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Abstract

With the continuous evolution of technology
and widespread internet access, various social
media platforms have gained immense popu-
larity, attracting a vast number of active users
globally. However, this surge in online ac-
tivity has also led to a concerning trend by
driving many individuals to resort to posting
hateful and offensive comments or posts, pub-
licly targeting groups or individuals. In re-
sponse to these challenges, we participated
in this shared task. Our approach involved
proposing a fine-tuning-based pre-trained trans-
former model to effectively discern whether a
given text contains offensive content that prop-
agates hatred. We conducted comprehensive
experiments, exploring various machine learn-
ing (LR, SVM, and Ensemble), deep learn-
ing (CNN, BiLSTM, CNN+BiLSTM), and
transformer-based models (Indic-SBERT, m-
BERT, MuRIL, Distil-BERT, XLM-R), ad-
hering to a meticulous fine-tuning method-
ology. Among the models evaluated, our
fine-tuned L3Cube-Indic-Sentence-Similarity-
BERT or Indic-SBERT model demonstrated su-
perior performance, achieving a macro-average
F1-score of 0.7013. This notable result posi-
tioned us at the 6th place in the task. The im-
plementation details of the task will be found
in the GitHub repository 1.

1 Introduction

The contemporary digital landscape is heavily in-
fluenced by the pervasive role of social media in fa-
cilitating online communication. Platforms such as
YouTube, Instagram, Facebook, and Twitter have
not only provided users with avenues for creating
and sharing content but have also become arenas
where individuals can freely express their views
and thoughts at any given moment (Taprial and
Kanwar, 2012). The evolution of social media has
brought forth a darker side, where individuals are

1https://github.com/Salman1804102/DravidianLangTech-
EACL-2024-HOLD

defamed, targeted, and marginalized based on fac-
tors such as religion, physical appearance, or sexual
orientation (Raja Chakravarthi et al., 2021). Given
the impracticality of manually identifying offen-
sive texts at scale, there arises a crucial need for an
automated system capable of detecting hate speech.
Such a system can empower relevant authorities
to take necessary actions against offensive content.
Natural Language Processing (NLP) emerges as
a pivotal solution, offering various techniques to
address these challenges effectively (Khurana et al.,
2023). While the problem of identifying offensive
language has been tackled from multiple angles,
including detecting cyberbullying, aggression, tox-
icity, and abusive language (Fortuna et al., 2020;
Mazari et al., 2023; Sharif et al., 2022; Hossain
et al., 2022; Sharif and Hoque, 2021), there is a
pressing need for more focused attention on hate-
specific contexts in diverse languages.

Over the past few years, numerous studies have
been conducted on detecting hate and offensive
content in several high-resource languages such as
English, Spanish, Arabic (Omar et al., 2020; Plaza-
del Arco et al., 2021), and others that have ample
linguistic resources, datasets, and related facilities.
However, the challenge persists in addressing this
issue efficiently for low-resource languages (Ma-
gueresse et al., 2020). In this particular task (B
et al., 2024), the organizers presented a Telugu
code-mixed hate speech dataset (Priyadharshini
et al., 2023), framing it as a binary classification
problem. The objective is to discern whether a
given text represents any hate and offensive speech
or not. This task serves as a crucial step toward ad-
dressing the gap in efficient hate speech detection
for low-resource languages like Telugu, especially
in the context of code-mixed text. As part of the
participants in this task, the main contributions of
our work are outlined below:

• We explored different ML, DL, and
transformer-based models for hate speech de-
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tection. And boosted the model’s performance
by determining the optimal hyper-parameters.

• Contributed to the field by conducting a com-
prehensive comparison of different models
and evaluating the performance of these mod-
els.

We organized the rest of our presentation as fol-
lows: section 2 delves into related work, section 3
describes the task and dataset, section 4 outlines
our methodology, section 5 describes the experi-
mental setup, section 6 presents the results analysis,
section 7 conducts an in-depth error analysis, and
finally, section 8 concludes with insights and out-
lines directions for future work.

2 Related Work

In the evolving landscape of hate and offensive text
detection, researchers have explored a spectrum
of techniques, each contributing to the continuous
refinement of models. An influential Bengali abu-
sive text detection endeavor was conducted (Eshan
and Hasan, 2017) assessing the efficacy of Support
Vector Machine (SVM), Random Forest (RF), and
Naive Bayes (NB) classifiers. Their framework,
achieving an accuracy of approximately 95%, laid a
foundation for subsequent investigations into more
advanced methodologies. Saumya et al. (2021)
investigated offensive language identification in so-
cial media code-mixed Tanglish (Tamil+English)
and Manglish (Malayalam+English) text, as well
as Malayalam script-mixed. The N-gram TF-IDF-
based MNB classifier achieved a weighted F1-score
of 0.90 in Tamil code-mixed text whereas LR led
with 0.78 for Malayalam code-mixed content. The
Vanilla Neural Network (VNN) outperformed in
handling Malayalam script-mixed text, achieving
an impressive weighted F1-score of 0.95.

As the field matured, a notable shift emerged
from traditional machine learning to deep learn-
ing, exemplified by Omar et al. (2020)’s work on
the detection of Arabic hate speech. Using Re-
current Neural Networks (RNN), they achieved an
exceptional 98.7% accuracy which outperformed
Convolutional Neural Networks (CNN). Another
study (Mazari et al., 2023) employed a multi-label
approach for hate speech detection on social me-
dia, utilizing pre-trained BERT and ensemble learn-
ing architectures that include BiLSTM and BiGRU
models. Integrating recent word embedding tech-
niques and DL models, the proposed approach

achieved a remarkable ROC-AUC score of 98.63%.
The exploration of transformer-based models

added a layer of complexity to hate speech de-
tection. A weighted ensemble technique (Sharif
et al., 2022), incorporating m-BERT, Distil-BERT,
and Bangla-BERT, demonstrated the adaptability of
these models in handling diverse linguistic nuances,
particularly in Bengali aggressive text datasets. In
DravidianLangTech20212, the author (Sharif et al.,
2021) addressed the challenge of detecting offen-
sive text in code-mixed social media data, em-
ploying effective transformer-based models like
XLM-R, m-BERT, and Indic-BERT for Tamil,
Kannada, and Malayalam languages. Extending
this exploration, another study (Saha et al., 2021)
within the same task also delved into a diverse
set of transformer-based models, including MuRIL,
Distil-BERT, and others. In HASOC 20233, a study
(Joshi and Joshi, 2023) evaluated the efficacy of
various sentence-BERT models, including Bengali-
SBERT, Gujarati-SBERT, Assamese-BERT, and
L3Cube Indic-SBERT, showcasing state-of-the-art
results in detecting hate speech within Indian lin-
guistic contexts.

3 Task and Dataset Description

In this shared task (B et al., 2024), a Telugu code-
mixed dataset was introduced for the detection
of hate and offensive language (Priyadharshini
et al., 2023). The dataset, designed for binary clas-
sification, comprises diverse social media posts
and comments containing both hate/offensive text
and non-hate/non-offensive text. For participants,
both the training and test datasets were provided,
without any separate validation set. The training
dataset consisted of 4,000 samples, comprising
2,061 non-hate-labeled and 1,939 hate-labeled sam-
ples, demonstrating a well-balanced distribution.
Some other useful insights are mentioned in Table
1.

Set Class Sample
Count UW MxL AL OOV

Train
Hate 2,061

17,097 71 10
1,167

Non-Hate 1,939

Test
Hate 1,939

2,365 18 7
Non-Hate 1,939

Table 1: Dataset statistics, including UW (unique
words), MxL (maximum length), AL (average length),
and OOV (out-of-vocabulary) words in texts

2https://dravidianlangtech.github.io/2021/index.html
3https://hasocfire.github.io/hasoc/2023/
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4 Methodology

In this section, we will delineate our methodology
step by step. Figure 1 shows a schematic diagram
of the methodology.

Figure 1: A schematic diagram of the methodology.

4.1 Data Pre-processing
Given that the dataset is code-mixed and sourced
from social media, it inherently includes a substan-
tial amount of extraneous and redundant content.
Therefore, as an initial step, we conducted thorough
data pre-processing. This involved the removal of
emojis, symbols, signs, numbers, and certain un-
necessary punctuation marks from the text.

4.2 Feature Extraction
In selecting feature extraction methods, our ratio-
nale is rooted in enhancing the interpretability and
efficiency of ML and DL models for text data com-
prehension. TF-IDF was chosen for ML to capture
important unigram features and highlight their sig-
nificance in the context of our study (Das et al.,
2023). For DL models, fastText and Word2Vec
were employed to harness semantic relationships
and context within the text. The implementation
choices, such as the dimensionality of 300 for both
Word2Vec and fastText, were made to strike a bal-
ance between computational efficiency and repre-
sentation effectiveness, as supported by existing
literature (Bojanowski et al., 2017; Mikolov et al.,
2013). This approach ensures a comprehensive un-
derstanding of the textual content by both ML and
DL models.

4.3 ML Models
To identify instances of hate speech, our initial
approach involved the utilization of fundamental

machine learning (ML) models. Specifically, we
employed LR, SVM, and subsequently applied an
ensemble technique incorporating RF, LR, SVM,
and Decision Tree (DT) (Sarker, 2021). To train
the LR model, we selected ‘liblinear’ as the solver,
and set the parameter value of C to 1. For SVM,
‘sigmoid’ was chosen as the optimizer, and the C
value was set to 1. This systematic deployment
of basic ML models and an ensemble approach
formed the initial exploration of our hate speech
detection task.

4.4 DL Models

To leverage the proven efficacy of deep learning
(DL) methods in handling sequence data, we incor-
porated three distinct approaches: Bidirectional
Long Short Term Memory (BiLSTM) (Hochre-
iter and Schmidhuber, 1997), Convolutional Neu-
ral Network (CNN) (O’Shea and Nash, 2015) and
a combination of CNN and BiLSTM (Sharif and
Hoque, 2021). Each of these models was trained
with both fastText and Word2Vec embeddings. The
CNN model includes a 1D convolutional layer with
128 filters and a kernel size of 5, followed by global
max pooling for feature extraction.

Meanwhile, in our combined CNN + BiLSTM
(Khan et al., 2022) methodology, the CNN layer
processed the initial embedding features using 128
filters. Subsequently, a max-pooling operation with
a window size of 2 was applied to distill relevant
features. The resultant vector underwent process-
ing in the BiLSTM layer, which featured 200 bidi-
rectional cells to adeptly capture long-term depen-
dencies. To address overfitting concerns, a dropout
technique with a 0.2 rate was implemented in the
BiLSTM layer. The final step involved feeding the
concatenated output of the BiLSTM layer into a
sigmoid layer for prediction.

4.5 Transformer-based Models

Transformer-based models, particularly the latest
addition preceding GPT, have revolutionized text
classification and various problem domains (Gas-
paretto et al., 2022). Our method capitalizes on the
versatility of pre-trained transformer-based mod-
els, evaluating their performance across different
hyper-parameters. All the transformer-based mod-
els were trained using ktrain (Maiya, 2022) and
imported from the ‘Hugging Face’4 (Wolf et al.,
2019) library by incorporating a random seed for

4https://huggingface.co/
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result reproducibility. Specifically, we employed
m-BERT (Devlin et al., 2019), Distil-BERT (Sanh
et al., 2019), MuRIL (Sakorikar et al., 2021), Indic-
SBERT (Deode et al., 2023), and XLM-R (Con-
neau et al., 2020).

L3Cube Indic-SBERT, a multilingual Sentence-
BERT model, is customized for Indian languages
through fine-tuning vanilla BERT (Gao et al., 2019)
models with a synthetic corpus. Demonstrating out-
standing cross-lingual performance, it outperforms
alternatives like LaBSE (Feng et al., 2020) and
LASER (Artetxe and Schwenk, 2019) in sentence
similarity tasks across diverse Indian languages,
providing a valuable resource for natural language
understanding in the Indian multilingual context.

5 Experimental Setup

The hyper-parameters used in this task were deter-
mined through an iterative process involving fre-
quent trials. The choice of the parameters depicted
in Table 2 also aligns with common practices in
binary classification tasks for DL models (Plested
et al., 2021; Roy et al., 2023). On the other hand,
the hyper-parameters for transformer-based models
are shown in Table 3. This meticulous experi-

Parameter Value

Optimizer Adam
Loss Function Binary Crossentropy

Activation (Hidden Layer) ReLU
Activation (Output Layer) Sigmoid

Learning Rate 1e−3

Batch Size 32
Epochs 30
MaxLen 80
Dropout 0.2

Table 2: Experimental setup for the DL models.

Parameter Value

Optimizer AdamW
Learning Rate 3e−5

Batch Size 16
Maxlen 100
Epochs 10

Table 3: Experimental setup for the transformer-based
models.

mentation aimed to optimize model performance,

ensuring the chosen hyperparameters strike a bal-
ance between convergence and computational effi-
ciency. The consistent application of these settings
across all models facilitates a fair and meaningful
comparison, allowing us to isolate the impact of
architectural variances on overall performance.

6 Result Analysis

The results in Table 4 unveil significant patterns and
challenges across the evaluated models. In the ML
category, LR and SVM classifiers demonstrate com-
petitive precision, recall, and F1 scores, with SVM
achieving the highest F1-score of 0.65. However,
the ensemble method, while achieving a compara-
ble F1 score, shows slightly lower precision and re-
call, suggesting potential challenges in integrating
diverse ML models. Moving to DL models, those

Methods Classifiers P R F1

ML
LR 0.63 0.63 0.63

SVM 0.65 0.65 0.65
Ensemble 0.60 0.60 0.59

DL

CNN(Word2Vec) 0.54 0.51 0.40
BiLSTM(Word2Vec) 0.58 0.52 0.41

CNN+BiLSTM(Word2Vec) 0.56 0.52 0.42
CNN(fastText) 0.64 0.60 0.57

BiLSTM(fastText) 0.68 0.63 0.60
CNN+BiLSTM(fastText) 0.65 0.60 0.55

TransF

m-BERT (uncased) 0.65 0.65 0.65
m-BERT (cased) 0.69 0.69 0.69

MuRIL 0.68 0.69 0.69
XLM-R 0.70 0.69 0.70

Distil-BERT 0.67 0.67 0.67
Indic-SBERT 0.70 0.70 0.70

Table 4: Result comparison on test data where P, R and
F1 denote precision, recall, macro F1-score and TransF
denotes transformer-based model.

utilizing fastText embeddings consistently outper-
form Word2Vec counterparts. The best-performing
model using Word2Vec embeddings was the hybrid
CNN+BiLSTM, achieving an F1-score of 0.42. In
contrast, the BiLSTM model achieved an F1-score
of 0.60 using fastText word embeddings. The stark
difference in F1-score among models using these
two embeddings may be attributed to Word2Vec’s
struggle to capture the rich semantic information
present in code-mixed text. The intricacies of code-
mixing, where multiple languages coexist, pose a
challenge for traditional embeddings, impacting
their ability to represent nuanced meanings effec-
tively.

However, transformer-based models exhibited
promising performance compared to both ML
and DL models. XLM-R and Indic-SBERT both
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achieved the highest F1 score of 0.70. Due to the
higher recall value of 0.70 in the case of Indic-
SBERT, it was selected as the best model for our
task, showcasing its adaptability to the complexi-
ties of code-mixed language. Table 5 illustrates the
impressive performance of this model, among the
other participating teams.

Team Name Run F1-Score Rank

Sandalphon 1 0.7711 1
Selam 2 0.7711 2

CUET_Binary_Hackers 2 0.7013 6
MUCS 3 0.6501 15

Table 5: A brief ranking of participating teams.

In summary, DL models performed less effec-
tively compared to ML and transformer-based mod-
els. The reason for this weaker performance is the
extensive appearance of cross-lingual words in the
text. As a result, Word2Vec and fastText embed-
dings failed to create appropriate feature mappings
among the words (Sharif et al., 2021). Thus, LSTM
and CNN-based models may not have found suffi-
cient relational dependencies among the features,
performing below expectations. However, Indic-
SBERT outperformed other models, due to its abil-
ity to capture intricate semantic relationships and
contextual nuances inherent in the language mix-
ture. Sentence-BERT models, like Indic-SBERT,
excel in understanding the semantic similarity be-
tween sentences, making them well-suited for code-
mixed text comprehension. The model’s robust
encoding of semantic information enables it to ef-
fectively navigate the intricacies of Telugu code-
mixing, contributing to its superior performance in
this specific linguistic context.

7 Error Analysis

To comprehensively analyze the performance of
L3Cube Indic-SBERT, we provide a detailed error
analysis in this section, utilizing a confusion ma-
trix depicted in Figure 2. Out of 250 samples, 179
hate speech and 172 non-hate speech samples were
correctly classified. However, there were 71 mis-
classified hate speech samples and 78 misclassified
non-hate speech samples. The misclassification
rates for both hate and non-hate classes are 28.4%
and 31.2% respectively. The minimal difference
suggests a close misclassification rate between the
two labels, potentially influenced by slight varia-
tions in the number of types of training samples.

Figure 2: Confusion matrix for the Indic-SBERT model.

Additionally, similar code-mixed words between
the two classes may contribute to this issue when
the model attempts to understand the text’s mean-
ing. To reduce misclassification, a detailed analysis
of each word in misclassified samples using the
Named Entity Recognition (NER) method can be
done to remove redundant codemixed words.

Limitations

• Our work relies on pre-trained transformer-
based models, which may pose challenges in
scenarios where the context significantly devi-
ates from the model’s training data.

• The employed DL models didn’t perform well.
It requires further investigation using other
embeddings and building better models.

• GPU limitations hindered us from experiment-
ing with the ensemble of transformers.

8 Conclusion and Future Work

This paper delves into the exploration and evalu-
ation of various ML, DL, and transformer-based
approaches. Our initial investigation involved TF-
IDF and embedding features (Word2Vec & fast-
Text), followed by systematic experiments with
ML and DL methods. The results indicate that
SVM outperformed other ML and DL models with
an F1-score of 0.65. However, incorporating the
transformer model significantly enhanced overall
performance. Specifically, Indic-SBERT, stood out
by achieving the highest F1-score of 0.70. Future
exploration can involve incorporating contextual-
ized embeddings like GPT, ELMO, and FLAIR, or
experimenting with ensembling transformers and
fusion models tailored to hate speech contexts. Be-
sides, alternative embedding techniques such as
GloVe and BERT-based embeddings can be applied
to enhance the performance of DL models.
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