@inproceedings{masson-etal-2024-textbi,
title = "{T}ext{BI}: An Interactive Dashboard for Visualizing Multidimensional {NLP} Annotations in Social Media Data",
author = "Masson, Maxime and
Sallaberry, Christian and
Bessagnet, Marie-Noelle and
Le Parc Lacayrelle, Annig and
Roose, Philippe and
Agerri, Rodrigo",
editor = "Aletras, Nikolaos and
De Clercq, Orphee",
booktitle = "Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
month = mar,
year = "2024",
address = "St. Julians, Malta",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.eacl-demo.1/",
pages = "1--9",
abstract = "In this paper we introduce TextBI, a multimodal generic dashboard designed to present multidimensional text annotations on large volumes of multilingual social media data. This tool focuses on four core dimensions: spatial, temporal, thematic, and personal, and also supports additional enrichment data such as sentiment and engagement. Multiple visualization modes are offered, including frequency, movement, and association. This dashboard addresses the challenge of facilitating the interpretation of NLP annotations by visualizing them in a user-friendly, interactive interface catering to two categories of users: (1) domain stakeholders and (2) NLP researchers. We conducted experiments within the domain of tourism leveraging data from X (formerly Twitter) and incorporating requirements from tourism offices. Our approach, TextBI, represents a significant advancement in the field of visualizing NLP annotations by integrating and blending features from a variety of Business Intelligence, Geographical Information Systems and NLP tools. A demonstration video is also provided https://youtu.be/x714RKvo9Cg"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="masson-etal-2024-textbi">
<titleInfo>
<title>TextBI: An Interactive Dashboard for Visualizing Multidimensional NLP Annotations in Social Media Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maxime</namePart>
<namePart type="family">Masson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Sallaberry</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Noelle</namePart>
<namePart type="family">Bessagnet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Annig</namePart>
<namePart type="family">Le Parc Lacayrelle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philippe</namePart>
<namePart type="family">Roose</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rodrigo</namePart>
<namePart type="family">Agerri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-03</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nikolaos</namePart>
<namePart type="family">Aletras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Orphee</namePart>
<namePart type="family">De Clercq</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">St. Julians, Malta</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we introduce TextBI, a multimodal generic dashboard designed to present multidimensional text annotations on large volumes of multilingual social media data. This tool focuses on four core dimensions: spatial, temporal, thematic, and personal, and also supports additional enrichment data such as sentiment and engagement. Multiple visualization modes are offered, including frequency, movement, and association. This dashboard addresses the challenge of facilitating the interpretation of NLP annotations by visualizing them in a user-friendly, interactive interface catering to two categories of users: (1) domain stakeholders and (2) NLP researchers. We conducted experiments within the domain of tourism leveraging data from X (formerly Twitter) and incorporating requirements from tourism offices. Our approach, TextBI, represents a significant advancement in the field of visualizing NLP annotations by integrating and blending features from a variety of Business Intelligence, Geographical Information Systems and NLP tools. A demonstration video is also provided https://youtu.be/x714RKvo9Cg</abstract>
<identifier type="citekey">masson-etal-2024-textbi</identifier>
<location>
<url>https://aclanthology.org/2024.eacl-demo.1/</url>
</location>
<part>
<date>2024-03</date>
<extent unit="page">
<start>1</start>
<end>9</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T TextBI: An Interactive Dashboard for Visualizing Multidimensional NLP Annotations in Social Media Data
%A Masson, Maxime
%A Sallaberry, Christian
%A Bessagnet, Marie-Noelle
%A Le Parc Lacayrelle, Annig
%A Roose, Philippe
%A Agerri, Rodrigo
%Y Aletras, Nikolaos
%Y De Clercq, Orphee
%S Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations
%D 2024
%8 March
%I Association for Computational Linguistics
%C St. Julians, Malta
%F masson-etal-2024-textbi
%X In this paper we introduce TextBI, a multimodal generic dashboard designed to present multidimensional text annotations on large volumes of multilingual social media data. This tool focuses on four core dimensions: spatial, temporal, thematic, and personal, and also supports additional enrichment data such as sentiment and engagement. Multiple visualization modes are offered, including frequency, movement, and association. This dashboard addresses the challenge of facilitating the interpretation of NLP annotations by visualizing them in a user-friendly, interactive interface catering to two categories of users: (1) domain stakeholders and (2) NLP researchers. We conducted experiments within the domain of tourism leveraging data from X (formerly Twitter) and incorporating requirements from tourism offices. Our approach, TextBI, represents a significant advancement in the field of visualizing NLP annotations by integrating and blending features from a variety of Business Intelligence, Geographical Information Systems and NLP tools. A demonstration video is also provided https://youtu.be/x714RKvo9Cg
%U https://aclanthology.org/2024.eacl-demo.1/
%P 1-9
Markdown (Informal)
[TextBI: An Interactive Dashboard for Visualizing Multidimensional NLP Annotations in Social Media Data](https://aclanthology.org/2024.eacl-demo.1/) (Masson et al., EACL 2024)
ACL