part 14 organization 127
comestible 6 plural 2
communication 10 pointy 1
concrete 75 reflexive 3
currency 5 region 20
elongated 2 solid 7
eventive 1 sound 1
force 1 substance 2
garment 1 vehicle 3
human 3 vehicle_part 1

Table 1: VerbNet selection restrictions

We propose adding selectional preferences to
individual verbs within a class using the established
verb-specific feature element. In the class Entity-
Specific_COS-45.5, for example, a mix of exist-
ing selectional preferences (e.g., human and body-
part) and new ones (e.g., plant, metal, and liq-
uid) could be linked to individual verbs along with
the role they restrict (see Table 2).

These additions would have several benefits:

• Increase the semantic information provided by
VerbNet.

• Improve the semantic coherence of classes by
creating subsets of verbs that share semantic
features.

• Allow connections across classes for verbs in
a particular semantic domain (e.g., verbs that
pertain to food but that are housed in different

Class and Role Feature Example
verb

Amuse; V_Emotion positive
feeling

cheer

negative
feeling

annoy

Calibratible_COS
+increase rise
+decrease decline
+fluctuate swing

Remedy; Patient

plant fertilize
human cremate
animal inseminate
liquid chlorinate
air humidify

Gobble; Patient liquid guzzle
food wolf

Table 2: Classes with existing verb-specific features
that could act as selectional preferences (new pro-
posed features in bold)

classes, such as bake in the class Cooking-
45.3, eat in the class Eat-39.1, and spoonfeed
in the class Feeding-39.7, could be connected
with a food selectional preference for the Pa-
tient.

• Enhance the semantic representations when
they are instantiated by particular verbs.

This final point was suggested in Brown et al.
(2022). They suggested that the V_Direction
role in the semantic representations for the
Calibratible_COS-45.6.1 class could be refined by
the verb-specific features when the representation
is instantiated with items from text. For the sen-
tence The price of oil rose by 500% from $5 to $25.,
the arguments of the predicate change_value
could be replaced with items from the text and with
the verb-specific feature for rise, resulting in:

(3) change_value(e2, increase_V_Direction,
500%_Extent, price_Attribute, oil_Patient)

We suggest a slightly different format that uses
a dot to combine the role and verb-specific fea-
ture, emphasizing the increased specificity of the
role and the possibility of seeing it as a subtype
of original role. Thus, the role in (3) would read
V_Direction.increase. This format would also
work well with the standard roles in VerbNet. When
the specific verb is known, the representation can
add the verb-specific feature to appropriate argu-
ments in the representation. To apply this to one
of the food-related verbs, the representation in the
Gobble-39.3 class would change the generic Pa-
tient role to Patient.food when gobble is known to
be the verb:
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(4) Cynthia gobbled the pizza.
has_location(e1, Patient.food, ?Source)
do(e2, Agent)
body_process(ë3, Agent)
motion(ë3, Patient.food, ?Trajectory)
contain(e4, Agent, Patient.food)
cause(e2, e3)

4. Method

We used a manual methodology to ensure highly
reliable results. We started by considering classes
that contain either of two VerbNet elements. One
was existing verb-specific features, which often im-
plicitly reference one of the thematic roles (e.g., the
existing features increase, decrease and fluctu-
ate in the Calibratible_COS-45.6.1 class. The only
required task for those classes was to make that
connection explicit. Most classes with role-related
features, however, also seemed incomplete, such
as Remedy-45.7, to which we suggest adding four
additional features to restrict the Patient role (Table
2).

The other element that proved fruitful for iden-
tifying possible new features was the implicit role
variation marked with V_. These roles by defini-
tion already point out that more specificity about
the role could be found in the verb itself. Often
a single attribute of the role was indentifiable in
the verbs with a handful of values. For example,
the Vehicle-51.4.1 class, which has such denomi-
nal verbs as boat, bus, and jet, uses a V_Vehicle
role in its semantic representations. The verbs al-
ready have one of three features: medium_ground,
medium_air, and medium_water. Additional fea-
tures that refine the V_Vehicle role could be added,
such as motor vehicle, watercraft, and air-
craft. These provide a middle level of specificity
between V_Vehicle and the specific craft described
by the verb itself, and they enable the creation of
subsets of verbs based on vehicle type.

5. Proposed Features

We have identified 49 classes that could be en-
hanced with 111 selectional preferences as verb-
specific features (see Appendix). The most com-
mon role that could be enriched with verb-specific
selectional preferences is Theme, followed closely
by Patient. Using the already verb-specific implicit
roles that begin with V_ resulted in identifying sev-
eral classes that would benefit from additional verb-
specific features, such as Other_COS-45.45.4 and
Remedy-45.7. Occasionally when one class was
identified as eligible for new selectional preferences
through its V_role (e.g., Sound_emission), it sug-
gested a related class with no V_role (e.g., Sub-
stance_emission). A sample of classes and their

proposed verb-specific selectional preferences are
given in Table 3.

Class and Role Feature Example
verb

Escape-51; Traject.

upward rise
downward fall
toward approach
away recede

Calve-28.1; Patient
canine pup
feline kitten
bovine calve

Create-26.4; Result

written_text author
music compose
dance choreograph
image silkscreen
artifact fabricate

Preparing; V_fin._st.

cooked bake
fermented brew
mixed mix
burning kindle

Table 3: Classes and verb-specific features that
could act as selectional preferences

6. Future Work

We would like to validate our proposed features with
a survey of English-language speakers, possibly
on a crowd-sourced platform. Another possibility
for validation or discovering new selectional pref-
erences would be using Corpus Pattern Analysis
(Hanks, 2013).

Semi-automating the process of discovering new
selectional preferences would save time and money
and could possibly be done by using LLMs. To test
this idea, we queried Chat-GPT (3.5) on most of the
verbs in the Entity-Specific_COS-45.5 class using
the following query: "Can you group the follow-
ing verbs according to the type of entities involved:
flower, moult, rot, rust, germinate, oxidize, stagnate,
sprout, wither, wilt, tarnish, swell, superate, tarnish,
bud, atrophy, fester, crust, blossom, blister, spoil,
erode, ebb? It created two groups, one with ger-
minate, sprout, wither, wilt, bud, and blossom as
verbs that involve plant life, and another with most
of the other words as verbs that involve inanimate
objects. Some verbs it ignored. These groupings
are not perfect, but they do suggest some reason-
able selectional preferences for the Patient role.
GPT-4 would no doubt do a better job.

We would also like to test the utility of these fea-
tures in a task like entity tracking. Kazeminejad et al.
(2021) showed that VerbNet semantic representa-
tions improved performace on this task, suggesting
that there might be further improvement with richer,
verb-specific role preferences.
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7. Conclusion

In this work, we have proposed the addition of verb-
specific selectional preferences for certain Verb-
Net roles. The existing VerbNet element of verb-
specific features on class member verbs provides a
seamless way of incorporating this new information.
We have argued that these new features would im-
prove the semantic coherence of classes by creat-
ing subsets of verbs that share semantic features,
allow connections across classes for verbs in a
particular semantic domain, and enhance the se-
mantic representations when they are instantiated
by particular verbs.
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11. Appendix: Verb-Specific
Selectional Preferences

Instrument.knife
Instrument.liquid
Instrument.noose
Instrument.poison
Material.fiber
Material.food
Material.metal
Material.wood
Patient.air
Patient.animal
Patient.animate
Patient.body_part
Patient.dance
Patient.eyebrows
Patient.eyelashes
Patient.feet
Patient.fingers
Patient.fire
Patient.food
Patient.forehead
Patient.hand
Patient.head
Patient.human
Patient.lips
Patient.liquid
Patient.metal
Patient.neck
Patient.plant
Patient.solid
Patient.teeth
Result.artifact
Result.image
Result.music
Result.written_text
Theme.aircraft
Theme.blood
Theme.body_part
Theme.decoration
Theme.excrement
Theme.fire
Theme.gas
Theme.image
Theme.label
Theme.liquid
Theme.motor_vehicle
Theme.numbers
Theme.pest
Theme.plant
Theme.plant_part
Theme.saliva
Theme.solid
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Theme.surface_substance
Theme.sweat
Theme.urine
Theme.vocal_music
Theme.vomit
Theme.watercraft
Theme.words
Trajectory.away_from
Trajectory.downward
Trajectory.toward
Trajectory.upward
Destination.food
Destination.animal
Destination.clothing
Destination.furniture
V_Direction.decrease
V_Direction.fluctuate
V_Direction.increase
V_Emotion.negative_feeling
V_Emotion.positive_feeling
V_final_state.burning
V_final_state.cooked
V_final_state.fermented
V_final_state.in_pieces
V_final_state.mixed
V_final_state.pale_skin
V_final_state.straightened
V_final_state.unconscious
V_final_state.asleep
V_final_state.compressed
V_form.compressed
V_form.cut
V_form.elevation_gain
V_form.elevation_loss
V_form.pieces
V_form.surface_substance_removed
V_form.turn
V_Instrument.ears
V_Instrument.eyes
V_Instrument.nose
V_manner.bragging
V_manner.ceremonial
V_manner.complaining
V_manner.physical
V_manner.possibly_verbal
V_manner.verbal
V_Patient.bovine
V_Patient.canine
V_Patient.feline
V_sound.continuous
V_sound.punctual
V_sound.sharp
V_sound.soft
V_sound.vibrate
V_Theme.plant
V_Theme.seafood
V_vehicle.aircraft
V_vehicle.motor_vehicle

V_vehicle.sled
V_vehicle.watercraft
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Abstract
We explore using LLMs, GPT-4 specifically, to generate draft sentence-level Chinese Uniform Meaning Repre-
sentations (UMRs) that human annotators can revise to speed up the UMR annotation process. In this study, we
use few-shot learning and Think-Aloud prompting to guide GPT-4 to generate UMR sentence-level graphs. Our
experimental results show that compared with annotating UMRs from scratch, using LLMs as a preprocessing step
reduces the annotation time by two thirds on average. This indicates that there is great potential to integrate LLMs
into the pipeline for complicated semantic annotation tasks.

Keywords: Uniform Meaning Representation, Large Language Models, Semantic Annotation

1. Introduction

Uniform Meaning Representation (UMR) (Gysel
et al., 2021; Bonn et al., 2023) is a graph-
based cross-lingual semantic representation that
includes a sentence-level representation and a
document-level representation. The sentence-
level representation is based on Abstract Mean-
ing Representation (AMR) (Banarescu et al.,
2013) but has been extended to capture not only
predicate-argument structures, word senses, and
named entities as AMR does, but also aspectual-
ity of events, person and number attributes of en-
tities, and quantification. Its document-level an-
notation includes temporal and modal dependen-
cies for events, as well as coreference relations
for entities and relations. Such a comprehensive
meaning representation is very demanding for hu-
man annotators in terms of the linguistic training
they needed, as they have to internalize a large
inventory of semantic concepts, relations, and at-
tributes, and is very time-consuming to annotate.

One way to speed up the annotation process is
to pre-parse the text into “draft” UMRs and have hu-
man annotators correct them. However, the parser
needs a considerable amount of UMR-annotated
data to train, and no large UMR training set exists
yet. In UMR release 1.0 (Bonn et al., 2024), each
language has fewer than a thousand sentences
of annotated UMRs, and it is insufficient to train
a parsing model with adequate performance. In
this paper, we explore the use of Large Language
Models (LLMs) to generate Chinese UMRs that
human annotators can correct for the purpose of
speeding up the annotation process. We inves-
tigated the question of whether using LLMs as a
preprocessing step would reduce the amount of
time required for human annotators to annotate
the same amount of data compared to annotating

UMRs from scatch. The answer to this question
is determined by several factors. The most impor-
tant factor is the quality of the UMRs generated by
LLMs. If the UMRs generated by LLMs are of poor
quality, the human annotator will need to spend so
much time deconstructing the structure generated
by the LLMs that they are better off starting from
scratch. The second factor is the functionalities of
the annotation tool used for UMR annotation. If
the tool has functionalities that allow the copying
of subgraphs of LLM-generated UMRs when con-
structing the correct UMR, this will lower the thresh-
old of parsing accuracy needed for LLMs to have
a positive impact. In our annotation experiments,
we use UMR-Writer (Zhao et al., 2021; Ge et al.,
2023), and this tool allows subgraphs to be copied
and reused. Therefore, the primary factor will be
the quality of the UMRs generated by LLMs.

Our experimental results show that using LLMs
as a pre-processing step on average reduces the
annotation time by about two thirds. The anno-
tators reported that LLM-generated graphs often
contain correct top-level structures and subgraphs
that save annotator time annotating UMRs. An
evaluation of LLM-generated parses shows that
their qualities are slightly below that of initial hu-
man annotation, but not by far.

The rest of the paper is organized as follows.
In Section 2, we describe Uniform Meaning Repre-
sentation for Chinese to provide a concrete idea of
how challenging it is to annotate Chinese UMRs.
In Section 3, we introduce our approach to using
LLMs to generate the draft graphs and detail sev-
eral key challenges in constructing UMR graphs.
In Section 4, we evaluate LLM-generated parses
with respect to their well-formedness and overall
evaluation scores against gold UMR graphs. We
measure inter-annotator agreement (IAA) between
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human annotators and the time savings from anno-
tating LLM-generated UMRs compared with UMR
annotation from scratch, and we also summarize
the feedback from human annotators that reveal
the strengths and weaknesses of LLM-generated
UMRs as the starting point for human annotation.
Related work is discussed in Section 5 and we con-
clude in Section 6.

2. Chinese UMRs

In this section we briefly illustrate different aspects
of UMR annotation with an example in (1). UMR is
a representation for entire documents, not just in-
dividual sentences, so we show the UMR in Figure
1 for a text snippet of two sentences that forms a
minimal document. Solid lines are labeled with se-
mantic relations at the sentence level that include
semantic roles and other semantic relations, as
well as attributes, while the dotted lines represent
relations at the document level.

(1) a. 新时代
New Era

集团
Inc.

于
in

1995年
1995

计划
plan

将
BA
城市
City

电视
Television

售与
sell

罗渣士
Rogers

通讯
Communications

集团
Inc.

，
,
以
in order to

集中
focus on

发展
develop

新时代
New Era

电视
Television

。
.

“The New Era Inc. planned in 1995 to sell
City Television to Rogers Communications
Inc. in order to focus on the development
of New Era Television.”

b. 罗渣士
Rogers

当时
at that time

计划
plan

将
BA
之
it
从
from

有线
cable

电视台
TV station

转型为
transform into

地面
terrestrial

广播
broadcast

频道
channel

，
,
并
and
加入
add
十一
eleven

种

语言
language

的
DE
电视
TV
节目
program

。
.

“At that time, Rogers planned to transform
it from a cable TV station into a terrestrial
broadcast channel and add TV programs
in eleven languages.”

Sentence-level representation The sentence-
level representation includes word senses and
predicate argument structures, named entity
types, aspectual attributes of events, person and
number attributes of entities. In Figure 1,计划-01
in the first sentence represents the first sense of计
划 (“plan”), and it is a predicate that has two core ar-
guments, Arg0 which is a the company新时代集
团 (“New Era Group”), and Arg1售-01, which has

its own argument structure. It also has a non-core
argument 发展-05 (“develop”) that serves as its
purpose (:purpose, and a date-entity that serves
as its temporal modifier (:temporal). In addition to
arguments, since 计划-01 is an event, it also has
an aspectual attribute that indicates it is a State.
The semantic relations between the predicate and
its arguments and attributes are represented as di-
rected edges from the predicate to the argument
or attribute.

In addition to predicate-argument structures,
UMR, following AMR, also represents named en-
tity types. The named entity type is represented
as a concept that has a list of strings that represent
the actual name. For example, in Figure 1,新～时
代～集团～（“New Era Group”) is a name of the type
company. Pronouns are typically represented as
a concept with person and number attributes. For
instance,之 is a pronoun that maps to a thing con-
cept with person attribute (ref-person) that has the
value of 3rd, and a number attribute (ref-number)
that has the value of Singular.

Document-level representation Some seman-
tic relations go beyond sentence boundaries, and
these are represented as directed edges between
a parent and a child, which can be (but not nec-
essarily) in a different sentence. For example, the
thing concept that derives from the pronoun 之 is
coreferent with the company concept that refers
to 罗渣士 集团 (“Rogers Inc.”), and this is repre-
sented with the same-entity relation.

Temporal relations hold among events, between
events and time expressions, and among time ex-
pressions. They are also represented as relations
among concepts which can go beyond sentence
boundaries or within the same sentence. As an
example of temporal relations that go beyond sen-
tence boundaries, the two instances of 计划-01
overlap with each other in terms of their temporal
duration, just as the concepts当时～in the second
sentence overlap with the date-entity with the year
1995, as they refer to the same time period. As
an example of temporal relations within the same
sentence, 计划-01 (“plan”) is before 售-01 (“sell”)
and售-01 (“sell”) is before发展-05 (“develop”).

Modal dependencies are relations between a
conceiver or source and an event that indicate the
level of certainty that the conceiver holds with re-
spect to the event. In most cases the conceiver of
an event is the author (AUTH), but it can also be
other sources as well if the author cites a different
source for the event.

It is very time-consuming for the annotator to
annotate such a rich representation as UMR. We
are interested in whether LLMs can be used to
generate “draft” UMR graphs from raw text that
annotators can correct to speed up the annota-
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Figure 1: An example of a UMR graph for a mini-document of two sentences.

tion process. To make our study feasible, we
conducted only experiments to generate sentence-
level UMRs with LLMs.

3. Pre-parsing with LLMs

Prompt design is the key to the quality of LLM-
generated UMRs. We explore three different
prompting methods to observe their effect on the
UMR parsing quality. We conduct our experiments
in three settings: zero-shot, few-shot, and Think-
Aloud. In the zero-shot setting, LLMs are not given
any annotated examples, while in the few-shot set-
ting, they are given a short document of 8 UMR-
annotated examples. Finally, in the Think Aloud
setting, in addition to the 8 examples, they are also
given a step-by-step instruction of how the UMRs
are annotated. We use GPT4 in all experiments.

3.1. Zero-shot setting

In the zero-shot setting, we give GPT4 the follow-
ing prompt without any examples. Since UMR 1.0
was released after GPT-4 1was trained, we try to
guide it to learn from AMR. However GPT-4 failed
to generate any well-formed UMRs so we will not
discuss it further.

1The version we use is gpt-4-0125-preview.

You are an expert linguistic annotator. You
need to parse a given sentence into Uniform
Meaning Representation, which is similar to Ab-
stract Meaning Representation, but you need
to name each variable starting with “s”, fol-
lowed by the number of sentence. All the to-
kens should only be from the sentence, and you
must not hallucinate about any tokens or miss
any tokens.

3.2. Few-shot setting
In the few-shot setting, we give GPT-4 the follow-
ing instruction followed by UMRs of 8 sentences.
When selecting the example UMRs, our aim is to
have a good coverage of aspectuality attributes
and modal strengths 2 that are new in UMR as
they are absent in AMR, which has been around
for longer periods of time and is therefore more ac-
cessible to LLMs. The instructions given to GPT-4
is as follows:

You are a linguistic annotator. You need to
follow the examples to parse a sentence into
Uniform Meaning Representation step by step.
You must name each variable starting with “s”,

2Modal strength is represented at the document level
in UMR, but in most cases the conceiver or source is the
author and can thus be annotated as a shorthand at the
sentence level.
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followed by the number of the sentence. All
the tokens should only be from the sentence,
and you must not hallucinate any tokens. You
should identify the main verb as the head of
the graph, and analyze the clauses recursively.
You will also need to add “modal strength” to
any predicates in the format “:modstr” with six
possible values: [FullAff, PrtAff, NeutAff, Full-
Neg, PrtNeg, NeutNeg], and also add an as-
pect to any predicate in the form of “:aspect”
with six possible values [Process, Endeavor,
Performance, Activity, Habitual, State], and
you will be shown how to use these values
later. NEVER combine any tokens separated
by space!

In the few-shot setting, no explanation is given to
GPT-4, but we attempt to include examples of how
common UMR concepts, attributes, and relations
are represented. The following are UMR snippets
that illustrate the representation of modal strength,
aspectuality, and named entities and their rela-
tions.

Modal strength In the sentence 4, the main
predicate is 讲 (“tell”). It is in a imperative mode,
and under the modal verb 不能 (“cannot”), which
makes its modal strength NeutNeg, meaning neu-
tral negative.

(2) 这个
this

关于
about

他
he
晋升
promote

的
DE
秘密
secret

不能
cannot

给
to

任何
any

人
person

讲
tell
！
!

“You cannot tell anybody the secret that he got
promoted!”3

(s1x /讲-01[“tell”]
:mode imperative
:modstr NeutNeg
...)

Aspectuality An example of aspectuality repre-
sented in the UMR is also provided in 3:

(3) ...
...
临近
approaching

演唱会
concert

尾声
end

“... near the end of the concert”

... (s2x2 /临近-01[“approaching”]
:ARG0 (s2x3 /演唱会 [“concert”])
:ARG1 (s2x4 /尾声 [“end”])
:aspect State
:modstr FullAff
...)

3The glossing abbreviations used in this paper are:
DE: possessive or genitive marker

Named entities in appositive constructions
We also provided GPT-4 some common patterns
in UMR annotation, such as appositive construc-
tions that involve a named entity of type individual-
person that has a particular type of position in
some organization, which is often also a named
entity:

(4) 美国
US
前
former

总统
president

克林顿
Clinton

(s41i2 / individual-person
:name(s41n / name

:op1 ”克林顿”[“Clinton”])
:ARG1-of (s41h / have-org-role-91

:ARG2 (s41c / country
:name (s41n2 / name

:op1 ”美国”[“US”]))
:ARG3(s41x3 /总统 [“president”]

:mod (s41x4 /前 [“former”]))))

The UMR inherits some of the named entity
types from AMR but also adds quite a few new
ones that reflect the different types of named en-
tity in different cultures. This type of structure is
very common in the data and if they can be cor-
rectly generated by LLMs, it would be a big help
for human annotators who post-edit these UMRs.

3.3. Think-Aloud Prompting
Inspired by the research on using Chain-of-thought
(Wei et al., 2022) when prompting LLMs to per-
form natural language tasks, we experimented
with asking GPT-4 to follow the Think-Aloud Pro-
tocol (Jääskeläinen, 2010) to instruct it to explicitly
output the thought process before outputting the
final answer. This technique is originally an ex-
periment protocol in psychology and ergonomics
with human subjects. It asked human subjects
to “think-aloud” - voicing their thoughts explicitly
when or after completing a given task - to make
researchers aware of how and why they take par-
ticular actions (Oh and Wildemuth, 2009; Wolcott
and Lobczowski, 2021). Because the reasoning
process is expressed in natural language and hu-
man annotation is guided by latent thoughts, we
hypothesize that the reasoning process can serve
as an intermediary from texts to semantic graphs.
We designed the though process to particularly ad-
dress the following issues.

Mismatch between the linear order of the sen-
tence and the hierarchical structure of UMR
graphs While a sentence is presented linearly
from left to right, its UMR graph is a hierarchical
structure with no meaning attached to the linear
order. This mismatch may worsen the tendency
of LLMs to hallucinate or ignore certain parts of
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the input sentence. We therefore instruct GPT-4
to “think” hierarchically by selecting the main pred-
icate first and then attending to its arguments. If
the argument itself is another predicate, then GPT-
4 is asked to recursively identify its arguments in
a depth-first manner similar to the annotating pro-
cess of human annotators. This is illustrated in (5).

(5) Prompt:Parse this sentence: 该周报也曾经短暂的
拥有过一个属自己的电视节目。
Prompt translation: The weekly report also once
briefly had its own television program.
Exemple response: 这是第 3句话。
我们需要先判断这句话的句式，然后分析这句话中
每个词语之间的依存句法关系。
该句子是一个陈述句，top node是“拥有”
“拥有”的主语是“周报”，“周报”的修饰是“该”，
因此“拥有”:arg0“周报”(s3x2)
“拥有”的宾语是“节目”，而“节目”的定语是“电
视”，而这里“电视”是“节目”的媒介，所以“媒
介”:medium“电视”
“节目”属于“自己”，而“自己”在这里是一个

pronoun，指代的是“周报”，因此“属”:arg1 s3x2
⋯⋯
Response translation: This is the third sentence.
We need to first determine the sentence structure
of this sentence and then analyze the dependency
syntax relationships between each word in the sen-
tence.
The sentence is a declarative sentence, with ’own-
ing’ as the top node.
The subject of ’owning’ is ’weekly report,’ and
’the’ modifies ’weekly report,’ hence ’owning’: arg0
’weekly report’ (s3x2).
The object of ’owning’ is ’program,’ and the attribute
of ’program’ is ’television,’ where ’television’ serves
as the medium of ’program,’ so ’medium’: medium
’television.’
’Program’ belongs to ’oneself,’ and ’oneself’ here
is a pronoun, referring to ’weekly report,’ thus ’be-
long’: arg1 s3x2
...

Identifying the abstract concepts for discourse
relations In UMR, discourse relations are repre-
sented as a close set of abstract concepts that
form a lattice so that different languages can select
discourse relations of different levels of granularity
for that language. Discourse relations are repre-
sented as abstract concepts because they are of-
ten implicit and can only be inferred from the larger
context of the discourse. As such it is easy for
LLMs to miss them. We attempt to guide LLMs
to detect them with Think-Aloud prompting. This is
illustrated in (6).

(6) Prompt: 目前《世界新闻周报》的纸本已经停刊，
不过仍继续发行网络版。
Translation: Currently, the print edition of “World
News Weekly” has been discontinued, but the on-
line version is still being published.
Exemple response: 该句子是一个转折句，因此

top node是 but-91
前半句的谓语是“停刊”，因此 but-91 :arg1停刊
... ...
后半句的谓语是“继续”，因此 but-91 :arg2继续
Response translation: The sentence is a con-
trastive sentence, therefore the top node is but-91.
The predicate of the first half of the sentence is ”dis-
continued”, thus but-91 :arg1 is ”discontinued”.
The predicate of the second half of the sentence is
”continues”, thus but-91 :arg2 is ”continues”.

Identifying named entities and their types.
The named entity types of UMR also form a hierar-
chy, and they extend the AMR named entity types
to cover a wide range of named entities from dif-
ferent cultures of the world. Some of them may
have never been seen by GPT-4, and we instruct
it to pay particular attention to them, as illustrated
in (7).

(7) Prompt: 《世界新闻周报》是一份已经停止发行的
美国超市小报。
Translation: The World News Weekly is an
American supermarket tabloid that has ceased
publication.
Example response: 判断句的主语，是“《世界新
闻周报》”，是【命名实体】，是一种 newspaper，
因此是 named entity，类型是 newspaper，首字
母是 n，因此变量名是 s1n，因此 s1i2 :ARG1
newspaper :name《世界新闻周报》。
Response translation: The subject of the judg-
ment sentence is ’The World News Weekly’, which
is a named entity, a type of newspaper. Therefore,
it is a named entity, with the type being newspaper,
and its first letter is ’n’, thus the variable name is
’s1n’. Therefore, ’s1i2 :ARG1 newspaper :name
The World News Weekly’.

Identifying predicates and annotating their
aspects and modal strength As aspect and
modal strength are only relevant to predicates, to
annotate the aspect and model strength values
correctly, the first step is to identify the predicates.
Aspect annotation is difficult for human annota-
tions due to the lack of explicit aspect markers for
most predicate instances, it is even difficult for hu-
man annotators. The modal strength value also
has different manifestations in the Chinese lan-
guage, and they can be derived from modal verbs,
certain adverbs, or quoted speech. So we de-
signed instructions to guide GPT-4 to pay attention
to the right places, as illustrated in (8).

(8) Prompt:⋯⋯阿扎扎称：⋯⋯，结果竟在拿破仑头
骨中发现了一枚无法解释的神秘芯片。
Prompt translation:...Azaza said: ..., surprisingly,
a mysterious chip that cannot be explained was
found in Napoleon’s skull.
Exemple response:【“解释”是一个谓词，它的
语法体标记 (:aspect) 只能从 state, performance,
activity, habitual, endeavor, process 中选择，它
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的语气强度 (modality strength)(:modstr) 只能从
FullAff, PrtAff, NeutAff, FullNeg, PrtNeg, NeutNeg
中选择】。“解释”是一个动作但不一定有结果和开
始，因此“解释”:aspect Process；由于解释有一
个“无法”作为修饰，表达的是否定意义，而“解
释”来自于说话人的内容，无法确定其真实性，只
能作推断，因此“解释”:modstr PrtNeg；同时，由
于“解释”来自于说话人的内容，需要引用到上一
个谓词，因此“解释”:QUOT“称”
Response translation: The verb ’explain’ has
its grammatical aspect marker (:aspect) that can
only be chosen from state, performance, activity,
habitual, endeavor, process, and its modality
strength (:modstr) can only be chosen from
FullAff, PrtAff, NeutAff, FullNeg, PrtNeg, NeutNeg.
’Explain’ is an action that may not necessarily have
a result or even start, therefore ’explain’: aspect
Process; since ’explain’ is modified by ’unable
to’, expressing a negative meaning, and ’explain’
comes from the speaker’s content, its truth cannot
be determined, only inferred, therefore ’explain’
:modstr PrtNeg; meanwhile, since ’explain’ comes
from the speaker’s content, it needs to refer to
the previous predicate, therefore ’explain’ :QUOT
’said’.

4. Experiments

We conducted experiments to answer three ques-
tions: (i) How does GPT-4 perform in generating
UMRs in a few shot and Think-Aloud settings? (ii)
How is GPT-4 faring in comparison with human an-
notators? (iii) Does it take less time for human
annotators to correct GPT-generated UMRs than
annotating from scratch? We answer these ques-
tions through quantitative evaluations and also
through qualitative analysis.

4.1. Experiment setup
We selected two articles published in the latter half
of 2023 to conduct experiments on to make sure
these articles were not included as part of the train-
ing data for GPT-4. The articles were chosen from
authoritative news agencies to guarantee its gram-
maticality and factuality. Both articles have 26 sen-
tences so that they can be finished in a reasonable
amount of time.

The human annotation experiments are per-
formed by four annotators. These annotators do
not have extensive linguistic backgrounds but have
taken linguistic courses. In order to have fair com-
parison of annotation speed under the two condi-
tions, annotating from scratch vs annotating from
GPT-generated UMRs, we need to make sure that
the same annotator does not annotate the same ar-
ticle twice. We divide the four annotators into two
groups, with two annotators in each group. We
first have each group annotate one of the two ar-

ticles from scratch, and then switch to annotate
the other article from GPT-generated UMRs. After
they finished annotating the articles from scratch,
each group met to discuss their differences and ar-
rived at a consensus annotation that we designate
as the gold annotation.

4.2. Quality of GPT-generated UMRs
We used GPT-4 to generate UMRs for the two ar-
ticles in few-shot and Think-Aloud settings, each
with temperatures of 0 and 0.7. We thus have four
UMR graphs generated under four conditions: few-
shot at temperatures of 0 (0F) and 0.7 (7F) , Think-
Aloud at 0 (0T) and 0.7 (7T).

GPT-4 generated fully well-formed UMRs under
condition 0T, but there are occasional format er-
rors under other conditions, and the higher tem-
perature (0.7) leads to many more format errors.
These include:

1. Quoted reentrancy, such as :ARG0 (s24x)
where the variable should not be bracketed;

2. Duplicated variable names;
3. Extra right brackets ;
4. Unclosed brackets;
5. Multiple unconnected graphs in one sentence;
6. Unrelated content, extra explanations after

the graph;

The four GPT-generated UMRs, after correc-
tions of format errors, are tested against the gold
data with four AnCast metrics (Sun and Xue,
2024): Labeled Relation F1 (LRM), Unlabeled Re-
lation F1 (ULRM), Weighted Relation F1 (WLRM),
and Concept F1 (CM), as well as Smatch (Cai and
Knight, 2013) and Smatch++ (Opitz, 2023). All
the scores are macro-averaged among the 26 sen-
tences in an article, and the results for each article
are presented in Table 1.

As can be observed from Table 1, the SMatch
(SM) scores for the two articles are in the 40 and
50 percentage range, while the LRM scores, a
harsher metric as a relation matches only if the
concepts in the relation match as well, are in the
30 and 40 percentage range. There is no clear
pattern as to which of the four conditions fares bet-
ter, but some conditions work better for some sen-
tences while other conditions work better for oth-
ers.

4.3. Performance of human annotators
Each article is annotated by two pairs of annota-
tors, with the first pair annotating from scratch and
the second pair annotating from GPT-generated
UMRs. The draft UMRs used for our human an-
notation experiment is generated with Think-Aloud
prompting at temperature 0, and are fully well
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Article 1 A-A A1-G A2-G 0F-G 7F-G 0T-G 7T-G

CM 78.52 93.72 88.32 79.03 75.93 65.61 81.90
ULRM 53.97 78.92 70.08 46.93 42.28 48.20 47.00
WLRM 53.05 77.64 70.66 41.16 37.62 42.72 42.88
LRM 52.00 78.08 68.66 43.61 38.47 44.44 43.00
SM 60.85 80.08 75.38 55.58 52.69 54.73 53.92
SM++ 60.45 79.93 75.06 55.12 52.18 53.99 53.51

Article 2 A-A A3-G A4-G 0F-G 7F-G 0T-G 7T-G

CM 61.65 97.06 77.86 65.82 64.35 72.02 72.51
ULRM 42.88 85.31 42.44 34.35 34.96 31.37 33.69
WLRM 45.17 90.12 43.84 30.46 32.45 32.39 33.28
LRM 40.77 84.97 40.43 31.23 32.12 28.72 31.30
SM 53.15 87.96 55.00 46.81 46.85 41.62 44.35
SM++ 53.33 88.23 54.70 47.15 46.74 41.26 44.12

Table 1: Inter-Annotator Agreement (IAA) and Automatic UMR Parsing Accuracy. The scores in the upper
half are for Article 1, and that in lower half are for Article 2. The scores in the left half are for the IAA
between human annotators and the scores of each annotator pair against the gold graph while the scores
in the right half are for the GPT-generated UMRs against gold graphs. The leftmost column indicates the
evaluation metrics we used: CM (concept match) measures the F1-score of the set of concepts annotated
in two graphs; ULRM (unlabeled relation match) measures the F1-score of parent-child concept pairs in
two graphs; LRM (labeled relation match) takes the relation labels into account when measuring the F1
of the parent-child concept pairs; WLRM (weighted labeled relation match) is a weighted version of LRM
with more weight given to nodes that have more descendants. The top row indicates what is measured: A-
A means inter annotator agreement; A1/3-G and A2/4-G compares the UMRs by two annotators in each
article with gold graph; 0F-G, 7F-G, 0T-G, 7T-G: the four LLM parses under different setting compared to
the gold graphs. The definitions of settings are explained in section 4.2. The gold graph is obtained by
merging the two annotations after a discussion between the two annotators. The discrepancy in scores
between the gold graphs and those of different annotators reflect the varying levels of proficiency in UMR
annotation for the annotators. Article 2 is more colloquially written than 1, which adds to the difficulty of
annotation and results in a lower IAA.

formed. The IAA is calculated based on the an-
notations from scratch. From Table 1, we can see
that the IAA is 60.85 % and 53.15% respectively
for the two articles in terms of the SMatch score,
and 52% and 40.77% in terms of LRM. Since the
annotators are still under training, the IAAs are ac-
ceptable. We also computed the average accu-
racy for each pair of annotators by comparing their
annotations with the gold graphs, and as can be
seen from the table, the scores for all metrics tend
to be higher than the IAA, which is not surprising
since the gold graph is the consensus graph that
is closer in similarity to each of the annotations.

From Table 1, we can also see that the accu-
racy of GPT-generated graphs are not substan-
tially lower than the IAA of human annotators. In
particular, GPT-generated UMRs are particularly
strong in terms of Concept F1, while human anno-
tators are better at judging relations in UMR, as re-
flected in the much higher scores in terms of LRM
and ULRM.

Our users used UMR Writer (Zhao et al., 2021)
to annotate the sentence level UMRs from scratch.
UMR Writer provides annotators with segmented

sentences and dropdown menus for relation la-
bels, abstract concepts, aspect attributes, modal
strength values, and other items in the UMR vocab-
ulary. When annotating from scratch, the users
need to manually select the segmented words, and
then choose the corresponding item in the UMR
vocabulary from the dropdown menus to assem-
ble the UMR graph piece by piece; if there is al-
ready annotated content, the annotator can use
the “move” function to rearrange the subgraphs.

Revising GPT-generated UMRs vs annotating
from scratch To answer the question of whether
annotating from GPT-generated UMRs can speed
up the annotation process, we asked the annota-
tors to carefully record their time when annotating
from scratch and from draft graphs, and the results
are shown in Table 2. The result shows that anno-
tators on average spend only 1/3 of the time when
annotating from draft UMR graphs compared with
annotating from scratch. This indicates a signifi-
cant improvement in efficiency when LLMs are in-
corporated into the UMR annotation pipeline as a
preprocessing step.
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Article Annotator From Scratch Annotator From Draft Graphs Ratio

1 A1 8h57min A3 2h47min 3.19A2 9h03min A4 2h52min

2 A3 6h49min A1 2h51min 2.61A4 8h47min A2 3h08min

Table 2: A comparison between the times needed for annotation from scratch and from draft graphs. The
method for calculating the ratio involves computing the average annotation time for each sentence, and
then taking the average between the two annotators.

After the annotation, we asked the annotators
for feedback on what contributed to the speedup in
annotation when GPT-generated UMRs are used
as the starting point for manual correction and
on what the main issues GPT-generated UMRs
still have in order to inspect the acceleration with
finer granularity. The main advantages of an-
notating from GPT-generated UMRs are that (i)
especially for simple and short sentences, the
GPT-generated UMRs are very accurate and are
able to correctly annotate many concepts, abstract
and concrete, as well as attributes, (ii) Many sub-
graphs that correspond to common patterns are
correctly annotated, (iii) Reentrancies are correctly
identified for the most part, and (iv) Some GPT-
generated UMRs suggest interpretations of the
sentence that even human annotators find difficult.

The annotators also identify areas where GPT-
4 typically makes mistakes. They point out that
GPT-4 often makes mistakes for long and compli-
cated sentences that involve mulitple clauses, and
often messes up the discourse relations between
the clauses. GPT-4 also often fails to properly de-
compose long compounds words, which are very
common in Chinese, into concepts. Finally, GPT-4
still tends to hallucinate relation labels that are not
in UMR. This means that annotators would have to
correct these mistakes when annotating from GPT-
generated UMRs.

5. Related Work

Preprocessing in annotation is not a new idea, and
it has been deployed in annotation tasks before.
Especially for complicated annotation tasks, it has
been shown to speed up annotation in treebank-
ing (Chiou et al., 2001). Prior to the availability
of LLMs, in order for pre-processing tool to pro-
duce annotation of high enough quality, it has to
be trained on a significant amount of human an-
notated data. That means that before such a ma-
chine preprocessing - human correction process
can start, a significant amount of data, sufficient
to train a reasonably accurate machine learning
model, has to be annotated by human annotators
from scratch first. The availability of LLMs makes
it possible to start this process much earlier if they

can be prompted to generate the annotation with-
out already having a significant amount of anno-
tated data.

There is also prior work on using LLMs to gen-
erate Abstract Meaning Representations (AMRs)
using GPT-4 (Ettinger et al., 2023) and comparing
the quality of AMRs generated by LLMs with AMR
parsers trained on million-plus human annotated
AMRs. Their results show that while LLMs have
shown some capability of generating AMRs, the
quality of AMRs they generated are still substan-
tially below that of state-of-the-art AMR parsers
trained on large quantities of human annotated
AMRs. They did not conduct experiments on
whether the AMRs LLMs generated can help re-
duce the annotation time compared with human
annotation from scratch.

6. Conclusion and Future work

In this paper, we investigated the question of
whether LLMs, specifically GPT-4, can be used to
speed up UMR annotation. Although the data set
we used is relatively small, with only two articles, it
is safe to conclude that incorporating LLMs into the
annotation pipeline as a preprocess step can sig-
nificantly reduce the amount of time (and cost) in
UMR annotation. We also found that the accuracy
of GPT-generated UMRs is not very far from the
IAA from human annotators, with the caveat that
the human annotators are still undergoing the train-
ing phase. The experiment on which prompting
strategy produces the most accurate UMRs is in-
conclusive and additional experiments are needed
to get a definitive answer. Future work also in-
cludes deploying LLMs to get modality, tempo-
ral dependency and coreference annotation at the
document for UMR annotation.
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Limitations

The data set used in our experiments are relatively
small, with only two documents that each have less
than 30 sentences. However, we are confident
with our conclusion that using LLMs as a prepro-
cessing step speeds up UMR annotation.
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Abstract
Despite Uniform Meaning Representation’s (UMR) potential for cross-lingual semantics, limited annotated data
has hindered its adoption. There are large datasets of English AMRs (Abstract Meaning Representations), but
the process of converting AMR graphs to UMR graphs is non-trivial. In this paper we address a complex piece
of that conversion process, namely cases where one AMR role can be mapped to multiple UMR roles through a
non-deterministic process. We propose a neuro-symbolic method for role conversion, integrating animacy parsing
and logic rules to guide a neural network, thus minimizing human intervention. On test data, the model achieves
promising accuracy, highlighting its potential to accelerate AMR-to-UMR conversion. Future work includes expanding
animacy parsing, incorporating human feedback, and applying the method to broader aspects of conversion. This
research demonstrates the benefits of combining symbolic and neural approaches for complex semantic tasks.

Keywords: Uniform Meaning Representation, Abstract Meaning Representations, Animacy Parsing, Neuro-
Symbolic Learning, Low-Resource Setting

1. Introduction

Meaning representation graphs are hierarchically
structured discrete representations of meaning that
allow for sentence and document-level meanings to
be abstracted away from syntactic structures. They
utilize graphical representations where sentences
with similar meanings share similar graph struc-
tures, even if worded differently. Abstract Mean-
ing Representation (AMR) graphs model sentence-
level meanings (Banarescu et al., 2013), and al-
though they can be applied to different languages,
the annotation guidelines are closely tied to En-
glish, for instance, by not supporting polysyn-
thetic languages. Uniform Meaning Representation
(UMR) (Gysel et al., 2021) addresses this limita-
tion by extending AMR to support both sentence
and document-level representations, and provid-
ing a typologically-motivated, language-agnostic
schema for representing meaning.

Direct human annotation of texts with UMR
graphs is time-consuming and requires consider-
able domain expertise. In order to speed up pro-
duction of data, we take a first step towards auto-
matically converting existing AMR annotations1 to
the more detailed, richer UMR schema.2 Figure 1
shows a side-by-side comparison. Generating a
preliminary graph for annotators to refine, even
if noisy, could significantly reduce the human ef-
fort required. There are roughly 60,000 annotated
English AMR sentences, and parallel UMR annota-

∗Equal Contribution
1AMR site: https://amr.isi.edu/.
2UMR site: https://umr4nlp.github.io/web/

tions previously existed for only about 200 of those.
This means we have minimal parallel data from
which to train a model on the conversion task.

Figure 1: Example of one type of graph conversion
of the AMR :destination role to the UMR role :goal
in "I walked up to the window".

This paper presents an automated method for
partial graph conversion, specifically addressing
non-deterministic changes arising from AMR to
UMR. 3. AMR graphs contain individual semantic
rolesets that convert into multiple rolesets in UMR.
These rolesets between AMR and UMR are known
as “split-roles” and contain a non-deterministic,

3Our codebase can be foud at: https://github.
com/clairepost/AMRtoUMR
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1:many relationship. This non-determinism moti-
vates our focus on these rolesets, as previous work
suggested human annotation would be necessary
for their conversion (Bonn et al., 2023).

To address this challenge, we propose a modular,
neuro-symbolic framework that utilizes an animacy
parser to assist logic rules in automatically deter-
mining split roles, minimizing the need for human
input in UMR annotation. Our framework combines
the flexibility afforded by neural methods to iden-
tify patterns in raw data, with a way to promote
the schematic constraints of the conversion task.
To train and evaluate our framework, we curate
a dataset of 587 manually annotated role conver-
sions and 10,635 weakly annotated role conver-
sions, spanning 14 different split role types.

This paper focuses on English AMRs, but the
methods presented can be adapted to AMRs in
other languages. This adaptability stems from the
inherent language-agnostic nature of the underly-
ing graph structure. However, future work in other
languages may encounter additional challenges,
particularly in accessing an animacy parser. While
adapting the approach for AMRs in languages like
Chinese may be more feasible due to the avail-
ability of resources, languages with limited NLP
resources, such as Cherokee, may pose greater dif-
ficulties. We limit the scope of these AMR-to-UMR
conversions to sentence-level, leaving document-
level graph creation for future work.

In summary, we make the following contributions:
(1) We frame AMR to UMR conversion as a pre-
diction task, (2) We curate and annotate a dataset
focused on split role conversion from AMR to UMR,
(3) We propose an extensible, modular framework
that combines neural networks and domain knowl-
edge in the form of rules to make this prediction,
and (4) We show that we can accurately predict the
majority of the non-deterministic roles with limited
supervision.

2. Related Work

While AMR has established itself as a powerful
tool for semantic representation, its limitations in
handling low-resource languages and complex lin-
guistic phenomena hinder its broader applicability.
These limitations include challenges with morphol-
ogy, like polysynthesis, and capturing relationships
beyond the sentence level in document-level an-
notations. UMR, recently proposed by Gysel et al.
(2021), offers a compelling alternative with a richer
semantic framework and multilingual focus. It intro-
duces document-level representations alongside
sentence-level analysis, capturing more nuanced
semantic information such as co-reference, tem-
poral, and modal dependencies that go beyond
sentence boundaries. However, despite its advan-

tages, UMR adoption is currently hampered by the
scarcity of annotated data. This section positions
our work within the context of related efforts bridg-
ing the gap between AMR and UMR, particularly
through automated conversion approaches. Addi-
tionally, our efforts complement the work on boot-
strapping UMR annotations for low-resource lan-
guages, as presented in (Buchholz et al., 2024).
This paper provides a non-neural method for UMR
graph creation from interlinear glossed text, com-
plementing our focus on the conversion process.

Initial work by Bonn et al. (2023) and Wein
and Bonn (2023) provides an analysis of the fine-
grained structural distinctions between AMR and
UMR, delving into key differences like tense, modal-
ity, scope, and document-level dependencies in
monolingual and multilingual settings. Building
upon this foundation, Bonn et al. (2023) offer a
specific road-map for bridging the gap. This paper
meticulously details the structural differences be-
tween AMR and UMR representation techniques for
semantic categories, highlighting crucial aspects
like tense, modality, scope, and document-level
temporal relations. It also sheds light on the fun-
damental differences in graph structure, with AMR
relying on predicate-argument structures and UMR
accommodating polysynthetic and agglutinating
languages with more complex morphologies.

By leveraging these insights, our work aims to
tackle a key piece of this conversion puzzle. We
focus on applying a neuro-symbolic method to ad-
dress the data scarcity challenge by leveraging
domain knowledge and neural learning to facilitate
robust and accurate conversion, paving the way for
wider UMR adoption and enhanced cross-lingual
semantic analysis capabilities. We focus specifi-
cally on the non-deterministic roleset changes, con-
tributing to a more robust and comprehensive con-
version process.

This work proposes a novel data augmentation
approach specifically designed for AMR to UMR
role conversion. Our model builds upon the con-
cept of constrained indirect supervision (Wang and
Poon, 2018), and combines noisy examples with
interdependent label constraints to address data
scarcity. Several studies have explored data aug-
mentation for NLP tasks in low supervision settings,
including active learning (Quteineh et al., 2020) and
rule-based approaches (Zhao et al., 2021). We
leverage active learning principles by selecting in-
formative AMR graphs containing split roles like
:destination, :cause, and :source. Then, we incor-
porate animacy parsing, which is crucial for role
determination, and derive logic rules from UMR
guidelines to generate additional training examples
and guide the neural network towards accurate
role mappings. This combined approach efficiently
utilizes limited labeled data and addresses the chal-
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Documents Number of
Sentences

Number of
Aligned Split
Roles

Lindsay Text 2 1
Phillippines
Landslide
News Text

28 36

Putin News
Text

12 15

Edmund Pope
News Text

9 9

Pear Story 141 30
Total 192 91

Table 1: Parallel AMR-UMR documents with their
sentence counts, and the number of split roles

lenges of low supervision settings.

3. Data

The available published parallel AMR-UMR data
we utilized consists of five documents (Bonn et al.,
2024), all in English, as detailed with sentence
counts in Table 1. These documents vary in length
and sentence complexity, ranging from short ex-
amples, like the Lindsay Text, to longer news
stories with complex sentence structures, such
as the Philippines Landslides News Text. In the
roughly 200 AMR/UMR graphs, only about 100
split-rolesets are available for analysis.

Although prior literature has indicated the ex-
pected split role mapping (Bonn et al., 2023), ini-
tial tests have shown that this mapping is not fully
captured in the data. Figure 2 shows the counts of
AMR and UMR roles from all data overlaying the ex-
pected mapping. The data does not reflect a clean
1:many mapping relation. For example, the AMR
role :destination should split into :goal and :recip-
ient. The AMR documents consist of 2 instances
of the :destination role but the UMR documents
contain 3 instances of a :goal role, meaning that a
different AMR role turned into the UMR role :goal.
This does not reflect the clean splits shown in (Bonn
et al., 2023). This analysis highlights the need for
a more nuanced approach to role conversion.

3.1. Alignment
To gain deeper insights, we perform partial align-
ment of AMR and UMR graphs, focusing on the
role edges. A partial alignment is possible because
the information being captured is just the split-role
in question. The meaning representation graphs
are directed, node and edge-labeled graphs. Each
edge is a semantic relation or role that connects
one concept node (the head node) to another con-
cept node (the tail node). In our data, of the 106
AMR roles that we explore, 90 have their head and

Figure 2: Split role mapping from AMR to UMR with
counts from the data

UMR Label Gold-Standard Silver-Standard
:group 109 1
:source 90 1168
:goal 59 18
:part 59 94
:mod 58 0

:cause 53 4921
:reason 46 1419
:material 43 176

:start 34 552
:condition 16 2286
:recipient 12 0
:Cause-of 4 0
:other-role 3 0
:Material-of 1 0

Total 587 10635

Table 2: Counts of UMR Roles in gold-standard
data (labels created by human annotators) and
silver-star data (labels generated by Rules Model)

tail nodes aligned to corresponding UMR graph
nodes, and 70 have a matching edge in the UMR
graph. Changes in UMR guidelines and structural
differences between the graphs explain most mis-
alignments4.

3.2. Data Augmentation
Because of the small amount of available paral-
lel data, we use data augmentation to produce
more gold-standard evaluation data and a large
amount of silver-standard training data. The re-
sulting dataset statistics are reported in Table 2.

Gold Standard Data To produce additional eval-
uation data, we employ task-specific data augmen-
tation, leveraging elements of active and curriculum
learning techniques (Jafarpour et al., 2021). This
approach efficiently utilizes labeled data by manu-
ally converting AMR graphs containing split-roles

4UMR Guidelines: https://github.com/
umr4nlp/umr-guidelines/blob/master/
guidelines.md
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to provide the most informative samples for train-
ing. We converted 40 additional AMR graphs to
UMR graphs, preferring graphs that include roles
from the less represented splits in the data. Specif-
ically, we focus on the AMR roles of :destination,
:cause, :consist-of, and :source. The sentences
were chosen from the AMR data and guidelines.5

In a second augmentation step, we run additional
data from the published AMR dataset through the
rule-based model detailed in section 4.2. For a tar-
geted set of AMR graphs, an annotator assessed
the UMR role assigned by the rule-based model
and corrected those labels as needed. This ap-
proach yielded 470 additional gold-standard split-
role labels.

Silver Standard Data To generate additional,
automatically-labeled, and thus noisy, training data,
we next run the rest of the non-parallel AMR data
through the rule-based model. This data is com-
prised of around 70,000 additional rolesets. Nearly
60,000 of these are labeled with the :mod role,
which is both over-represented in the data and
nearly always maps to the same role in UMR.
For this reason, we exclude :mod from the silver-
standard training data. The remaining 10,635 role-
sets are used as silver-standard training data in
Experiment 2 (see section 5).

4. Methodology

Within the broader task of automated AMR-to-UMR
graph conversion, we address the specific chal-
lenge of non-deterministic role changes, reducing
the need for intervention from expert human anno-
tators. This section describes our methodologies
for incorporating animacy information and logical
rules into a neural architecture.

System Overview We first extract detailed in-
formation about roles from both AMR and UMR
graphs, including roleset labels, head and tail enti-
ties, and their connection to the original sentence
and graph context, as explained in section 3.1. An
animacy recognition module, detailed in section
4.1, then determines the animacy of each role’s
tail, as animacy plays a crucial role in UMR role
determination.

Next, all of the extracted information serves as in-
put for a rule-based role-labeling component. The
rules were formulated manually through our inves-
tigation of the logic detailed in the UMR guidelines,
and they rely heavily on animacy information, as
explained in section 4.2. The rule-based module

5AMR guidelines: https://github.com/
amrisi/amr-guidelines/blob/master/amr.
md#reification.

outputs potential split-role conversions for the AMR
role, along with their initial weights, which are de-
termined by analyzing the frequency of role splits
based on the implemented rules and the distribu-
tion of such splits within the initial UMR published
data.

Final role predictions are done by three different
models (section 4.3): a baseline rules-only model,
a baseline neural network, and a hybrid model com-
bining rules with neural learning. Each model re-
ceives the extracted role information, animacy data,
and initial weights, utilizing them in different ways
to predict the most likely UMR role.

4.1. Animacy parsing
Accurate animacy depiction is crucial for the rule-
based decision-making module of our framework.
According to the UMR guidelines, certain rolesets
should only be used for animate or inanimate en-
tities. Therefore, we test several existing animacy
parsers and named entity recognizers (NERs), in
addition to using information found within the AMR
graph, to synthesize an animacy recognition mod-
ule tailored to our framework from four components.
Certain split-roles, such as :mod, were excluded
from animacy parsing. Roles such as :mod do not
need animacy information in order to determine
their split, so they were excluded in order to make
the model run more efficiently.

1. BERT-Finetuned-Animacy: The first compo-
nent of the animacy parser is a BERT-finetuned-
animacy model (Tobin, 2022). This model takes
the sentence to be converted as input, and outputs
entities it identifies as persons or animals.

2. BERT-NER: Next, we include a popular NER
model, again taking the sentence as input and out-
putting labeled named entities (person, named or-
ganization, named place, and misc) (Lim, 2023).

3. Pronouns: Next, we search for any pronouns
within the sentence. While pronouns such as “I”,
“you”, and “she” are not always necessarily animate,
they are enough of a proxy for animacy in our data
that we chose to include them in the animacy dis-
tinction, marking them as “person” roles.

4. AMR Named Entities: The AMR guidelines
define various named entities (NEs) in the tails of
many role instances. We manually assign animacy
labels ("animate" or "inanimate") to each of the
NE types. However, akin to the limitations of us-
ing pronouns for animacy prediction, this approach
overclassifies entities as animate. Overprediction
of the “animate” label helps to balance against the
animacy parser’s tendency to default to “inanimate”.
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Even with over-prediction, the model only produced
animate tags as opposed to inanimate tags 2.88%
of the time on the full augmented dataset.

Animacy Integration We use the outputs of
the various components to make a binary ani-
mate/inanimate distinction for each role. First, we
check the tail of each role against the items returned
as animate. If there is no match for the tail, we next
check for a child role, in cases where the tail has a
role sense (e.g., believe-01, leave-14, survive-02).
If there are no matches between the sentence and
the outputs of the animacy parser, we treat the role
as inanimate.

4.2. Split-Role Rules
Both for prediction and for creating silver-standard
data, we encode a set of logical rules capturing ten-
dencies in the mapping of AMR roles to UMR roles.
This section details the rules, organized according
to original AMR roleset. The rules were created
manually as detailed in each section through study
of the AMR and UMR guidelines, as well as by
referencing UMR examples in our training dataset.
In the future, we see the potential to create more
rules-based modules to help with the conversion of
other split-roles.

Destination Roleset Bonn et al. (2023) substan-
tiate that the AMR :destination role splits into the
UMR roles :goal and :recipient. The UMR guide-
lines additionally specify information about the ani-
macy of certain rolesets. For the :recipient role, the
UMR guidelines define :recipient as an “animate
entity that gains possession (or at least temporary
control) of another entity”. The :goal role does not
have specified animacy. The resulting rule is that
if the AMR :destination role is inanimate, the UMR
role must be :goal. If the AMR :destination role is
animate, the UMR role may be :recipient or :goal.

Cause Roleset The second rule addresses the
AMR :cause role. Similar to the :destination role,
this role is split using animacy into :cause and :rea-
son. The UMR guidelines note that the UMR :cause
role is an "inanimate entity that causes the action
to happen." The resulting rule is that if the tail of
the AMR :cause role is animate then the UMR role
must be :reason. Otherwise, if it is inanimate, the
UMR role may be :reason or :cause.

Source Roleset The third rule addreses the
AMR role :source, as illustrated in Figure 3. The
:source role may split into three different UMR roles:
:source, :start, :material. The UMR guidelines give
helpful information about animacy for these roles,

Figure 3: Animacy logic rule for UMR :source, :start,
and :material roles from AMR :source role

as well as guidance on the parent role of the in-
stance. For instance, the guidelines provide that
the tail of the :source roled must be animate. We
encode this information by first checking if the tail
roleset of the AMR role is animate. If so, the UMR
role is set to :source since the other roles are gen-
erally inanimate. Then, we check if the parent node
of the AMR :source is :theme, as the UMR guide-
lines specify that :source is the “entity from which
the :theme detaches”. In this case the UMR role
chosen is :source.

Next, the animacy and NE info from the animacy
parser is checked to see if it contains a location. If
so, the UMR role chosen is :source or :start. Finally,
if the tail roleset of :source is inanimate, then the
role is either :source, :start, or :material. We obtain
initial probabilities for these rule assignments us-
ing the distributions observed in the gold-standard
UMR graphs (e.g., 0.6 for :source, 0.3 for :start,
and 0.1 for :material).

Consist-of Roleset This rule relies on animacy
to determine the AMR :consist-of role-split. The
UMR role :group is the only animate role and will
always be chosen if the tail AMR roleset is animate.
Otherwise, the UMR roles :group, :part, or :material
may be the correct split-role choice.

144



Additional Rolesets The roles :part and :condi-
tion deterministically split into the UMR roles with
identical names in English.

The final rule addresses the AMR role :mod. This
role only rarely maps into the UMR role :other-role.
Due to the lack of clear rules for this role, we rely on
the neural methods to improve prediction accuracy.
Initial weights favor :mod over :other-role.

4.3. Models

We investigate three different models: one using
rules alone, one simple neural architecture with no
rules, and one combined model.

Rules-only model: For each AMR role, there are
1-3 possible UMR roles. The possible roles are
determined by the previously-defined rules, given
the AMR role, its predicted animacy, and the AMR
graph information. When there is not enough in-
formation for the rules to narrow down to just one
possible role, the model randomly selects a role
label according to the probability distributions seen
for that AMR role in the gold-standard parallel UMR
data.

Neural Network: Our neural network implemen-
tation is a three layer feed-forward neural network.
It takes as input the Sentence-BERT embedding of
the sentence (Reimers and Gurevych, 2019), con-
catenated with a feature representing the source
AMR role. Although it does not use the animacy
rules to influence training, we incorporate exter-
nal knowledge in constraining the outputs to be
only what is possible for the AMR-role to convert
to given the UMR guidelines. (For instance, :desti-
nation can only be converted to :goal or :recipient).
The constraints can be viewed in Figure 2. To train
the classifier, we use the cross-entropy loss.

NN with Rule Information: We opt for a simple
implementation of a neural network that has access
to the rule information in an attempt to leverage
the logic of the rules with the predictive power of a
neural network. We incorporate the rule information
in two ways: 1) We concatenate the probability
distribution of the possible roles provided by the
rules to the sentence embedding and the AMR
role, as the input to the NNet, and 2) We add an
additional layer to combine the output (argmax) of
the neural network and the rules as: w1∗outputNN+
w2∗outputrules, where w1 and w2 correspond to the
trainable parameters of the additional layer. The
classifier is then trained end-to-end using the cross-
entropy loss.

5. Experiments

We evaluate our three models in two different set-
tings: one training only on gold-standard data, and
one adding noisily-labeled (silver-standard) data
to the training sets. To better understand how per-
formance is influenced by the difficulty of the par-
ticular decision, we categorize the roles into four
bins. The first bin, "easy," includes roles with de-
terministic picks for the English data. The second
bin, "medium," consists of roles for which accurate
animacy information should lead to accurate role
determination. The third bin, "medium/hard," in-
cludes roles with more than one choice within each
animacy category. Finally, roles in the "hard" bin
do not have the benefit of guidance of animacy and
have multiple split-roles they could fall into. See
Table 5 in appendix for further details.

Experimental Settings For all experiments, we
use stratified 5-fold cross-validation and report av-
erage results. In each iteration, we use 4 folds for
training and 1 for testing. The rules-only model in-
volves no training, so the results shown are based
on the predictions for each fold’s test set. Results
are averaged over 5 runs. Experiment 1, our low-
data experiment, uses only the gold-standard data
for training and testing. In experiment 2, we use the
same folds as experiment 1, now augmenting every
fold’s training data with the 10,635 silver-standard
data points (sec. 3.2). With these settings, we eval-
uate only on gold-standard data, always include
some amount of gold data in training, and ensure
comparability across experiments. Our main eval-
uation measure is macro F1. We also report the
weighted F1, which takes into account the label
distribution in the test data.

For training, both neural models use a learning
rate of 0.001 and train over 50 epochs.

5.1. Experiment 1 - Low data
In this experiment, only gold-standard data is used
for training, with an average of just 470 training
instances per fold. Per-fold performance is shown
in Fig. 4. The Rules model and NN_Rules model
perform similarly, and the NN struggles, with high
variation across folds. We aggregate the five test
sets to evaluate per-class performance as reported
in Table 3. The NN_Rules model has the highest
F1 score in 7 classes, more than either the Rules
model or the NN model. In a small data setting like
this, it is not unexpected to see the NN struggle to
perform well.

5.2. Experiment 2 - Weak supervision
This experiment combines the gold-standard and
silver-standard sets for training, allowing for more

145



Figure 4: Experiment 1: Macro F1 performance of
the three models across 5 folds.

Difficulty Label NN NN_RULE RULE support
:condition 1.000 1.000 1.000 16
:mod 0.838 0.966 0.956 58easy
:part 0.622 0.778 0.775 59
:goal 0.894 0.873 0.950 59medium :other-role 0.118 0.500 0.000 3
:group 0.724 0.815 0.913 109
:reason 0.000 0.407 0.653 46medium/hard
:source 0.610 0.802 0.689 90
:Cause-of 0.240 0.857 0.000 4
:Material-of 0.000 0.000 0.000 1
:cause 0.637 0.743 0.737 53
:material 0.419 0.582 0.552 43
:recipient 0.000 0.222 0.840 12

hard

:start 0.379 0.351 0.265 34
macro avg F1 0.463 0.635 0.595
weighted avg F1 0.603 0.738 0.761 587

Table 3: Per-class F1-scores from experiment 1, ar-
ranged by the difficulty of the split decision. Bolded
values are the highest in each class.

training data in a low-supervision setting. The
macro-F1 performance of all of the models across
the folds can be seen in Figure 5. Once again, the
Rules model and NN_Rules model perform simi-
larly across the folds, and although the basic NN
shows reduced performance, there is more con-
sistency across the folds. Per-class performance

Figure 5: Experiment 2: Macro F1 performance of
the three models across 5 folds.

(aggregating all folds) is reported in Table 4. In this

Difficulty Label NN NN_RULE RULE support
:condition 1.000 1.000 1.000 16
:mod 0.958 0.948 0.956 58easy
:part 0.652 0.775 0.775 59
:goal 0.894 0.949 0.949 59medium :other-role 0.000 0.333 0.000 3
:group 0.607 0.936 0.913 109
:reason 0.000 0.600 0.653 46medium/hard
:source 0.754 0.685 0.689 90
:Cause-of 0.114 0.000 0.000 4
:Material-of 0.000 0.000 0.000 1
:cause 0.640 0.758 0.737 53
:material 0.182 0.645 0.551 43
:recipient 0.000 0.846 0.840 12

hard

:start 0.207 0.212 0.265 34
macro avg F1 0.429 0.621 0.595
weighted avg F1 0.589 0.767 0.761 587

Table 4: Per-class F1-scores from experiment 2, ar-
ranged by the difficulty of the split decision. Bolded
values are the highest in each class.

experiment, the NN_Rules model scores higher
than the Rules model on summary statistics, and it
achieves the highest score in more classes.

6. Discussion

In this section, we discuss our experimental results,
perform a detailed error analysis, and outline direc-
tions for future work.

6.1. Experimental Results
In our experiments, we observed that the vanilla
neural network struggled to obtain good perfor-
mance across all configurations. While we saw
improvements in the augmented data scenario, the
amount and the quality of the supervision was not
enough to outperform a simple rule based model.
The rule-based model, on the other hand, deliv-
ered good average performance across all configu-
rations. This is in line with the highly constrained
nature of our task. However, we saw that the NN
augmented with rules scored the highest in aver-
age when exposed to additional training data. This
suggests that hybrid models are a good alternative
in weak supervision scenarios, where the neural
network can take advantage of the augmented data,
while the structured knowledge can help guide the
model towards valid answers. For all models, per-
formance was higher for the easy cases than for
the hard cases.

To showcase the impact of having access to high-
quality annotations, we will consider the :cause role.
Within the silver-star data, over 40% of the roles
were labeled :cause. The Rules model performs
well on :cause with an F1-score of 0.737. Having
a large number of high quality labels for training is
reflected in the performance of both the NN and the
NN with Rules in the :cause role. Both models per-
form better for this class in experiment 2 than they
did in experiment 1. Conversely, when examining
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the performance for the class :start, which has over
500 labeled instances in the silver-standard set, we
see that the Rules model’s low performance (0.314)
adversely affects the ability of the neural methods
to predict this class.

6.2. Error Analysis

In this section we discuss specific types of errors
made by various models. Some additional exam-
ples appear in Table 6, in the appendix.

One prevalent error made by the Rules model
comes from adhering to the initial label distributions,
as this model has no ability to take context into ac-
count. For example, in the sentence "I saw a cloud
of dust", the Rules model maps the AMR :consist-
of role to the UMR role :group, for the tail dust. In
contrast, the NN_Rules model correctly identifies
that :consist-of should be mapped to the UMR role
:material. The NN_Rules model leverages learned
information to make more informed predictions. All
roles in the "medium/hard" category are subject to
this type of error.

Another error class occurs when the Rules model
fails to make a correct prediction due to inaccura-
cies in animacy determination. For instance, in
the sentence "A letter from the victim’s family," the
tail role "family" was incorrectly parsed as inani-
mate, leading to an incorrect choice of role label.
However, the NN_Rules model is not affected by
this incorrect animacy parsing, demonstrating bet-
ter performance in "medium" difficulty scenarios,
where correct animacy parsing is needed for the
rules to make accurate labeling decisions.

All models encounter difficulty with inverse par-
ticipant roles such as :Cause-of and :Material-of.
Inverse participant roles, as described in the UMR
Guidelines, involve moves like annotating events as
modifiers or referring expressions, requiring more
complex graph modifications than we currently han-
dle. They are also very infrequent in the data.
These rolesets are part of the "hard" category.

Despite similar overall performance to the Rules
model, the NN_Rules model shows improvements
for roles in "hard," "medium-hard," and "medium"
difficulty scenarios. This result highlights the poten-
tial of combining symbolic and neural approaches
for improved AMR-to-UMR conversion.

6.3. Future Work

Animacy Given the strong influence of the ani-
macy parser, this is an obvious avenue for improve-
ment. Recent studies (e.g. Hanna et al., 2023) high-
light challenges for language models in handling
subtle shifts in animacy cues within text. While our
current approach incorporates animacy information
from UMR guidelines, including context-dependent

animacy shifts for typical entities, it is still under de-
velopment in terms of capturing the full spectrum of
animacy variations. Additionally, treating animacy
as a binary decision might not fully capture the nu-
ances explored in studies like Ji and Liang (2018),
which propose a hierarchical spectrum of animacy
even within inanimate nouns. For example, "robot"
might exhibit more animacy than "chair" due to its
potential for movement and agency.

Alternative Modeling Strategies Our NN_Rules
model incorporates rules into the neural network
in a naive way. In the near future, we intend to
investigate alternatives like combining neural net-
works with Probabilistic Soft Logic (PSL) (Bach
et al., 2017) or employing neuro-symbolic meth-
ods that leverage rules like DRAIL, a deep re-
lational learning framework (Pacheco and Gold-
wasser, 2021). An improvement to our current
implementation could make use of the full graph-
structure of the MRs, instead of just extracting rel-
evant edges. Additionally, different approaches to
using and combining the silver-standard and gold-
standard datasets could prove beneficial. For ex-
ample, curating the silver-standard data to remove
the labels from low-quality classes, and using a
split of the gold-standard data during development,
may leverage the strength of both datasets more
effectively.

Expansion to other UMR Components In the
future, we believe this methodology can be applied
to other parts of the AMR-UMR conversion pro-
cess, starting with expansion to all of the seman-
tic roles, not just this subset of role changes. By
thoughtfully constructing rules, we can potentially
aid annotators throughout the entire annotation pro-
cess. Graph preprocessing approaches like han-
dling inversion and reification could prove beneficial
to more complex changes.

User Study In the spirit of demonstrating the use-
fulness of our tool to the UMR annotator audience
it is intended for, we propose an experiment evalu-
ating its impact on annotation speed and accuracy.
This experiment would involve experienced UMR
annotators working on two sets of AMR graphs
each:

1. Traditional: Annotators complete the conver-
sion task without any additional information or
assistance.

2. Tool-assisted: Annotators leverage our
model’s predicted split-role conversions
alongside the AMR graphs.

By comparing annotation times and accuracy be-
tween the two groups, we can assess the potential
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benefits of our tool in expediting and potentially
improving the UMR annotation process. This eval-
uation aligns with our goal of providing UMR anno-
tators with valuable resources to streamline their
workflow.

7. Conclusion

This work presented a novel, modular methodol-
ogy for automated AMR-to-UMR graph conversion,
with a primary focus on accurately predicting non-
deterministic role changes that often require hu-
man intervention. Our approach integrates ani-
macy parsing, logic rules, and neural learning to
achieve promising accuracy.

Key contributions include introducing a modu-
lar framework for easy integration with future tech-
niques, promoting extensibility and broader appli-
cability. Furthermore, the incorporation of animacy
information enhances decision-making in role pre-
diction, while the fusion of structured knowledge
with neural learning offers flexibility and robustness.
The model’s encouraging performance on the test
data highlights its potential to streamline the conver-
sion process and thus accelerate UMR adoption.

While acknowledging the promising results, we
recognize limitations arising from data scarcity and
the binary representation of animacy. Future work
will involve expanding animacy parsing to capture
richer semantic information and context-dependent
nuances, potentially employing non-binary repre-
sentations to improve accuracy. Additionally, user
studies will be conducted to assess the impact of
our methodology on UMR annotation speed and ac-
curacy, providing valuable insights into its practical
utility. Finally, we envision expanding our approach
to encompass broader aspects of AMR-UMR con-
version, further contributing to the advancement of
cross-lingual semantic analysis and unlocking the
full potential of UMR for multilingual NLP tasks.

This research demonstrates the benefits of com-
bining symbolic and neural approaches for com-
plex NLP tasks in data-constrained scenarios. By
overcoming data scarcity challenges and facilitat-
ing accurate UMR conversion, our method paves
the way for enhanced cross-lingual semantic anal-
ysis capabilities, ultimately impacting various NLP
applications that rely on accurate semantic repre-
sentation and understanding.

8. Limitations

Animacy, the distinction between animate and inan-
imate entities, plays a crucial role in determining
split roles within our rule-based model. It influences
the roles a referent can take on, for instance, re-
quiring animacy for the agent role. While existing
animacy classifiers like those presented in Tobin

(2022); Jahan et al. (2018) exist, they can be imper-
fect and miss participants within sentences where
animacy is nuanced or context-dependent. This
limitation can lead to inaccurate role predictions in
certain cases.

As well, this work faces several data-related chal-
lenges that limit the scope of model development.
The limited availability of parallel AMR-UMR anno-
tations, consisting of an extremely small dataset
of only 200 graphs from five documents (see Ta-
ble 1), constrained our ability to train and evaluate
models effectively. Moreover, inconsistencies be-
tween expected and observed role mappings (as
illustrated in Figure 2) suggest a more nuanced con-
version process than a simple 1:many relationship,
complicating model training and interpretation. Our
current focus on sentence-level conversion also lim-
its the applicability of our model to larger discourse
contexts. And finally, data imbalances, particularly
with over-represented roles like ":mod," created is-
sues in the analysis and data augmentation steps.
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Table 5: Difficulty of the decision of each role, reflected in the number of possible roles the model must
choose from, even with the animacy information and the rules.

Table 6: Error analysis of several common error types ran from Experiment 2.
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Abstract
This paper evaluates how well English Abstract Meaning Representation parsers process an important and frequent
kind of Long-Distance Dependency construction, namely, relative clauses (RCs). On two syntactically parsed
datasets, we evaluate five AMR parsers at recovering the semantic reentrancies triggered by different syntactic
subtypes of relative clauses. Our findings reveal a general difficulty among parsers at predicting such reentrancies,
with recall below 64% on the EWT corpus. The sequence-to-sequence models (regardless of whether structural
biases were included in training) outperform the compositional model. An analysis by relative clause subtype shows
that passive subject RCs are the easiest, and oblique and reduced RCs the most challenging, for AMR parsers.

Keywords: AMR, Relative Clause, Semantic Parsing

1. Introduction

Abstract Meaning Representation (AMR; Ba-
narescu et al., 2013) has emerged as a mainstream
framework in semantic parsing tasks. Recent ad-
vancements in AMR parsers have led to significant
achievements, with scores over 0.85 (Lee et al.,
2022) in Smatch (Cai and Knight, 2013). However,
relying solely on overall F-scores does not fully
reveal a parser’s performance across different lin-
guistic phenomena, leaving areas for improvement
and potential problems unclear.

In semantic parsing tasks, previous research
has shown that sequence-to-sequence (seq2seq)
models are good at abstracting away from sur-
face variation in how meanings are expressed
(Shaw et al., 2021). However, seq2seq models
that process symbolic structures as mere strings
face challenges in compositional generalization,
such as the ability to process recursion, compared
to models designed to be sensitive to the struc-
ture (Yao and Koller, 2022; Li et al., 2023; Shaw
et al., 2021). This raises the possibility that such
“structure-awareness” in the design of semantic
parsers may be valuable for complex constructions
generally.

In this paper, we focus on evaluating AMR
parsers on English relative clauses, a frequent
Long-Distance Dependency (LDD) construction.
LDD refers to the linguistic phenomenon that two
elements in a sentence, though not adjacent to
each other, are still syntactically/semantically con-
strained. As a typical example of LDD, RCs are
a popular topic of computational linguistic study
(e.g., Davis and van Schijndel, 2020; Ravfogel et al.,
2021). Compared with non-LDD constructions,
RCs are structurally complex and may give rise
to semantic ambiguities, so we assume they will be
challenging for parsers. Figure 1 shows syntactic

I know the person who likes you .

root

nsubj
obj

det
acl:relcl

nsubj obj

punct

nsubj
ref

(a) UD tree of the sentence: basic dependencies (above)
and enhanced dependencies added for the RC (below).

(b) Normalized AMR graph. The ARG0 edge from
like-01 to person corresponds to the relative clause.

(c) Canonical AMR graph. The ARG0-of edge corre-
sponds to the relative clause.

Figure 1: UD and AMR representations for the
sentence containing a subject relative clause I know
the person who likes you. Converting the canonical
(annotated/parsed) graph into the normalized one
entails inverting the -of edges, causing nodes to
be reentrant (have multiple parents).

dependencies and the semantic AMR graph for an
example RC.

In our evaluation we examine two types of AMR
parsers: structure-aware and structure-unaware
models. Structure-unaware models, as defined
herein, process input purely as sequential strings;
algorithms for learning and decoding are indifferent
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to any notation within these strings that represents
sentence structure. Conversely, structure-aware
models are designed to take into account structural
information, thereby enabling a more nuanced un-
derstanding of the input data’s inherent syntactic
and semantic properties.

We ask: How well can AMR parsers capture
the long-distance predicate-argument depen-
dencies in RCs? To answer this question, we
normalize edges that contain -of by inverting the
source node and the target node, and then evalu-
ate parsers by measuring recall of the reentrancies
introduced by RCs in two datasets: Universal De-
pendencies English Web Treebank (EWT; Silveira
et al., 2014) and Controlled RCs (CRC; Prasad
et al., 2019). Our investigation engages with the
following subquestions:

• Does structure-awareness help the models to
parse RCs in EWT and CRC?

• Which types of RC are most challenging and
why?

Our contributions include:
• A fine-grained method to classify RCs and

annotate Enhanced Universal Dependencies
(EUD) in reduced RCs automatically.

• A systematic comparison of five AMR parsers,
focusing specifically on their accuracy in pars-
ing reentrancies introduced by RCs, along with
an analysis of the underlying reasons for their
performance differences.

This paper begins with an overview of RCs and
reentrancies in AMR parsing (§2), followed by an
introduction to the dataset, classification algorithm,
and models in §3. §4 presents and discusses the re-
sults of our evaluation. The conclusion and sugges-
tions for future research directions are presented
in §5.1

2. Background & Related Work

2.1. Relative Clauses
In a canonical RC, a noun is modified by a clause
and is understood to fulfill a grammatical function
within that clause. The modified noun is the head
of the RC. Some RCs have a relative pronoun
like which or that. When the relative pronoun is
omitted, the clause is termed a reduced RC; when
the relative pronoun is present, along with a full
clause structure, it is termed a full RC. According
to the NP accessibility principle (Keenan and
Comrie, 1977), English allows relativization on all
grammatical functions. In the present study, we
focus on four types of full RCs and two of their
reduced counterparts:

1Our code and data can be found at https://github.
com/xiulinyang/relative-amr-eval

• Subject RC: the relative pronoun functions as
the subject of the active voice clause, as in:
He is the person who stole my book.

• Object RC: the relative pronoun functions as
the object of the clause: He is the person that
you like.

• Oblique RC: the relative pronoun functions
as an oblique within the RC: He is the person
from whom I borrowed the book. All PPs
attaching to verbs/adjectives are considered
obliques within the UD framework, which does
not distinguish oblique arguments vs. adjuncts.

• Passive RC: the RC is a passive clause whose
subject is relativized: He is the person who is
accused of stealing my book.

• Reduced Object RC: there is no relativizer
but the head noun is understood to function as
the object of the clause: He is the person you
like.

• Reduced Oblique RC: there is no relativizer
but the head noun is understood to function
as the oblique of the clause: He is the person
I borrowed the book from.

These are not the only kinds of RCs: there are
also free relatives (e.g., I heard what you said),
possessive RCs (e.g., I like the girl whose dress
is blue), and reduced subject RCs (e.g., I met the
person you mentioned __ finished all the work
this week; for clarity in this example, we indicate
the site of the gap, i.e. where the noun would go
were it not relativized).2 However, as these are
relatively rare in our dataset, our experiments are
focused on the six major RC types listed above.

2.2. RCs in UD
For the present study, we use the framework of
Universal Dependencies (UD, specifically UDv2;
Nivre et al., 2020; de Marneffe et al., 2021), a syn-
tactic annotation framework consisting of bilexical
dependencies. UD defines a shallow dependency
tree known as the basic tree, optionally comple-
mented with an enhanced graph that adds deeper
dependencies for several constructions.

The basic tree plus edges specific to the en-
hanced graph are illustrated in Figure 1a for a
sentence with a subject RC. In the UD framework,
(most) English RCs are considered a subtype of ad-
nominal clause. The predicate of the RC attaches
to the head noun with the acl:relcl dependency

2Adnominal participial clauses (the sheep eaten
by wolves, the wolves eating the sheep) are
considered RCs in some frameworks, but not in
English UD (https://universaldependencies.org/en/
dep/acl-relcl.html). There are also adverbial clauses
analyzed as RCs in UD (advcl:relcl), e.g. in cleft sen-
tences: It was Booth who shot Lincoln. These are not
very frequent in our data and we exclude them from our
analysis.
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relation. When a relative pronoun exists, in the
basic tree, it attaches inside the RC with the rela-
tivized dependency relation. In the enhanced UD
(EUD) representation, the head noun acquires the
grammatical function within the RC, and the relative
pronoun (if present) attaches to the head noun via
a ref edge in lieu of its basic function.

2.3. Fine-grained AMR Evaluation
Recognizing that overall F-scores do not tell the full
story of parser behavior, researchers have sought
to provide a finer-grained picture of the perfor-
mance of AMR parsers. Damonte et al. (2017)
report the results of a wide range of general fea-
tures of AMRs such as reentrancies, negative po-
larity, and wikification. To evaluate reentrancies,
they normalize the edges in AMR so that RCs also
introduce reentrancies. Our evaluation on AMR 3.0
data adopts their approach.

Szubert et al. (2020) provided a detailed analy-
sis of reentrancies in AMR 2.0 caused by different
syntactic, semantic, or pragmatic factors. They de-
veloped a set of heuristics to detect causes of reen-
trancies for parser evaluation. However, they focus
on reentrancies in the canonical form of the AMR,
whereas RCs are only reentrant in the inverse-
normalized form (Figure 1), so they exclude RCs
from their evaluation (Szubert et al., 2020, p. 2201).

The GrAPES benchmark (Groschwitz et al.,
2023) is designed to test AMR parsers against
nine specific challenging categories, which include
structural generalization and syntactic as well as
semantic reentrancies, among others. The dataset
includes 130 RCs in a more challenging setting
where sentences contain recursive RCs with op-
tional coreference. Groschwitz et al. test three AMR
parsers, all of which attain very low exact match
scores ranging from 0% to 17% on these recursive
RCs.

Our paper contributes to this literature by taking
a deep dive on RCs, with an extensive comparison
of AMR parsers across more than 1,400 corpus
examples and 1,400 synthetic instances of RCs.

2.4. Probing Language Models using
RCs

A few studies have used RCs to probe syntactic
structures represented in language models (LMs)
(e.g., Davis and van Schijndel, 2020; Mosbach
et al., 2020; Prasad et al., 2019). They use ei-
ther synthetic or naturalistic data to probe if the
LM represents certain linguistic features or bias.
For example, Davis and van Schijndel (2020) use
English and Spanish RCs to examine the linguistic
bias of RNN LM on the high/low attachment of RCs
when trained with only synthetic or real multilin-
gual corpus data. They found that models trained

Dataset # sents # tokens

EWT 1,449 26.5
CRC 1,400 13.7
AMR 3.0 259 29.1

Table 1: Number of sentences containing RCs in
the datasets and the mean sentence length

on synthetic data could learn to attach RCs both
high and low in the sentence structure. However,
when trained on real-world, multilingual corpus
data, the models tended to favor low attachment,
similar to the pattern seen in English, even though
this preference is not common globally across lan-
guages. Following Kim et al. (2019); Warstadt
and Bowman (2019), Mosbach et al. (2020) exam-
ined 3 pre-trained masked language models (BERT,
RoBERTa, and ALBERT) on sentence-level syntac-
tic and semantic understanding. They found that all
models show high performance in parsing syntactic
information but fail to predict the masked relative
pronoun using context and semantic knowledge.

3. Method

3.1. Data
In our experiments, three datasets are used. The
statistics of the dataset are reported in Table 1.
EWT UD treebank (henceforth EWT) The data
we use is the train split from the Universal De-
pendencies English Web Treebank (Silveira et al.,
2014). The original English Web Treebank con-
tains constituency trees for diverse web text genres
including weblogs, newsgroups, emails, reviews,
and Yahoo! answers (Bies et al., 2012). It was
then incorporated into the Universal Dependen-
cies project; we use the dependency trees for this
project.3 Opting for the training split allows for a
more extensive set of examples for evaluation. A
thorough review has confirmed that there is no con-
tent overlap between EWT and the AMR 3.0 dataset
(on which AMR parsers were trained).
Controlled RCs (henceforth CRC) The CRC
dataset is adopted from (Prasad et al., 2019). It
contains 7 types of clauses with controlled vocab-
ulary and syntactic structures, which have been
artificially generated to ensure balance across con-
structions and avoid potential confounds like length
in comparing parser performance. We employed
the four types of RCs in the dataset: subject RC,
object RC, reduced object RC, and passive RC.
Every category contains 350 examples.

3https://github.com/UniversalDependencies/UD_
English-EWT/, specifically the dev branch as of Jan. 22,
2024, which contains changes beyond the UD 2.13
release
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AMR 3.0 We report standard AMR parsing met-
rics on the test split of the AMR 3.0 release (Knight
et al., 2021), which consists of gold AMR annota-
tions from a variety of genres, including especially
news and online discussion forums. We also report
reentrancy recall on subject relative clauses.

3.2. RC classification
To have a fine-grained evaluation, we need to clas-
sify the sentences into different RC categories. We
designed a straightforward algorithm to do this
task. The classification results are then manually
checked.

We first identify all sentences annotated with
acl:relcl, totaling 2036 instances. Subsequently,
these sentences were categorized based on the
Enhanced Universal Dependency (EUD) relations
attributed to the relativized head noun. Our six
target subtypes are derived from the EUD rela-
tion and whether it is a full or reduced RC: nsubj
(full), obj (full and reduced), obl (full and reduced),
nsubj:pass (full). All other variations, such as pos-
sessives, were consolidated under the Others cat-
egory as shown in Table 2. Please note that the
total count in the table does not match 2036 due to
sentences that contain multiple types of RCs.
Reduced RC classification Enhanced UD rela-
tions were present for full RCs (having been added
based on the relativizer’s dependency relation in
the basic layer) but were missing for reduced RCs.
To infer the enhanced relation in reduced RCs,
we implement rules to identify the locally missing
(gapped) function of the RC. For example, in He
is the person you like __, in the basic UD tree the
verb like has a subject dependent but no object,
which is used to infer that it is a reduced object RC.

Our implementation takes into account the over-
all transitivity of the RC predicate verb (whether it
tends to be transitive or intransitive). We combine
data from a verb transitivity file4 and the depen-
dency relations of verbs found in EWT. Treebank
information is given precedence; if relations like
xcomp or ccomp are among the top three most fre-
quent associations with a verb, we classify it as
transitive. Otherwise, we rely on the transitivity
data from our table.

Next, we extract the set of relation labels of de-
pendents of the RC predicate, applying recursion
for instances of xcomp and ccomp so as to handle
sentences such as After I have done all the work I
promised to do, I will take a break. We then look
for a missing relation: For transitive or ditransitive

4https://github.com/wilcoxeg/verb_transitivity
The CSV file contains the percentage of the time the
verb is transitive, intransitive, and ditransitive in the
Google syntactic ngrams corpus.

RC Category Count %

Subject RC 725 35.3
Object RC 161 7.8
Oblique RC 139 6.8
Passive RC 100 4.9
Reduced object RC 340 16.5
Reduced oblique RC 218 10.6
Others 373 18.1

Total 2056 100.0

Table 2: Distribution of RC types in the EWT data
we used for evaluation.

verbs, we categorize the clause as a reduced ob-
ject RC if the verb has no obj dependent, and as
a reduced oblique RC otherwise. Clauses associ-
ated with intransitive verbs are invariably consid-
ered oblique RCs. The procedure produces 340 re-
duced object RCs and 218 reduced oblique RCs.5

The detailed statistics can be found in Table 2.
Our method relies heavily on the information

about the transitivity of verbs. Each verb type is as-
sumed to be either transitive or intransitive, which
makes ambitransitive verbs a tricky case. For ex-
ample, in the two NPs the day he returned and the
piece he returned, the first relativizes an adverbial
adjunct, while the second one is an object relative.
However, in our verb transitivity table, return is a
transitive verb, so the first example is mistakenly
tagged as a reduced object RC. Most of the classi-
fication errors are caused by this problem.

Another tricky case is embedded complement
clauses or control/raising constructions that are
marked with ccomp or xcomp in UD separately. Con-
sider the following two sentences:

(1) I will do all the work I need to do __

(2) I will talk to all the people I need __ to do the
work.

If we extract all the dependencies of the predicate
verb need, we will get the same relations: nsubj,
xcomp, obj. However, as we can see, the miss-
ing object is in different embedded structures and
therefore, the enhanced UD relation will be wrong
in terms of the head. We therefore collected all
RCs with xcomp/ccomp for manual correction.

We manually checked and corrected all exam-
ples in each reduced RC type. The results demon-
strate high accuracy in discriminating the two
classes, with a recall of 94% for reduced object
RCs and 95% for reduced oblique RCs.

5Note that reduced subject RCs only occur in doubly
embedded clauses (e.g. the rooster I thought was a
hen). These are rare and were dealt with manually.
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AMR 3.0 All Sentences RC Sentences

Models F (Full graph) F (All reentrancies) F (Full graph) F (All reentrancies) Subj RC Recall

AM-Parser§ 74.9 57.0 73.5 57.7 65.2
amrlib-T5 82.0 71.4 77.6 70.4 71.0
amrlib-BART 82.3 73.5 80.6 73.3 79.0
Spring 83.0 68.0 72.5 65.5 65.2
AMRBART§ 84.2 74.3 80.8 73.4 75.4

Table 3: Smatch F1 scores and subject RC reentrancy recall of the models on AMR 3.0 test split. Two
kinds of F1 scores are shown: overall Smatch score comparing the full graph to the gold standard AMR,
and the Reentrancies subscore (Damonte et al., 2017). These are shown for the full test set as well as
the subset of test sentences containing a relative clause. The last column shows recall of reentrancies on
subject relative clauses (138 examples in total; other RC subtypes were less frequent). “§” superscript
means “structure-aware”. The first four measures do not require token-level alignments between the
graph and the text.

3.3. Models
In our experiments, we test five different models.
The first, AM-Parser, derives a parse composition-
ally after predicting supertags and dependencies.
The other four are sequence-to-sequence models,
one of which has a structure-aware component in
its training loss.
Structure-aware models AM-Parser (Groschwitz
et al., 2018) is a neuro-symbolic compositional se-
mantic parser that learns the sub-graphs of mean-
ingful tokens and then combines them for a com-
plete AMR. It is trained on two objectives: (a) learn-
ing the supertags aligned with each token; and
(b) learning the dependency trees that connect the
supertags to build a complete AMR graph. The su-
pertagger and dependency parser are both trained
on bert-large-uncased model.

AMRBART (Bai et al., 2022) is a graph-pretrained
model based on BART (Lewis et al., 2020).
Unlike traditional text-only pretraining, AMRBART
masks parts of AMR graphs—like nodes and
edges—during pretraining. It introduces a unified
pretraining framework that combines the original
text with its AMR graph, ensuring the model learns
both linguistic content and graph structure. For pre-
training, it uses 20k silver-standard AMR graphs
created by Spring (Spring et al., 2021), and then it
is fine-tuned with gold AMR data. The fine-tuned
model shows more robust performance on unseen
data, highlighting its potential for complex language
tasks that require deep understanding.
Structure-unaware models We examined three
structure-unaware models. They are pretrained
language models fine-tuned on linearized AMRs
with necessary preprocessing.

Spring (Spring et al., 2021) fine-tunes BART-base
with vocabulary expansion. To achieve better re-
sults, instead of using linearized PENMAN notation,
they adopt graph linearization by replacing vari-
ables with special tokens <Rx> where x is a number.
In this way, the constants and variables in AMRs

can be distinguished. Despite the preprocessing
steps, the model still takes the input as sequence
of strings without distinguishing the structural in-
formation and hence we categorize Spring as a
structure-unaware model.

Similarly, amrlib fine-tunes the pre-trained lan-
guage models such as BART-large and T5 models
to translate natural language to linearized AMR.6

3.4. Evaluation
Our evaluation assesses whether the relativized
noun in a sentence is reentrant, with two incom-
ing edges—one originating from the main clause’s
predicate verb and another from the predicate
within the RC. Take the sentence in Figure 1 as an
example. After normalizing all the inverse edges,
our script identifies the RC from the acl:relcl edge
going from person to likes. It identifies the associ-
ated AMR nodes, person and like-01, and checks
whether (1) the person node receives two incoming
edges, and (2) there is an edge from like-01 to
person. If so, the reentrancy expected for the RC
is scored as recovered by the parser.

This analysis requires alignments between to-
kens in the sentence and their semantic nodes in
order to determine, given a relative clause predicate
p and its head noun n, which AMR edge (if any) is
the associated reentrancy of the form p → n. For
AM-Parser, which inherently requires node-token
alignment, we extract these alignments directly
from its predictions. For the other parsers under
study, we utilize LEAMR (Blodgett and Schnei-
der, 2021), a probabilistic, fine-grained aligner opti-
mized for English AMR.

Our evaluation metric is the recall in counting
instances where the head noun’s aligned node re-
ceives edges from both the main and RC predicate
nodes. This approach allows us to effectively gauge

6https://github.com/bjascob/amrlib/wiki/
The-parse_xfm-model
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Model Subj RC Obj RC Pass RC Obl RC RedObj RC RedObl RC All

AM-Parser§ 57.4 (416/725) 55.3 (89/161) 74.0 (74/100) 33.3 (46/138) 50.6 (172/340) 34.4 (75/218) 51.8
83.4 (605/725) 84.4 (136/161) 84.0 (84/100) 78.2 (108/138) 86.5 (294/340) 70.6 (154/218) 82.1

amrlib-BART 67.7 (491/725) 64.0 (103/161) 80.0 (80/100) 65.2 (90/138) 62.1 (211/340) 45.0 (98/218) 63.8
87.2 (632/725) 83.9 (135/161) 94.0 (94/100) 87.0 (120/138) 80.6 (274/340) 67.0 (146/218) 83.2

amrlib-T5 68.0 (493/725) 67.1 (108/161) 77.0 (77/100) 55.1 (76/138) 59.4 (202/340) 45.4 (99/218) 62.7
85.9 (623/725) 85.7 (138/161) 97.0 (97/100) 81.9 (113/138) 80.0 (272/340) 67.4 (147/218) 82.6

Spring 63.6 (461/725) 58.4 (94/161) 79.0 (79/100) 57.2 (79/138) 52.4 (178/340) 38.1 (83/218) 57.9
81.5 (591/725) 76.4 (123/161) 94.0 (94/100) 76.8 (106/138) 73.5 (250/340) 56.4 (123/218) 76.5

AMRBART§ 65.7 (476/725) 62.1 (100/161) 80.0 (80/100) 65.2 (90/138) 58.8 (200/340) 46.8 (102/218) 62.3
85.5 (620/725) 80.1 (129/161) 94.0 (94/100) 87.0 (120/138) 79.1 (269/340) 69.7 (152/218) 82.3

Average 64.5 (467/725) 61.2 (99/161) 78.0 (78/100) 55.2 (76/138) 56.6 (193/340) 41.9 (91/218) 59.1

Table 4: Results by parser and RC type on the EWT dataset. Structure-aware parsers are notated with §.
White rows report recall of RC-triggered reentrancy edges. Gray rows report attainability rates subject to
the predicted nodes and their token alignments; this is an upper bound of recall. 3 graphs produced by
AMRBART cannot be aligned with LEAMR, so we remove them from the evaluation set. The best results in
each column and condition are indicated in bold.

Model Subj RC Obj RC Passive RC RedObj RC All

AM-Parser§ 96.0 (335/349) 96.0 (332/346) 97.1 (340/350) 92.4 (280/303) 95.5 (1,287/1,348)
amrlib-BART 98.6 (344/349) 98.0 (339/346) 99.1 (347/350) 98.3 (298/303) 98.5 (1,328/1,348)
amrlib-T5 98.3 (343/349) 97.7 (338/346) 98.9 (346/350) 94.0 (284/303) 97.3 (1,311/1,348)
Spring 97.7 (341/349) 98.3 (340/346) 99.1 (347/350) 98.0 (297/303) 98.3 (1,325/1,348)

AMRBART§ 97.4 (340/349) 96.8 (335/346) 98.9 (346/350) 97.4 (295/303) 97.6 (1,316/1,348)

Average 97.6 (341/349) 97.3 (338/346) 98.6 (345/350) 96.0 (291/303) 98.0 (1,321/1,348)

Table 5: Recall by parser and RC type on the CRC dataset of synthetic sentences.

the parsers’ proficiency in handling reentrancies
within the constraints of available data.7

4. Results & Discussion

4.1. Overall Results
The initial assessment of the models was con-
ducted on the AMR 3.0 test split (after running a
dependency parser to find RCs), with outcomes
presented in Table 3. The findings indicate that
overall seq2seq models show better performance
than the compositional AM-Parser model. Across

7We do not evaluate the role label on the reentrancy
edge, because the role numbers in AMR predicates
(mostly sourced from PropBank; Kingsbury and Palmer,
2002; Pradhan et al., 2022) are semantic rather than syn-
tactic, and thus will not line up perfectly with the syntactic
RC categories. However, the numbering conventions are
weakly connected to syntactic functions: we expect that
ARG0 should imply a subject RC; a subject RC should
imply ARG0 or ARG1; a passive RC should usually imply
ARG1; an object RC should imply ARG1 or ARG2; and
ARG3, ARG4, etc. should generally imply an oblique RC
(full or reduced). Non-core roles would likely correspond
to obliques as well.

metrics, AMRBART and amrlib-BART show good per-
formance relative to other models.

It is also noteworthy that in the parsing of sen-
tences with RCs, all models exhibit a decline in
F-score, with Spring experiencing a sizable drop
(from 83.0 to 72.5). This decrease may be at-
tributed to the long-distance dependencies and
more complex syntactic structures that relative
clauses introduce.

The accuracy of 5 different models in processing
various RC types in the new datasets is systemati-
cally examined and reported in Tables 4 and 5 for
corpora with gold syntax annotations. If the predi-
cate token or head token is not aligned to a node,
it is impossible to get the reentrancy. Therefore,
we also report the attainability rate, the rate at
which node-token alignments could be recovered
for both the RC head and predicate tokens, as seen
in the gray rows of Table 4. If an RC reentrancy is
unattainable, it means either that one or both of its
tokens lack a corresponding node in the predicted
AMR (usually a parser error), or that it was present
but could not be aligned in post-processing (for sys-
tems where this step was necessary, namely the
seq2seq models).
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Figure 2: RC reentrancy recall (solid lines) and
attainability rate (dashed) of all parsers, by RC sub-
type and overall.

EWT Overall, as reported in Table 4 and visual-
ized in Figure 2, detecting the edges between the
relative predicate and the head noun is challenging
for all models, with recall below 64%.8 This sug-
gests that relative clause structures are especially
difficult.

Comparison of parsers. Our results reveal that
seq2seq parsers, whether they are structure-aware
or not, outperform the compositional AM-Parser.
Moreover, the overall performance of all seq2seq
models is very similar. The performance of
AM-Parser in parsing RCs appears less advanta-
geous, which we conjecture may stem from the pre-
trained language model (i.e. bert-large-uncased)
used. As we can see, the two BART-based parsers
perform the best. Further exploration of the role of
pretrained language models is left to future work.

Attainability. According to Table 4, we can see
that even when both the head token and predicate
token have predicted nodes, there remains consid-
erable scope for further improvement given that UD
parsing has reached over 95% in LAS since 2018
(e.g., Clark et al., 2018). This means that structural
information is not fully captured by all models.

However, we recognize that the low recall might
stem from the alignment model utilized. The attain-
ability rate for oblique reduced RCs is particularly
low, which likely affects recall scores. Misalign-
ments between some subgraphs and tokens are
observed; since our analysis targets subgraphs
aligning with both the head and predicate tokens,
such misalignments can diminish the scores. Addi-
tionally, it is possible that tokens are classified as
edges rather than nodes, as illustrated in Figure 3
where no node but just an edge is aligned with the
token time.

RC subtypes. Oblique, reduced oblique, and
reduced object RCs are particularly hard. Psy-
cholinguistic research has shown that oblique rel-
ative clauses are more challenging for humans to

8For the amrlib-BART model (overall recall of
63.8%), we also computed recall of AMR edges for
ccomp complement clauses, which was much higher:
77.4% (1445/1868), with an attainability rate of 82.7
(1545/1868).

(p0 / serve-01
:ARG0 (p1 / person

:wiki "George W. Bush"
:name (p2 / name

:op1 "Bush"))
:duration (p3 / nearly

:op1 (p4 / temporal-quantity
:quant 2
:unit (p5 / year)))

:time (p6 / over-01
:ARG1 (p7 / it)))

Figure 3: Predicted AMR for the sentence By the
time it was over, Bush had served nearly two years.

process due to the greater distance between the
filler and the gap, compared to other types of rela-
tive clauses (e.g., Diessel and Tomasello, 2005);
this distance may also be challenging for the AMR
parsers. That reduced RCs are harder to parse
than full RCs is likely due to the lack of explicit syn-
tactic cues. It is interesting to see that passive RCs
are easiest to parse of the RC categories. This is
probably because both the relative pronoun and the
passive construction provide more linguistic cues
than other types of RCs. Subject RCs, the most
frequent category in both the EWT and AMR 3.0
datasets (especially if the passive subjects are in-
cluded), are easier than non-subject RCs. Psy-
cholinguistic studies have shown subject RCs to
be easier for humans to comprehend and acquire
(Gordon and Lowder, 2012; Diessel and Tomasello,
2005), and Reali and Christiansen (2007) found
that more frequent RC types are easier to process
(but did not consider passive subject RCs).

CRC As for the synthetic data, scores are
quite high across parsers and RC categories.
amrlib-BART marginally outperforms other models
on average. For object-reduced RCs, AM-Parser
and amrlib-T5 are notably weaker than the other
systems. The CRC dataset does not contain any
oblique RCs, so there is no relevant result on this
category. The results for parsing different types of
RCs presented in Table 5 align closely with those
reported in Table 4.

4.2. Exploring Parsing Performance
Variations in RCs

The models vary in absolute scores, but they follow
a general trend: reentrancies in passive RCs are
more often recovered than those in subject RCs,
followed by object RCs and oblique RCs. Reduced
RCs are harder to predict. We observe a similar
pattern in the CRC data both in dependency and
semantic parsing. Next we explore two possible fac-
tors influencing parsing performance across RCs,
namely, dependency distance and training data
distribution.
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RC Category Dep Dist Mean Recall

Reduced oblique RC 3.06 41.9
Reduced object RC 3.13 56.6
Subject RC 4.30 64.5
Passive RC 5.78 78.0
Object RC 5.21 61.2
Oblique RC 6.98 55.2

Table 6: Mean dependency distance of 6 types of
RCs in our experiments

Dependency distance Dependency distance
refers to the linear distance between two words
connected by a dependency relation, which func-
tions as an important indicator of syntactic difficulty
(Liu et al., 2017). Existing research has reported
that longer dependency distance makes subject
RCs easier to process than object RCs in English
(Gibson, 1998) and vice versa in Chinese (Hsiao
and Gibson, 2003). In this paper, we calculate the
mean dependency distance between the predicate
in the RC and the head noun in the matrix clause
in each type of RC. It is surprising that the reduced
RCs have the shortest dependency distance even
if we assume the existence of the relative pronoun
(i.e., we add 1 to the existing dependency distance).
The shorter distance might justify dependency dis-
tance minimalization (Temperley, 2007) because
the omission of the relative pronoun makes the sen-
tence harder to process and therefore only shorter
dependency distance makes them easier to pro-
cess.

Regarding the full RCs, as shown in Table 6, in
the EWT dataset, the dependency distance largely
meets the observation made by previous research
that subject RC is easier than object RC. Notably,
passive RCs, despite their longer dependency dis-
tances, exhibit high parsing accuracy. This could
be attributed to passive RCs essentially acting as
subject RCs, with the relative pronoun serving as
the subject. When considering subject and passive
RCs together, the average dependency distance
decreases to 4.46, making these types the most
straightforward for parsers.
Training data distribution We investigated the
distribution of different RC types within the AMR 3.0
training split. Given the absence of gold-standard
dependency annotations in AMR 3.0, we obtained
automatic dependency trees using Stanza.9 For full
RCs, classification was based on the dependency
relationship between the relative pronoun and its
predicate. The identification of reduced RCs em-
ployed the methodology outlined in §3.2. As Table 7
illustrates, the prevalence of RC types in AMR 3.0
closely mirrors that of EWT, with subject RCs being
the most common.

9stanza-1.6.0: https://github.com/stanfordnlp/
stanza/releases/tag/v1.6.0

RC Category Count

Subject RC 4,226
Object RC 516
Oblique RC 729
Passive RC 534
Reduced object RC 1,371
Reduced oblique RC 1,092

Table 7: Distribution of 6 RC types in AMR 3.0 train
split

It is intriguing that despite being more common,
subject RCs are still tougher to handle than their
passive forms. This revelation suggests that the
frequency of a structure does not necessarily make
it easier to process, hinting at deeper complexities
in understanding syntactic patterns.

5. Conclusion

In our study, we compared two structure-aware
AMR parsers (AM-Parser and AMRBART) and typ-
ical structure-unaware seq2seq models (Spring,
amrlib-BART, and amrlib-T5) in parsing relative
clauses. We find that relative clauses are challeng-
ing for current parsers. Seq2seq models, on the
whole, outperform the compositional model. Inter-
estingly, there is little difference in performance be-
tween seq2seq models that are aware of structure
and those that are not. Furthermore, our analysis
reveals that (reduced or full) oblique and reduced
object RCs are the most challenging RC types. Ex-
amining the relationship to dependency length, we
find that the full RCs with shorter dependency dis-
tances are easier to parse; however, reduced RCs
with the shortest dependency distance are more
challenging for all parsers. As part of our study, we
have produced gold EUD annotations for reduced
RCs in the English Web Treebank; these will be
released upon publication.

Future work might expand the scope of inquiry
to more diverse reentrancy types by leveraging the
(E)UD annotations. It would also be interesting
to see if adding (E)UD information to AMR pars-
ing helps the structure-unaware parsers to learn
the complex structural information (cf. Findlay and
Haug, 2021).
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Abstract
The Parallel Meaning Bank (PMB) serves as a corpus for semantic processing with a focus on semantic parsing and
text generation. Currently, we witness an excellent performance of neural parsers and generators on the PMB. This
might suggest that such semantic processing tasks have by and large been solved. We argue that this is not the case
and that performance scores from the past on the PMB are inflated by non-optimal data splits and test sets that are
too easy. In response, we introduce several changes. First, instead of the prior random split, we propose a more
systematic splitting approach to improve the reliability of the standard test data. Second, except for the standard test
set, we also propose two challenge sets: one with longer texts including discourse structure, and one that addresses
compositional generalization. We evaluate five neural models for semantic parsing and meaning-to-text generation.
Our results show that model performance declines (in some cases dramatically) on the challenge sets, revealing the
limitations of neural models when confronting such challenges.
Keywords: Annotated Corpus, Discourse Representation Theory, Semantic Parsing, Text Generation

1. Introduction

The Parallel Meaning Bank (PMB, Abzianidze et al.,
2017) is a semantically annotated parallel corpus
for multiple languages. It consists of a large collec-
tion of parallel texts, each accompanied by a for-
mal meaning representation based on a variation
of Discourse Representation Theory (DRT, Kamp
and Reyle, 1993), called Discourse Representa-
tion Structure (DRS). It can be used for corpus-
based studies on formal semantic phenomena, or
to develop and evaluate semantic processing tasks
such as text-to-meaning parsing and meaning-to-
text generation. As a matter of fact, the PMB has
been widely used in semantic parsing (Abzianidze
et al., 2019; van Noord, 2019; van Noord et al.,
2020; Wang et al., 2021b; Poelman et al., 2022),
natural language generation (Wang et al., 2021a,
2023), and semantic tagging (Bjerva et al., 2016;
Abzianidze and Bos, 2017; Abdou et al., 2018; Huo
and de Melo, 2020).

The rapid development of neural models and
their incredible performance seem to make the im-
pression that tasks like semantic parsing are practi-
cally solved. For instance, the state-of-the-art DRS
parser (Wang et al., 2023) achieves a remarkable
score of approximately 95.0 on the English test
set of the PMB and manual analysis reveals that
the parser made very few errors except for words
outside the vocabulary. Are neural models master-
ing semantic parsing (and indeed natural language
generation), even for complex formal meaning rep-
resentations like those present in the PMB? Or is
there something else going on, and does this per-
ception not align with the actual state of affairs?

We carried out a critical examination of the PMB
and revealed three (related) problems: (1) there
is a “data leakage” from the training data to the
development and test splits; (2) the random splits
of the data lead to a non-optimal division; and (3)
the test set is often regarded as “easy” as it contains
a large amount of relatively short sentences. Let
us elaborate on this a bit.

In the current release of the PMB, the data splits
were randomly decided and considered "standard".
However, this random split may result in overlap and
imprecise error estimates (Søgaard et al., 2021)
and and cannot adequately represent the distribu-
tion of the dataset. For instance, the sentence “I like
chocolate ice cream!” is allocated to the training
set, while the very similar sentence “I like choco-
late ice cream.” is assigned to the test set. Equally
alarmingly, some instances in the development and
test sets mirror those in the training set, potentially
skewing parser evaluations. Consequently, this
may lead to parser evaluation results that are overly
optimistic. We completely agree with Opitz and
Frank (2022) and Groschwitz et al. (2023), who
both argue that "AMR Parsing is far from solved"
hits the nail on the head, and even goes beyond
Abstract Meaning Representation (AMR) and also
applies to DRS. We think the current PMB test set
lacks difficulty, because it puts emphasis on brief
and simplistic sentences with an average length of
less than ten words. The reason for this is that all
instances of the test set have the “gold” annotation
status, obtained via intensive manual correction,
and the longer a document the harder it is to get
an error-free annotation for it.

The aim of this paper is (a) to show that the
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(a) Text:
EN: Bill did not commit the crime.

DE: Bill hat das Verbrechen nicht begangen.

NL: Bill heeft de misdaad niet begaan.

IT :  Bill non ha commesso il crimine.
ZH: 比尔没有犯罪。
JA: ビルはその罪を犯していなかった。

(b)  DRS (box notation):

x1

male.n.02(x1)

Name(x1, bill)

¬   x2 e1 t1

time.n.08(t1)

t1 ≺ now

commit.v.01(e1)

Time(e1, t1)

Theme(e1, x2)

Agent(e1, x1)

crime.n.01(x2)

(c) DRS (clause notation):
b1 REF x1                            % Bill [0...4]

b1 Name x1 "bill"                  % Bill [0...4]

b1 PRESUPPOSITION b2   % Bill [0...4]

b1 male "n.02" x1                 % Bill [0...4]

b2 REF t1                             % did [5...8]

b2 TPR t1 "now"                   % did [5...8]

b2 time "n.08" t1                   % did [5...8]

b4 Time e1 t1                       % did [5...8]

b2 NEGATION b4                % not [9...12]

b4 REF e1                            % commit [13...19]

b4 Agent e1 x1                     % commit [13...19]

b4 Theme e1 x2                   % commit [13...19]

b4 commit "v.01" e1             % commit [13...19]

b3 REF x2                            % the [20...23]

b3 PRESUPPOSITION b4   % the [20...23]

b3 crime "n.01" x2                % crime [24...29]

% . [29...30]

(d) DRS (sequence box notation):
male.n.02   Name "Bill"                             % Bill            [0-4]

NEGATION <1                                 % not            [9-12]

time.n.08   TPR now                                 % did            [5-8]

commit.v.01 Agent -2 Time -1 Theme +1 % commit     [13-19]

crime.n.01                                                 % the crime. [20-30]

Bill

now

male.n.02

time.n.08

crime.n.01

commit.v.01

(e) DRS (graph notation)

¬

∈

∈
∈

∈

Agent

Time

Theme

Name

≺

Figure 1: (a) An example sentence “Bill did not commit the crime." taken from the PMB in six languages
with its DRS in (b) box notation, (c) clause notation, (d) sequence box notation, and (e) graph notation.

random split indeed leads to an undesired simplifi-
cation of the task, and (b) to demonstrate that the
task of semantic parsing is far from being solved
by providing a new challenging test set.

Inspired by the work of Søgaard et al. (2021),
we design three new test sets: one standard test
set and two challenge sets. The former is imple-
mented by a two-round sorting approach to estab-
lish a more systematic split, ensuring the reliability
and independence of standard development and
test sets. The latter comprises a test set with sub-
stantially longer texts and a test set based on com-
positional recombination. The long-text set is de-
rived by choosing documents with long texts from
the PMB and manually correct the automatically
assigned meaning representation. This set aims
to assess the parser’s performance on long and
multi-sentence texts. The compositional set con-
sists of texts formed by recombining the Combina-
tory Categorical Grammar (CCG, Steedman, 1996)
derivation tree that is provided with the PMB data.
This kind of tree recombination technique has been
empirically validated for semantic data augmenta-
tion by Juvekar et al. (2023). Differently, we employ
this technology for the creation of test sets, with the
intent of assessing the semantic parser model’s
capability in compositional generalization (Furrer
et al., 2020). To our knowledge, we are the first to
utilize CCG to create data for compositional gen-
eralization testing. By empirical analysis of the
performance of neural semantic parsers and gen-
erators based on five different language models,
we show the effect of our newly created systematic
split and challenge sets.

2. Background and Related Work

In this section, we first provide an overview of DRS,
PMB, and CCG, review the works in parsing and
generation, and introduce different data split meth-
ods. Subsequently, we introduce existing tasks and

corpora related to long text semantic and composi-
tional generalization.

2.1. Discourse Representation Structure
DRS is the formal meaning representation in the
PMB, capturing the essence of the text and cover-
ing linguistic phenomena like anaphors and tem-
poral expressions. Unlike many other formalisms
such as Abstract Meaning Representation (AMR,
Banarescu et al., 2013) used for large-scale se-
mantic annotation efforts, DRS covers logical nega-
tion, quantification, and discourse relations, has
complete word sense disambiguation, and offers a
language-neutral meaning representation.

DRS can be represented in multiple formats as
is shown in Figure1. In the box notation, DRS uses
boxes containing discourse referents and condi-
tions. Discourse referents, like x1, serve as mark-
ers for entities introduced in the discourse. Condi-
tions convey information over the referents: to what
concepts they belong and what relations they have
to other referents, expressed by roles or compari-
son operators. Concepts are grounded by WordNet
synsets, such as male.n.02. Thematic roles are
derived from VerbNet (Bonial et al., 2011), for in-
stance Agent. Operators, like ă, “, ‰ and „, are
utilized to formulate comparisons among entities.
Furthermore, conditions can also be complex, serv-
ing to represent logical (negation, ␣) or rhetorical
relations among different sets of conditions.

The clause notation is converted from box no-
tation to adapt to machine learning models (van
Noord et al., 2018). In the conversion, the label of
the box, wherein the discourse referents and con-
ditions are located, is positioned to precede them.

To simplify DRS, Bos (2023) introduced a
variable-free DRS format called Sequence Box No-
tation (SBN), where the sequencing of terms is
important. The meaning of each word adheres
to an entity-role-index structure, with indices con-
necting entities and roles decorating connection.
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The discourse relations (such as NEGATION and
ELABORATION) are slightly different, indicating
the beginning of a new context. The subsequent in-
dices, marked with comparison symbols (ă,ą), link
the newly established context to another context.
SBN can also be interpreted as a directed acyclic
graph, as depicted in Figure 1(e).

2.2. Combinatory Categorical Grammar
CCG is a lexicalised grammar formalism (Steed-
man, 1996) used in the PMB to steer the compo-
sitional semantics. It comprises just a few basic
categories — N (noun), NP (noun phrase), PP
(prepositional phrases) and S (sentence) — from
which function categories can be composed using
the backward slash for combining with phrases to
the left and the forward slash for combining with
phrases to its right. For instance, a typical deter-
miner gets the lexical category NP/N to look for a
noun (N) on its right resulting in a noun phrase (NP).
CCG expressions can be combined with each other
obeying the combinatorial rules, of which there are
just a handful. The most common rules are forward
and backward application:

Forward App. (>) : pX{Y q Y ñ X (1)
Backward App. (<) : Y pXzY q ñ X (2)

In the PMB, each CCG category is paired with a
meaning representation with a semantic type that
mirrors the internal structure of the category. This
makes it a formidable linguistic formalism to imple-
ment compositional semantics.

2.3. The Parallel Meaning Bank
The PMB has evolved through four versions. Origi-
nating from the English-specific Groningen Mean-
ing Bank (GMB, Basile et al., 2012), the PMB ex-
panded it by embracing multiple languages. The
initial version introduced German, Dutch, and Ital-
ian with their gold standard DRS in box format. The
second version added silver and bronze standard
data, which are partially corrected and uncorrected.
Subsequent versions, namely the third and fourth
versions, have witnessed an increased volume of
manually annotated data and a shift from box to
clause notation.

The PMB employs seven layers to process raw
text, with each layer contributing an additional piece
of syntactic/semantic information, building upon
the results from the preceding layer (Abzianidze
et al., 2020). The seven layers encompass tok-
enization, symbolization, word sense disambigua-
tion, co-reference resolution, thematic role labeling,
syntactic analysis and semantic tagging. Manual
corrections are allowed at every layer. The final
layer yields a CCG derivation tree, which is then

utilized as input for the Boxer (Bos, 2015) and is
converted into DRS. Initially tailored for English,
PMB aligns it with other languages using an anno-
tation projection method (Abzianidze et al., 2020).

In the field of semantic-related tasks, PMB has
been widely used. However, it is not without limita-
tions. Haug et al. (2023) emphasizes that a large
portion of PMB data consists of short sentences,
which compromises its ability to accurately repre-
sent real-world data.

2.4. Parsing and Generation with DRS

Semantic parsing with DRS initially employed rule-
based parsers, such as Boxer (Bos, 2008). With
the advent of neural models, the focus shifted
to seq2seq approaches using LSTMs (van Noord
et al., 2019, 2020). However, recent innovations
include tree-based (Liu et al., 2018, 2019; Poelman
et al., 2022) and graph-based techniques (Fancellu
et al., 2019; Fu et al., 2020). In the ongoing explo-
ration of neural networks, parsers have increasingly
embraced transformer-based models like T5 (Raf-
fel et al., 2019), BART (Lewis et al., 2020), and
their variants. A significant breakthrough was DRS-
MLM (Wang et al., 2023), a model that pre-trained
mBART on PMB data and achieved state-of-the-art
results in multiple languages. For meaning-to-text
generation, Wang et al. (2021a) utilized a bi-LSTM
on DRS’s linearized format and found character-
level decoders optimal. The mentioned DRS-MLM
can also be used for DRS-to-text generation in pre-
training steps outperforming other generators.

2.5. Data Split Methods

In most of the standardized datasets (Marcus et al.,
1994; Fares et al., 2018), a consistent test set is typ-
ically maintained to enable comparisons between
models (van der Goot, 2021). Traditionally, this kind
of test set is created by random sampling (Elazar
and Goldberg, 2018; Poerner et al., 2018), as is the
current practice in the PMB. However, as we men-
tioned in the introduction, this random selection will
lead to a data leakage from train to test. Multiple
random split (Gorman and Bedrick, 2019) may be
a fairer approach, but this will make comparison of
models more difficult. To address these problems,
Søgaard et al. (2021) advocates for the utilization
of a biased or adversarial split besides the stan-
dard split, aiming to reduce the deviation between
the test set and real-world data. We adopted this
suggestion and developed an unbiased standard
test set along with two biased challenge test sets,
as detailed in Section 3.
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2.6. Semantic Corpora with Long Texts
Few corpora focus on the semantics of long texts,
primarily because of difficult annotations and con-
straints in meaning representation itself (For in-
stance, AMR was initially designed for single sen-
tences). O’Gorman et al. (2018) addressed this
by manually annotating coreference, implicit roles,
and bridging relations to create the multi-sentence
AMR corpus. Other annotated corpora address dis-
course structure and rhetorical structure (Prasad
et al., 2008), but ignore sentence semantics. As
mentioned in Section 2.1, DRS is naturally de-
signed for discourse, eliminating the need for addi-
tional annotation rules when annotating the mean-
ing of long texts. Therefore, our annotation is more
straightforward, as introduced in Section 3.

2.7. Compositional Generalization
Several studies have demonstrated that neural
models tend to memorize patterns observed dur-
ing training, struggling to generalize effectively to
unfamiliar patterns (Lake and Baroni, 2018; Furrer
et al., 2020). The combinationality in language sig-
nificantly exacerbates this struggle. To assess this,
tasks and datasets like the SCAN (Lake and Baroni,
2017) and the COGS (Kim and Linzen, 2020) have
been developed. Kim and Linzen (2020) pointed
out despite excellent standard test performances,
their models reveal gaps in compositional general-
ization ability. This kind of gap led to our creation
of the second challenge test set in Section 3 and
experiments in Section 4.

3. Improving Semantic Evaluation

In this section we outline the methods to create bet-
ter test sets. Besides the standard test set created
with a different data split, we also show how we
built additional challenge test sets. The resulting
data set will be released as PMB 5.0.01.

3.1. Splitting Data Systematically
As mentioned in Section 1, the random split method
employed by the PMB requires improvement. We
have devised a strategy that reduces overlap be-
tween training and standard development/test sets,
without introducing additional biases.

Our data split strategy involves two rounds of
sorting. First, documents are sorted by charac-
ter length. Afterward, the ordered collections are
divided into groups of ten documents, which are
then re-sorted based on their internal edit distances.
The first sorting aims to maintain a consistent length

1The release is available at https://pmb.let.
rug.nl/releases/

distribution across the training, development, and
test sets, while also ensuring some degree of uni-
formity in their semantic distribution. This is crucial
to minimize bias introduced in the standard test
data. The second sorting is particularly designed
to create a certain degree of separation between
the datasets, aiming at decreasing the word overlap.
We allocate the first eight documents to the training
set, and the remaining two are randomly distributed
between the development and test sets. In Sec-
tion 4, our experiments and analysis prove that the
systematic split reduces the overlap between the
training and development/test sets.

The distributions of gold data under the system-
atic split are shown in Table 1. For English, we
adopt an 8:1:1 split ratio, while for the other three
languages, we use a 4:3:3 ratio to ensure the test
data is sufficient.

3.2. Creating Challenge Sets
We create two challenge sets for English: one fo-
cusing on long texts and another dedicated to com-
positional recombination by CCG.

3.2.1. Long-Text Challenge Set

Given that the gold data in the PMB predominantly
consists of short sentences, with an average sen-
tence length ranging between five and six words,
it constrains our evaluation of the model’s capabil-
ity with long texts. In response, we select silver
documents that notably exceed this average length
for manual annotation, and change these into gold
by correcting discourse structure, rhetorical rela-
tions, ellipsis, and inter-sentential pronouns (see
Appendix A.2 for an example). Our long-text set
includes 138 data samples with an average text
length of 61 words, roughly ten times longer than
the standard test set. The average lengths of train,
development and test sets are shown in Table 1.

3.2.2. Compositional Challenge Set

As introduced in section 2, the final layer of the PMB
produces the CCG derivation tree that is enriched
with syntactic and semantic information, which is
subsequently passed to the boxer to produce DRS.
Therefore, recombining the gold CCG tree with
other trees can yield distinct CCG trees, with asso-
ciated text and DRS. In contrast to the creation of
the long-text set, the quality of the DRS produced
by this method closely approximates the gold stan-
dard, which greatly reduces the need for further
manual annotation.

The original CCG derivation tree contains the
compositional categories of words and phrases in
a sentence, as shown in Figure 2 (a). We intro-
duce two recombination operations: substitution
and extension, shown in Figure 2 (c) and (d). In the
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Train Dev Standard Test Long Test Compositional Test

English (EN) 9,057 (5.64) 1,132 (5.38) 1,132 (5.15) 138 (60.78) 1,148 (6.48)
German (DE) 1,206 (5.06) 900 (4.79) 900 (4.87) — —
Dutch (NL) 586 (5.62) 435 (5.09) 435 (5.08) — —
Italian (IT) 745 (4.73) 555 (4.52) 555 (4.53) — —

Table 1: Distribution of train, development, and test sets in PMB 5.0.0 using the systematic split, together
with two challenge sets. The average sentence length of each set are provided in brackets.

I                  have a                dog

NP          (S[dcl]\NP)/NP       NP/N             N
>

N

P

a dog

>
have a dog

S[dcl]\NP
<

I have a dog

S[dcl]

I                  want a                dog

NP          (S[dcl]\NP)/NP       NP/N             N
>

N

P

a dog

>
want a dog

S[dcl]\NP
<

I want a dog

S[dcl]

I       have        a      big     and     strong     dog

NP  (S[dcl]\NP)/NP  NP/N    N/N       conj N/N            N

>

NP

a big and strong dog

>
have a big and strong dog
S[dcl]\NP

<
I have a big and strong dog

S[dcl]

V
and strong
(N/N)\(N/N)

(a) Original text and CCG derivation tree

(b) Substitution Operation

(c) Extension Operation

<
big and strong

N/N
>

big and strong dog
N

Figure 2: Two recombination operations performed
on the CCG derivation tree of example sentence
“I have a dog”: (b) substitution (c) extension. We
retained only the CCG categories and their corre-
sponding words/phrases, excluding other semantic
information.

substitution operation, the leaves or subtrees within
a CCG derivation tree are replaced by counterparts
from other different trees, provided they share the
same CCG category. For instance, the word have
swaps with want, as highlighted in blue. The exten-
sion operation takes a singular leaf from the tree
and develops it into a larger subtree. As shown in
Figure 2 (c), dog with the N category is extended
to a subtree rooted at N , resulting in the phrase big
and strong dog. The pseudo-code detailing these
two operations is provided in Appendix A.1.

However, this method will generate many se-
mantically abnormal sentences though they adhere
strictly to syntactic structure. In this case, we use
masked language models to estimate sentence
pseudo-log-likelihood (PLL) scores (Salazar et al.,
2020; Kauf and Ivanova, 2023). In practice, BERT
(Devlin et al., 2018) is utilized as the scoring model,
with a manually determined threshold. Specifically,
the threshold is adjusted to eliminate 95% of the
generated sentences, retaining only the top 5% that
are highly deemed semantically correct.

Using this approach, we recombine the CCG
trees of training samples and choose from the gen-
erated data, with the details presented in Table 1.
Table 2 and 3 show some example texts produced
through substitution and extension operations. Be-
yond individual operations, we also conduct mul-
tiple iterations on a sentence. The symbol ˆ indi-
cates the number of times an operation is applied
to the same sentence.

4. Experiments and Analysis

This section offers an introduction to the selected
seq2seq models, experimental settings, results and
analysis for the text-to-DRS parsing and DRS-to-
text generation.

4.1. Model Selection
The current approach to semantic parsing and text
generation with DRS mainly involves fine-tuning a
pre-trained language model. Our initial experiment
employs a model based on BERT embeddings and
LSTM architecture, following the methodology of
van Noord et al. (2020). Then we utilize T5 and
BART, two pre-trained transformer-based models.
Specifically, we choose their multilingual variants:
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Category Operation Training Set Compositional Set

Noun NñN Bill was killed by an intruder. Bill was killed by an Irishman.
Pronoun NPñNP My bag is very heavy. His bag is very heavy.

Verb (S\NP)/NPñ(S\NP)/NP The police are following us. The police are visiting us.
Adjective S\NPñS\NP My tie is orange. My tie is wet.
Adverb (S\NP)/(S\NP)ñ(S\NP)/(S\NP) The rent is very high. The rent is extremely high.

Preposition PP/NPñPP/NP The boy bowed to me. The boy bowed behind me.
Determiners NP/NñNP/N The answer is clear. Neither answer is clear.

Modal (S\NP)/(S\NP)ñ(S\NP)/(S\NP) It will be scary. It should be scary.

Substitutionˆ2 NñN
+ (S\NP)/NPñ(S\NP)/NP Russia fears the system. Cuba replaced the system.

Substitutionˆ3
NPñNP

+ PP/NPñPP/NP
+ S\NPñS\NP

I took the elevator to the
fourth floor.

They took another elevator to
the last floor.

Table 2: Examples of substitution operations with CCG categories and operations. Note the table only
shows the most common combinations for both two-fold (substitution ˆ 2) and three-fold (substitution ˆ
3) iterations. The color blue indicates the operation depicted in Figure 2 (b).

Category Training Set Compositional Set

Noun My brother is rich. My bad brother is rich.
My brother who is speaking English is rich.

Verb Coffee will be served after the meal. Coffee will be secretly served after the meal.
Coffee will be served by Elizabeth after the meal.

Adjective Tom was thoughtful. Tom was very thoughtful.
Tom was thoughtful and innocent.

Extensionˆ2 Tom is courteous. Tom himself is more courteous.
Tom who did it is courteous.

Extensionˆ3 There are thirty names on the list. There are about thirty new names on the short list.
There are over thirty other names by Berlioz on the list.

Table 3: Examples of extension operations. We have excluded the operations of CCG categories due to
the vast number of extension variations, which are nearly impossible to cover comprehensively. Instead,
we present the most prevalent extension types for each category. The color orange indicates the operation
depicted in Figure 2 (c).

mT5 (Xue et al., 2021), byT5 (Xue et al., 2022),
mBART (Liu et al., 2020), and DRS-MLM (Wang
et al., 2023) which is pre-trained on DRS data us-
ing the mBART architecture. In the case of DRS-
MLM, for it is initially pre-trained on a train set under
random split, we re-pre-train it using the train set
based on our systematic split. To maintain con-
sistent model sizes, we selected the large version
across all models.

4.2. Evaluation Metrics
The evaluation process for Text-to-DRS parsing
consists of two primary phases (Poelman et al.,
2022). Firstly, the generated DRSs and gold stan-
dard DRSs are transformed into Penman notation
(Kasper, 1989). Subsequently, we utilize SMATCH
(Cai and Knight, 2013), an evaluation tool for AMR
parsing, to calculate the match between the out-
put and the gold standard by quantifying the over-
lap of triples. Evaluation of the generation task is
conducted using BLEU (Papineni et al., 2002), ME-
TEOR (Lavie and Agarwal, 2007), and COMET(Rei

et al., 2020).

4.3. Experiment Settings
We carried out three primary experiments. (1) We
fine-tuned the selected language models for four
languages: EN, DE, NL, and IT, and evaluated them
using the standard test set. Following the training
configurations set by van Noord et al. (2018); Poel-
man et al. (2022); Wang et al. (2023), we trained the
models on gold and silver data for EN, and trained
on gold, silver, and bronze data for DE, NL, and
IT. This was subsequently followed by a fine-tuning
phase exclusively on gold data; (2) We calculated
and compared the word overlap rate of the train
sets and test sets under systematic and random
split. Then, we showed the performance of the two
top-performing models from the first experiments
under these two splits. To ensure the assessment
was solely influenced by the data split, we only
tested on the English (only English has sufficient
gold data) and fine-tuned exclusively on the gold
data, and (3) We tested all fine-tuned models in the
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first experiments on the long-text set and compo-
sitional set. We divided the compositional set into
two subsets: substitution and extension, to assess
the difficulty produced by these two operations.

For all experiments and models, uniform hyperpa-
rameters were employed, and the presented results
are the average scores derived from three parallel
experiments.2

4.3.1. Standard Test

Table 4 shows the results of the text-to-DRS parsing
task. Across the four languages, both byT5 and
DRS-MLM models stood out, with byT5 attaining
88.0 in German, slightly surpassing DRS-MLM’s
87.1, and both models achieving the same F1 of
87.2 in Italian. However, in English and Dutch,
DRS-MLM takes the lead with F1 91.5 and 85.5
respectively. mT5 and mBART closely follow, but
their performance in Dutch is significantly weaker,
possibly due to the limited Dutch data in their pre-
training corpus.

Table 5 shows the results of DRS-to-text gen-
eration. ByT5 surpasses other models in all lan-
guages except for Dutch. Particularly in English,
ByT5 achieves top scores with 71.9, 54.9, and
93.0 in three metrics, respectively. However, for
the Dutch, DRS-MLM remains the superior model
across these three metrics.

The standout performance of byT5 and DRS-
MLM can be attributed to byte-level tokenization
and specific pre-training, respectively. Unlike other
tokenization methods, like Byte Pair Encoding
(BPE, Sennrich et al., 2016), byT5’s byte-level to-
kenization, which can be seen as character-level
within our four target languages, results in a smaller
dictionary and has the ability to handle unseen
words. DRS-MLM employs several pre-training
tasks on the PMB data, making the model better
suited for the DRS data format. This advantage is
most obvious when dealing with Dutch, which has
the least training data among the four languages.

4.3.2. Systematic Split vs. Random Split

Figure 3 displays the distribution of word overlap
rates between train and development/test sets un-
der random and systematic split. The word overlap
rate, defined in Equation 3, measures the word-
level sentence similarity. According to the figure,
the systematic word overlap distribution is further
to the left than the random split, indicating that it
has less overlap. And as outlined in Section 3, the
systematic split does not simply reduce overlap by
indiscriminately adding bias. It also guarantees that

2We provide the most recent experimental results for
all test sets, available at https://pmb.let.rug.nl/
models.php.

each set has a consistent length distribution, which
can also be viewed as a semantic distribution to
a certain extent. Therefore, in the case of PMB,
a systematic split is a more effective method for
dividing the dataset compared to the random split.

overlap “ sentence1X sentence2

sentence1Y sentence2
(3)

We further proved the advantage through experi-
ments. The parsing and generation results under
these two splits are shown in Table 6 and 7. The
model’s performance on the random split exceeds
that on the systematic split for both tasks, suggest-
ing the systematic approach presents more rigor-
ous challenges.

Figure 3: Distribution of word overlap rates between
train and test sets in EN, DE, NL, IT. Lower overlap
rates signify fewer words occurring in both train and
test sets.

Figure 4: Distribution of word overlap rates between
train and development sets in EN, DE, NL, IT.

4.3.3. Challenge Test Sets

The results of the models on the challenge test sets
are shown in Tables 8 and 9. The performance on
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English German Dutch Italian
Parser F1 ERR F1 ERR F1 ERR F1 ERR

LSTM 78.6 8.4 80.2 4.0 74.4 8.5 79.6 5.0
mT5 88.8 2.8 86.7 1.9 47.0 16.0 82.0 2.8
byT5 91.4 2.1 88.0 0.7 79.8 5.0 87.2 0.7

mBART 89.1 2.3 86.1 1.8 64.5 3.4 86.2 1.8
DRS-MLM 91.5 1.5 87.1 2.1 85.5 2.0 87.2 0.9

Table 4: Evaluation results for neural text-to-DRS parsing on the standard test sets of four languages.
Note: ERR is the ill-formed rate (%) of generated DRSs that fail to transform into a graph structure.

English German Dutch Italian
Generator B M C B M C B M C B M C

LSTM 33.8 32.4 72.5 24.9 25.4 67.1 19.0 21.6 63.2 28.2 24.7 72.2
mT5 69.9 53.4 92.8 47.8 37.5 84.8 11.3 15.2 63.6 48.8 36.3 86.0
byT5 71.9 54.9 93.0 50.9 39.1 85.2 41.8 34.2 82.1 53.2 38.5 87.5

mBART 51.8 43.5 88.1 40.8 33.4 79.9 38.1 32.0 80.6 45.8 34.5 84.7
DRS-MLM 67.5 52.4 92.2 47.6 36.6 84.4 49.4 37.5 86.0 46.3 34.2 86.3

Table 5: Evaluation results for neural DRS-to-text generation on the standard test sets of four languages.
Note: B = BLEU; M = METEOR; C = COMET.

Random split Systematic split
Parser F1 ERR F1 ERR

byT5 87.1 5.0 83.5 6.0
DRS-MLM 88.9 1.9 87.3 4.1

Table 6: Results of parsing under random and sys-
tematic split. Lower scores are marked.

Random split Systematic split
Generator B M C B M C

byT5 66.1 52.2 91.7 64.7 51.0 89.0
DRS-MLM 65.8 51.4 91.7 60.2 48.4 87.9

Table 7: Results of generation under random and
systematic split.

the long-text test set is significantly inferior, marked
by a high incidence of ill-formed outputs3. The
most pronounced drop is observed in ByT5, which
shows a reduction of 86% compared to the stan-
dard test set. In the generation task, although trun-
cation does not hugely impact on evaluation, the
models still grapple with long sequences, reflecting
decreases of at least 29.9, 11.9, and 16.2 across
three metrics. Notably, neural models struggle with

3SMATCH employs a hill-climbing technique to identify
the optimal match, which may introduce inaccuracies
when evaluating the output of the model for long texts
(Opitz and Frank, 2022). In this case, the results for long
texts should be considered as reference only.

the long set, primarily because their tokenization
significantly amplifies both input and output lengths.
For example, while the average sentence lengths
in the long set stand at 61 for text and 253 for DRS,
these numebrs increase to 98 and 503 after BPE
tokenization (mT5, mBART, and DRS-MLM) and
even further to 410 and 1370 with character-level
tokenization (ByT5). Obviously, these models can
not handle such long sequences as effectively as
the short sequences in the standard test.

For the compositional challenge set, it’s crucial
to note that all semantic components in the test
sets were also in the training. Therefore, we ex-
pect near-perfect scores from the models. They
perform well on the compositional-substitution set,
showcasing their ability to learn and apply word
meanings in known sentence structures. Among
these models, byT5 performs the best with 93.1 F1
in parsing, while mT5 and DRS-MLM show similarly
strong performance in generation. When testing on
the compositional-extension set, the performance
of the models dropped by around ten points in both
tasks. Most parsing or generation errors were in
the newly added parts in the texts, likely due to
the introduction of more intricate sentence struc-
tures, especially compound predicate adjectives
and attributive clauses, as shown in the examples
in Table 3. The most frequent errors of the models
are provided with examples in Appendix A.2.

5. Conclusion

Past performance of neural semantic parsers and
meaning-to-text generators have been slightly in-
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en-long en-substitution en-extension
Parser F1 ERR F1 ERR F1 ERR

LSTM 43.7 19.2 90.8 2.8 82.7 3.5
mT5 38.8 34.6 88.9 2.9 80.3 8.9
byT5 5.5 65.4 93.1 0.5 84.8 5.0

mBART 22.0 53.8 89.7 1.4 80.4 7.6
DRS-MLM 20.0 57.7 90.3 2.8 81.1 7.7

Table 8: Evaluation results for text-to-DRS parsing
on the challenge test sets.

en-long en-substitution en-extension
Generator B M C B M C B M C

LSTM 5.48 14.6 40.3 58.7 43.6 82.1 49.1 41.3 77.6
mT5 31.4 40.3 76.6 75.2 55.6 92.7 67.3 52.9 90.0
byT5 14.1 28.3 59.3 75.7 54.7 92.5 66.7 53.0 89.8

mBART 15.7 28.7 60.6 68.8 51.8 89.8 58.4 48.8 86.1
DRS-MLM 32.6 40.5 75.4 76.0 54.9 92.5 69.4 53.2 90.0

Table 9: Evaluation results for DRS-to-text genera-
tion on the challenge test sets.

flated (or at best, made the suggestion that these
semantic computational tasks were close to being
“solved”) due to data leakage from training to test
and non-representative test sets. At least, that is
what our empirical study on the Parallel Meaning
Bank showed. We created a more realistic assess-
ment of performance by refining the data split and
formulating challenge sets. A systematic split for
the PMB yields a test set that is harder for semantic
parsers and generators. The introduction of two
further challenge sets, one with manually corrected
longer documents and one with automatically de-
rived compositional recombination using categori-
cal grammar, are indeed way more challenging than
the standard test set. Hence, semantic parsing and
text-to-meaning generation can not be considered
“solved” yet.
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A. Appendix

Appendix A.1 Pseudo-code for CCG
recombination
Both substitution and extension operations begin
with a standard pre-processing step: subtree set
construction. This extracts all subtrees from the
dataset’s CCG derivation trees (For consistency,
we treat leaves as subtrees with only the root). Sub-
stitution operation primarily involves randomly se-
lecting subtrees, and then deleting and substituting
them. The replacement subtree is chosen from the
list in the first step. Extension operation involves
forming child mappings and producing subtrees
according to the mappings.
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Algorithm 1 Extract Subtrees from CCG Trees
1: Variables:
2: SubtreeListÐ empty list
3: AllCCGTreesÐ CCG tree list
4:
5: function ExtractSubs(node, currentPath)
6: if node is null then return
7: end if
8: Add node to currentPath
9: if node.left and node.right are null then

10: Add currentPath to SubtreeList
11: end if
12: ExtractSubs(node.left, currentPath)
13: ExtractSubs(node.right, currentPath)
14: end function
15:
16: function SubtreesForTree(root)
17: ExtractSubs(root, empty list)
18: return SubtreeList
19: end function
20:
21: function SubtreesForTrees(AllCCGTrees)
22: for each tree in AllCCGTrees do
23: SubtreesForTree(tree)
24: end for
25: return SubtreeList
26: end function

Algorithm 2 Substitution Operation
1: Variables:
2: SubtreeListÐ list of subtrees
3:
4: function GetParent(tree, childNode)
5: for each node n in tree do
6: if n.left = childNode or n.right =

childNode then
7: return n
8: end if
9: end for

10: return null
11: end function
12:
13: function DeleteAndAdd(tree, nodeToDelete)
14: parent Ð GetParent(tree, nodeToDelete)
15: newSubTree Ð randomly select from

SubtreeList with same root of nodeToDelete
16: if parent.left = nodeToDelete then
17: parent.left Ð newSubTree
18: else if parent.right = nodeToDelete then
19: parent.right Ð newSubTree
20: end if
21: end function
22:
23: function Substitute(tree)
24: nodeToDelete Ð randomly select a node

from tree
25: DeleteAndAdd(tree, nodeToDelete)
26: end function

Algorithm 3 Extension Operation
1: Variables:
2: SubtreesÐ list of subtrees
3: ChildMapÐ dictionary of children
4:
5: function Traverse(node)
6: if node is null then
7: return
8: end if
9: if node.left then

10: ChildMaprpnode, node.leftqs Ð
node.right

11: end if
12: if node.right then
13: ChildMaprpnode, node.rightqs Ð

node.left
14: end if
15: Traverse(node.left)
16: Traverse(node.right)
17: end function
18:
19: function CreateSubtree(parent, left, right)
20: parent.left = left
21: parent.right = right
22: end function
23:
24: function Extension(tree)
25: leaf Ð RandomSelectLeaf(tree)
26: if left then
27: newSubRoot Ð CreateSubtree(leaf,

leaf, ChildMaprpleaf, leafqs) Ź To extend the
node from right

28: else
29: newSubRoot Ð CreateSubtree(leaf,

ChildMaprpleaf, leafqs, leaf) Ź To extend the
node from left

30: end if
31: choose the newSubtree from Subtrees ac-

cording to newSubRoot
32: replace leaf with newSubtree
33: end function

Appendix A.2 Case Study
In this appendix, we present some wrong genera-
tions by byT5 model in the semantic parsing task.
Additionally, the gold-standard text and DRS can
also be seen as examples of the challenge sets.
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Test set Gold Text Gold DRS Generated

Standard Mary called us.

female.n.02 Name "Mary"
call.v.03 Agent -1 Time +1 Co-Agent +2
time.n.08 TPR now
person.n.01 Sub speaker

female.n.02 Name "Mary"
call.v.03 Agent -1 Time +1 Theme +2
time.n.08 TPR now
person.n.01 Sub speaker

Long Text

Recent studies show
that children who do
not get enough sleep
tend to have some
emotional problems
as well as weight
gain later in life. As
VOA’s Melinda Smith
reports, the research
seems to blame the
parents.

recent.a.02 AttributeOf +1
study.n.01
show.v.02 Proposition >1 Experiencer -1 Time +1
time.n.08 EQU now
CONTINUATION <0
child.n.01
tend.v.01 Agent -1 Time +1 Topic +2
time.n.08 EQU now
have.v.01 Pivot -3 Theme +3 Theme +7
emotional.a.03 AttributeOf +1
problem.n.01
entity.n.01 Sub -1 Sub +2
weight.n.01
gain.n.01 Theme -1
later.r.01 EQU -6
life.n.01
NEGATION <1
time.n.08 EQU now
get.v.01 Pivot -12 Time -1 Theme +2
enough.a.01 AttributeOf +1
sleep.n.01
CONTINUATION <3
agency.n.01 Name "VOA"
female.n.02 Name "Melinda Smith" PartOf -1
report.v.01 Agent -1 Time +1
time.n.08 EQU now
CONTINUATION <1
research.n.01
seem.v.01 Experiencer -1 Time +1 Stimulus +2
time.n.08 EQU now
blame.v.01 Agent -3 Theme +1
person.n.01 Role +1
parent.n.01

recent.a.01 AttributeOf +1
study.n.04
show.v.04 Proposition >1 Experiencer -1 Time +1
time.n.08 EQU now
CONTINUATION <0
child.n.01
NEGATION <1
time.n.08 EQU now
get.v.01 Pivot -2 Time -1 Theme +2
enough.a.01 AttributeOf +1
sleep.n.01
tend.v.01 Agent -4
T

Substitution Hungarian prisoners
broke out of jail.

country.n.02 Name "Hungary"
person.n.01 Location -1 Role +1
prisoner.n.01
break_out.v.03 Theme -2 Time +1 Source +2
time.n.08 TPR now
jail.n.01

country.n.02 Name "Hungary"
person.n.01 Source -1 Role +1
prisoner.n.01
break_out.v.01 Source -2 Time +1 Theme +2
time.n.08 TPR now
jail.n.01

Extension
Mr. Smith who worked
on that project asked
Jane to marry him.

mr.n.01
male.n.02 Name "Smith" Title -1
work.v.01 Agent -1 Time +1 Theme +2
time.n.08 TPR now
project.n.01
ask.v.02 Agent -4 Time +1 Recipient +2 Topic +3
time.n.08 TPR now
female.n.02 Name "Jane"
marry.v.01 Agent -1 Co-Agent +1
male.n.02 ANA -8

mr.n.01
male.n.02 Name "Smith" Title -1
work.v.02 Agent -1 Time +1 Theme +2
time.n.08 TPR now
project.n.01
ask.v.02 Agent -4 Time +1 Patient +2 Result +3
time.n.08 TPR now
female.n.02 Name "Jane"
marry.v.01 Agent -1 Co-Agent +1
male.n.02 ANA -5

Table 10: Four examples in different test sets.
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