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Abstract

With the recent emergence of powerful visio-
linguistic models comes the question of how
fine-grained their multi-modal understanding is.
This has lead to the release of several probing
datasets. Results point towards models hav-
ing trouble with prepositions and verbs, but
being relatively robust when it comes to color.
To gauge how deep this understanding goes,
we compile a comprehensive probing dataset
to systematically test multi-modal alignment
around color. We demonstrate how human per-
ception influences descriptions of color and pay
special attention to the extent to which this
is reflected within the predictions of a visio-
linguistic model. Probing a set of models with
diverse properties with our benchmark confirms
the superiority of models that do not rely on pre-
extracted image features, and demonstrates that
augmentation with too much noisy pre-training
data can produce an inferior model. While the
benchmark remains challenging for all models
we test, the overall result pattern suggests well-
founded alignment of color terms with hues.
Analyses do however reveal uncertainty regard-
ing the boundaries between neighboring color
terms.

1 Introduction

Visio-linguistic models, which jointly process im-
age and text, have started to yield increasingly
promising results on tasks such as Visual Question
Answering (Antol et al., 2015), Image Captioning
(Stefanini et al., 2023), and Image-Text Retrieval
(Peng et al., 2018). With their success come ef-
forts of probing the depth of alignment between the
two modalities. A frequently used approach that
is visualized in Figure 1 is to use two minimally
different descriptions of the same image. While
one description matches the image, the other does
not. The task is for a model to compare the descrip-
tions to the image, ideally accepting the match-
ing description and rejecting the wrong one. Such

Figure 1: Overview of our color probing setup.

probing has revealed different abilities across lin-
guistic categories. Results are more promising for
categories that are more strongly associated with
certain image areas, such as nouns, than for other
aspects, such as prepositional information or verbs
(Shekhar et al., 2017a; Parcalabescu et al., 2022).

In this paper, we focus on color as an important
visual aspect that is central to image description and
immediately associated with certain image areas.
When it comes to visio-linguistic alignment around
color, results are reasonably promising (Pan et al.,
2019; Salin et al., 2022; Boukhers et al., 2022),
although in probing datasets, color is often merged
into a more general category of attribute under-
standing (Yuksekgonul et al., 2023; Wang et al.,
2023). This prohibits straightforward performance
evaluation on color probes alone.

To provide a benchmark that is tailored specifi-
cally towards color, we release Rainbow , which
collects suitable image-text pairs from existing data
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and enriches them by systematically varying the
color words in the textual descriptions. The result-
ing probes are split into two categories, which are
visualized in Figure 1. In the color replacements,
color mentions are systematically replaced with al-
ternative colors. This allows to assess whether a
consistent performance pattern emerges, such as
results for neighboring color pairs differing from
results for complementary ones. To gauge whether
models are not just checking for the overall pres-
ence of the colors mentioned in a description, we
also include color swaps. We derive these from
descriptions that contain exactly two color men-
tions: Swapping the two colors creates misaligned
descriptions where models have to check whether
the respective objects appear in the color they are
described as.

We provide a language-only baseline for the
probes in Rainbow and test a set of eight visio-
linguistic models to get an impression of how well
current models are able to solve them. In addition,
we enrich a subset of Rainbow with the RGB
values corresponding to the color names in the de-
scriptions. This permits analysis of how human
perception influences color naming and how the
actual hue is related to classification decisions of
models. We release Rainbow publicly and make
all our code available.1

As this work focuses on color, it is our respon-
sibility to nonetheless ensure accessibility to the
extent possible: We include RGB values and names
of colors instead of merely relying on the depiction
of the hues we discuss. Where color is used to
encode information, we use shades that are distin-
guishable for people with deuteranopia.

2 Probing Visio-Linguistic Models

With the growing success of visio-linguistic mod-
els comes interest in their inner workings and lim-
itations. A promising approach to probing their
understanding is to design contrast sets (Gardner
et al., 2020). Their idea is to create minimally dif-
ferent examples that fall in different classes and
thus test the decision boundary of a model. For
probing visio-linguistic models, this usually means
to alter a word in a description of an image, thereby
deriving a mismatched description.

Such datasets have been designed to target nouns
(Shekhar et al., 2017b), numbers (Parcalabescu
et al., 2021), verbs (Jiang et al., 2022; Hendricks

1https://github.com/mariebexte/vl-probing

and Nematzadeh, 2021; Nikolaus et al., 2022) and
a number of other linguistic categories (Shekhar
et al., 2017a; Wang et al., 2023; Parcalabescu et al.,
2022; Zhao et al., 2022).

Some of these datasets include probes around
attributes, among which are color probes (Yuksek-
gonul et al., 2023; Wang et al., 2023). Since these
are however often mixed in with probes targeting
other attribute types, they do not permit a dedi-
cated estimate of performance regarding color. VL-
CheckList (Zhao et al., 2022) includes such a set
of probes dedicated to color alone, and in their ex-
periments model performance on these probes is
higher than for the other attribute types they test,
such as size or material.

This is in line with other previous work on visio-
linguistic model performance around color: Task-
ing a model with editing an image so that the re-
sponse to a color-focused question about this im-
age changes (Boukhers et al., 2022) works better
than asking for alterations targeting size (Pan et al.,
2019). Similarly, classification models that predict
a masked-out color word based on a visio-linguistic
embedding yield promising results (Salin et al.,
2022).

What these rather technical approaches do how-
ever not take into account is how the probed aspects
are processed in human perception. In this vein,
Kajic and Nematzadeh (2022) assess the extent to
which human processing of number information is
mirrored in visio-linguistic models.

In this work, we take a similarly human-
informed approach. We aim to systematically as-
sess color alignment in visio-linguistic models by
creating an extensive collection of probing exam-
ples. During evaluation, we take into account the
relations between colors and the influence of hu-
man perception on color naming.

3 Color Naming

Computers process color with the objectiveness
of a machine: In the RGB system of the digital
world, colors are combinations of intensities of red,
green, and blue. The textual data processed by
visio-linguistic models does however consist of de-
scriptions of these hues in human language. Mod-
els therefore have to pick up on how color words
align with certain shades. This is complicated by
three factors rooted in the human perceptual system
and the language used to describe color: context,
coverage, and subjectivity.
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Figure 2: Color illusion that demonstrates contrast effect
(designed by Akiyoshi Kitaoka2). Both center squares
are the same shade.

While we do not experience it as such, we do not
perceive every shade as its exact value. A key driver
in this is context: The perceptual system demon-
strates a number of constancy phenomena. One
of these is color constancy, which makes the same
sheet of paper appear white both in direct sunlight
and a dimly lit room (Walsh and Kulikowski, 1998).
We are thus applying a sort of color correction to
account for the overall setting. This helpful quirk
does however make us susceptible to illusions (see
Kitaoka (2010) for an overview). One such illusion
is depicted in Figure 2: The surrounding colors
make the center square appear more yellow on the
left and more orange on the right, even though both
are the same exact shade. This means that in visio-
linguistic datasets the same hue will not necessarily
always be described the same, because its context
may cause it to be perceived differently. Another
relevant dimension of context is the interplay of a
color word and the object it refers to: White skin
has a different shade of white than a white shirt,
just like a red wine is a different red than red hair.

In general, the complementary RGB color pairs
blue-yellow and red-cyan align well with how color
is processed by the human perception system (Hur-
vich and Jameson, 1957; Pridmore, 2011), but the
coverage of the RGB space with color terms varies.
Berlin and Kay (1969) formulate a set of eleven
basic colors, which they postulate to follow a cer-
tain order of emergence across languages. Some
languages do not use all eleven colors (Bornstein,
2007) and others have separate terms for different
shades of the same basic color (Thierry et al., 2009;
Kim et al., 2019), but these eleven basic colors
match the common color terms in the English lan-
guage. These terms are not equidistant on the RGB
color wheel (see Figure 3): Leaving white, gray and
black to their own axis, six of the remaining eight
colors are located in the upper half. This aligns
well with communication around warm colors, i.e.
the upper half of the color wheel, being more ef-

2http://www.psy.ritsumei.ac.jp/~akitaoka/
color2e.html
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Figure 3: Overview of the colors covered by Rainbow ,
which correspond to the eleven basic colors Berlin and
Kay (1969) postulate.

fective than for cool colors (Gibson et al., 2017).
Gibson et al. (2017) postulate that this emerged out
of a necessity to discriminate objects from back-
ground, finding that objects tend to have warm and
backgrounds cool colors. The uneven coverage
of the RGB space with color names means that a
visio-linguistic model has to notice how variations
in the RGB values matter more in some areas than
in others: While there is a rather restricted orange
area, it is a much wider range of values that can be
described as blue.

A third aspect that skews human color descrip-
tions is that there is a certain level of subjective-
ness to them: Some hues may permit multiple de-
scriptions, or even cause disagreement regarding
the appropriate color word to describe them. An
example of this is the tank top of the woman in the
exemplary Flickr30k image in Table 1: While the
crowd annotator described it as green, it might just
as well be described as blue. This would present as
noise in a visio-linguistic dataset. What can also
play into these differences is variation in the ap-
pearance of digitally displayed colors depending
on the respective display.

In summary, learning the association between
RGB values and color names is not a straightfor-
ward case of discretizing equal-sized subareas of
the color space into a set of vocabulary. Color nam-
ing is influenced by the context in which a shade
occurs, the language a person speaks and may at
times be ambivalent. To assess these effects on
crowdworker’s descriptions of images, we manu-
ally enrich one of the subsets of Rainbow with
RGB values of the described elements.

4 Rainbow

We now describe Rainbow , our benchmark to
systematially test the sensitivity of visio-linguistic
models to color naming. We start by describing the
underlying datasets. Then we outline how these
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datasets were processed to collect descriptions that
mention color, from which we derive two kinds of
probes: color replacements and color swaps.

4.1 Source Datasets

We first screened an extensive set of existing
datasets of English image descriptions for descrip-
tions that mention color. The aim was to find a
diverse set of source datasets that all include a
substantial amount of mentions of a shared set of
colors. Table 1 gives an overview of the source
datasets Rainbow builds on: Flickr30k (Young
et al., 2014) and MS COCO (Lin et al., 2014) con-
sist of high-quality crowdsourced descriptions of
images that were collected from Flickr.3 The EQ-
GEBC subset of the EqBen (Wang et al., 2023)
benchmark has descriptions of video frames. Since
this dataset also includes negative descriptions of
things that are not in the scene, we exclude any
such cases. ARO (Yuksekgonul et al., 2023), VL-
CheckList (Zhao et al., 2022) and the EQ-Kubric
subset of EqBen contain descriptions that were gen-
erated, which means that descriptions from these
datasets have a fixed structure. Both ARO and
VL-CheckList derive descriptions off of the scene
graph annotations in the Visual Genome (Krishna
et al., 2017) dataset. From VL-CheckList, we col-
lect all descriptions found in the color attribute
and object subsets and split them into two cate-
gories: Those that are short and merely consist of
a color and an object (CheckListS), such as red fire
hydrant, and those that are longer, consisting of
at least four tokens (CheckListL). In EQ-Kubric,
not only the descriptions but also the images are
generated. Generating both in tandem makes the
images and their descriptions more consistent, as it
eliminates effects of subjectivity in color naming.

Flickr30k and MS COCO are usually split into
training, validation and test data according to
Karpathy and Fei-Fei (2017). To prevent interfer-
ence with the training data of models and because
Rainbow is meant for evaluation purposes, we

only collect descriptions from the respective test
sets.

4.2 Deriving Color Probes

To detect color mentions in the source datasets,
we start out with a list of all HTML color names4

and keep only those that occur at least 30 times
3https://www.flickr.com
4https://www.w3schools.com/colors/colors_

names.asp

in each dataset. This is done to ensure that all
datasets share the same set of colors and that all of
these colors occur with substantial frequency. The
only exception to this is orange, which we keep
even though it is not present in EQ-Kubric. Fig-
ure 3 shows the resulting set of colors on the RGB
color wheel, which match the eleven basic colors
described by Berlin and Kay (1969). In extract-
ing descriptions that mention these colors from the
source datasets, we perform the following normal-
izations: We replace British English mentions of
grey with the American spelling as gray. Orange
requires special treatment for two reasons: First,
it starts with a vowel and should thus be preceded
by an instead of a to prevent grammatical errors.
We fix any such errors in the original data5 and
make sure to adapt a preceding determiner from an
to a whenever we replace orange with a different
color, and vice versa.6 Second, orange can also
refer to the fruit and thus occur as a noun rather
than a color. After experimenting with different
part of speech taggers, we found it more reliable to
manually screen the data to exclude these cases.7

We further exclude descriptions that contain
objects described with more than one color, e.g.
a green and white shirt, because such sentences
would not result in a specific enough probe. We
thus remove all descriptions that either match the
pattern <color1 color2> or <color1 and color2>.
From the collected set of image descriptions, we
construct two types of probes: color replacements
and color swaps.

Color replacements For every occurrence of one
of our eleven colors of interest, we systematically
derive ten descriptions where this color is replaced
with each of the other ones in turn. In this way, we
are creating ten mismatched descriptions. These do
not only allow to test how sensitive models are to
color manipulations in general, but also to examine
the pattern that emerges across replacement pairs:
As humans, we sometimes do not agree on whether
something might still be orange or already red, but
agreement should be fairly high when it comes to
distinguishing yellow from blue. The systematical
setup of replacing every color mention with all

56 in Flickr30k, 8 in MS COCO, 8 in CheckListL.
6Failing to do so may otherwise present as a clue to the

model: It could recognize an and orange occurring together as
a marker of a matching sentence, and one appearing without
the other as indicative of a manipulated one.

720 in ARO, 41 in MS COCO, 76 in CheckListS, 51 in
CheckListL.
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Flickr30k MS COCO EQ-GEBC ARO CheckListS CheckListL EQ-Kubric

Text Source Manual Manual Manual Generated Generated Generated Generated
Image Type Photographs Photographs Video Frames Photographs Photographs Photographs Generated

A woman in a green
tank top looking at a
drill while a crowd
looks on.

A yellow wall liv-
ing room with a
large and bright
white window.

Man in green
hoodie spit after he
brushed his teeth.

The brick ground
and the black um-
brella

Green pants Gray circle on
white mug

The red coffee mug
is located behind
the black boot

# Images 681 2016 2382 4114 34103 4112 9649
# Sentences 1434 3358 2386 18123 53574 6348 9649
# Tokens (ø) 16.6 11.0 15.0 7.1 2.1 4.4 12.5
# Color
– Mentions 1968 3890 3553 22827 53577 6540 14848
– Swaps 287 379 758 4675 – 127 4138

Table 1: Source datasets of Rainbow and how many images, sentences, color mentions and color swaps these
contribute to the benchmark. For details on how often which color is mentioned in which dataset and how often
which color pair appears in the color swaps, see Tables 5 and 6 in the Appendix, respectively.

other colors allows us to assess to which extent the
predictions of a model exhibit similar tendencies.

Color swaps Referring back to the example im-
age in Figure 1, a model might not necessarily
reject the description on the bottom left, where red
is replaced with blue, because the jacket is not blue.
Instead, is could merely reject it because there is
not much blue anywhere in the image. To therefore
ensure that a model is not just squinting at the im-
age and finding mismatches because it does not see
the colors that are mentioned, we build a second
set of probes. For these, we take descriptions that
contain exactly two colors and swap them so that a
red jacket and black pants become a black jacket
and red pants. Since both red and black are in the
image and it is merely the order of the words that
changes, this becomes a test of whether the model
is able to recognize that the specific objects have
to appear in the respective color.8

4.3 Evaluation
We now turn towards the evaluation setting and
metric we employ. Each probe consists of an im-
age i and two descriptions d1 and d2 of it. While
d1 matches the respective image, d2 is a mismatch.
The two descriptions are processed as two separate
tuples (i, d1) and (i, d2) in a binary classification
setup. This means that an individual binary deci-
sion is made regarding each of them.

8For ARO, this is a subset of the original dataset, which
also probes word order. ARO is however not restricted to
color, as it tests attribute understanding in general.

4.3.1 Adjacent and complementary colors

With our color probes, we intend to create mis-
aligned examples by replacing color mentions with
different colors. However, there are cases where
the same hue may be appropriately described by
two different color words, e.g. a red object that
could arguably also be described as orange. The re-
placement of red with orange may thus in a certain
proportion of the examples lead to a description
that is in fact not a mismatch. Since we are in-
terested in whether this is reflected in the models
predictions, we pay special attention to colors that
are adjacent in the color wheel. This is indicated
by ∼ in our experiments. For these color pairings,
it may be appropriate for the model to accept both
the original and the modified descriptions. In the
same vein, we also consider the other extreme by
taking a look at complementary colors, indicated
by � in our experiments. For these, we can be cer-
tain that the shade that was initially described with
one color word can not also be described by the
respective replacement color. For an overview of
adjacent and complimentary colors see Appendix
7.

4.3.2 Metric

The probes in Rainbow consist of two image-
description tuples that share the same image. We
obtain a separate binary classification for each tu-
ple. Straightforward evaluation metrics to apply
would thus be accuracy, precision and recall. How-
ever, this does not take into account the paired
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Ground Truth Prediction

match

mismatch

✓

✗

accept

reject

⇒ Same individual classification statistics

⇒ Difference in correctly separated descriptions

Model A

✓ ✓ ✓ ✗ ✗

✓ ✓ ✗ ✗ ✗

Accinstance = 6
10 = 0.6

Accpaired = 1
5

= 0.2

Model B

✓ ✓ ✗ ✓ ✗

✗ ✗ ✓ ✓ ✗

Accinstance = 6
10 = 0.6

Accpaired = 2
5

= 0.4

Figure 4: Each square represents a tuple of an image and a description. The respective upper and lower tuple share
the same image, but differ in its description of it. While the description in the upper tuple matches the image, the one
in the lower tuple differs in a color word and is therefore a mismatch. The two hypothetical models both correctly
recognize three matches and three mismatches. This means that they have identical accuracy, precision and recall.
When accuracy is however calculated on the basis of pairs of tuples (white rectangles), it becomes apparent that
model B is superior in separating the matching from the mismatched description of an image.

Figure 5: Hues in the Flickr30k subset that are described
as white, black (top), yellow, orange, red, pink, purple
(middle), blue, green, brown or gray (bottom).

nature of the tuples. This is visualized in Figure 4,
where each square represents a tuple. Looking at
the two hypothetical model predictions, both mod-
els achieve the same exact accuracy, precision and
recall. To quantify how often a model both accepts
the matching description and rejects the altered
one, we calculate the pair-wise accuracy. This
reveals a difference between the two models, as
it shows model B to separate the tuples more ac-
curately. Since this paired evaluation creates four
possible outcomes for each probe, i.e. each pair of
tuples, a random baseline would reach a pair-wise
accuracy of .25.

5 Analysis

We first analyze the shades corresponding to color
names in Flickr30k, then establish a language-
only baseline, and finally probe a number of visio-
linguistic models.

5.1 Color Naming in Flickr30k

As discussed in Section 3, the names people use to
describe colors are not necessarily consistent with

the actual RGB values, because they can vary due
to context or subjectivity. To gauge to what extent
this is the case in our probes, we manually pick
the RGB values of the objects that are described in
the Flickr30k subset of Rainbow . In doing this,
we pick the color of a pixel that is representative
of the overall appearance of the respective object.
An overview of the resulting values is shown in
Figure 5, which reveals the range of shades covered
by the respective color names. Very similar or
even the same shades sometimes appear in different
patches of the Figure. This is partly due to context,
i.e. the same hue appearing different to the human
eye depending on the contrast in which it occurs. In
other cases, this is the result of multiple annotators
describing the same object in the same image with
a different color name. We can therefore conclude
that the aspects discussed in Section 3 do influence
the color names that occur in human descriptions
of photographs. For examples of the influence of
white color constancy and subjective naming of the
same hue see Figures 9 and 10 in the Appendix,
respectively.

5.2 Language-Only Baseline

In our systematic replacement of colors, we can not
control for the interplay of colors with the things
they describe. There will be cases where these
are linked, such as blue sky or an orange safety
vest. Replacing these colors can skew the likeli-
hood of a description matching an image, merely
because the description alone is unlikely. To assess
to which extent such language clues are present
in Rainbow , we calculate a language-only base-
line. As visio-linguistic models usually build on
the Transformer (Vaswani et al., 2017) architecture,
we use a BERT (Devlin et al., 2019) model for this
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Replacements .73 .76 .74 .67 .54 .70 .67
Swaps .67 .64 .69 .71 – .71 .64

Table 2: Language-only baseline: The proportion of
probes for which the matching description is deemed
more likely than the mismatched one, determined by
only considering the caption and never the image.

estimation (bert-base-uncased from HuggingFace9

). To obtain language probabilities of descriptions,
we employ the approach described by Salazar et al.
(2020). They mask out tokens one-by-one and com-
bine the results into a pseudo log-likelihood score.

We determine these likelihood scores for the
two descriptions in each probe. Table 2 shows for
which proportion of the probes the likelihood of
the matching description exceeds that of the mis-
matched one, i.e. how often the language is biased
towards preferring the matching description. We
see a certain amount of such bias for each dataset
in Rainbow . This indicates that color words are
sometimes associated quite strongly with the ob-
jects they refer to. For the color replacements, it
must however be taken into account that for each
strong association such as blue sky, there will be
ten mismatched descriptions, one for each of the
other colors. These are potentially all deemed less
likely than the original matching description. As-
sessing how the language baseline varies across dif-
ferent color pairs reveals that there is no consistent
preference of the matching over the mismatched
description. Instead, it varies in direction and in-
tensity. For a visualization of this, see Figure 8 in
the Appendix.

5.3 Probing Visio-Linguistic Models
We test a range of visio-linguistic models with dif-
ferent properties. For a summary of them, see Table
7 in the Appendix. Each model has a pretrained
binary classification head for image-text alignment,
which is a prerequisite because Rainbow requires
such binary predictions. We rely on the pretrained
checkpoints released by the respective authors.

LXMERT (Tan and Bansal, 2019) uses object fea-
tures that were pre-extracted using a Faster R-CNN
(Anderson et al., 2018) and processes visual and
textual input in a two-stream Transformer architec-

9https://huggingface.co/bert-base-uncased

ture. UNITER (Chen et al., 2020) and VILLA (Gan
et al., 2020) do the same in a single stream.10 Fur-
ther, we test a number of end-to-end models. SOHO

(Huang et al., 2021) uses ResNet (He et al., 2016)
to process images. ALBEF (Li et al., 2021), TCL

(Yang et al., 2022) and BLIP (Li et al., 2022) use
a Vision Transformer (Dosovitskiy et al., 2021).
When it comes to object recognition, Vision Trans-
formers have been shown to align more closely
with human perception than Convolutional Neu-
ral Networks (Tuli et al., 2021). To include an
example of the recent generative models, we also
probe LLaVA-1.5 (Liu et al., 2023b,a). This model
connects the CLIP (Radford et al., 2021) vision-
and-language model and the large language model
Vicuna (Chiang et al., 2023). To derive binary
predictions from the textual output of LLavA, we
incorporate the image descriptions into a prompt:
"Does the following sentence match this image?\n"
+ description + "\nPlease answer with either ’yes’
or ’no’."

5.3.1 Color replacements
Table 3 shows paired accuracy results for comple-
mentary and adjacent colors, macro-averaged over
the individual color pairs.11 Results are often below
or not substantially higher than the chance baseline
of .25. Performance is especially poor for SOHO.
Even though LXMERT was pretrained on the same
data as SOHO, it performs somewhat better. Among
the three BLIP models it is actually the smaller one,
trained with a lower volume of images, that has
the overall best results. This shows that the addi-
tion of 115M more noisy samples from the LAION
(Schuhmann et al., 2021) dataset into the training
of BLIPB and BLIPL does more harm than good to
the ability of the model to process the color names.

Across all models and datasets, there is a clear
effect of complementary colors scoring higher than
adjacent ones. This seems to reflect the greater
hue difference in complementary color pairs. To
gain more insight into how performance distributes
over the individual color pairs, Figure 6 shows de-
tailed results for two comparably well-performing
models: The overall highest difference between
performance on complementary and adjacent col-
ors is achieved by TCL on the MS COCO dataset
(Figure 6, left). Our enrichment of the Flickr30k

10Since the larger versions of UNITER and VILLA consis-
tently outperform their smaller counterparts, we limit our
results to these larger versions of the models.

11Results across all color pairs consistently fall between
performance on adjacent and complementary color pairs.
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Figure 6: Detailed results for the model and dataset with the greatest overall performance difference between
adjacent and complementary color pairs (top), and the model with the greatest performance difference on the
RGB-annotated Flickr30k subset (bottom). ∼ denotes adjacent colors, � complementary ones.
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Flickr30k
� Complementary .29 .38 .32 .12 .32 .22 .29 .33 .12 .07 .42
∼ Adjacent .27 .20 .15 .09 .17 .11 .13 .19 .06 .03 .20
MS COCO
� Complementary .28 .63 .59 .11 .59 .40 .57 .63 .27 .25 .48

∼ Adjacent .25 .34 .27 .05 .28 .16 .22 .35 .11 .09 .20

EQ-GEBC
� Complementary .25 .32 .29 .20 .24 .32 .33 .36 .32 .31 .46

∼ Adjacent .22 .21 .17 .13 .17 .24 .21 .25 .20 .19 .25

ARO
� Complementary .31 .49 .46 .18 .49 .53 .55 .55 .47 .44 .21

∼ Adjacent .27 .26 .23 .10 .34 .33 .34 .40 .27 .24 .08

CheckListS

� Complementary .33 .55 .58 .31 .31 .43 .33 .34 .50 .42 .53

∼ Adjacent .29 .40 .39 .20 .26 .32 .26 .28 .34 .30 .32

CheckListL

� Complementary .32 .49 .48 .21 .34 .40 .36 .38 .37 .39 .38

∼ Adjacent .28 .31 .28 .12 .25 .27 .25 .30 .23 .23 .21

EQ-Kubric
� Complementary .20 .23 .24 .21 .04 .21 .14 .22 .26 .24 .20

∼ Adjacent .18 .13 .13 .14 .03 .14 .10 .14 .17 .16 .09

Average
� Complementary .29 .45 .43 .19 .34 .36 .37 .41 .33 .31 .38

∼ Adjacent .25 .27 .24 .12 .22 .23 .22 .28 .20 .18 .19

Table 3: Paired accuracy, macro-averaged across all
complementary vs. adjacent color pairs. Detailed results
for boldface model-dataset combinations in Figure 6.

subset with RGB value annotations permits follow-
up analyses that take into account the actual hue a
model decision is centered around. Figure 6 (right)
therefore also lists results of LLaVA on this data, as
this model achieves the highest performance delta
on Flickr30k.

Both matrices in Figure 6 convey the overall
impression of symmetric effects. For both models,
exchanging pink to purple has especially low paired
accuracy. This can be traced back to a tendency to
accept either name as a description of the respective
hue. Such a pattern may emerge because these hues
are candidates where humans would agree that the
alternative color is also an appropriate description.
However, it could also result from the model being
unsure about the concept of the respective colors.
We therefore compared the average hues for which
a neighboring color term was accepted vs. rejected,
which is depicted in Figure 11 in the Appendix.
Results point towards the model being unsure what
a certain color looks like.

5.3.2 Color swaps
Table 4 shows paired accuracy results for the color
swaps. While they had achieved the best per-
formances in the color replacement experiment,
UNITER and VILLA are now among the lower scoring
models. They are outperformed by ALBEF, TCL and
BLIP. This indicates a superiority of these Vision
Transformer-based models over models relying on
pre-extracted image features, an effect especially
pronounced for the MS COCO and ARO subsets.
Although LLaVA performs well on many other bench-
marks, it is among the lower performing models
for the color swaps.
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Flickr30k .25 .23 .14 .05 .30 .21 .25 .32 .08 .06 .26

MS COCO .22 .43 .33 .02 .52 .38 .54 .55 .20 .16 .28

EQ-GEBC .21 .16 .12 .07 .17 .26 .22 .30 .20 .21 .34

ARO .25 .29 .23 .06 .48 .52 .55 .55 .44 .43 .11

CheckListL .31 .24 .20 .08 .18 .15 .19 .23 .12 .09 .35

EQ-Kubric .17 .16 .15 .10 .04 .16 .14 .20 .20 .16 .10

Average .24 .25 .20 .06 .28 .28 .32 .36 .21 .19 .24

Table 4: Paired accuracy results for the color swaps.

6 Conclusion

We present Rainbow , a benchmark to probe color
understanding of visio-linguistic models. Our an-
notation of one of its subsets with RGB values
demonstrates how human perception influences
color naming. Testing a set of visio-linguistic mod-
els showed them to pick up on which color terms
describe neighboring hues. Swapping colors in
descriptions revealed an inferior ability of models
that rely on pre-extracted image features to ground
color names to the objects they describe. Since the
benchmark remains challenging for all models we
probe, it will be exciting to see how future models
fare on it.

7 Limitations

As we discuss in Section 3, color naming varies
depending on culture and language. Rainbow
consists of English image descriptions, and many
of the datasets collect these descriptions from US
American annotators. This means that it is centered
around the eleven basic colors used in English and
to some extent limited to a western-centric world
view - different patterns may emerge for different
languages and cultures.

Large volumes of images, usually collected from
the internet, are used to pretrain visio-linguistic
models. Therefore, a general problem of visio-
linguistic probing is that models might have already
seen some of the images during pretraining.

8 Ethics

Data Privacy All datasets Rainbow builds on
consist of descriptions of images. These are either
generated or given by people with no personal re-
lation to the contents of the images. This makes
it unlikely for descriptions to contain personal in-
formation or offensive content, and we did not en-

counter any in working with the data.

Environmental Impact While we do not fine-
tune any models, we do use pretrained models for
inference. All experiments were run on Nvidia Ti-
tan Xp and A40 graphics cards. For models that re-
quire pre-extracted image features (LXMERT, UNITER

and VILLA), we had to first extract these features.
Rainbow has descriptions of 54406 images. Ex-

tracting features for these images took a total of
four GPU hours. Rainbow contains of 481,097
probes. The total inference time for all models was
around 150 GPU hours.

License All datasets Rainbow builds on are
released under a license that permits modification.
We release Rainbow under MIT license. This
covers our annotation of the RGB values of color
descriptions in Flickr30k and the code to derive
Rainbow from the existing datasets.
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A Appendix

This appendix gives additional details that may be
of interest to gain deeper insight into Rainbow
and our analyses of it.

Dataset Tables 5 and 6 contain the distribu-
tion of color terms across the different subsets of
Rainbow . Figure 7 shows adjacent and comple-

mentary color pairs. Examples that demonstrate
the effect of human perception on color names in
Flickr30k are depicted in Figures 9 and 10.

Experiments Figure 8 shows more detailed re-
sults for our language-only baseline. Table 7 sum-
marizes the models we probe. Figure 11 shows
how the hues of elements in Flickr30k are related
to the classification decisions of LLaVA, focusing on
adjacent color pairs.
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Flickr30k MS COCO EQ-GEBC ARO CheckListS CheckListL EQ-Kubric Σ

White 327 989 587 5369 16900 1781 3864 11136
Yellow 130 241 106 539 3006 306 441 1457
Orange 92 129 62 435 419 128 - 718
Red 278 556 231 1060 5295 586 2401 4526
Pink 95 118 121 359 305 129 408 1101
Purple 33 56 32 205 150 41 630 956
Blue 299 451 581 3697 6877 869 1024 5982
Green 156 463 180 2772 6707 569 1319 4890
Brown 144 266 71 3504 6921 609 1114 5099
Gray 56 112 337 2217 4518 356 861 3583
Black 358 509 1245 2670 2479 1166 2786 7568

Σ 1968 3890 3553 22827 53577 6540 14848 47086

Table 5: Overview of how often the individual colors occur in the different subsets of Rainbow .

∼ �
∼ � ∼ ∼

∼ ∼ � ∼
∼ ∼ � ∼

∼ ∼ �
∼ ∼ �

� � � ∼ ∼ �
∼ � � ∼
∼ ∼ ∼ �

∼ ∼

� ∼

white

yellow

orange

red

pink

purple

blue

green

brown

gray

black

Figure 7: Matrix reflecting colors that are adjacent (∼) or complementary (�) on the RGB color wheel.
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Figure 8: Language-only baseline results for the color replacement pairs, macro-averaged across all seven datasets
and split into color pairs. Heatmap colors encode whether the original sentences are more likely than the manipulated
ones (blue) or if it is the other way around (purple). ∼ denotes adjacent colors, � complementary ones. There are
indications of systematic effects for certain colors. Descriptions containing gray and purple are less likely than when
these colors are replaced with a different one. Descriptions containing red tend to be more likely than when red is
replaced with a different color. Results do not seem to correlate with colors being adjacent (∼) or complementary (�)
on the RGB color wheel.
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Flickr30k MS COCO EQ-GEBC ARO CheckListL EQ-Kubric Σ

white

– yellow { } 8 6 5 58 – 109 186
– orange { } 5 3 5 55 4 – 68
– red { } 10 34 21 118 9 477 660
– pink { } 1 2 12 38 1 69 122
– purple { } 1 4 – 25 1 102 132
– blue { } 21 27 58 435 35 169 710
– green { } 8 19 12 268 4 214 521
– brown { } 10 19 7 457 5 180 673
– gray { } 2 8 10 236 3 152 408
– black { } 28 44 131 345 16 395 943

yellow

– orange { } 1 1 5 4 1 – 11
– red { } 12 9 2 10 1 50 83
– pink { } 1 1 – 5 – – 7
– purple { } – 1 – 3 – 18 22
– blue { } 7 6 16 58 1 7 94
– green { } 4 6 – 20 6 33 63
– brown { } 1 2 3 31 1 18 55
– gray { } – 3 5 27 1 22 57
– black { } 10 4 22 26 – 73 135

orange

– red { } 2 3 1 4 – – 10
– pink { } – 1 2 4 – – 7
– purple { } – – – 1 – – 1
– blue { } 17 – 2 34 2 – 53
– green { } – 6 – 18 – – 24
– brown { } 1 – – 29 – – 30
– gray { } – – 2 23 – – 25
– black { } 2 8 15 29 2 – 54

red

– pink { } 4 1 3 8 – 32 48
– purple { } – – – 2 – 63 65
– blue { } 20 14 16 85 1 110 245
– green { } 3 16 10 57 3 128 214
– brown { } 4 6 5 69 2 106 190
– gray { } 1 3 8 54 1 78 144
– black { } 24 24 58 65 3 236 407

pink

– purple { } 2 1 2 3 – 16 24
– blue { } 4 5 10 23 2 2 44
– green { } – 2 – 25 1 16 43
– brown { } 1 2 – 23 – 16 42
– gray { } 1 1 3 12 – 6 23
– black { } 4 3 13 19 1 74 113

purple

– blue { } 1 – 4 9 – 38 52
– green { } 2 – – 12 – 43 57
– brown { } 2 4 – 11 – 32 49
– gray { } – 1 1 8 – 26 36
– black { } 1 5 9 14 1 71 100

blue

– green { } 5 18 7 198 2 85 313
– brown { } 6 3 9 289 – 48 355
– gray { } 3 3 33 172 2 35 246
– black { } 14 9 112 188 5 151 474

green
– brown { } 5 11 – 251 3 70 337
– gray { } 1 3 5 146 – 61 216
– black { } 8 8 24 141 3 181 362

brown
– gray { } 2 1 4 136 – 57 200
– black { } 12 15 12 183 1 137 359

gray – black { } 5 3 74 111 3 132 325

Σ 287 379 758 4675 127 4138 10237

Table 6: Overview of how often which color pair occurs in the color swaps.
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’white shirt’

R=209
G=224
B=255

R=204
G=231
B=250

’blue shirt’

’white shirt’

R=228
G=208
B=210

R=234
G=210
B=218

’pink dress’

R=230
G=208
B=150

’white fence’

R=217
G=196
B=128

’yellow shirt’

R=228
G=193
B=162

’white guitar’

R=230
G=191
B=139

’orange kayak’

Figure 9: Examples of white color constancy. The respective objects seem white in the context of the image. Picking
their RGB color values shows that this is actually not the case. We pair these hues with very similar ones from
different images, where they are described with a color name other than white. Overall, these are examples of how
the terms humans use to describe color in photographs are not always consistent with how the respective color
appears in isolation. This is what we describe as the effect of context in Section 3.
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> A large woman with long pink hair dressed in black [...]

> A woman with pink hair dressed in black talks to a man.

> A girl with bright red - hair and black clothes is posing [...]

> A red - haired woman in black is posing for a man [...]

> A man wearing a [...] neon green safety vest [...]

> A young, male adult wearing [...] a green reflective vest, [...]

> A worker in a yellow vest stands on train tracks.

> A person in a bright yellow vest and hard hat [...]

> Little girl in kitchen, kissing a fluffy orange cat.

> The little girl is kissing the brown cat.

> A young girl standing next to a yellow cat [...]

> A child wearing a yellow shirt is jumping up and down.

> A child wearing a yellow Doritos shirt jumps up [...]

> A boy wearing an orange Doritos jersey jumps up in the air.

> A boy wearing an orange shirt and brown shorts is jumping.

> A boy wearing an orange doritos shirt looks like [...]

> Four men leaning over a green fence and smiling .

> Four men are outside looking down over the green bridge [...]

> Four men [...] standing near a blue handrail smiling [...]

> A group of men are standing beside a blue railing for a picture.

> The brown dog is standing on the sandy beach .

> Light brown dog running towards something at the beach .

> A gray colored dog walks in wet sand at a beach .

> The large gray colored dog is jumping on the beach .

> A gray dog plays in the sand at the ocean .

Figure 10: Examples of annotators describing the same element in the same Flickr30k image with a different color
name. This is the effect of what we describe as subjectiveness in Section 3.
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white – gray

R=213
G=211
B=211

R=213
G=210
B=207

R=146
G=143
B=140

R=140
G=139
B=143

gray – black

R=162
G=159
B=159

R=134
G=133
B=133

R=039
G=037
B=037

R=048
G=043
B=043

yellow – orange

R=231
G=218
B=131

R=212
G=192
B=100

R=214
G=130
B=084

R=214
G=118
B=083

orange – red

R=224
G=128
B=076

R=214
G=128
B=083

R=180
G=065
B=066

R=185
G=093
B=095

red – pink

R=182
G=069
B=070

R=177
G=062
B=062

R=205
G=125
B=159

R=206
G=171
B=184

pink – purple

R=221
G=158
B=176

R=204
G=126
B=160

R=133
G=106
B=149

R=175
G=168
B=201

purple – blue

R=NA
G=NA
B=NA

R=133
G=116
B=162

R=081
G=118
B=163

R=072
G=101
B=149

blue – green

R=063
G=093
B=150

R=076
G=113
B=157

R=119
G=157
B=109

R=099
G=141
B=096

green – yellow

R=113
G=159
B=124

R=114
G=150
B=097

R=210
G=195
B=106

R=223
G=199
B=102

yellow – brown

R=227
G=216
B=114

R=212
G=191
B=101

R=135
G=103
B=078

R=131
G=104
B=084

orange – brown

R=214
G=124
B=081

R=214
G=130
B=085

R=140
G=108
B=083

R=145
G=123
B=107

red – brown

R=185
G=071
B=073

R=175
G=061
B=062

R=128
G=096
B=070

R=145
G=118
B=096

color_A – color_B

is: color_A
description
as color_B

not accepted

is: color_A
description
as color_B
accepted

is: color_B
description
as color_A
accepted

is: color_B
description
as color_A

not accepted

Figure 11: We annotated the hues corresponding to color names in Flickr30k. This permits the assessment of how
these hues correspond to the classification decisions of models. LLaVA performed best on this dataset, which is why
we give detailed results for this model here. We consider adjacent colors, and calculate the average of hues for
which a description with a neighboring color term is/is not accepted. This is done to gauge whether these hues
are plausibly describable with the alternative color term, or if the model is merely unsure about what exactly hues
corresponding to a certain color term look like. The latter seems to be the case, as the overall appearances of the
averaged hues for which the neighboring color term is accepted are not skewed towards the respective neighboring
color. Consider for example the pair green-yellow: The average green hue for which a description as yellow is
not accepted (rightmost square) is ’less yellow’ than the averaged green hue for which a description as yellow is
accepted (middle left square). Still, both shades are unambiguously green. This indicates that the model has a
rather high level of ambiguity regarding where green ends and where yellow begins. Results therefore indicate
that the observed pattern of lower performance for neighboring color terms is not due to the hues being somewhat
ambivalent. Manual inspection of some of the images did not suggest this was due to context effects causing hues to
appear differently either, which the model could have picked up from the pretraining data.
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Model Architecture Visual Input Datasets in Pretraining #Images

LXMERT (Tan and Bansal, 2019) 2-stream Faster R-CNN COCO, VG 0.2M

UNITER (Chen et al., 2020)
base 1-stream Faster R-CNN CC, SBU, COCO, VG 4M
large 1-stream Faster R-CNN CC, SBU, COCO, VG 4M

VILLA (Gan et al., 2020)
base 1-stream Faster R-CNN CC, SBU, COCO, VG 4M
large 1-stream Faster R-CNN CC, SBU, COCO, VG 4M

SOHO (Huang et al., 2021) end2end ResNet COCO, VG 0.2M

ALBEF (Li et al., 2021)
base end2end ViT-B/16 CC, SBU, COCO, VG, 4M
large end2end ViT-B/16 CC, SBU, COCO, VG, CC12M 14M

TCL (Yang et al., 2022) base end2end ViT-B/16 CC, SBU, COCO, VG 4M

BLIP (Li et al., 2022)

base14M end2end ViT-B/16 CC, SBU, COCO, VG, CC12M 14M
base129M end2end ViT-B/16 CC, SBU, COCO, VG, CC12M, LAION 129M
large end2end ViT-L/16 CC, SBU, COCO, VG, CC12M, LAION 129M

LLaVA (Liu et al., 2023a) end2end ViT-L/14 CC, SBU, COCO, VG, CC12M, LAION 129M

Table 7: Summary of the models we probe with Rainbow . To judge their relative performances, one may want to
take into account the data they were pretrained on. This is why we include the datasets models are based on, as well
as the total number of images these datasets contain. Datasets are: Conceptual Captions (CC, Sharma et al. (2018)),
SBU Captions (SBU; Ordonez et al. (2011)), MS COCO 2014 (COCO; (Lin et al., 2014)), Visual Genome (VG,
Krishna et al. (2017)), Conceptual 12M (CC12M, Changpinyo et al. (2021)) and LAION (Schuhmann et al., 2021).
Faster R-CNN (Anderson et al., 2018) is pretrained on Visual Genome (Krishna et al., 2017), ResNet (He et al.,
2016) and all Visual Transformer (ViT, Dosovitskiy et al. (2021)) models are pretrained on ImageNet (Deng et al.,
2009).
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