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Abstract

Current text classification approaches usually
focus on the content to be classified. Contextual
aspects (both linguistic and extra-linguistic) are
usually neglected, even in tasks based on online
discussions. Still in many cases the multi-party
and multi-turn nature of the context from which
these elements are selected can be fruitfully ex-
ploited. In this work, we propose a series of
experiments on a large dataset for stance de-
tection in English, in which we evaluate the
contribution of different types of contextual in-
formation, i.e. linguistic, structural and tempo-
ral, by feeding them as natural language input
into a transformer-based model. We also exper-
iment with different amounts of training data
and analyse the topology of local discussion
networks in a privacy-compliant way. Results
show that structural information can be highly
beneficial to text classification but only under
certain circumstances (e.g. depending on the
amount of training data and on discussion chain
complexity). Indeed, we show that contextual
information on smaller datasets from other clas-
sification tasks does not yield significant im-
provements. Our framework, based on local
discussion networks, allows the integration of
structural information, while minimising user
profiling, thus preserving their privacy.

1 Introduction

Online conversations are a main channel through
which phenomena such as fake news, rumors and
hate speech can spread (Sheth et al., 2022), polit-
ical leaning is expressed (Garimella et al., 2018)
and one’s health conditions can be revealed (Gun-
tuku et al., 2017). All these phenomena can be
captured to some degree automatically, provided
that we have reliable NLP systems able to classify
the content of the messages. Most classification
approaches focus on the textual content of single
comments (or a pair, in the case of stance detec-
tion), however little has been done to include the

Figure 1: Representation of input data in Kialo dataset:
the discussion chain (in bold) is extracted from the dis-
cussion tree, and each claim has a textual content c, a
user id and a timestamp. A support (green) or contrast
(red) label w.r.t. the previous statement is assigned to
each claim. The initial claim c0 has no stance (blue).
This representation can be easily generalized to experi-
ments on other datasets.

full context of the conversation and test its useful-
ness in classification tasks.

Indeed, while the actual content of comments
gives us information about what was written, know-
ing whether and how often two users interact with
each other can give us a wider picture of how the
dialogue is evolving. Furthermore, temporal in-
formation allows us to identify peaks or “waves”
of comments, suggesting the occurrence of a trig-
gering event, as seen in relation to online toxicity
(Saveski et al., 2021) and fake news (Vosoughi
et al., 2018).

Previous NLP studies already investigated how
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contextual information can be included in the clas-
sification of online conversations, mainly following
three distinct directions: integrating textual context,
i.e. the previous thread of a given post (Pavlopou-
los et al., 2020), modelling user-related context
(Zhang et al., 2018; Nguyen et al., 2020), or in-
cluding structural context in terms of conversation
structure (Song et al., 2021; Tian et al., 2022), or
external knowledge (Beck et al., 2023). Regard-
less of which type of context was considered, one
major issue is represented by the limited size of
many benchmarks, from which models can hardly
learn contextual information (Menini et al., 2021;
Anuchitanukul et al., 2022). Another drawback
is that, in order to develop classification models
embedding contextual information, complex and
computationally-intensive architectures are needed
(Agarwal et al., 2022).

We address the above challenges by propos-
ing an approach integrating textual, temporal and
structural context in a simple, unified architec-
ture, where such information is expressed in nat-
ural language and is captured by a transformer-
based model (Vaswani et al., 2017) for classifica-
tion, without separately modelling the latent struc-
tural information of the interactions. In this frame-
work, we avoid to explicitly provide user-related
information, which may lead to privacy issues, but
we rather represent users as “local discussion IDs”,
meaning that a user is assigned a new ID for each
discussion they participate in. As a consequence,
if a user is active in several discussions, this infor-
mation is not available and user profiling at global
network level is not possible, thus enforcing pri-
vacy preservation.

Since previous studies highlighted that training
size is crucial to make models aware of contextual
information, we mainly perform our experiments
on a task of stance detection using a large dataset
extracted from the Kialo platform (Scialom et al.,
2020). While the dataset is described in detail in
Section 4, we report in Figure 1 an example of
discussion structure taken from this resource.

To better understand the contribution of the train-
ing set size, we perform also an analysis of the
learning curve (Section 8) and we evaluate the per-
formance of our models on local discussion net-
works (LDNs) of different complexity and of vary-
ing length (Section 9). As a comparison, we also
test our approach on two smaller datasets for stance
detection and abusive language detection, confirm-

ing the effect of dataset size (Section 7).
The data are available upon request only for re-

search purposes, in compliance with Kialo’s terms
of service. We follow a data minimisation principle,
sharing only the information needed to replicate
our experiments after user anonymisation.1

2 Related Work

Despite the fact that social network discussions
involve more information than just a sequence of
texts, such as user interactions and temporal evo-
lution, researchers have only made few attempts
to combine linguistic information with structural
and temporal information. Some attempts have
been made for tasks like fake news detection (e.g.,
Nguyen et al., 2020, and Song et al., 2021), hate
speech detection (Chakraborty et al., 2022), stance
detection (e.g., Yang et al., 2019, and Zhou et al.,
2023) and rumour verification (Zhou et al., 2019).
User-related information has also been success-
fully exploited in abusive comment moderation
(Pavlopoulos et al., 2017).

All these tasks are closely related to the dynam-
ics of human behavior, but the involvement of lin-
guistic information, network information and tem-
poral information altogether has been difficult be-
cause of: I. the fusion of heterogeneous knowledge,
by combining computationally-expensive models
such as Pretrained Language Models and Graph
Neural Networks (GNNs) (Zhou et al., 2020), like
in Lin et al. (2021); II. the access to large-scale
private data, that cannot be freely released; III. the
training of human annotators on this data; IV. the
deletion of social media posts over time, leading to
gaps in discussions, especially in hate speech and
fake news datasets (Klubicka and Fernández, 2018).
For few shared tasks, datasets that also include con-
textual information such as user ids and timestamps
have been created (Gorrell et al., 2019; Cignarella
et al., 2020). Still, researchers have mostly worked
only on the textual content.

One of the reasons why contextual information
has been marginally explored in classification tasks
is that it has not been proved beneficial in a con-
sistent way. As shown by Menini et al. (2021),
exploiting the textual context does not lead to any
increase in performance for abusive language de-
tection, even if the dataset was re-annotated by

1The request form and the software to reproduce the experi-
ments are publicly available at https://github.com/dhfbk/
PuCC.
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looking at the full context. These results have been
confirmed by Anuchitanukul et al. (2022), who fur-
ther show that the outcome of contextual models
strongly depends on the intrinsic characteristics and
the dimension of the training set. Yu et al. (2022)
show that adding a short context (only parent and
target comments) improves hate speech classifica-
tion. However, they do not consider any structural
context but only textual one. Similar to our work,
Beck et al. (2023) model contextual information
through natural language. However, they consider
as “context” external contextual knowledge such as
structured knowledge bases, causal relationships,
or information retrieved from a large pretrained
model, and not the conversation structure.

As regards stance detection, Agarwal et al.
(2022) propose a graph-based inference model to
predict the stance of a comment versus its own par-
ent, exploiting the concept of graph walk to add
context. They perform experiments on a dataset
retrieved from Kialo, as we do in this work (see
details in Section 4).

A similar task is rumour verification, where the
goal is to evaluate the truthfulness of a rumour
based on the reaction caused by it. In this case,
since the focus is on the effects produced by the
claim, the context is represented by the claims fol-
lowing the target claim (i.e., the right context),
rather than the claims preceding it (i.e., the left
context). To address this task, Tian et al. (2022)
propose a combination of BERT with a particu-
lar Graph Neural Network called GAT (Veličković
et al., 2017). They retrieve both linguistic and
extra-linguistic context, but they consider the full
discussion tree and perform classification only of
the initial claim.

To summarize, existing past works that tried to
integrate contextual information to classification
tasks either were not able to outperform text-only
approaches, or yielded an improvement using com-
putationally expensive models such as Graph Neu-
ral Networks (GNNs). Furthermore, they tended to
give in input to the model all possible information,
including user data. With our approach, instead,
context benefits classification, while modelling the
diverse types of input in natural language and be-
ing privacy-preserving.

3 Problem statement

The definition of discussion is not unique. De-
pending on the social network, different discussion

The enforcement of 
the criminalisation of 
drugs has harmed 
communities around
the world and should 
be stopped

Criminalising the activity of 
drug users has negative 
effects on individual, their 
families, and society

The legalisation of drugs 
would not likely stop the 
over-policing of affected 
communities in countries
like the US.

Figure 2: Example of supportive (green) and contrastive
(red) claim having the same parent claim in Kialo.

structures can arise, from discussion chains to dis-
cussion trees, or allowing branches only at specific
levels. In the following, discussion chain indicates
a linear thread of ordered claims, where each claim
is the reply to the previous one. This definition al-
lows us to assume that the author of the N th claim
has read all the previous N � 1 claims. Moreover,
using the single chain instead of the discussion tree
allows us to reduce the complexity of the discus-
sion structure. From a discussion chain we can
retrieve a Local Discussion Network (LDN), i.e. a
multi-edge directed network of interaction among
the users, with a timestamp label for each edge.

Formalization. Let D = {d0, d1, d2, ..., dm}
be a set of discussions, where each discussion
is made of an ordered sequence of claims di =
{c̄0, c̄1, c̄2, ..., c̄n} where c̄0 is called initial claim
and each claim c̄i is a response to the claim
c̄i�18i � 1. Each claim c̄i is a tuple {ci, ui, ti},
where ci is the textual content, ui the local user ID
of the author and ti the timestamp. Each discussion
di has a label yi 2 Y , with Y = [0, l � 1] where l
is the number of possible labels. In Kialo setting
(see details of Kialo dataset in Section 4), we have
two labels called contrast (C) and support (S) re-
spectively mapped to {0, 1}. The goal is to learn a
function f that maps correctly each discussion to
its correct label f : D ! Y .

4 Kialo Dataset for Stance Detection

Kialo2 is an online platform where people can de-
bate around a main topic, with moderators being
in charge of checking the grammaticality of the
claims, evaluating the level of support or of contrast
between a target claim and its parent claim, and
even moving claims to make conversations more
consistent. For these reasons, Kialo typically con-

2https://www.kialo.com
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SDK Dataset

Set Contrast Support Total

Training 49.2% 50.8% 122, 681

Validation 50.2% 49.8% 7, 447

Test 54.5% 45.5% 8, 211

Table 1: Distribution of the labels in the Stance Detec-
tion Kialo (SDK) dataset.

tains less noisy data and a clearer conversational
structure than other social media like Twitter/X, be-
ing an ideal testbed for experiments and analyses.

In Kialo, the author of each comment is required
to assign a stance label to it with respect to the
parent comment. This label (support or contrast) is
then checked by the moderator, who can change it
if needed (an example of supportive and contrastive
stance from the dataset is displayed in Figure 2).
Furthermore, being clearly structured, it is possible
to easily retrieve from discussions the reply-tree
structure and the distribution of support/contrast
comments.

Datasets extracted from Kialo have already been
used in the past to study the linguistic characteris-
tics of impactful claims (Durmus et al., 2019a,b) or
perform polarity prediction (Agarwal et al., 2022).
We obtained access to the dataset based on Kialo
presented in Scialom et al. (2020), which was used
for binary stance detection. We extract from their
data only a subset containing chains longer than 1
(i.e., having at least the initial claim and one reply).
In this way, we obtain 122, 681 training instances,
7, 447 validation instances and 8, 211 test instances.
Each instance includes: I. the target claim; II. the
discussion chain, from the initial claim to the tar-
get claim; III. the stance of each claim versus its
parent claim; IV. the user ID of each claim; V.
the timestamp of each claim. Given a discussion
d = {c̄0, c̄1, ..., c̄n} of length n + 1, the goal is
to classify correctly the stance of c̄n with respect
to c̄n�1, choosing between support (S) or contrast
(C). We report in Table 1 an overview of the label
distribution in our dataset, which we call the Stance
Detection Kialo dataset (SDK).

For each discussion tree we extract all the dis-
cussion chains going from the initial claim to the
leaves. Consequently, it is possible for portions
of these chains to overlap, while the target claims,
with their respective labels, remain unique. This
approach allows the model to process instances in
which different discussion progressions result in

different outcomes. Furthermore, to mitigate poten-
tial data contamination effects, the dataset is split
according to the initial claim c0. As a result, all
chains originating from the same initial claim are
exclusively assigned to either training, validation,
or test set.

5 Context Definition and Modelling

In past works, context has been integrated in so-
cial media classification tasks using two main ap-
proaches: by combining linguistic and network
information through the combination of node or
network embeddings and textual embeddings (Shu
et al., 2019; Dou et al., 2021) or by using textual
embeddings as features in a network system, and
retrieving a general representation using GNNs or
node/network embedding techniques (Yao et al.,
2019; Lin et al., 2021).

We follow a third approach by expressing infor-
mation on structural and temporal context using
natural language, and then giving it in input to
a transformer-based model. We use a RoBERTa-
based model (Liu et al., 2019) to perform the
task. This allows us to keep the same classification
framework while only changing the input data to
progressively add contextual information, adopting
a simple yet effective solution which is computa-
tionally lightweight.

Given a discussion chain d = {c̄0, c̄1, ..., c̄n}
of length n + 1, where c̄i = {ci, ui, ti}, we can
identify 3 different types of context: a linguistic
(textual) context, ci, and two extra-linguistic (tem-
poral and structural) contexts, ti and ui.

Textual context. In our experiments, the tex-
tual context is defined as the sequence of all the
claims in the discussion chain from c0 to cn�2, and
it is added to cn�1 and cn (i.e., the claims used
for defining the stance). We concatenate all ci for
0  i  n and between each pair of claims we
put a [SEP] tag. If the length of the final input ex-
ceeds the maximum input length for the model, we
iteratively delete ci, for i from 1 to n � 2 (keeping
always c0 at the beginning). We call this concate-
nation TXT_CHAIN.

Temporal context. To model the temporal con-
text, we add at the beginning of each ci (from the
textual context) the time ti passed between the pub-
lication of the initial claim c̄0 and of c̄i. However,
we know that transformer-based models struggle
in mathematical reasoning (Patel et al., 2021). To
overcome this limitation, instead of reporting ti as
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a value in milliseconds (as provided in the dataset)
the temporal information is given in the format
“after d days, h hours, m minutes”, with d,
h, and m correctly computed. We call this prefix
TIME. This prefix is delimited by two special tags:
<t> and </t>.

Structural context. To model the structural
context, we add at the beginning of each text ci

the local user ID of ui. This piece of information
makes it possible to reconstruct the structure of the
LDN among the users in the discussion d, i.e. if A
replies to B, there is a direct edge from A to B. We
can therefore see the LDN as a multi-edge directed
graph of the interactions, with the textual content
and the order of interactions as labels (Figure 1).

The local user ID is locally unique: for each dis-
cussion chain, a value from 0 to m� 1 is incremen-
tally assigned to each of the m users contributing
in the discussion according to their first appear-
ance within the discussion itself. Using local IDs
means that when a user is active across different
discussions, they are assigned a different ID in each
conversation. This prevents our model from implic-
itly profiling users’ behavior and attitude at global
level, thus adopting a privacy-preserving approach.

The structural information is given in input to
the model adding before each comment the prefix
“jth user”, with 0  j  m � 1 to declare that
the author with local ID j wrote the claim. We call
this prefix USER. Also for this prefix we adopt two
special tags to signal the start and the end of the
prefix: <o> and </o>.

6 Models and Experimental Settings

We implement and compare eight different classifi-
cation models trained on the SDK dataset, which
can be divided into three categories: DUMMY,
BASELINES and CONTEXTUAL. DUMMY models
predict the label ignoring the input (i.e., majority
class or random class). Instead, for BASELINES

and CONTEXTUAL we always use a pre-trained
RoBERTa-based model (Liu et al., 2019) to embed
the input. Then we extract the final [CLS] con-
textual embedding and feed it into a Multi-Layer
Perceptron (MLP) module to perform the classi-
fication task (for details of the architecture, see
Appendix A.1). We use Optuna (Akiba et al., 2019)
for hyperparameter optimization of the learning
rate and the dropout applied to the MLP (details in
Appendix A.2). In Figure 3 we report a schematic
view of the input configuration employed for the
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Figure 3: Schematic view of the input configuration
for each model tested. We display the position of each
textual content ci, the [CLS] tokens, the [SEP] tokens,
the USER prefix and the TIME prefix.

BASELINE models and the CONTEXTUAL models.
We describe below the different classification

models, divided into the three following categories.
DUMMY. We implement two “dummy” models:

• MAJORITY CLASS: this model always as-
signs the majority class label (i.e., support in
the case of the SDK dataset).

• RANDOM: this model assigns the label, for
each item, at random, each with the probabil-
ity p = 0.5.

TEXT-ONLY BASELINES. The two models,
based only on the text of the claims, take in input a
fixed number of claims:

• SINGLE: we give in input to the model only
the textual content of the last claim cn. The
goal is to predict the stance of cn without
considering what was written before. This
approach should be able to perform classifi-
cation just by looking at linguistic or stylistic
cues in cn.

• PAIR: we give in input to the model only the
textual content of the last two comments, cn

and cn�1, separated by the [SEP] token. The
goal here is to predict the correct label looking
at the semantics and at the style of the two
claims, as well as at the relations between the
two. This is the standard solution for Stance
Detection.

CONTEXTUAL. We model contextual informa-
tion in four different ways:
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Model Input

SINGLE <s>Receiving a benefit while helping others is not morally wrong. Otherwise all the foundations supported
by big brands would be morally reprehensible. </s>

PAIR <s> Personal "return on investment" should not be a guide on charity. </s></s> Receiving a benefit while
helping others is not morally wrong. Otherwise all the foundations supported by big brands would be morally
reprehensible. </s>

TC <s> People should donate to organisations that support gorillas instead of to those that support starving
children. </s></s> Saving gorillas has less impact on the donor’s own well-being than saving a child.
</s></s> Personal "return on investment" should not be a guide on charity. </s></s> Receiving a benefit
while helping others is not morally wrong. Otherwise all the foundations supported by big brands would be
morally reprehensible. </s>

TC + T <s> <t> after 0 days, 0 hours, 0 minutes </t> People should donate to organisations that support gorillas
instead of to those that support starving children. </s></s> <t> after 0 days, 6 hours, 36 minutes </t> Saving
gorillas has less impact on the donor’s own well-being than saving a child. </s></s> <t> after 7 days, 20
hours, 23 minutes </t> Personal "return on investment" should not be a guide on charity. </s></s> <t> after
28 days, 23 hours, 14 minutes </t> Receiving a benefit while helping others is not morally wrong. Otherwise
all the foundations supported by big brands would be morally reprehensible. </s>

TC + U <s> <o> 0th user </o> People should donate to organisations that support gorillas instead of to those that
support starving children. </s></s> <o> 1st user </o> Saving gorillas has less impact on the donor’s own
well-being than saving a child. </s></s> <o> 2nd user </o> Personal "return on investment" should not be a
guide on charity. </s></s> <o> 1st user </o> Receiving a benefit while helping others is not morally wrong.
Otherwise all the foundations supported by big brands would be morally reprehensible. </s>

TC + U + T <s> <t> after 0 days, 0 hours, 0 minutes </t> <o> 0th user </o> People should donate to organisations
that support gorillas instead of to those that support starving children. </s></s> <t> after 0 days, 6 hours,
36 minutes </t> <o> 1st user </o> Saving gorillas has less impact on the donor’s own well-being than
saving a child. </s></s> <t> after 7 days, 20 hours, 23 minutes </t> <o> 2nd user </o> Personal "return on
investment" should not be a guide on charity. </s></s> <t> after 28 days, 23 hours, 14 minutes </t> <o>
1st user </o> Receiving a benefit while helping others is not morally wrong. Otherwise all the foundations
supported by big brands would be morally reprehensible. </s>

Table 2: Different types of input related to the same discussion that are fed to the model.

• TC: we give in input to the model only the
concatenated claims in the TXT_CHAIN for-
mat.

• TC + T: we give in input to the model the con-
catenated claims in the TXT_CHAIN format,
each claim with the TIME prefix.

• TC + U: we give in input to the model the con-
catenated claims in the TXT_CHAIN format,
each claim with the USER prefix.

• TC + U + T: we give in input to the model
the concatenated claims in the TXT_CHAIN

format, each claim with the TIME prefix and
the USER prefix.

We report in Table 2 an example of how the same
discussion is given in input to the model in the dif-
ferent configurations. In the pretrained RoBERTa
model available on Hugging Face3, the [CLS] to-
ken is replaced by a <s> tag and the [SEP] token
is represented by a sequence of special tags (i.e.,
</s></s>). We have taken inspiration from these
representations for our new special tokens: <t>,

3https://huggingface.co/docs/transformers/
model_doc/roberta

</t>, <o>, </o>. The input text is pre-processed
by replacing user mentions and urls with placehold-
ers following a standard approach for social media
data.4

7 Experiments

7.1 Stance Detection on Kialo
The goal of the first set of experiments is to evalu-
ate on Kialo the performance of the eight models
described above by using the whole training set,
both for hyperparameter optimization and for the
final evaluation. The results are the average and
standard deviation over 5 experimental runs (de-
tails in Appendix A.2).We report in Table 3 the F1
score for each class, its weighted average (W-F1),
and the macro average (M-F1). The final metric we
use for ranking the models is M-F1.

Results. All the results are reported in Table
3. We compute statistical significance using Al-
most Stochastic Order test (Del Barrio et al., 2018;
Dror et al., 2019) and Student’s t-test for indepen-
dent sample with Bonferroni correction (Bonfer-

4https://huggingface.co/cardiffnlp/
twitter-roberta-base-sentiment
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Category Model C-F1 S-F1 W-F1 M-F1 LR DO

DUMMY
MAJORITY 70.5 (±0.0) 0.0 (±0.0) 38.4 (±0.0) 35.3 (±0.0) / /

RANDOM 52.1 (±0.6) 48.0 (±0.4) 50.2 (±0.5) 50.1 (±0.5) / /

BASELINES
SINGLE 75.5 (±0.5) 70.2 (±0.6) 73.0 (±0.1) 72.8 (±0.2) 7.5 · 10�6 0.5

PAIR 83.1 (±0.4) 79.3 (±0.4) 81.4 (±0.2) 81.2 (±0.2) 7.5 · 10�6 0.25

CONTEXTUAL

TC 82.2 (±0.6) 78.8 (±0.4) 80.7 (±0.3) 80.5 (±0.3) 7.5 · 10�6 0.25

TC + T 83.3 (±0.4) 80.0 (±0.4) 81.8 (±0.3) 81.7 (±0.3)⇤ 7.5 · 10�6 0.25

TC + U 85.2 (±0.5) 82.1 (±0.7) 83.8 (±0.5) 83.7 (±0.5)⇤⇧ 1.0 · 10�5 0.25

TC + U + T 85.6 (±0.4) 82.3 (±0.3) 84.0 (±0.3) 83.9 (±0.3)⇤⇧ 7.5 · 10�6 0.25

Table 3: F1 scores obtained on the test set of SDK dataset, for each class, in weighted average and in macro average
(average of the best 5 runs in validation over 10). (⇤) and (⇧) show a statistically significant improvement with
respect to the PAIR baseline, for ASO test and Student’s t-test respectively. We report the average and the standard
deviation for each metric. LR column reports the Learning Rate and DO column reports the dropout value in the
MLP component

roni, 1936). For ASO, we use the implementation
provided in the deep-significance library, pre-
sented by Ulmer et al. (2022), with the suggested
threshold value of ⌧ = 0.2. For the t-test we use
the implementation provided in the scipy library
with threshold value of ↵ = 0.05.

Both BASELINE models lead to better perfor-
mances than the DUMMY models. Interestingly,
the SINGLE model performs well (72.8 M-F1 on
average), showing that the style of the target com-
ment already conveys relevant information to detect
its stance. However, as expected, taking the last
two comments in input (PAIR model) increases the
M-F1 score by +8.4 over the SINGLE one.

Among the CONTEXTUAL models, the TC
model achieves the worst results, slightly lower
than the PAIR model. This shows that adding con-
text is not always beneficial. In this case, since
the number of claims in a discussion changes, the
model is probably not able to focus on the right por-
tion of the chain. Adding the temporal information
only, as in the TC + T model, yields a better per-
formance than the simple textual chain in the TC
model (+1.2 M-F1) and outperforms significantly
the PAIR baseline (+0.5) for the ASO test.

Looking at the different types of context, we ob-
serve that adding only the USER prefix as in TC
+ U, leads to a significant increase of +3.2 M-F1
over the TC model and of +2.5 over the PAIR base-
line, for both statistical significance tests. Further-
more, the TC + U + T model with both USER prefix
and TIME prefix increases significantly the perfor-
mance with respect to TC model (+3.4), PAIR

model (+2.7) and TC + T model (+2.2), again for
both statistical significance tests. However, there is

no significant difference between TC + U model
and TC + U + T model (only +0.2). This indicates
that TIME prefix is no more relevant once we pass
to the model the USER prefix.

7.2 Experiments on other Datasets

As a comparison, we run the same experiments on
two smaller datasets, which provide the same type
of information included in SDK: the SQDC dataset
(Gorrell et al., 2019) for stance detection, and the
ContextAbuse dataset (Menini et al., 2021) for abu-
sive language detection. These datasets present a
size of respectively 5% and 7% compared to SDK.
On the SQDC dataset, the SINGLE baseline yields
the best result (47.2 M-F1), probably because the
official test set contains only chains of length 2. Af-
ter creating a better balanced train and test split, in-
stead, the best result is obtained with the PAIR base-
line (46.4 M-F1). On the ContextAbuse dataset,
adding textual context (i.e., TC model) yields the
best performance (81.4 M-F1), which however is
not statistically significant compared to the SIN-
GLE baseline (80.7 M-F1). For detailed dataset
specifications and experimental results, we refer to
Appendix A.6 and Appendix A.7.

These experiments suggest that, independently
from the specific task, contextual information may
not yield substantial enhancements in performance
if the amount of training data is too limited. In
order to investigate better this aspect, we perform
an additional analysis of the learning curve in the
following section.
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Figure 4: Learning curve for each BASELINE and CON-
TEXTUAL model, in terms of M-F1 score.

8 Learning Curve Analysis

While our experiments show that the discussion
context on the SDK dataset is beneficial to stance
detection, we aim to assess the impact of the train-
ing set size. Our intuition is that, when contextual
information is embedded in the model, more train-
ing instances are needed than for text-only models.
Indeed, the model must be given enough training
instances to understand what is the role of the spe-
cial tags and what type of information is included
between two specific separators.

We therefore extract from the original training
data 5 different training sets, comprising around
5% (6, 354 examples), 10% (12, 402 examples),
20% (24, 748 examples), 40% (49, 249 examples)
and 80% (98, 389 examples) of the original training
instances.

Results. Figure 4 shows the results obtained
when increasing the training set size as the average
over 3 runs (the full results and experimental de-
tails are reported in Appendix A.4). We exclude
the DUMMY models, since they never outperform
BASELINE and CONTEXTUAL models.

With 5% of the training data, all the CONTEX-
TUAL models are beaten by the worst BASELINE

model (i.e., SINGLE), with a drop in M-F1 ranging
from �10.8 (TC) to �16.3 (TC+U+T) compared to
using the whole training set. At the same time, the
PAIR model achieves the best result in this setting,
with a performance drop of only �4.6. However,
as soon as we add more data, the scenario changes.
With 10% training set and 20% training set, CON-
TEXTUAL models overcome the SINGLE model and

progressively approach the PAIR model. With 40%
training set, TU + U and TC + U + T outperform
the PAIR model and with more data they substan-
tially increase their gap with the latter.

To sum up, these results show that CONTEX-
TUAL models need between 20% and 40% of the
training data (i.e., from 24 thousand to 49 thousand
training examples) to achieve comparable results
with the PAIR model, while they need more data to
outperform it.

9 Analysis of Discussion Structure

Beside assessing the impact of training set size on
classification performance, we are also interested in
analysing the role played by the topology of local
discussion networks (LDNs) in terms of complex-
ity and discussion length. To this aim, we merge
consecutive claims written by the same author in
a discussion chain into a unique turn, and create a
corresponding turn chain. In this way, two consec-
utive turns have always different authors, and the
corresponding LDN does not have self-loops. For
further details we refer to Appendix A.5.

We first divide LDNs in the SDK dataset into
two groups: simple LDNs, which are characterized
by chains where users write only one turn, and
complex LDNs, with a user writing several turns.
We run the stance detection experiment with the
setting presented in Section 7 and compare the
results obtained on simple vs. complex chains. We
also analyse how the number of claims and of users
affects classifier performance on complex LDNs
(with and without context). Results are reported in
Figure 5, which displays the M-F1 score obtained
with the different models. The thickness of the
line represents the standard deviation over 5 runs.
The analysis shows that extra-linguistic context
gives an important contribution to the classification
of complex LDNs, in particular the TC + U + T
model. This contribution is more limited on simple
chains, with the PAIR model and the CONTEXTUAL

models achieving comparable results.
As regards the impact that the number of turns

has on the classification of complex LDNs (middle
graph in Figure 5), we first group the turns into
three bins based on their length: from 2 to 5 (dark
blue), from 6 to 10 (blue) and > 10 (light blue).
The comparison among the three groups clearly
demonstrates that the inclusion of temporal and
structural context consistently results in a perfor-
mance improvement, regardless of the number of
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Figure 5: Model comparison when testing the classifier on different dimensions: Simple vs. Complex LDNs (left),
Complex LDNs with different number of turns (center) and different number of users (right).

turns in the discussion. We finally investigate the
effect that the number of users involved in the com-
plex LDN has on classification performance (right
plot of Figure 5). Also in this case, the chains are
grouped into three bins: having less that 4 users
(dark blue), from 5 to 8 users (blue), and more than
8 (light blue). Again, the comparison demonstrates
that the inclusion of the extra-linguistic contexts
consistently results in improvement, regardless of
the number of users involved in the discussion.

10 Discussion

The results reported in Section 7 and Section 8
show that adding extra-linguistic context is bene-
ficial to improve performance on stance detection.
However, this benefit arises only if the CONTEX-
TUAL models have access to enough data, which
in our experiments on the SDK dataset means
between 24, 000 and 49, 000 items. This result
explains also the different performance obtained
on smaller datasets (Section 7.2). As regards the
analysis of local discussion chains, the more com-
plex is the LDN, the more evident are the ben-
efits from the structural context. This suggests
that our transformer-based model is able to capture
the structure given by the interactions among the
users, even if implicit, when enough data are avail-
able. Our analyses show also that capturing con-
textual information is particularly beneficial with
longer chains of turns, and discussion chains with
more users. When all contextual information (both
linguistic and extra-linguistic) is included in the
model, the classifier performs equally well on long
and on short chains, making the results more con-
sistent and the model more robust to chain length
and user activity.

As regards the temporal context, we show that it
is still useful to achieve a better performance, but

we argue that in Kialo it may not be particularly
relevant because this is a platform where users are
more likely to ponder their responses and take some
time to reflect before posting, also thanks to a strict
moderation policy (Vosoughi et al., 2018).

11 Conclusions

In this paper we have tested the effectiveness of us-
ing linguistic and extra-linguistic contexts for text
classification. Our results show that full linguistic
context alone worsens or does not significantly im-
prove the results with respect to the non-contextual
baseline. Instead, with extra-linguistic context, the
performance improves, especially with the contri-
bution of structural context. Further analysis shows
that such results strongly depend on the amount of
data on which the models are trained. Moreover,
we found that extra-linguistic context makes results
more robust across discussion networks of different
lengths and more or less active users. Our exper-
iments show also that transformer-based models
are able to embed structural features, which can be
effectively given in input to the model in the form
of simple natural language statements.

12 Limitations

The findings presented in this work were mainly
focused on the Kialo dataset on the specific task
of stance detection. Kialo is an ideal testbed for
our hypotheses because it is a moderated platform
with well-structured discussions written in plain
English. It is not possible to infer that the same
findings would be confirmed on any social network,
where discussions may be more fragmented and
lacking moderation. Indeed, to have a clear picture
of our findings, other large datasets with similar
characteristics would be needed. Nevertheless, as
a preliminary exploration, our experiments on the
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two smaller datasets from Twitter/X confirmed our
expectation about the importance of the amount
of training data. Moreover, our work presents a
limited number of classification models. We tested
a few other combinations without reaching inter-
esting results, therefore we decided to focus only
on few configurations and to analyse their behav-
ior more thoroughly. Overall, our contribution is
not focused on generally achieving the best results,
but rather on assessing how and why contextual
information influences the behavior of a model.

13 Ethics Statement

Integrating user information into a text classifica-
tion task may pose ethical risks, since profiling may
introduce biases in classification, hurting some in-
dividuals with a specific profile, and is explicitly
prohibited in a number of countries. However, we
adopt a solution that minimises such risks in that it
does not use global user information but only local
one, making it impossible to infer user information
at platform level. Furthermore, no additional in-
formation about users’ preferences and attitude is
explicitly coded: the model is given in input only
what and when users post in each discussion, and
in response to whom.

In terms of reproducibility, our models are ex-
tremely lightweight and allow the reproduction of
the experiments on common GPUs, using imple-
mentations available online.
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A Appendix

A.1 Model Architecture

The model architecture is reported schematically
in Figure 6. It is made of two main components:
a RoBERTa model with on top a Multi Layer Per-
ceptron (MLP). To perform the prediction, we feed
the RoBERTa model with the input, and then we
extract the final [CLS] contextual embedding. So
we pass the [CLS] contextual embedding to the
MLP, which consists in a classic Feedforward Neu-
ral Network (FNN), and perform the prediction.

The dimension of the [CLS] contextual embed-
ding is d = 768. The RoBERTa model archi-
tecture and initial weights correspond to the pre-
trained version provided by Hugging Face called
roberta-base5, with maximum input length l =
512 tokens.

The MLP consists in 3 layers: I. the first goes
from dimension 768 to 200 with ReLU activation
function; II. the second goes from dimension 200
to dimension 300, again with ReLU activation func-
tion; III. the third goes from dimension 300 to
dimension n, where n is the number of classes
among which we predict the class, with tanh ac-
tivation function. Finally we apply a softmax on
the n value in output from the last layer, in order
to have a probability distribution among the n pos-
sible values (the prediction will correspond to the
index of highest probability).

A.2 Training Details.

Hyperparameter search and Evaluation. We
exploit Optuna (Akiba et al., 2019) for hyperpa-
rameter search, using a grid search for: I. the
learning rate, with a uniform probability between
the values 7.5 ·10�6, 1.0 ·10�5, 2.5 ·10�5, 5 ·10�5,
7.5 · 10�5; II. the dropout applied between the lay-
ers of the MLP, with values 0.25 and 0.5. We use
batch size b = 32 and weight decay wd = 10�4 in
the RoBERTa components. In SDK dataset, we use
unweighted Cross Entropy loss both in the training
and in the validation phase, since the imbalance is
negligible.

For the final evaluation, we fix the hyperparame-
ters and then we perform 10 runs, changing each
time the random seed. Then we keep the 5 best runs
in validation, in order to exclude possible “outlier"
runs due to initialization problems. We compute

5https://huggingface.co/roberta-base
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Figure 6: Schematic view of the model we tested. We
distinguish between the component we change in each
experiment (the input) and the fixed structure (RoBERTa
+ MLP).

the average and standard deviation of the test re-
sults on these 5 best runs.

Training pipeline. We perform backpropaga-
tion on the full structure of the model, without
freezing any layer. As previously stated, our exper-
iments keep always the same model, just changing
the input. We use early stopping for model se-
lection with patience p = 2 epochs for the SDK
dataset (Section 7 and Section 8) and p = 5 epochs
for the SQDC dataset (Appendix A.6). In the SDK
dataset, each epoch corresponds to a training epoch
on a sample of the training set, which is around half
of the total training set, in order to speed up com-
putation and generalization. We test also the usage
of the full training set in each epoch, but the results
remain comparable. This holds for all the experi-
ments on Kialo datasets, the standard one (Section
7) and the learning curve on training size (Sec-
tion 8). For the SQDC dataset and ContextAbuse
dataset, we refer respectively to Appendix A.6 and
Appendix A.7.

For all the experiments we use a single A40
GPU with 48GB Memory. All the experimental
code is developed in PyTorch. It requires around
33 minutes of computation for each epoch (training
phase plus validation phase).

A.3 Analysis of truncation effects on SDK
dataset

In Section 5, we discuss the processing of strings
that exceed the maximum input length by employ-
ing a deterministic truncation process on the dis-
cussion chains until the length satisfies the model
constraint. We conduct an additional evaluation
to investigate whether such truncation correlates
with the final results, implying potential effects on
performance.

For each contextual input configuration and
dataset split, we compute the following metrics:
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Figure 7: Length distribution of the discussion chains (i.e. number of claims in the discussion chain) in SDK dataset.

I. Truncation rate (ratio of truncated sequences); II.
average truncation (number of truncated claims);
III. average original length of the truncated se-
quences.

The statistics in Table 4 reveal that the TC +
T and TC + U + T input configurations result in
more truncated chains, while TC + U exhibits less
truncation than TC + T. Nevertheless, both TC + U
and TC + U + T configurations perform similarly
and outperform the TC + T model. This analysis
suggests that the impact of the truncation process
does not significantly influence our findings.

We report in Figure 7 the plot of the original
lengths of the discussion chains (in terms of num-
ber of claims).

A.4 Learning curve experiment
We report in Table 5 the detailed results from the
second experiment on the SDK dataset presented
in Section 8. We first run hyperparameter optimiza-
tion on each training set. Then, after fixing the
hyperparameters as in Section 6, we perform 3 ex-
perimental runs on each training set, changing the
random seed each time, and compute the average
M-F1 among the 3 runs. The same evaluation is
performed using the complete training set.

A.5 Details about the analysis of the results on
SDK dataset

In Kialo, the same author can write several consec-
utive comments, even in contrast with each other.
However, we are more interested in interactions
among different users. For this reason, we intro-
duce the concept of turn. Given a discussion chain
of n claims, we can retrieve a chain of n0 turns,
where two consecutive turns have different authors.

TC Train Valid. Test

Truncation Rate 1.01% 0.70% 8.30%

Avg Truncation 4.20 4.29 6.27

Avg Original 16.68 13.63 19.98

TC + T Train Valid. Test

Truncation Rate 3.60% 3.60% 13.68%

Avg Truncation 4.05 3.30 7.38

Avg Original 13.48 12.68 17.06

TC + U Train Valid. Test

Truncation Rate 2.33% 1.92% 11.40%

Avg Truncation 4.14 3.68 7.20

Avg Original 14.65 13.89 18.19

TC + U + T Train Valid. Test

Truncation Rate 6.70% 6.03% 18.40%

Avg Truncation 3.74 3.44 7.00

Avg Original 11.95 11.54 15.31

Table 4: Statistics of the truncation process in the SDK
dataset, with a separate table dedicated to each model
and a column corresponding to each dataset split.

This is possible by merging all consecutive claims
written by the same user into a unique turn. For
instance if we have a discussion chain d of length
6 with user sequence {u0, u0, u1, u1, u1, u2}, the
associated turn chain has length 3 merging into one
turn the first two claims, then the following three
into another turn and the last one is already a turn,
with user sequence {u0, u1, u2}. This represents
also a simple discussion. A complex discussion
might be similar to the following: if the user se-
quence is {u0, u1, u0, u0, u2, u2}, in the turn chain
the user sequence becomes {u0, u1, u0, u2}.

1806



Figure 8: Length distribution of discussion chains (i.e. number of claims in the discussion chain) in SQDC dataset -
challenge version.

Figure 9: Length distribution of discussion chains (i.e. number of claims in the discussion chain) in SQDC dataset -
new split version.
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Category Model 5% 10% 20% 40% 80% 100%

DUMMY
MAJORITY 35.3 35.3 35.3 35.3 35.3 35.3

RANDOM 50.1 50.1 50.1 50.1 50.1 50.1

BASELINES
SINGLE 70.2 70.5 71.1 71.6 72.2 72.7

PAIR 76.1 77.3 77.7 79.3 80.9 80.7

CONTEXTUAL

TC 69.6 71.1 76.7 77.9 80.4 80.4

TC + T 68.2 72.7 75.4 77.4 80.7 81.6

TC + U 69.6 73.8 77.1 79.4 83.2 83.3

TC + U + T 67.4 71.8 74.1 80.7 83.2 83.7

TRAINING SET SIZE 6354 12402 24748 49249 98389 122681

Table 5: Macro-F1 scores obtained on the test set of SDK dataset, for every training set in growing size.

Category Model S-F1 Q-F1 D-F1 C-F1 W-F1 M-F1 LR DO

DUMMY
MAJ. 0.0 (±0.0) 0.0 (±0.0) 0.0 (±0.0) 86.6 (±0.0) 66.1 (±0.0) 21.6 (±0.0) / /

RAND. 12.6 (±2.1) 9.5 (±1.1) 13.9 (±2.6) 37.5 (±1.9) 31.6 (±1.3) 18.3 (±0.6) / /

BASEL.
SINGLE 14.1 (±7.7) 54.4 (±2.9) 47.5 (±3.5) 72.6 (±5.7) 64.1 (±4.2) 47.2 (±2.3) 5.0 · 10�5 0.25

PAIR 13.5 (±1.6) 58.4 (±3) 44.9 (±0.1.5) 71.1 (±3.2) 62.8 (±2.3) 47.0 (±0.5) 2.5 · 10�5 0.25

CONT.

TC 12.9 (±4.1) 58.6 (±2.4) 42.7 (±7.2) 71.5 (±4.3) 62.9 (±4.2) 46.4 (±4.0) 1.0 · 10�5 0.25

TC + T 15.4 (±0.8) 59.0 (±2.6) 44.1 (±4.5) 63.4 (±3.7) 57.0 (±2.8) 45.5 (±1.6) 1.0 · 10�5 0.5

TC + U 13.2 (±5.1) 56.3 (±4.6) 41.6 (±3.8) 65.1 (±11.4) 57.8 (±8.6) 44.0 (±3.3) 2.5 · 10�5 0.25

TC + U + T 19.2 (±4.7) 52.3 (±3.5) 43.1 (±1.8) 68.6 (±4.7) 61.1 (±3.9) 45.8 (±2.3) 2.5 · 10�5 0.5

Table 6: SQDC - Challenge. F1 scores obtained on the test set of SQDC dataset, on the original split given for the
challenge. The F1 score is reported for each class, in weighted average and in macro average. The results are the
average over the best 5 runs in validation over 10. We report the average and the standard deviation for each metric.

Category Model S-F1 Q-F1 D-F1 C-F1 W-F1 M-F1 LR DO

DUMMY
MAJ. 0.0 (±0.0) 0.0 (±0.0) 0.0 (±0.0) 82.9 (±0.0) 58.6 (±0.0) 20.7 (±0.0) / /

RAND. 15.3 (±2.0) 14.4 (±3.4) 11.7 (±2.0) 39.1 (±1.5) 31.8 (±0.7) 20.1 (±0.8) / /

BASEL.
SINGLE 31.3 (±3.7) 52.5 (±2.6) 27.7 (±5.7) 56.2 (±6.6) 51.0 (±5.3) 42.0 (±3.4) 5.0 · 10�5 0.25

PAIR 30.2 (±1.5) 54.3 (±1.6) 33.7 (±1.4) 67.2 (±3.7) 59.3 (±2.9) 46.4 (±1.8) 2.5 · 10�5 0.25

CONT.

TC 28.3 (±3.0) 53.1 (±4.7) 31.1 (±4.2) 68.4 (±5.3) 59.6 (±3.9) 45.3 (±2.3) 2.5 · 10�5 0.5

TC + T 27.9 (±1.8) 49.8 (±1.9) 33.6 (±2.9) 63.3 (±4.5) 55.8 (±3.3) 43.6 (±2.0) 7.5 · 10�6 0.25

TC + U 27.9 (±1.1) 52.7 (±2.2) 32.2 (±3.0) 64.8 (±4.0) 57.0 (±3.0) 44.4 (±1.5) 1.0 · 10�5 0.25

TC + U + T 27.2 (±2.1) 51.4 (±3.0) 32.8 (±1.4) 62.2 (±3.2) 55.0 (±2.8) 43.4 (±2.0) 1.0 · 10�5 0.5

Table 7: SQDC - New split. F1 scores obtained on the test set of SQDC dataset, with our new split to obtain
complex structures even in training. See caption in Table 6 for further details.

Category Model NS-F1 S-F1 W-F1 M-F1 LR DO

DUMMY
MAJ. 82.9 (±0.0) 0.0 (±0.0) 58.6 (±0.0) 41.4 (±0.0) / /

RAND. 59.6 (±1.0) 38.4 (±1.5) 53.4 (±0.8) 49.0 (±0.9) / /

BASEL.
SINGLE 74.4 (±2.9) 52.9 (±0.8) 68.1 (±2.3) 63.6 (±1.8) 1.0 · 10�5 0.5

PAIR 73.4 (±3.4) 53.8 (±1.5) 67.7 (±2.6) 63.6 (±2.0) 7.5 · 10�6 0.5

CONT.

TC 73.3 (±3.2) 49.3 (±1.3) 66.3 (±2.5) 61.3 (±2.1) 7.5 · 10�6 0.25

TC + T 75.3 (±3.0) 51.1 (±1.4) 68.3 (±2.4) 63.2 (±2.0) 1.0 · 10�5 0.5

TC + U 74.7 (±3.0) 49.9 (±1.0) 67.5 (±2.1) 62.3 (±1.6) 1.0 · 10�5 0.5

TC + U + T 74.7 (±1.5) 48.4 (±1.9) 67.0 (±1.3) 61.6 (±1.3) 2.5 · 10�5 0.25

Table 8: SQDC - Binary. F1 scores obtained on the test set of SQDC dataset, with our new split to obtain complex
structures even in training, for the binary task to detect Stance class vs No Stance Class. See caption in Table 6 for
further details.
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A.6 Results on SQDC dataset

The SQDC dataset. We perform the same set
of experiments and analysis on a second dataset,
which was developed for the task “SQDC support
classification” at the RumourEval 2019 challenge
(Gorrell et al., 2019). For each item we have the
same information as in the SDK dataset, and given
a discussion tree, all the discussion chains from
the initial claim to any node (even internal) are ex-
tracted, and each item labeled according to the last
comment. However, the label of each claim does
not represent the stance versus the previous claim,
but rather the stance with respect to the rumour
discussed in the chain. This chain is treated as
the common ground topic on which the discussion
is taking place, even if it is not necessarily stated
explicitly in the initial claim. Again, the dataset
split is based on the initial claim, avoiding any data
contamination.

There are four possible labels: I. support, II.
query, III. deny, and IV. comment. Those labels
are respectively shortened as S, Q, D and C, from
which the name of the task (SQDC support classifi-
cation). The original dataset is highly unbalanced
among the classes and comprises threads from Red-
dit6 and Twitter7. We focus this second set of ex-
periments on the Twitter part of the dataset.

Experiments. At first, we run our experiments
on the original train-validation-test split, reaching
different results w.r.t. those obtained on Kialo,
since the SINGLE model yields the best perfor-
mance (see full results in Table 6).

We further inspect the dataset and we find that
the test set was formed only by chains of length
2, where the usefulness of the context is limited.
So, we exclude the original test set and generate a
new train-validation-test split, analysing the distri-
bution of labels and chain lengths. The results are
different w.r.t. the original SQDC dataset: the CON-
TEXTUAL model achieves a performance between
SINGLE model (lower bound) and PAIR model (up-
per bound). For details, see Table 7. Overall, the
results on the new split of the SQDC dataset con-
firm the overall findings obtained by analysing the
learning curve for different training sizes in Kialo
(discussed in Section 8): the SQDC dataset is not
large enough to allow modelling the context in an
effective way. We also try to test our models on
a binary task, more similar to stance detection in

6https://www.reddit.com
7https://twitter.com

SQDC Dataset - Challenge

Set S Q D C Total

Train 20.2% 7.9% 7.6% 64.3% 4519

Valid. 9.0% 10.1% 6.8% 74.1% 1049

Test 13.2% 5.8% 8.6% 72.4% 1066

SQDC Dataset - New split

Set S Q D C Total

Train 13.9% 8.6% 7.6% 69.9% 3957

Valid. 12.0% 8.9% 8.7% 70.4% 689

Test 11.3% 10.9% 7.1% 70.7% 595

SQDC Dataset - Binary

Set No Stance Stance Total

Train 69.9% 30.1% 3957

Valid. 70.4% 29.6% 689

Test 70.7% 29.3% 595

Table 9: Distribution of the labels in SQDC dataset,
distinguishing training set, validation set, and test set
We report the three versions experiments: chellenge
version, new split version and binary version.

Kialo, by merging the query class, the deny class
and the support class into a unique stance class,
and the comment class as a no-stance class. Re-
sults are reported in Table 8. Again, the SINGLE

model is the best performing one probably due to
the data size and the context does not yield any
improvement.

For these datasets, we report the descriptive
statistics in Table 9 and plot the length distribu-
tion of the discussion chains in Figure 8 and Figure
9.

Training Details. To balance the classes during
training, for each epoch we undersample each
class in the training set in order to have s samples
for each class, where s is the cardinality of the
less represented class. We use as loss function the
unweighted Cross Entropy. Then, for validation,
we use a weighted Cross Entropy Loss according
to the cardinality of each class, with weight
wc = 100/sc for each class, where sc is the
cardinality of the class c. We use the same pipeline
for hyperparameter optimization and test on fixed
hyperparameters as in SDK dataset (i.e. 5 best runs
in validation over 10), performing even the same
statistical test. Again, for all the experiments we
use a single A40 GPU with 48GB Memory.
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Figure 10: Length distribution of discussion chains (i.e. number of claims in the discussion chain) in ContextAbuse
dataset

Category Model A-F1 NA-F1 W-F1 M-F1 LR DO

DUMMY
MAJORITY 89.9(±0.0) 0.0(±0.0) 73.4(±0.0) 45.0(±0.0) / /

RANDOM 82.2(±0.4) 21.1(±2.7) 71.0(±0.7) 51.7(±1.4) / /

BASELINES SINGLE 91.0(±0.4) 70.5(±0.8) 87.2(±0.5) 80.7(±0.6) 1.0 · 10�5 0.5

CONTEXTUAL

TC 91.4(±1.2) 71.4(±2.2) 87.7(±1.3) 81.4(±1.7) 7.5 · 10�6 0.5

TC + T 90.6(±1.3) 69.6(±2.1) 86.7(±1.5) 80.1(±1.7) 1.0 · 10�5 0.5

TC + U 90.1(±1.8) 68.7(±2.8) 86.2(±2.0) 79.4(±2.3) 7.5 · 10�6 0.5

TC + U + T 91.6(±0.8) 70.8(±1.0) 87.8(±0.8) 81.2(±0.9) 7.5 · 10�6 0.25

Table 10: ContextAbuse. F1 scores obtained on the test set of ContextAbuse dataset. The F1 score is reported for
each class, in weighted average and in macro average. The results are the average over the best 5 runs in validation
over 10. We report the average and the standard deviation for each metric.

ContextAbuse Dataset

Set No Abuse Abuse Total

Training 82.6% 17.4% 5651

Validation 82.4% 17.6% 1216

Test 81.7% 18.3% 1151

Table 11: Label distribution in the ContextAbuse dataset

A.7 Results on ContextAbuse dataset

The ContextAbuse dataset.
ContextAbuse (Menini et al., 2021) is a subset

of the well-known hate speech dataset by Founta
et al. (2018), where the items have been relabeled
as "Abusive" or "Not Abusive" taking into account
not only the tweet to classify, but also the previ-
ous tweets (textual context). This re-annotation led
to a remarkable reduction of items annotated as
"Abusive", suggesting that context is vital to disam-
biguate real abusive tweets from other cases (e.g.
irony, satire, etc.). Given the set of tweets from

Founta et al. (2018), the authors did not retrieve the
full discussion tree, but just the discussion chain
from the initial claim to the target comment. In
this way, there is no overlap among different items,
but each tweet in each sequence is seen only once.
This could result in major difficulties for contextual
models to extract useful information to perform the
classification.

Experiments The dataset is provided on Github8

without official splits. So we create a train-
ing/validation/test set according to a 70/15/15 strat-
egy. We report the descriptive statistics in Table
11 and the length of the discussion chain in Figure
10. In this case we have only the SINGLE model as
a baseline because the goal is to classify a single
claim.

The results obtained on the ContextAbuse
dataset exhibit similarities to the ones obtained
from SQDC dataset (new split version). These find-

8https://github.com/dhfbk/
twitter-abusive-context-dataset/tree/main
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ings align with the outcomes of the learning curve
experiment from the SDK dataset. In this scenario,
the contextual models fail to significantly outper-
form the baseline (which is the SINGLE model in
this case). Nevertheless, it is worth noting that the
TC model and TC+T+U model exhibit some im-
provement, albeit not statistically significant, with
the latter showing lower variance. However, it re-
mains uncertain whether, in presence of a larger
training set, the contextual model would be capable
of increasing the performance gap with the baseline.
All the results are reported in Table 10.

Training Details. Differently from the SQDC
dataset, for each epoch we use the entire training set
without undersampling, and make use of weighted
cross-entropy loss both for training loss and valida-
tion loss, according to the cardinality of each class
(as in Appendix A.6). We use the same pipeline for
hyperparameter optimization and test on fixed hy-
perparameters as in SDK dataset (i.e. 5 best runs in
validation over 10), performing the same statistical
test. Again, for all the experiments we use a single
A40 GPU with 48GB Memory.
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