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Abstract
With the ever-growing use of social media to ex-
press opinions on the national and international
stage, unsupervised methods of stance detec-
tion are increasingly important to handle the
task without costly annotation of data. The cur-
rent unsupervised state-of-the-art models are
designed for specific network types, either ho-
mophilic or heterophilic, and they fail to gen-
eralize to both. In this paper, we first analyze
the generalization ability of recent baselines to
these two very different network types. Then,
we conduct extensive experiments with a base-
line model based on text embeddings propa-
gated with a graph neural network that gen-
eralizes well to heterophilic and homophilic
networks. We show that it outperforms, on
average, other state-of-the-art methods across
the two network types. Additionally, we show
that combining textual and network informa-
tion outperforms using text only, and that the
language model size has only a limited impact
on the model performance.

1 Introduction

Stance detection is the task of determining the po-
sition of a text or person towards a certain target,
often split into “for” and “against” with an optional
third split being “neutral”, “unknown”, or “neither”.
The target can be an entity, a topic, or other subject,
such as a claim or event.

While our work focuses on unsupervised meth-
ods for stance detection, much of the recent work
on this domain has been done with supervised meth-
ods (Sun et al., 2023; Zhu et al., 2022; Zhang et al.,
2023; Liang et al., 2022; Largeron et al., 2021).
In contrast, only a limited range of methods have
been proposed for unsupervised contexts (e.g. Tra-
belsi and Zaiane (2018)). This is important for top-
ics where annotation is costly, or results are time-
sensitive. Like with supervised methods, some
methods are mainly text-based, (Ghosh et al., 2018;
Hardalov et al., 2021; Kawintiranon and Singh,

2021) focusing on the text itself, while others are
graph-based, focusing mainly on the users’ inter-
action network (Li and Qi, 2022; Li et al., 2022).
Recently, Hofmann et al. (2022) proposed a method
integrating both text and graph/network informa-
tion. Their work focused more on determining
polarizing concepts and identifying the source of
polarity in communities, which differs from the
focus of our work. Additionally, it is noteworthy
that this approach builds upon the foundation set
by earlier supervised studies (e.g. Mishra et al.
(2019)) which have similarly attempted to utilize
semantic and social graph information for different
applications than stance detection, notably using
Graph Neural Networks.

Nevertheless, we show in our experiments that
existing methods have the strong disadvantage of
being tailored to a specific data source, i.e. a partic-
ular social media platform such as Twitter, but can
hardly generalize. In particular, the phenomena of
homophily, where users tend to interact with other
users who share their opinions or beliefs, and het-
erophily, where users interact with those who hold
opposing beliefs to their own (McPherson et al.,
2001; Albert and Barabási, 2002) are important
when considering the source of the data. For in-
stance, platforms such as Twitter tend more towards
homophily (Khanam et al., 2023), while other plat-
forms, such as debate forums, fall more on the
side of heterophily (Pick et al., 2022). Current
methods are designed for one or the other of these
network types, raising difficulty when the data does
not match the network type that the method was
designed for, regardless of data source.

To the best of our knowledge, we are the first to
propose an unsupervised stance detection method
that leverages both semantic information via text
embeddings and network information using a graph
neural networks (GNNs) to handle both types
of networks (homophilic and heterophilic). This
method is trained with a controllable contrastive
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Graph Uses Type of Embedding Clustering Max #
Model -based? Text? Graph Method Method Clusters
GUSD Yes Yes Simple Contrastive learning K-means -

InfoVGAE Yes Indirectly Bipartite VGAE K-means -
STEM Yes No Simple MaxCut SDP Hyperplane 2

Darwish et al. No Indirectly - Frequency vectors Mean Shift -

Table 1: Characteristics for the four models tested.

setting and, on average, outperforms existing base-
lines. Note that we focus on predicting the stance at
the user level and not on classifying the stances at
the document/publication level. Our contributions
are three-fold: (1) We provide an analysis of the
ability of unsupervised state-of-the-art models to
generalize to both network types (heterophilic vs
homophilic). (2) We propose a generic baseline for
unsupervised stance detection that demonstrates
improved resilience to network type variations
compared to existing methods. This is achieved
by exploiting textual information, along with net-
work information through Graph Neural Networks
(GNNs), similar to prior work in NLP detection
tasks. (3) We study the effect both of the size of the
language model and of the combination of the se-
mantic and network information in this context of
unsupervised learning. While not prioritizing out-
performing customized approaches, our model per-
forms well on average for both homophilic and het-
erophilic networks, by exploiting both data modali-
ties (text embeddings and network information).

2 Existing Approaches

Our research focuses on an unsupervised frame-
work, based on textual and/or network data, de-
signed to predict user stance in social media net-
works. In the following, V denotes the collection
of users, the interactions are modeled by a graph
G. Additionally, each user is associated to a set
of documents they posted online. The nature of G
varies according to the framework but the general
approach consists of first finding a representation
that best describes the behavior of the users based
on their interactions and/or the content they pub-
lished and then to cluster these vector representa-
tions of users in such a way that the cluster label
assigned to a user corresponds to their predicted
stance. As unsupervised approaches are rare, we
have chosen three recent methods that can be con-
sidered as baselines to test against our approach.
Each is built for either homophilic or heterophilic
networks, exploits either graph structure or textual
data in some way, and has code made available: In-

foVGAE (Li et al., 2022), STEM (Pick et al., 2022)
and the method from Darwish et al. (2020).

InfoVGAE (Li et al., 2022) utilizes a different
graph type than other methods we tested, opting for
a bipartite graph G = (V, T,E) with two types of
nodes: the users (V ) and the tweets (T ). There is
an edge (vi, tj) ∈ E between a user vi and a tweet
tj if the user has tweeted tj . The incidence matrix
for this bipartite graph is then the input to a vari-
ational graph auto-encoder (VGAE), which aims
to recreate this matrix. After training, InfoVGAE
uses embeddings from the latent space as input to
a K-means algorithm to cluster the users. Thus,
InfoVGAE focuses on the user-tweet relationship
instead of the textual content of tweets, disregard-
ing semantic information. This model is tailored to
perform well on homophilic networks.

STEM (Pick et al., 2022) relies on the assump-
tion that if one user responds to another, they do not
hold the same stance. The input graph of STEM
is a weighted undirected graph of user interactions
where an edge (vi, vj) between two nodes vi and
vj indicates a direct interaction between these two
speakers and the weight of this edge corresponds
to the number of interactions. The goal of STEM
is to find user embeddings that maximize the dis-
tance between two users who have interacted and
thus have an edge between them. To do so, it first
reduces the graph to its 2-core, then solves a relax-
ation of the max-cut algorithm in order to find the
node embeddings. STEM then finds, in this vector
space, a random hyperplane that passes through the
origin to split the vectors into two opposed groups.
The labels obtained for the nodes belonging to the
2-core are then propagated to the nodes that sit out-
side of the 2-core using the initial assumption that
if one user responds to another, they should have
opposing stances. Due to its underlying hypothe-
sis, STEM is more particularly dedicated to non-
homophilic or even heterophilic networks. In ad-
dition, it only applies when the number of stances
is limited to two (for and against). Finally, STEM
disregards textual information due to its emphasis
on structural embeddings.
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Figure 1: GUSD in one picture.

Darwish et al. (2020) use Uniform Manifold
Approximation and Projection (UMAP) for dimen-
sionality reduction and Mean Shift for clustering
(McInnes et al., 2018). The method generates vec-
tors to describe the users, made up of three sub-
vectors: one for the user’s tweets, one for the user’s
mentions of other users, and one for the user’s hash-
tags used. Each vector is created by looking at the
corpus of unique tweets, mentions, or hashtags re-
spectively and building a frequency vector for the
given user by counting the number of times they
have retweeted each tweet or used each mention
or hashtag. The feature matrix thus obtained is
passed through UMAP to perform dimensionality
reduction, then passed to Mean Shift for clustering.
It should be noted that while not explicitly built
for graph data, this method implicitly uses it via
the first sub-vector that contains the same informa-
tion as the user by tweet portion of InfoVGAE’s
incidence matrix. It also does not explicitly utilize
semantic information, favoring a frequency-based
approach to cluster similar uses of hashtags or inter-
actions with tweets and users without specifically
analyzing the meaning in the texts or hashtags. Fur-
thermore, Mean Shift being parameter-free, unlike
K-means, may not yield the same number of clus-
ters as the number of stances, which is a significant
drawback. This method also favors homophilic
networks.

3 A Generic Model for Unsupervised
Stance Detection (GUSD)

This section presents our model, called GUSD whose
architecture is given in Figure 1. We have made
the code freely available1. In this framework, G =
(V,E) is a simple undirected graph and there is a
weighted edge (vi, vj) ∈ E between vi and vj if
they have interacted in some way (retweet, mention,
reply, etc) in this network. More precisely, the edge
weight is the count of the interactions between the
users. Let F be a matrix of size |V |×d where each
row fi corresponds to a vectorized representation
of the user’s textual production. We leverage pre-
trained language models (encoder Transformers in
our experiments) to build F . More precisely, we
use an average of the [CLS] token representation
of each document (a tweet or a post) produced by
a user as done in (Devlin et al., 2019).

We use a graph neural network trained in a self-
supervised setting to build informative representa-
tions of the users that incorporate both the graph
and text information. Specifically, we leverage
graph attention networks (GAT) (Veličković et al.,
2018). We recall that the computation of the em-
bedding of node vi in layer l we write zli ∈ Rr can
be expressed as follows:

zli = σ




|V |∑

j=1

αijWlz
l−1
j


 (1)

with σ an activation function, Wl a learnable
1https://github.com/anongusd/GUSD

1784



weight matrix shared across all nodes, and αij a
learned attention coefficient for node vj with re-
spect to node vi that captures the importance of
neighbors. Finally, the initial representation is the
text embedding previously built, so z0j = fj .

As no node annotation is provided in the unsu-
pervised setting, we follow prior works (Hamilton
et al., 2017) and use a self-supervised objective to
train the node representation. We perform graph re-
construction using a contrastive approach. The aim
is to maximize the probability of observed edges
and minimize the probability for a set of negative
examples (a subset of the unconnected nodes of the
graph). We use a soft contrastive loss as presented
in (Oh et al., 2019) :

Lsoftcon =

{
− log p(m|z1, z2) if m̂ = 1

− log(1− p(m|z1, z2)) if m̂ = 0
(2)

where p(m|z1, z2) := σ(−a||z1 − z2||2 + b) is the
probability that a pair of nodes has an edge between
them, with z the final embeddings (the last GAT
layer representation), a > 0 and b ∈ R provide a
soft, trainable threshold for the distance, and m̂ is
the indicator function being 1 for positive pairs and
0 for negative pairs.

This loss aims to evaluate whether two nodes are
likely to be linked. In doing so, the embeddings
of linked nodes are pulled towards each other and
those of unlinked nodes are pushed away from each
other, letting the model integrate information about
the interactions between users into the embeddings
of their posts.

Note that this self-supervised strategy is quite
standard (Oh et al., 2019; Hamilton et al., 2017),
therefore not well suited to deal with both ho-
mophilic and heterophilic graphs. To circumvent
this issue, we propose two versions of this training
objective. One fits a homophilic network, while the
second can handle a heterophilic network.

For the former, the homophilic version, the pos-
itive examples are connected nodes and negative
examples are drawn among unconnected pairs of
nodes. More precisely, for a positive pair, i.e. an
edge between nodes u and v, we draw one random
node w that is not connected to u, and add the pair
(u,w) to the set of negative pairs. For the latter,
the heterophilic version, we build an alternative
adjacency matrix A′ from the original adjacency A
of G. With c(.), the function that changes positive
non-zero values to 1 and negative values to 0, we
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CD-All
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CD-Marijuana
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User Label Information
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Both Labels but one is predominant
Both Labels with equal proportion

Figure 2: Percent of users with: a single stance in their
textual production, several but one predominant, and
both stances with equal proportion. There are only a
few users with ambiguous positioning w.r.t. the subject
at hand.

compute A′ = c(AAT ) − c(A). In A′ there is an
edge between two users that interacted with at least
one common user (e.g. that debated with the same
person in a debate setting). It also removes every
direct interaction from the initial graph. This pro-
cess transforms the debate/heterophilic graph into
a homophilic graph. Positive values in A′ form the
positive examples, while for negative examples we
use positive values in c(A) to give a strong signal
of users that should be placed apart in the latent
space.

After training the model in this self-supervised
setting, we perform K-means clustering on the rep-
resentations z, providing groups of users that we
believe cover their opinion proximity and therefore
their stance.

4 Experimental protocol

The first aim of our experiments is to compare
our model, implemented with BERT-large, with
the state-of-the-art on various datasets with differ-
ent characteristics and to show its capacity to ad-
just to different network types (homophily and het-
erophily, specifically), confirming that it constitutes
a solid baseline for further works. Then, to investi-
gate how the size of a pre-trained language model
utilized to represent textual information, affects the
performance of our model GUSD, we conducted ad-
ditional experiments using DistilBERT (Sanh et al.,
2020), BERT-base, and BERT-large (Devlin et al.,
2019). Finally, we study the interest of combining
both text and graph data for unsupervised stance
detection. Before presenting the obtained results,
we detail our experimental protocol.
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Avg. Tweets Avg. Mentions Avg. Hashtags Dyadicity Hetero-
Dataset Source # Nodes # Edges Per User Per User Per User (Avg Weighted) philicity
Euro16 Twitter 343 654 5.87 9.14 8.58 1.96 0.11
ConRef Twitter 178 208 13.40 12.77 16.11 1.66 0.30

TIMME-Pure Twitter 389 4544 46.76 65.45 36.30 1.91 0.02
TIMME-All Twitter 942 14558 93.62 123.72 35.84 1.80 0.10

CD-All CreateDebate 247 724 15.11 0.01 0.15 0.58 1.41
CD-Abortion CreateDebate 104 245 14.85 0 0.19 0.55 1.43

CD-GayRights CreateDebate 90 207 10.87 0.03 0.02 0.54 1.62
CD-Marijuana CreateDebate 43 60 7.47 0 0.02 0.63 1.37

CD-Obama CreateDebate 59 109 10.83 0 0.22 0.53 1.53

Table 2: Characteristics of the filtered datasets. Nodes and edges are reported for the simple undirected graph.

4.1 Datasets
Our method is devised for datasets with both text
produced by users and interactions between them
modeled by a graph, demonstrating heterophily or
homophily, and for which the users’ stance is not
available. However its experimental evaluation re-
quires datasets with ground truth i.e. for which the
users’ stance is known. There are very few publicly
available datasets that meet these requirements.

This led us to select commonly used datasets:
the homophilic datasets Euro16 (Li et al., 2022),
ConRef (Lai et al., 2018) and TIMME (Xiao
et al., 2020) and one heterophilic dataset Creat-
eDebate (CD) (Hasan and Ng, 2014), divided in
5 sub datasets, expanding our data to a total of 9
datasets.

Euro16 (Li et al., 2022) contains Twitter inter-
actions surrounding the controversy over the 2016
Eurovision Song Contest winner, Jamala.

ConRef (Lai et al., 2018) contains data from
Twitter, with interactions between users on the
2020 Italian Constitutional Referendum. It is a
dataset with large imbalance in favor of the nega-
tive stance.

TIMME (Xiao et al., 2020) contains Twitter data
from politicians in the United States. TIMME-Pure
corresponds to the P_Pure dataset, containing the
tweets of only the politicians, while TIMME-All
corresponds to the P_All dataset. We use TIMME-
All as an augmented version of TIMME-Pure to
address the question of noise in the stance label,
as it incorporates non-politicians who do not nec-
essarily belong clearly to one of the two primary
political parties.

CreateDebate (Hasan and Ng, 2014) contains
data from the debate forum CreateDebate on four
topics: abortion, gay rights, marijuana, and Obama.
We also provide the results for CD-All that mixes
all the subjects, which match roughly with political
orientation. Therefore, it provides an additional
point of view on the ability of the models to sepa-
rate these orientations even when there is a mix of

subjects. All the resulting datasets are heterophilic
in nature.

Filtration was done in preprocessing using In-
foVGAE’s filter that removes users with fewer than
three texts and texts with fewer than five keywords.
Table 2 presents characteristics of the nine datasets
used: number of nodes and edges in the graph, av-
erage number of tweets, mentions and hashtags per
user.

To evaluate the heterophilic or homophilic ten-
dency of the graph associated to each dataset, we
calculated respectively heterophilicity and an av-
erage weighted dyadicity (i.e. homophily) from
both labels (for and against) (Park and Barabási,
2007). These scores are centered around 1, with
scores above 1 indicating respectively heterophilic-
ity or dyadicity (i.e. homophily) and scores be-
low 1 indicating the inverse. According to the
scores presented in Table 2, we can consider
that the graphs associated to Euro16, ConRef
and TIMME datasets are homophilic whereas the
graphs generated from CreateDebate (CD) are het-
erophilic.

4.2 Experimental settings
In this section, we describe the various experimen-
tal settings used in this paper. Note that there is no
proper train/validation/test split, as each method is
completely unsupervised.

Comparison to the ground truth We compare
our method to baselines in their ability to recon-
struct the stance in an unsupervised setting. Thus,
the ground truth is only exploited to compute the
evaluation metrics: cluster accuracy and F1-scores.

Aggregation of multiple labels As users po-
tentially publish multiple texts and as their posts
might be associated with different stances, we de-
termine their overall ground truth stance on the
topic by selecting their most frequent stance, as
done by (Li et al., 2022; Darwish et al., 2020). This
methodological choice is justified by the fact that
the majority of users demonstrate a single label
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GUSD InfoVGAE
Dataset Acc. F1 Acc. F1
Euro16 87.75 ± 12.25 87.63 ± 12.59 92.9 ± 1.31 92.69 ± 1.38
ConRef 68.31 ± 6.01 70.5 ± 5.48 53.11 ± 3.11 56.94 ± 2.87

TIMME-Pure 97.89 ± 0.63 97.88 ± 0.63 70.49 ± 1.76 67.69 ± 2.3
TIMME-All 97.26 ± 0.31 97.26 ± 0.3 - -

CD-All 76.11 ± 1.02 76.23± 1.02 47.3 ± 2.08 41.08 ± 2.89
CD-Abortion 61.34 ± 3.71 61.33 ± 3.78 47.09 ± 2.38 40.49 ± 3.86

CD-GayRights 81.33 ± 2.15 81.99 ± 2.01 43.23 ± 15.6 40.22 ± 16.81
CD-Marijuana 69.76 ± 2.94 70.83 ± 2.82 48.8 ± 14.12 46.64 ± 15.04

CD-Obama 78.31 ± 1.97 78.3 ± 1.96 62.77 ± 2.49 59.13 ± 2.54
Mean score 79.78 ± 12.68 80.22 ± 12.35 58.21 ± 16.72 55.61 ± 18.1

STEM Darwish et al.
Dataset Acc. F1 Acc. F1
Euro16 58.89 ± 0.94 59.2 ± 0.99 63.06 ± 3.83 63.18 ± 4.01
ConRef 54.16 ± 0.89 57.77 ± 0.81 94.78 ± 0.27 94.67 ± 0.27

TIMME-Pure 54.32 ± 21.12 53.34 ± 21.31 97.92 ± 0.08 97.92 ± 0.08
TIMME-All 61.21 ± 18.94 56.4 ± 23.19 94.52 ± 0.2 94.53 ± 0.2

CD-All 82.67 ± 1.01 82.73 ± 1.0 56.6 ± 0.46 43.86 ± 0.64
CD-Abortion 75.96 ± 0 75.97 ± 0 54.04 ± 0.88 43.99 ± 0.79

CD-GayRights 85.56 ± 0 85.99 ± 0 - -
CD-Marijuana 73.02 ± 1.2 73.83 ± 1.15 - -

CD-Obama 81.19 ± 2.46 81.25 ± 2.38 - -
Mean score 69.66 ± 12.59 69.61 ± 12.85 76.82 ± 20.97 73.03 ± 25.85

Table 3: Average accuracy and weighted F1 scores and standard deviation (s.d.) with mean score over the datasets
given at the bottom. A “-” indicates a technical issue. A zero standard deviation indicates either no change in scores
across trials or too small to report. Homophilic datasets are on top, heterophilic on bottom.

DistilBERT BERT Base BERT Large
Dataset Acc. F1 Acc. F1 Acc. F1
Euro16 87.58 ± 12.49 87.63 ± 12.50 87.93 ± 11.78 87.84 ± 12.04 87.75 ± 12.25 87.63 ± 12.59
ConRef 71.12 ± 2.06 72.98 ± 1.89 72.58 ± 1.71 74.51 ± 1.43 68.31 ± 6.01 70.50 ± 5.48

TIMME-Pure 95.68 ± 3.01 95.68 ± 3.01 95.52 ± 3.22 95.52 ± 3.22 97.89 ± 0.63 97.88 ± 0.63
TIMME-All 97.24 ± 0.20 97.24 ± 0.20 97.09 ± 0.08 97.08 ± 0.08 97.26 ± 0.31 97.26 ± 0.30

CD-All 73.27 ± 1.71 73.39 ± 1.69 73.68 ± 1.57 73.78 ± 1.55 76.11 ± 1.02 76.23± 1.02
CD-Abortion 63.84 ± 1.88 63.86 ± 1.87 62.30 ± 4.09 62.27 ± 4.05 61.34 ± 3.71 61.33 ± 3.78

CD-GayRights 82.44 ± 3.09 83.04 ± 2.91 77.55 ± 5.32 78.42 ± 5.06 81.33 ± 02.15 81.99 ± 2.01
CD-Marijuana 55.81 ± 2.94 57.40 ± 3.00 61.86 ± 2.94 62.81± 3.32 69.76 ± 2.94 70.83 ± 2.82

CD-Obama 78.30 ± 0.67 78.26 ± 0.69 78.64 ± 0.83 78.61 ± 0.85 78.31 ± 1.97 78.30 ± 1.96
Mean Score 78.36 ± 13.95 78.83 ± 13.53 78.57 ± 12.86 78.98 ± 12.59 79.78 ± 12.68 80.22 ± 12.35

Table 4: GUSD results with text embeddings generated by different sized language models.

in their posts, as shown in Figure 2. Additionally,
the percentage of users with the same number of
“for” and “against” posts is between 0 and 3.39%.
Consequently, even if both labels are present, the
user often demonstrates an inclination toward one
of the positions.

Settings of baseline methods The baselines
were run with their default settings with two excep-
tions - InfoVGAE was run on 300 epochs instead
of 500 as there was no significant difference in re-
sults (we observed no changes in accuracy even if
the loss tends to slightly decrease). STEM had the
option of agreeing propagation as well as opposing
and the best result is reported. The K-means algo-
rithm for InfoVGAE and our model was run with
k = 2 to produce two clusters and the data was fil-
tered to contain only entries labeled with the binary

labels to compensate for STEM’s binary constraint.
Due to Mean Shift’s lack of parameter to control
the number of clusters, the method from Darwish
et al. was run a maximum of 500 times and the first
10 partitions giving 2 clusters were taken as the 10
trials.

We did not apply the adjustment of the adja-
cency matrix to baseline methods (A → A′ for
heterophilic graphs). These baselines were not
conceived to use the adjacency matrix as input.
InfoVGAE constructs its own bipartite heteroge-
nous information network between users and posts.
STEM’s objective function is built under the as-
sumption of opposition in interactions, while the
method from Darwish et al. (2020) does not di-
rectly use user interaction data in a graph format.
Integrating this modified adjacency matrix would
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Dataset A A’
CD-All 0.52 0.76

CD-Abortion 0.50 0.61
CD-GayRights 0.53 0.81
CD-Marijuana 0.61 0.70

CD-Obama 0.58 0.78

Table 5: Accuracy comparison when using A or A’ for
GUSD on the CreateDebate datasets.

therefore lead to a significant modification of the
baselines.

Settings of GUSD2 We use a two-layer GAT with
standard hyperparameters : hidden dimensions of
100 and 50, ReLU activation function on the first
layer, along with a 20% dropout layer between the
two GAT layers.

The contrastive self-supervised training phase is
run for 10,000 epochs with early stopping based on
the graph reconstruction score on a validation set,
after which the generated embeddings are passed
through the K-means algorithm to generate the two
clusters of stances (more precisely, we select the
epoch that minimizes the inertia of the K-means
output among the 100 last steps).

We used a standard hyperparameter set for the
GNN architecture, which is common for all the
datasets, so there is no hyperparameter tuning
(number of layers, learning rate, etc.). Second,
we used early stopping and a test set composed
of pairs of nodes, linked or not linked, where the
edges have been hidden during the training step as
done in the literature. Concretely, considering the
self-supervised training of the GNN, we used 5%
of the links (that were hidden in the training set) as
evaluation set to compute the convergence criterion:
when the accuracy of the link prediction stops in-
creasing on this set, we stop the optimization phase.
We believe that these will prevent overfitting and
provide a fair setting for unsupervised evaluation
of the methods (closer to the real life setting).

Table 1 presents a summary of model character-
istics as an overview of the four models tested.

5 Results

Table 3 details the clustering accuracy and the
weighted F1 score for each model on each dataset,
averaged across 10 runs. Furthermore, the overall
mean and the standard deviation of these metrics,
computed across the nine datasets, are reported.

2https://github.com/anongusd/GUSD

It should be noted that a high standard deviation
associated with this overall average means a high
variability of the scores obtained by a model over
the different datasets.

As shown by the results, the baselines have spe-
cific contexts where they perform best, but outside
of those contexts they often perform on par with
random chance or are unable to produce results.
InfoVGAE struggles with heterophilic networks,
as it uses graph convolutions on the bipartite graph
and thus aggregates up to the two-hop neighbors -
users that shared the same content. It performs best
on homophilic networks with a higher percentage
of retweets because of its use of a bipartite graph
and graph convolutions. This is because a graph
with many unique texts (meaning texts that have
been posted by a single user without any retweets,
such as with CreateDebate) will produce a less con-
nected graph and lower the model’s effectiveness.
STEM, on the other hand, was built for heterophilic
interaction networks as confirmed by its poor per-
formance on the homophilic datasets. Some at-
tempts were made to adjust STEM to homophilic
data, such as adjusting the max cut objective, how-
ever these tests were unsuccessful. The method
from Darwish et al. works best on homophilic Twit-
ter data that can build more informative frequency
vectors, meaning that the average tweets, hashtags,
or mentions per user are relatively high, such as in
datasets ConRef and TIMME (see data statistics
in Table 2). This helps the UMAP low-dimension
vectors to be more effective in clustering the users.

While GUSD does not outperform every model
on every dataset, that was not its goal but it does
outperform the other models on average across the
datasets. Because it can be run on both homophilic
and heterophilic interaction networks, it is able to
adjust to the needs of these two different types of
networks, where assumptions made by other mod-
els do not hold across both types. Additionally, un-
like the other models GUSD runs without any issues
on all the datasets and is less variant to the addi-
tional noise that the TIMME-All dataset contains
in comparison to TIMME-Pure, which is filtered to
only data on politicians.

5.1 Impact of accounting for the heterophilic
nature of a network with GUSD

In Table 5, we provide the results of an evaluation
of the impact of using the original adjacency ma-
trix A, or the re-weighted one A′ for our model
GUSD. We recall that the transformation A → A′
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DistilBERT BERT Base BERT Large
Dataset Acc. F1 Acc. F1 Acc. F1
Euro16 54.52 54.96 60.93 61.72 51.60 52.63
ConRef 77.53 68.26 69.10 71.15 55.61 59.11

TIMME-Pure 66.32 65.88 84.57 84.47 87.14 87.13
TIMME-All 65.50 65.64 65.92 66.03 62.63 62.80

CD-All 53.03 53.13 55.06 55.00 55.06 55.28
CD-Abortion 55.76 55.81 54.80 54.53 63.46 63.46

CD-GayRights 60.00 59.01 63.33 62.16 52.22 53.86
CD-Marijuana 58.13 58.13 65.11 62.30 60.46 58.82

CD-Obama 55.93 55.83 50.84 49.38 54.23 39.33
Mean Score 60.75 ± 7.82 59.63 ± 5.54 63.3 ± 9.98 62.97 ± 10.37 60.27 ± 10.97 59.16 ± 12.71

Table 6: Results for text embeddings from different sized language models, without inclusion of graph data.
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Figure 3: Averaged results (weighted F1 score) over all
datasets for different sized language models and impact
on using the graph data

allows for the transformation of a heterophilic ad-
jacency matrix into a homophilic one, as explained
in Section 3. The accuracy reported in this experi-
ment clearly demonstrates that this transformation
improves the stance detection results by 34% on
average on the CreateDebate datasets. Additionally,
we noted that before transformation, the average
dyadicity of CD datasets is 0.57 (see Table 2). Af-
ter transformation, the average dyadicity reaches
0.97, demonstrating that this process increases the
connectivity between users with similar stance.

5.2 Impact of pre-trained model size for
textual representation with GUSD

In Figure 3, we present details on the effect of
model size on GUSD. We used three model sizes:
BERT-base is two times larger than DistilBERT
and two times smaller than BERT-large. When
varying the textual representations issued from the
different size versions of BERT, we did not observe
a substantial improvement in the performances:
DistilBERT (smallest) had 78.83% weighted F1-
score averaged across all datasets, while BERT-
base had 78.98%, and BERT-large a small increase
at 80.22%. We provide full results of this experi-

Dataset GUSD InfoVGAE STEM Darwish
Euro16 94 119 161 258
ConRef 75 252 24 4

TIMME-P 891 231 1121 17
TIMME-A 3608 - 5803 345

CD-All 339 340 805 9
CD-AB 129 141 45 4
CD-GR 85 106 15 -
CD-MA 43 67 1 -
CD-OB 39 85 5 -

Table 7: Timing for a single trial on each dataset for
each model, in seconds. Results for GUSD are calculated
with DistilBERT.

ment in Table 4.

5.3 Impact of text embedding quality and
interest of combining text and graph data

Figure 3 compares the results using only the en-
coder output (text only without interaction data)
with those obtained by combining graph and text
data. The results are presented with the same vary-
ing model sizes as seen in the above subsection.

It is worth noting that when we directly passed
the embeddings to the K-means algorithm without
utilizing the contrastive graph learning component
of the model, BERT-base embeddings achieve the
highest averaged F1-score (62.97%). In contrast,
using BERT-large resulted in 59.16%, and Distil-
BERT yielded 59.63% (cf. Table 6). These figures
clearly indicate lower performance compared to
when we incorporate graph learning and interac-
tion data. Full results can be seen in Table 6.

5.4 Timing of all models on all datasets
Table 7 presents the time (in seconds) of a single
trial of each model. All trials to measure the tim-
ing of the models were performed on a PC with 4
GB of GPU, an AMD Ryzen 7 5800H CPU with
8 cores and 16 threads, and 16GB of RAM. GUSD
computation time seems to be impacted by the den-

1789



sity of the network, similarly to STEM. We observe
a tenfold increase in running time when transition-
ing from Euro16 to TIMME-Pure, which mainly
differs in the number of edges. However, excluding
TIMME-All, it is faster than InfoVGAE. It is also
relatively equivalent to STEM, although GUSD is
less affected by an increase in network density.

6 Conclusion

While unsupervised models do exist for stance de-
tection, they struggle to generalize to network types
that do not hold to the assumptions the methods
are based on. As such, none of them can act as
baselines across multiple datasets with opposing
characteristics of homophily or heterophily. To that
end, we have conducted an analysis of state-of-the-
art models on varying datasets and proposed a new
baseline model. Unlike existing work, it exploits
both text content and graph structure by using text
embeddings propagated via graph neural networks,
which makes it more generalizable to different net-
work types. GUSD outperforms the other unsuper-
vised models on average and is robust to changes
in the number of parameters of the language model
used to construct the text embeddings.

Limitations

We tested a wide range of metrics in the final rep-
resentation space to serve as a surrogate for expert
knowledge to determine whether the network is
heterophilic or homophilic. The tested metrics in-
cluded inertia, the Calinski-Harabasz score, the
silhouette score, and the Davies-Bouldin index.
While some scores showed promise, none were
correlated with the final stance detection accuracy
for either heterophilic or homophilic interaction
networks. This is still an open research question
for the community. Fortunately, the nature of the
discussion in most broadly used social media plat-
forms is known.

In this work, we only consider binary stance de-
tection. This choice was motivated by the fairness
of evaluation compared to competitors. Among
the baselines, STEM can only handle the binary
case and InfoVGAE has also only been evaluated
for this case. As such, we chose to follow these
previous works. Moreover, some of the data used,
notably CreateDebate, contains only binary annota-
tions. Expanding past the binary case would have
required us to collect and annotate additional data
to test the heterophilic case. This was not done for

experimental reasons, however our model can be
used as-is in the case of non-binary data.

Ethics Statement

Media opinions do not necessarily reflect votes
(Lai et al., 2018) so the information provided by
the model cannot be taken as certainty without con-
siderations. These include which communities are
involved, which communities are likely to be vo-
cal on social media versus participate in a vote,
and how the data is being collected. The model is
only meant to give a rough idea of people’s opin-
ions based on the data, so if the data is biased, the
model’s results will reflect that bias.

This model is meant to be a baseline for further
research, not for direct application use. It does
not use demographic or identity information and
even the identifiers it does use (usernames) can
be anonymized without any effect on the model’s
results. The anonymization could also be impor-
tant to mitigate malicious use to attack users who
are detected to hold a certain belief (though it is
important to note that due to the model using pub-
licly posted tweets/texts, this is not dependent on
the model itself). All data and code used in this
paper has been made publicly available 3 4 5 6. Ta-
ble 2 gives characteristics of the data and Table 1
provides characteristics of the models.
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