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Abstract

Chain-of-Thought (CoT) prompting empowers
the reasoning abilities of Large Language Mod-
els (LLMs), eliciting them to solve complex
reasoning tasks in a step-wise manner. How-
ever, these abilities appear only in models with
billions of parameters, which represent an entry
barrier for many users who are constrained to
operate on a smaller model scale, i.e., Small
Language Models (SLMs). Although many
companies are releasing LLMs of the same fam-
ily with fewer parameters, these models tend
not to preserve all the reasoning capabilities of
the original models, including CoT reasoning.

In this paper, we propose a method for align-
ing and transferring reasoning abilities be-
tween larger to smaller Language Models.
By using an Instruction-tuning-CoT method,
an Instruction-tuning designed around CoT-
Demonstrations, we enable the SLMs to gen-
erate multi-step controlled reasoned answers
when elicited with the CoT mechanism. Hence,
we instruct a smaller Language Model using
outputs generated by more robust models be-
longing to the same family or not, evaluating
the impact across different types of models.
Results obtained on question-answering and
mathematical reasoning benchmarks show that
LMs instructed via the Instruction-tuning CoT
method produced by LLMs outperform base-
lines within both in-domain and out-domain
scenarios.

1 Introduction

Chain-of-Thought (CoT) prompting elicits Large
Language Models (LLMs) to break down a reason-
ing task towards a sequence of intermediate steps
(Wei et al., 2022). Previous works have demon-
strated that in LLMs with at least several billions
of parameters, such as within the GPT(OpenAI,
2023) or PaLM (Chowdhery et al., 2022) families,
CoTs enable the delivery of multi-step, controlled
reasoning, improving results across commonsense

Figure 1: In Instruction-tuning-CoT, students models
use CoT-Demonstrations delivered by teacher models.
We investigate different properties between the teacher-
student models, including the impact of in/out family
alignment and the impact of different demonstration
styles within the teacher-student alignment.

(Bubeck et al., 2023), symbolic and mathematical
reasoning datasets (Gaur and Saunshi, 2023; Liu
et al., 2023).

The size of LLMs, however, presents an adoption
barrier for certain users and specific use case scenar-
ios. To facilitate accessibility, derived scaled-down
models from the same family but with reduced size
have been introduced, such as Llama-2-7b and -13b
as the corresponding ’Smaller Language Models
(SLMs)’ associated with Llama-2-70b (Touvron
et al., 2023). Although these SLMs are highly func-
tional across different tasks, the CoT prompting
mechanism only proved to be consistently opera-
tional for models at a certain scale (e.g., with more
than 60B parameters (Wei et al., 2023)). These
SLMs produce illogical answers when prompted
under the CoT framework.
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In this paper, we propose a method to enable CoT
reasoning over SLMs (named student models) by
performing Instruction-tuning via demonstrations
delivered by LLMs (teacher models). Moreover,
we introduce the concept of in-family alignment
for teacher-student Instruction-tuning. Hence, we
investigate the induction and alignment of Chain-
of-Thought reasoning abilities through the sup-
port of CoT-Demonstrations "taught" by LLMs
teachers to SLMs students (see Figure 1), con-
trasting between in-family and out-family settings.
Complementing the foundation work of (Magister
et al., 2023; Shridhar et al., 2023) we introduce
the Instruction-tuning CoT approach (i.e., a task-
oriented specialization of Supervised Fine-Tuning)
through which we instruct student models with
CoT-Demonstrations produced by in-family and
out-family teachers.

This leads to the target research questions, which
are the focus of this paper:
RQ1. How does Instruction-tuning via Demon-
strations impact the reasoning abilities of students
models?
RQ2. What is the effect of Demonstrations deliv-
ered with the Chain-of-Thought reasoning process?
RQ3. How much do Demonstrations produced by
an in-family teacher impact the student models’
performances?

To answer these questions, we selected Llama-
2-7b and Llama-2-13b (Touvron et al., 2023)
as students and Llama-2-70b and GPT-3.5 as,
respectively, in-family and out-family teachers.
Then, we conduct an extensive analysis using
different types of benchmarks, from arithmetic
reasoning to commonsense tasks. Experimen-
tally, we contrast Llama-2-70 and GPT-3.5 as
teacher models to deliver CoT-Demonstrations
and answers (see Figure 1) which are used
to instruct Llama-2-7 and -13. We discern
the CoT-Demonstrations between Demonstrations-
delivering CoT and Demonstrations-misleading
CoT stems from Answers-delivering CoT (correct
associated CoT prediction) and Misleading CoT
(wrong CoT predictions). Furthermore, to have a
term of comparison, we produce the base Demon-
strations formed the same way as the previous ones
without CoT prompting. Figure 5 shows the termi-
nology used in this work.

We show that the Instruction-tuning approach
on Demonstrations instructs student models, and
they consistently outperform baseline SLMs in
all proposed benchmarks. Finally, students in-

structed with Demonstrations-delivering CoT pro-
vided by the in-family teachers outperformed those
instructed by out-family and achieved the best per-
formances.

Our findings can be summarized as follows:

• The Instruction-tuning that is a task-oriented
Supervised Fine Tuning (SFT) of SLM stu-
dents via Demonstrations delivered by an
LLM teacher outperformed the non-tuned
SLMs (baselines) in terms of downstream per-
formance.

• The Instruction-tuning via CoT-
Demonstrations aligns the reasoning
abilities of SLMs and LLMs. Models
instructed through CoT-Demonstrations that
contain outputs generated via CoT prompting
outperform models instructed with Demon-
strations. In particular, students instructed via
CoT-Demonstrations outperform the others
both in in-domain and out-domain settings.

• Finally, in-family alignment with Instruction-
tuning via Demonstrations-delivering CoTs
outperforms out-family alignments.

2 Method

In order to align the reasoning abilities of smaller
Language Models using the step-wise reasoning
knowledge generated by larger Language Models,
we propose a two-phase alignment approach. In
the first part, there is an automated ’annotation
phase’ where the Large Language Models (LLMs)
systematically prompt generate outputs (Section
2.1). These Demonstration outputs will be used
during the second phase which will perform the
Instruction-tuning from the smaller Language Mod-
els (Section 2.2).

2.1 Teacher Model

Many state-of-the-art LLMs differ in the number
of parameters and training settings. Therefore, we
concentrated on larger, widely investigated mod-
els with different versions of the same family. As
a robust LLMs, we selected Llama-2-70b (Tou-
vron et al., 2023), and GPT-3.5 (OpenAI, 2023).
The two models are used to contrast in/out fam-
ily teacher-student alignment. Another part of the
model selection criteria involved the availability
of corresponding smaller models within the same
family.
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We proposed two different prompt types, both
in a zero-shot scenario. The first input-prompt is a
classic standard prompt, consisting of the question
and the associated choices (in case of multiple-
choice tasks) as shown in Table 1.

Choose the answer to the question only
from options A, B, C, [...].
Question: <Question>
Choices:
A) <Option1>
B) <Option2>
C) <Option3>
....
Answer:

Table 1: Example of prompt for multiple-choices
question-answering benchmarks.

The second prompt adds the canonical CoT
prompt component, where the suffix "Let’s think
step by step" is appended (Table 7), in Appendix
B. The output provided by the LLM is then used to
build an ‘annotated set’ of Demonstrations.

2.2 Student Model
Although SLMs have been fine-tuned with different
techniques, the smaller Language Models1 do not
seem able to reproduce the step-by-step reasoning
abilities. Previous work use techniques of knowl-
edge distillation (Li et al., 2023a), curriculum learn-
ing (Ranaldi et al., 2023c), skill refinement (Huang
et al., 2022), and enriched fine-tuning (Magister
et al., 2023) to teach SLMs to deliver multi-step
reasoned answers. Following this idea, we propose
the Instruction-tuning method using Demonstra-
tions provided by in-family and out-family teachers.
Hence, we chose two students SLMs, Llama-2-7b
and Llama-2-13b (Touvron et al., 2023), their cor-
responding "chat" versions (detailed in Table 9),
which we will refer to in the paper as Llama-2-7
and -13.

Student models are evaluated before and after the
Instruction-tuning. A Demonstration consists of an
overall Instruction: "Choose the answer to
the question only from options A, B,..."
for question answering tasks and "Answer the
following mathematical question with a
numerical solution." for math word problem
tasks, an Input which is the question, and an ex-
pected output which, in our case, is the Output

1we consider Smaller models with less than 60B of param-
eters based on (Wei et al., 2022)

Instruction
Choose the answer to the question only from
options A, B, C, D.

Input
Question: Which form can be made into a
triangle?
Choices:
A) ice
B) steam
C) water
D) salt water

Output (that is the Answer produced by teacher model)
Answer:
A) ice: Ice is a solid form of water. In solid
form, substances can be molded or shaped into
various forms, including triangles. If you
had a block of ice, you could carve or mold
it into a triangular shape.
B) steam: Steam is the gaseous form of
water. Being a gas, it doesn’t have a fixed
shape. You can’t shape steam into a triangle
without containing it within some form of
solid boundary, and even then, the steam
itself isn’t triangular - the container is.
C) water: Water is a liquid that takes the
shape of its container. You can pour water
into a triangular container, and while the
volume inside would be triangular, the water
itself isn’t inherently triangular.
D) salt water: This is essentially the same
as option C, but with salt dissolved in it.
Being a liquid, it takes the shape of its
container.
Given these considerations, the only
substance among the options that can be shaped
into a triangle by itself is A) Ice.

Table 2: Example of CoT-Demonstration produced by
the GPT-3.5 answer on an Open Book Question Answer-
ing benchmark instance. The structure is composed by:
Instruction, Input and Output.

generated by the teachers LLMs. Table 2 shows
an example of input. Additional details about the
Instruction-tuning steps are provided in Section
3.2.1.

3 Experimental Setup

In order to make the experiments comparable with
state-of-the-art models, we use two math word
problems and four closed-ended question answer-
ing benchmarks (introduced in Section 3.1) that
are generally used to assess the inference abili-
ties of Large Language Models (LLMs). More-
over, to conduct the Instruction-tuning phase on
the Small Language Models (SLMs), we use the
approach presented in Section 3.2. The experimen-
tal pipeline and the supporting model is available
at github.com/lranaldii/Aligning_LLMs.
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3.1 Tasks & Datasets

In this paper, we selected different benchmarks that
focus on reasoning tasks:

Commonsense Task We adopt two benchmarks
to evaluate commonsense reasoning: Common-
SenseQA (Talmor et al., 2019) (CSQA) and Open-
BookQA (Mihaylov et al., 2018) (OBQA) are two
multi-choice commonsense question-answering
tasks.

Physical & Social Interaction Task We adopt
two benchmarks to evaluate the reasoning ability
in the context of everyday situations, aiming to es-
tablish the most reasonable solution: Interaction
Question Answering (PIQA) (Bisk et al., 2019)
and Social Interaction Question Answering (SIQA)
(Sap et al., 2019), which emphasises people’s ac-
tions and social implications.

Mathematical Task Finally, we use two math
word problem benchmarks to evaluate the models
with regard to mathematical reasoning. MultiArith
(Roy and Roth, 2015) covers a set of multi-step
arithmetic reasoning tasks, while GSM8k (Cobbe
et al., 2021) covers a set of primary school-level
mathematical problems.

Datasets Since the test split is not prescribed for
all the benchmarks, we adopt the following strat-
egy: for SIQA, PIQA, CSQA, and OBQA, we
use 4000 examples with equally distributed tar-
get classes as training data and the validation ver-
sions found on huggingface as test data, while for
GSM8K and MultiArith we use the full hugging-
face datasets. In Table 13, we report the descriptive
statistics and splitting ratios, while in Table 12,
we report one example for each benchmark. The
supporting datasets are publicly accessible as de-
scribed in Table 14.

3.2 Teaching to Reason

We selected Llama-2-70 and GPT-3.5 as the teach-
ers (introduced in Section 2.1). Consequently, the
LLMs are prompted in a zero-shot scenario, as
shown in Table 7.

We selected Llama-2-7 and Llama-2-13 (Tou-
vron et al., 2023) as student models, which are
fine-tuned using the Instruction-tuning approach,
as proposed in (Taori et al., 2023). Finally, we
evaluate the performance with evaluation pipelines
detailed in Section 3.3. Hence, the SLMs are in-
structed on the Demonstrations that contain the

answers generated by the teachers, as explained
in Section 2.2. Table 2 shows an example CoT-
Demonstration which contains the Instruction, the
Input, and, as Output, the Answer-delivering CoT
(in this case generated by a CoT-prompted GPT-
3.5).

3.2.1 Models Setup
We conduct the Instruction-tuning phase using
QLoRA Dettmers et al. (2023). This approach al-
lows instruction-tuning (and, more generally, fine-
tuning) to be performed while reducing memory
usage. In particular, Dettmers et al. (2023) propose
several techniques for tuning models with many
parameters on GPUs with limited resources while
preserving 16-bit tuning performance.

We follow the training approach proposed in Al-
paca (Taori et al., 2023). Our models are trained
for four epochs and set the learning rate as 0.00002
with a 0.001 weight decay. We use the cosine learn-
ing rate scheduler with a warmup ratio of 0.03.
We conducted our experiments on a workstation
equipped with four Nvidia RTX A6000 with 48GB
of VRAM.

3.3 Evaluation
The most commonly used evaluation methods for
question-answering tasks are language-model prob-
ing, in which the option with the highest probabil-
ity is selected (Brown et al., 2020), and multiple-
choice probing, in which the models are asked to
commit to an answer. The evaluation in the first
case is performed with a function taking the argmax
and, in the second case, with a direct string match-
ing. The second method is more widely used in
recent evaluations because it can be applied to mod-
els from the larger GPT family (OpenAI, 2023)
where probability values are not readily accessible.

In our experiments, we chose the latter to have a
comparable and scalable pipeline (Details provided
in Appendix E.2). Finally, we performed string
matching between the generated outputs and the
target choice to evaluate the percentages of the
correct answers.

4 Results & Discussion

Language Models that were unable to reason can be
elicited to do it through the knowledge of teacher
models. These conclusions can be observed in
Figure 2, which report the downstream accuracies
without the Instruction-tuning phase (see the Base-
line) and the Instruction-tuning phase on Demon-
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Figure 2: Accuracies (%) on benchmarks (Section 3.1) before Instruction-tuning (i.e., Baselines), on Demonstrations
(i.e., Instruction-tuned) and CoT-Demonstrations (i.e., Instruction-tuned-CoT). In addition, Instruction-tuning phases
only on Demonstrations-delivering CoT and Truthful Demonstrations, specifically, demonstrations with Answers-
delivering CoT and Answer Truthful (correct predictions), provided by teachers models without Misleading ones.

strations. In fact, as discussed in Section 4.1, Small
Language Models (SLMs) CoT prompted obtained
weak results. In contrast, models that are instructed
via Chain-of-Thought (CoT) Demonstrations, i.e.,
Demonstrations produced by CoT-prompted Large
Language Models (LLMs), outperform other mod-
els (see the Instruction-tuned-CoT in Figure 2).

However, although CoT-Demonstrations pro-
duced better students, an improved alignment be-
tween students and teachers can be observed via
the Demonstrations-delivering CoT mechanism,
as discussed in Section 4.2. In particular, the
"Demonstrations-delivering CoT" and "Truthful
Demonstrations" bars in Figure 2 show that student
models instructed via Demonstrations-delivering
CoT outperformed students instructed via CoT-
Demonstrations, which contained Demonstrations
Misleading CoT.

Finally, students instructed with Demonstrations-
delivering CoT produced by in-family teachers
always outperformed students instructed with
Demonstrations-delivering CoT produced by out-
family teachers. In Figure 2, it is possible to
observe the phenomenon of family-alignment be-
tween Llama-2-70 and Llama-2-7 and -13. Ad-
ditional details can be found in Section 4.2 and
Section 4.5.

4.1 CoT-abilities of Small Language Models
Chain-of-thought (CoT) prompts do not always
deliver downstream performance improvements.
SLMs have not performance improvements when

prompted with the CoT mechanism. In particu-
lar, we evaluated performance on four question-
answering benchmarks, described in Section 3.1,
using Llama-2-chat (7b-13b billion) in a zero-shot
scenario. Proposing a classical prompt (Baseline)
and a CoT prompt, we obtained the performances
in Table 3.

The results confirm what Wei et al. (2022) have
claimed about the limitations of the emergent CoT
prompting abilities that are not observable in SLMs.
Using CoT prompting leads to model confusion
with the degradation of downstream results. It
is possible to observe these phenomena in Open-
BookQA (OBQA) and CommonSenseQA (CSQA)
(Table 3). In particular, there is a marked deteri-
oration in Llama-2-7 (see ⇓), which has half the
parameters of Llama-2-13 (see ↓). This behaviour
is not observable in PIQA and SIQA, which have
tasks consisting of fewer answer choices. In this
setting, this is likely to be explained by a possible
lower inference complexity induced by the smaller
answer sets (as shown in Table 13).

4.2 The Instruction-tuning Impact
Instruction-tuning supported by Large Language
Models (teachers models) was able to guide the
Smaller Language Models (students models) to de-
liver a step-wise reasoning. This can be observed in
the experimental outcomes of Figure 2. The student
models based on Instruction-tuning on Demonstra-
tions produced by teacher models outperformed
the baselines in the four proposed benchmarks.
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Figure 3: Accuracies (%) on the test set of benchmarks. Instruction-tuning performed on different splits (see
Appendix E.1 for additional details) of Demonstrations and CoT-Demonstrations (correct and not correct predictions),
Truthful Demonstrations, and Demonstrations-delivering CoT (correct predictions).

Task Llama-2-7 Llama-2-13
Baseline CoT Baseline CoT

OBQA 53.6±.2 49.5±.3⇓ 55.4±.2 54.2±.3↓
CSQA 58.6±.3 50.6±.1⇓ 63.4±.2 60.8±.2↓
SIQA 46.5±.2 45.3±.3 48.3±.4 46.9±.3

PIQA 61.6±.2 63.8±.2 66.4±.1 71.2±.3

GSM8K 68.2±.3 71.3±.3 65.6±.4 70.5±.1

MultiArith 69.5±.2 72.6±.3 67.2±.2 70.8±.4

Table 3: Accuracies of Llama-2-7 and Llama-2-13, both
without further tuning, on testing data with the standard
prompt (Baseline) (see Table 6) and CoT prompt (CoT)
(see Table 7).

Moreover, the students models instructed with CoT-
Demonstrations, defined as Instruction-tuned-CoT
in Figure 2, achieved best accuracy.

While there are performance improvements
across the board, this analysis can be nuanced by
looking into the specific characteristics of the ref-
erence models, for example, in terms of parame-
ters GPT-3.5 (175B parameters) versus Llama-2-70
(70B). This is reflected in performance differences
within the proposed benchmarks. Table 11 shows
the performance (with and without CoT prompting)
on the data used to conduct the Instruction-tuning
phase and on the same test set used to evaluate the
proposed models.

Although the performance delivered on the
"training set" is different across different models
(see the CoT performances of GPT-3.5 and the
same for Llama-2-70 in Table 11), this bias does
not affect the models instructed on overall Demon-
strations (correct and incorrect). The Llama-2-7
and -13 that have GPT-3.5 as teacher outperform

the Llama-2-7 and -13 that have Llama-2-70 as
teacher only on OpenBookQA; see OBQA in Fig-
ure 2. As far as CSQA and PIQA are concerned,
there is a balance that is not present in SIQA, where
the students of Llama-2-70 outperform the others.
Therefore, to study the influence of the quality of
Demonstrations, we conducted detailed analyses in
Section 4.3.

4.3 Demonstrations-delivering CoT vs
Misleading CoT

Instruction-tuning through consistent Demonstra-
tions performs better than that done on Demonstra-
tions with misaligned answers. In addition, the
Demonstrations-delivering CoT led to a family-
alignment of students’ reasoning abilities (Llama-
2-7 and -13) with teacher Llama-2-70. In Figure
2, the models instructed on Truthful Demonstra-
tions and Demonstrations-delivering CoT outper-
formed those instructed on overall Demonstrations
and overall CoT-Demonstrations. In particular,
the Demonstrations-delivering CoT produced by
the in-family teacher outperforms those produced
by the out-family teacher. As specified in Figure
5, with the terms "Demonstrations Truthfu" and
"Demonstrations-delivering CoT", we indicate all
correct answers produced by the teacher models.

Using the basic experimental setup proposed in
Section 3.2.1 we performed Instuction-tuning only
for Demonstrations-delivering CoTs and Demon-
strations Truthful. From the results, the latter mech-
anism further improves the performance of the stu-
dents models. Furthermore, the subset of Demon-
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Figure 4: Performance of Llama-2-7 and Mistral-7 Instruction-tuned using the same setup proposed in the previous
experiments.

strations used is smaller than the number of total
Demonstrations because Misleading instances were
removed. Thus, the students models used compara-
tively fewer instances.

However, Instruction-tuned students seem to per-
form better on fewer but distilled Demonstrations.
Even more, the Demonstrations-delivering CoT en-
abled the family-alignment of reasoning abilities.
Therefore, in order to observe the true impact of
these Demonstrations versus Demonstrations with
equal amounts of training instances in Section 4.4,
we perform a further analysis using different sets.

4.4 The Role of Demonstrations-delivering
CoT

Instruction-tuning via Demonstrations-delivering
CoT still aligns students’ reasoning abilities with
those of family teachers, even as instruction de-
creases. From Figure 3, we can observe that the
performance obtained by students instructed with
Demonstrations Truthful (shown with bars) and
Demonstrations-delivering CoT (shown with lines)
outperform students instructed with overall Demon-
strations. Moreover, the Demonstrations-delivering
CoT consistently outperforms the Demonstrations
Truthful. (technical details about splitting in Ap-
pendix E.1) In conclusion, as also stated in Sec-
tion 4.3, the Demonstrations-delivering CoT of
teacher Llama-2-70 are more productive as all stu-
dents outperformed the students of teacher GPT-
3.5. As they increase, student models instructed via
in-family teachers increasingly outperform other
student model types.

Finally, to validate our hypothesis of family-
alignment, we introduced Mistral-7b (Jiang et al.,
2023), a new SLMs that, with 7 billion parameters,
outperforms Llama-2-13 on several benchmarks
as shown by Jiang et al. (2023). In particular, we
reproduced the experiments introduced in Section
4.3 using the different types of Demonstrations pre-
sented in the previous section. In Figure 4, it can

be observed that Llama-2-7 instructed on different
types of Demonstrations delivered by Llama-2-70
outperforms Mistral-7b in most cases. These re-
sults confirm that Demonstrations derived from
in-family teachers have a more significant impact
on student models than the others.

4.5 In-Domain and Out-Domain
Instruction-tuning through CoT-Demonstrations en-
ables student models to cover both in-domain and
out-of-domain tasks. Figure 4 shows the results of
student Llama-2-7 and Figure 15 of Llama-2-13.
In both cases, it can be observed that the instructed
models always outperform the baselines. However,
as expected, models instructed on in-domain sce-
narios (e.g., two QA tasks with different seeds)
achieve significantly better results when contrasted
to models instructed on out-domain scenarios (e.g.,
instruction via QA demonstrations and tests on
mathematical problems).

Finally, as shown in Table 16, it is possible to
observe that the performance obtained by the in-
structed models consistently surpasses the base-
lines on evaluation benchmarks. This shows that
(i) the instruction-tuning process does not degrade
baseline performance, and (ii) the instructed mod-
els outperform the uninstructed even on tasks they
were not trained, showing they have learned gener-
alization abilities.

5 Related Work

5.1 Chain-of-Thought Prompting
Large Language Models with billions of parame-
ters demonstrate in-context learning and few-shot
learning properties (Brown et al., 2020; Wei et al.,
2022) to guide LLMs to generate desired task re-
sponses, marking the transition towards a preva-
lent prompting-based paradigm. Zero and few-shot
prompting methods, in particular in complex rea-
soning settings, have been extended and refined
to accommodate the multi-step nature of different
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Trained on Teacher Evaluated on

OBQA CSQA PIQA SIQA GMS8K MultiArith

Baseline - 53.6±.2 58.6±.4 61.6±.1 46.5±.3 68.2±.5 69.5±.2

Baseline CoT - 49.5±.4 50.6±.3 63.8±.1 71.3±.5 71.3±.2 72.6±.4

OBQA GPT-3.5 72.9±.3 65.3±.2 74.6±.5 64.3±.2 67.6±.4 68.6±.3

Llama-2-70 75.5±.4 76.2±.5 75.1±.2 65.2±.4 68.2±.2 69.2±.4

CSQA GPT-3.5 68.5±.2 78.2±.5 82.2±.1 65.3±.3 65.9±.4 68.3±.2

Llama-2-70 67.8±.3 81.8±.4 81.9±.1 66.2±.5 66.1±.2 67.5±.3

PIQA GPT-3.5 63.6±.4 64.3±.5 85.8±.2 56.8±.1 61.2±.3 64.4±.2

Llama-2-70 64.3±.1 65.2±.2 87.6±.3 57.2±.4 60.7±.5 65.3±.4

SIQA GPT-3.5 65.2±.2 63.8±.1 79.4±.3 70.5±.4 63.2±.5 66.9±.4

Llama-2-70 65.6±.5 64.1±.4 80.3±.2 74.0±.1 62.4±.2 66.3±.3

GSM8K GPT-3.5 55.6±.3 56.2±.4 60.3±.1 50.7±.2 77.1±.5 78.4±.4

Llama-2-70 55.8±.5 55.9±.2 59.6±.3 52.3±.2 77.7±.2 77.9±.3

MultiArith GPT-3.5 55.7±.2 57.6±.5 60.5±.3 50.6±.1 75.9±.4 78.8±.2

Llama-2-70 55.4±.4 57.8±.1 59.9±.2 51.6±.5 76.2±.3 79.2±.5

Table 4: Evaluation of Llama-2-7 instructed on CoT-Demonstrations using different test sets. We evaluate in-domain
(QA vs QA) and out-domain (QA vs math-word problem) benchmarks. "Baseline" refers to the non-instructed
model. Results colored in green indicate the in-domain benchmark, blue the out-domain benchmark, and orange the
same benchmark on which perform the evaluation phase.

tasks. Wang et al. (2022) refined the original idea
of Chain-of-Thought (CoT) (Wang et al., 2022) by
considering different reasoning paths, while Wang
et al. (2023) explored different prompting prop-
erties. Emerging methods include self-generated
CoTs (Ranaldi and Zanzotto, 2023; Zelikman et al.,
2022; Huang et al., 2022).

5.2 Learning from Explanations

Contemporary methods include the conditioning of
models on specific task instructions and provide ex-
planations for individual data points to replace the
ancient intermediate structures (Hase and Bansal,
2022) that used rationales (Zhang et al., 2016), tar-
gets (Talmor et al., 2020) or inputs (Narang et al.,
2020) to learn the models. Reasoning via CoT
builds upon prior efforts wherein explanations are
viewed as intermediary constructs produced during
inference (Rajani et al., 2019).

Our research is based on the foundation built by
Li et al. (2023b); Magister et al. (2023); Shridhar
et al. (2023); Ho et al. (2023a). In particular, we
adopt the Teacher-Student model configuration (in
our case teacher LLMs and student SLMs) (Magis-
ter et al., 2023). Learning uses teacher-generated
explanations, demonstrating the impact of CoT
prompts on downstream tasks (Li et al., 2023b; Ho
et al., 2023a). Li et al. (2023b) claiming that larger

sets of demonstrations significantly improve per-
formance over a single-sample approach Shridhar
et al. (2023).

5.3 Large Language Models as a Teacher

Previous work, including Magister et al. (2023);
Huang et al. (2022), and Ho et al. (2023b) fo-
cused on the analysis of the effect of fine-tuning
as a mechanism to transfer the ability to produce
Chain-of-Thought (CoT) reasoning from larger to
smaller models, using both GPT-type (OpenAI,
2023) Huang et al. (2022); Ho et al. (2023b) and
PaLM Magister et al. (2023) models. Table 10
summarizes these contributions.

This work extends these foundational contribu-
tions by investigating the particular CoT and model
features that contribute to supporting CoT learn-
ing in the teacher-student model setting, including
in/out family alignment and the analysis across dif-
ferent commonsense and mathematical reasoning
benchmarks.

6 Conclusion

In this paper, we analyzed the alignment of step-
wise CoT reasoning between teacher Large Lan-
guage Models (LLMs) and student Small Lan-
guage Models (SLMs). In particular, we propose
Instruction-tuning-CoT, an instruction tuning via
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Chain-of-Thought (CoT) demonstrations, based on
explanations delivered by LLMs prompted with the
CoT mechanism. We also contrast the impact of in-
family and out-family alignment across teacher and
student models. The results highlight the impact of
teacher-student Instruction-tuning interventions as
a mechanism to improve the step-wise reasoning
properties of smaller language models.

Limitations

In our contribution, we analyzed the impact of An-
swers delivered by Large Language Models, using
them as Demonstrations to improve the step-wise
reasoning properties of Small Language Models.
The first limitation is in relation to the target lan-
guages which is constrained to English. In future
work, we will investigate this aspect starting from
Cross-lingual alignment approaches (Ranaldi et al.,
2023b).

Secondly, dependence on LLMs, which are
closed-source products or not, but sometimes the
training sets are unknown. Although the charac-
teristics of the corpora are reported in the system
reports, these are only processable by some re-
searchers. Analyzing the differences in pre-training
data between models is difficult, but observing the
outputs in natural language is possible (Ranaldi
et al., 2023a; Ranaldi and Pucci, 2023). Learning
from and with Demonstrations carries some spe-
cific risks associated with automation. Although a
model may generalize its predictions using a seem-
ingly consistent series of natural language steps,
even if the prediction is correct, there is no guar-
antee that the predicted output comes from a con-
sistent and faithful reasoning process. Future work
includes improving the understanding of the spe-
cific CoT alignment mechanisms by using more
granular interpretability mechanisms.

Ethics Statement

Although this research intervention was able to
demonstrate an improvement in the reasoning abil-
ities of Smaller Language Models, further inves-
tigation is required to understand the exact mech-
anisms that are in place with regard to the trans-
ference of step-wise CoT reasoning from larger to
smaller models. This improved understanding is
required to develop robust real-world applications
in domains such as education, law and clinical rea-
soning.
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A Conceptual Map of Names

Table 5: Different types of Demonstrations used in our work. The Demonstrations are composed by: Instruction,
Input and Output (see Table 2). Based on the target of the output, there are different types of Demonstrations.

B Prompting Approaches

Prompt for task: OBQA, CSQA, PIQA, SIQA
Choose the answer to the question only
from options A, B, C, [...].
Question: <Question>
Choices:
A) <Option1>
B) <Option2>
C) <Option3>
....
Answer:

Prompt for task: GSM8k, MultiArith
Answer the following mathematical
question with numerical solution.
Question: <Question>
Answer:

Table 6: Example of input-prompt for multiple-choices (left) and mathematical (right) question-answering bench-
marks.

Prompt for task: OBQA, CSQA, PIQA, SIQA
Choose the answer to the question only
from options A, B, C, [...].
Question: <Question>
Choices:
A) <Option1>
B) <Option2>
C) <Option3>
....
Answer: Let’s think step by step

Prompt for task: GSM8k, MultiArith
Answer the following mathematical
question with numerical solution.
Question: <Question>
Answer: Let’s think step by step

Table 7: Example Zero-shot CoT of input-prompt for multiple-choices (left) and mathematical (right) question-
answering benchmarks.
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C Examples Misleading Answers Llama-2-7b

Example for task: PIQA
Choose the answer to the question only
from options A, B
Question: How do you properly prepare
a steak?
Choices:
A) Take the steak out of warm storage
and let come to room temperature,
generously add salt and pepper to both
sides and let sit for 10 minutes.
B) Take the steak out of cold storage
and let come to room temperature,
generously add salt and pepper to both
sides and let sit for 10 minutes.
Answer: Let’s think step by step

Example for task: MultiArith
Answer the following mathematical
question with numerical solution.
Question: Mike invited 13 friends to
a birthday party, but 7 couldn’t come.
If he wanted to buy enough cupcakes so
each person could have exactly 4, how
many should he buy?
Answer: Let’s think step by step

Table 8: Examples of two Zero-Shot Chain-of-Thought prompting from Physical Interaction Question Answering
(left) and MultiArith (right). In the example on the left, the number of choices depends on the composition of the
task.

D Models
Model Version
Llama-2-7-chat meta-llama/Llama-2-7b
Llama-2-13-chat meta-llama/Llama-2-13b
Llama-2-70-chat meta-llama/Llama-2-70b
Mistral-7-instruct mistralai/Mistral-7B-Instruct-v0.1

Table 9: List and specific versions of the models proposed in this work, which can be found on huggingface.co.
For each model we used all the default configurations proposed in the repositories.

Work Method Teachers Students
(Magister et al., 2023) SFT PaLM T5-small, -medium

GPT-3.5 T5-large, -xxl
(Li et al., 2023a) SFT GPT-3 175B OPT-1.3b

(Shridhar et al., 2023) SFT GPT-3 175B GPT-2

(Ho et al., 2023a) SFT InstructGPT GPT-3
(text-davinci-002) (ada,babbage,curie)

Ours Instruction-tuning Llama-2-70b Llama-2-7b, -13b
GPT-3.5 (turbo) Mistral-7b

Table 10: Summary of methods, teacher and student models of previous work, we indicate Supervised Fine-tuning
as (SFT) employed in most previous work.
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E Experimental Details

E.1 Data Splitting
In order to observe the impact of the demonstrations (CoT, non-CoT, truthful or Misleading), we produced
a series of experiments by systematically decreasing the Instruction-tuning data. In particular, from
the total number of demonstrations, we chose three sub-sets with 75%, 50%, and 25%. In detail, the
Instruction phases on the number of equal Demonstrations are performed by taking about 3000 examples
in splitting 100%, 2250 in splitting 50%, 1500 in splitting 50%, and 750 in splitting 25%. We chose
the value 3000 because it is the smallest number of CoT-Gold Demonstrations available. For the total
Demonstrations, we selected random samples; instead, for the CoT-Gold and Gold, we selected all the
Demonstrations available.

E.2 Parameters
The annotation phase that the Teachers performed was done on the training set. The evaluation phase of
both the basic models and the Students and the Teachers was done on the test splitting. The evaluation,
described in Section 3.3, was done with question probing and string matching of the generated answers.
More specifically:

Teachers We performed the annotation phase for each benchmark by delivering to GPT-3.5-turbo
and Llama-2-70-chat the prompts structured as shown in Table 6 and Table 7 (customized for each
benchmark). We set the temperatures to 0.7 for GPT-3.5-turbo and 0.1 for Llama-2-70-chat as
recommended in technical reports. Moreover, we kept all the other parameters as default. All parameters
are shown in our code.

Baseline & Students We evaluated the performance of the Small Language Models (Llama-2-7-chat,
Llama-2-13-chat, Mistral-7b) by prompting them with the same format used for the Teachers. For
both the baselines and the instructed models, we set the temperature to 0.1 and kept all the other parameters
as default.

F Accuracy of LLMs on different Benchhmark

Benchmarks Llama-2-70 GPT-3.5
Baseline CoT Baseline CoT

Training

OpenBook QA 65.6±.3 71.3±.1 66.2±.2 75.4±.4

CommonSesnse QA 74.2±.1 79.6±.3 79.3±.4 84.8±.1

Social Interaction QA 65.4±.2 67.5±.1 67.6±.5 70.3±.4

Physical Interaction QA 82.6±.2 85.8±.2±.3 83.5±.3 85.3±.2

GSM8K 74.6±.1 77.2±.2 83.2±.2 86.5±.2

MultiArith 88.6±.1 90.8±.3 94.9±.4 96.7±.2

Testing

OpenBook QA 65.9±.2 70.8±.1 67.8±.1 74.6±.4

CommonSesnse QA 73.4±.2 81.8±.3 80.2±.2 83.7±.1

Social Interaction QA 64.2±.2 66.9±.4 66.9 71.3±.3

Physical Interaction QA 82.6±.3 85.6±.5 84.3±.2 85.8±.5

GSM8K 75.2±.5 77.8±.5 82.8±.2 84.6±.4

MultiArith 89.2±.3 92.3±.2 95.6±.2 97.4±3

Table 11: Accuracy (%) of Llama-2-70 and GPT-3.5 (teachers) on training and testing data with CoT prompt (CoT)
and with the standard prompt (Baseline).
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G Description of proposed Benchmark
Dataset Example
Open Book Question Answering When birds migrate south for the winter, they do it because
(OBQA) (Mihaylov et al., 2018) A) they are genetically called to. B) their children ask them to.

C) it is important to their happiness. D) they decide to each.
Common Sense Question Answering Aside from water and nourishment what does your dog need?
(CSQA) (Talmor et al., 2019) A) bone. B) charm. C) petted.

D) lots of attention. E) walked.
Physical Interaction Question Answering How do you attach toilet paper to a glass jar? A) Press a piece of double-

sided
(PIQA) (Bisk et al., 2019) tape to the glass jar and then press the toilet paper onto the tape.

B) Spread mayonnaise all over the jar with your palms and then roll the jar in
toilet paper.

Social Interaction Question Answering Taylor gave help to a friend who was having trouble keeping up with their
bills.

(SIQA) (Sap et al., 2019) What will their friend want to do next? A) Help the friend find a higher
paying job. B) Thank Taylor for the generosity. C) pay some of their late
employees.
Tina makes $18.00 an hour. If she works more than 8 hours per shift,

(GSM8K) (Cobbe et al., 2021) she is eligible for overtime, which is paid by your wage + 1/2 your hourly
hourly wage. If she works 10 hours every day for 5 days,
how much money does she make?
Chloe was playing a video game where she scores 9 points for each

(MultiArith) (Roy and Roth, 2015) treasure she finds. If she found 6 treasures on the
first level and 3 on the second,
what would her score be?

Table 12: Examples of the benchmarks used in this paper.

OBQA CSQA PIQA SIQA GSM8K MultiArith

classes 4 5 2 3 - -

Training
# examples for 1000 800 2000 1330 4000 420
each class

Test
# examples for 125∗ 235∗ 924∗ 640∗ 1318 180
each class (± 8) (± 11) (± 18) (± 19)

Table 13: Characteristics Training and Test set of benchmarks proposed in Section 3.1. The * indicates that the
number of examples are not perfect balanced, but the difference from the average is marginal. GMS8K e MultiArith
are not closed-ended question answering; they only have a question and a numerical solution.

Name Repository
CommonSenseQA (Talmor et al., 2019) huggingface.co/datasets/commonsense_qa
OpenBookQA (Mihaylov et al., 2018) huggingface.co/datasets/openbookqa
PIQA (Bisk et al., 2019) huggingface.co/datasets/piqa
SIQA (Sap et al., 2019) huggingface.co/datasets/social_i_qa
GSM8K (Cobbe et al., 2021) huggingface.co/datasets/gsm8k
MultiArith (Roy and Roth, 2015) huggingface.co/datasets/ChilleD/MultiArith

Table 14: In this table, we list the versions of the benchmark proposed in this work, which can be found on
huggingface.co.
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Trained on Teacher Evaluated on

OBQA CSQA PIQA SIQA GMS8K MultiArith

Baseline - 55.4±.2 63.4±.2 66.4±.1 48.3±.4 65.6±.4 67.2±.2

Baseline CoT - 54.2±.3 60.8±.2 71.2±.3 46.9±.3 70.5±.1 70.8±.4

OBQA GPT-3.5 75.4±.4 66.2±.3 75.3±.6 63.2±.3 67.8±.2 69.4±.2

Llama-2-70 76.2±.2 77.3±.4 75.6±.1 66.3±.3 67.9±.3 70.1±.2

CSQA GPT-3.5 69.4±.3 83.8±.4 82.6±.2 66.2±.4 66.3±.4 70.1±.2

Llama-2-70 68.9±.3 85.9±.3 81.9±.1 66.2±.5 66.8±.1 68.6±.3

PIQA GPT-3.5 64.1±.3 64.6±.5 87.8±.3 57.2±.1 60.9±.4 66.9±.1

Llama-2-70 65.3±.3 65.8±.5 89.1±.4 58.4±.3 65.9±.2 66.3±.2

SIQA GPT-3.5 66.4±.3 64.3±.2 80.2±.4 71.8±.3 64.9±.3 67.6±.4

Llama-2-70 67.2±.3 64.9±.3 81.9±.3 75.3±.2 66.1±.3 66.8±.2

GSM8K GPT-3.5 56.8±.3 58.6±.5 62.3±.2 51.8±.3 77.8±.4 77.9±.3

Llama-2-70 57.8±.2 56.3±.3 60.3±.4 54.2±.3 78.6±.3 79.2±.2

MultiArith GPT-3.5 56.7±.3 57.9±.3 60.5±.3 50.6±.1 75.9±.4 78.8±.2

Llama-2-70 55.4±.4 59.8±.1 60.3±.2 52.8±.4 76.4±.4 78.2±.3

Table 15: Evaluation of Llama-2-13 instructed on CoT-Demonstrations using different test sets. We evaluate
in-domain (QA vs QA) and out-domain (QA vs math-word problem) benchmarks. "Baseline" refers to the non-
instructed model. Results colored in green indicate the in-domain benchmark, blue the out-domain benchmark, and
orange the same benchmark on which perform the evaluation phase.

Trained on Teacher Evaluated on

BBH BBH MMLU MMLU
(Llama-2-7) (Llama-2-13) (Llama-2-7) (Llama-2-13)

Baseline - 32.8±.3 39.4±.5 45.3±.2 55.2±.3

Baseline CoT - 33.5±.2 38.2±.3 44.8±.2 56.3±.2

OBQA GPT-3.5 34.3±.3 39.9±.4 45.2±.3 55.8±.2

Llama-2-70 33.9±.3 40.7±.3 45.8±.3 54.9±.4

CSQA GPT-3.5 34.2±.4 39.2±.3 45.9±.4 56.1±.3

Llama-2-70 33.9±.2 40.2±.2 46.2±.4 55.3±.1

PIQA GPT-3.5 33.2±.5 38.9±.3 44.8±.6 55.9±.2

Llama-2-70 33.9±.2 39.2±.2 46.2±.3 55.3±.1

SIQA GPT-3.5 32.9±.1 38.2±.4 45.2±.3 55.3±.1

Llama-2-70 33.2±.3 39.5±.4 45.7±.2 54.9±.2

GSM8K GPT-3.5 35.6±.2 39.3±.2 45.9±.2 56.1±.1

Llama-2-70 35.8±.3 39.3±.4 46.3±.3 56.3±.2

MultiArith GPT-3.5 34.7±.4 39.2±.1 45.7±.4 56.3±.2

Llama-2-70 34.9±.2 40.3±.3 46.8±.1 55.9±.3

Table 16: Evaluation of Llama-2-7 instructed on CoT-Demonstrations delivered in different settings (on columns)
on BBH and MMLU.
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