
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics
Volume 1: Long Papers, pages 1924–1945

March 17-22, 2024 c©2024 Association for Computational Linguistics

It is not True that Transformers are Inductive Learners: Probing NLI
Models with External Negation

Michael Sullivan
University at Buffalo

mjs227@buffalo.edu

Abstract

NLI tasks necessitate a substantial degree of
logical reasoning; as such, the remarkable per-
formance of SoTA transformers on these tasks
may lead us to believe that those models have
learned to reason logically. The results pre-
sented in this paper demonstrate that (i) models
fine-tuned on NLI datasets learn to treat exter-
nal negation as a distractor, effectively ignoring
its presence in hypothesis sentences; (ii) sev-
eral near-SoTA encoder and encoder-decoder
transformer models fail to inductively learn the
law of the excluded middle for a single exter-
nal negation prefix with respect to NLI tasks,
despite extensive fine-tuning; (iii) those models
which are able to learn the law of the excluded
middle for a single prefix are unable to gen-
eralize this pattern to similar prefixes. Given
the critical role of negation in logical reason-
ing, we may conclude from these findings that
transformers do not learn to reason logically
when fine-tuned for NLI tasks. Furthermore,
these results suggest that transformers may not
be able to inductively learn the role of negation
with respect to NLI tasks, calling into question
their capacity to fully acquire logical reasoning
abilities.

1 Introduction

Natural language inference (NLI) tasks require de-
tecting inferential relations between pairs of sen-
tences (Fyodorov et al., 2000). For NLI datasets
such as MultiNLI (MNLI; Williams et al., 2017)
and Stanford NLI (SNLI; Bowman et al., 2015), the
task proceeds as follows: given a pair of sentences
(P,H), an NLI model must determine whether the
premise P entails the hypothesis H , H contradicts
P , or P and H are neutral with respect to one
another (i.e. P does not entail H and H does not
contradict P).

NLI tasks require logical reasoning capabilities
that extend beyond basic linguistic competence
(Richardson et al., 2020). For example, under-

standing that “Jane is travelling to Algeria” entails
“Jane is travelling to Africa” requires mereological
world knowledge (Hovda, 2009); an agent must
know that Algeria is contained within Africa. To
understand that “Jane is traveling to Algeria” does
not entail “Jane is traveling to Algiers”, the agent
must understand that Algiers is contained within
Algeria, but that Algeria is not solely comprised of
the city of Algiers.

Because of the considerable amount of reason-
ing that is required to accomplish NLI tasks, it is
important to scrutinize the degree to which cur-
rent NLI models are actually learning to reason
logically. McCoy et al.’s (2019) findings suggest,
for example, that even (then-)SoTA NLI models
such as BERT (Devlin et al., 2019) adopt shallow,
textual heuristics to achieve high-scoring results
on the MNLI dataset, although the MNLI dataset
itself is likely to be—at least partially—at fault
(possibly because the provided training data is not
sufficiently representative of the task; see the dis-
cussion in Section 2).

This paper investigates SoTA transformer
(Vaswani et al., 2017) NLI models’ ability to induc-
tively learn the law of the excluded middle (LEM)
with respect to external negation (negation that oc-
curs externally to the proposition that is negated,
e.g. “it is not true that apples are red”), in order
to evaluate the degree to which they have learned
to reason logically when performing NLI tasks. Us-
ing external negation, it is possible to automatically
construct augmented challenge examples from the
MNLI and SNLI datasets that modify the origi-
nal examples’ class labels in a predictable manner:
given a premise, hypothesis, label triple (P,H,L),
we generate an augmented example (P,¬H,L′),
where L′ = neutral if L = neutral, L′ = contra-
diction if L = entailment, and L′ = entailment if
L = contradiction.

Experiments 1 and 2 evaluate the NLI models’
inductive learning capacity along two respective

1924

axes: Experiment 1 (Section 4) examines these
models’ ability to generalize double-negation can-
cellation to chains of repeated external negation
prefixes longer than those seen during inoculation
(∼fine-tuning; see Section 2 for an in-depth de-
scription), with respect to a single prefix string. We
observe that NLI models struggle to learn this pat-
tern inductively, with many unable to learn it at
all. Experiment 2 (Section 5) evaluates the abil-
ity of those NLI models which were successfully
able to learn LEM for a single external negation
prefix to generalize this pattern to prefix strings
not seen during fine-tuning. We find that those
inoculated models suffer drastic decreases in per-
formance when presented with unseen prefixes; the
results of Experiment 3 (Section 6) indicate that
this is due to catastrophic forgetting of the simi-
larity between the prefix that they were inoculated
against and other, highly similar prefixes.

The experimental results contained in this paper1

indicate that transformer models do not learn to
reason logically when fine-tuned on NLI datasets,
lending further support to McCoy et al.’s (2019)
hypothesis that they are instead learning to leverage
shallow heuristics. In Section 3, we find evidence
(Theorem 1) that this failure of transformer models
to inductively learn LEM arises from deficiencies
in their training procedure and/or the structure (or
lack thereof) of their input data, rather than flaws
inherent to transformer architectures themselves
(see the discussion in Section 7).

2 Related Work

There is a large body of existing work on probing
NLI models to gain insight into their reasoning abil-
ities (Belinkov and Glass, 2019). As mentioned in
Section 1, McCoy et al. (2019) find that language
models fine-tuned on MNLI learn to leverage shal-
low heurisics to achieve exceptionally high accu-
racy on this dataset. Similarly, Chien and Kalita
(2020) and Richardson et al. (2020) probe NLI
models’ performance with respect to specific syn-
tactic and semantic phenomena (e.g. coordination,
quantification, monotonicity, etc.). They find that
SoTA models fine-tuned on MNLI and SNLI per-
form poorly on challenge examples generated to
evaluate the models with respect to these phenom-
ena, but can be easily fine-tuned to master the chal-
lenge data, while retaining their high performance

1All code used in these experiments is available here:
https://github.com/mjs227/AdversarialNLI

on the original datasets.

Inoculation by Fine-Tuning In all three of the
aforementioned papers, their respective authors uti-
lize the method of inoculation by fine-tuning. Liu
et al. (2019a) introduce this paradigm as a tech-
nique for differentiating between deficiencies in a
model’s training data and deficiencies in the model
itself. Inoculation by fine-tuning assumes that there
is an original dataset (divided into train and test
splits) and a smaller challenge dataset (also divided
into train and test splits), and that the model’s per-
formance on the challenge dataset is significantly
lower than on the original dataset. The idea is to
fine-tune the model on the challenge dataset un-
til validation performance on the original test set
has not improved for five epochs, then measure the
newly fine-tuned (inoculated) model on the chal-
lenge test set. If the inoculated model maintains
its performance on the original test set and per-
forms (nearly) as well on the challenge test set, this
suggests that the model’s poor performance on the
challenge data was due to flaws (e.g. a lack of di-
versity) in the original training data. Conversely,
if the model’s performance on the challenge test
set remains significantly worse than on the orig-
inal data after inoculation, this suggests that its
poor performance on the challenge data is due to a
deficiency in the model itself.

This paper probes various NLI models’ logical
reasoning abilities—in particular with respect to
external negation—using automatically-generated
challenge data along with the inoculation by fine-
tuning paradigm. Unlike the closely-related notion
of adversarial attacks, which seek to perturb input
examples without altering their class labels, the
external negation prefixes used to generate chal-
lenge examples in Experiments 1-3 (Sections 4,
5, 6) do alter the original examples’ class labels,
albeit in a predictable manner. This is similar to
the challenge data that Niven and Kao (2019) con-
struct from the Argument Reasoning Comprehen-
sion Task (Habernal et al., 2018); these authors
find that BERT cannot be inoculated against such
challenge data, and conclude that transformer mod-
els’ inability to ground text to real-world concepts
presents an insurmountable barrier to their logical-
reasoning abilities.

Probing LMs with Negation In a similar vein,
Naik et al. (2018) conduct “stress tests” on NLI
models by concatenating logical distractor strings
(e.g. “and false is not true”) to the input examples,

1925

https://github.com/mjs227/AdversarialNLI

and find that such distractors drastically reduce
SoTA NLI models’ performance on these tasks.
While these authors investigate NLI models’ perfor-
mance with respect to logical reasoning, their exper-
iments regarding negation are limited to negation
items appearing in these distractor terms, rather
than negating the original hypothesis sentence it-
self. On the other hand, Hossain et al. (2020) probe
NLI models (and datasets) by negating the origi-
nal premise and/or hypothesis sentence(s) using an
automatic dependency parser; these automatically-
generated challenge examples are then checked for
accuracy and re-assigned class labels by human
annotators. These authors find that models fine-
tuned on the original NLI datasets perform poorly
on development sets consisting of these negation-
augmented examples, and that while fine-tuning
on the challenge data improves performance on
negation-augmented test splits derived from SNLI,
fine-tuning does not significantly increase model
accuracy on MNLI-derived examples. Note that,
unlike the present work, Hossain et al. (2020) do
not study repeated/embedded negation or double-
negation cancellation.

Yuan et al. (2023) examine pretrained language
models’ (PLMs) deductive reasoning abilities via
cloze tests. These authors find that PLMs are un-
able to fully generalize rules of logical deduction
to arbitrary contexts. Furthermore, they observe
that these models struggle to differentiate between
positive statements and their negated counterparts,
in line with a wide body of recent literature sug-
gesting that transformers have difficulty process-
ing and comprehending negation (e.g. Niven and
Kao, 2019; Naik et al., 2018; Yuan et al., 2023;
Laverghetta Jr. et al., 2021; Rogers et al., 2020;
Ettinger, 2020; Laverghetta Jr. and Licato, 2022;
Kassner and Schütze, 2020). Of particular inter-
est to this work, they find that while inoculating
PLMs for deductive reasoning tasks improves per-
formance, it results in catastrophic forgetting of
previous knowledge. Likewise, in Sections 5 and
6 of this paper, we find that inoculating pretrained
NLI models against challenge data augmented with
external negation prefixes causes catastrophic for-
getting of prior knowledge of their similarity to
related prefixes.

Jang et al. (2022) evaluate the consistency of
language models across various axes. Of particular
interest to the current discussion is their analysis of
negational consistency: the degree to which a given
language model’s predictions differ between texts

having opposite meanings. These authors find that
negational consistency remains low across a variety
of models and tasks—in particular, RoBERTa (Liu
et al., 2019b) and BART (Lewis et al., 2020) exhibit
low negational consistency on the SNLI dataset.

In an experiment highly related to the present
work, Laverghetta Jr. and Licato (2022) probe NLI
models’ performance with respect to negation, and
find that the models struggle to contend with cer-
tain types of negation more so than others. In line
with the results we observe in Section 4, they find
that the models have difficulty inoculating against
those problematic negation categories. Unlike the
experiments in this paper, Laverghetta Jr. and Li-
cato (2022) do not construct challenge examples
involving negation, but rather use examples drawn
from NLI datasets that already contain negation.

Contributions Unique to this work is the eval-
uation of transformers’ ability to learn the law of
the excluded middle (LEM) and our finding that,
while many cannot learn this pattern, a few trans-
former NLI models are in fact able to inductively
learn LEM for a single external negation prefix.
Additionally, the results of Experiments 2 and 3
(Sections 5 and 6), extend Yuan et al.’s (2023) re-
sults (regarding catastrophic forgetting resulting
from inoculation in the context of deductive reason-
ing tasks) to double negation-cancellation in the
setting of NLI tasks. Finally, Theorem 1 (see Sec-
tion 3) is the first known proof that there exists (at
least, in principle) an encoder transformer capable
of modeling LEM for arbitrary-length sequences of
any combination of external negation prefixes with
respect to any NLI dataset. This theorem sheds
further light on evidence in the literature (Niven
and Kao, 2019; Naik et al., 2018; Yuan et al., 2023;
Laverghetta Jr. et al., 2021; Rogers et al., 2020;
Ettinger, 2020; Laverghetta Jr. and Licato, 2022;
Kassner and Schütze, 2020, etc.) indicating that
transformers struggle to model negation, suggest-
ing that this observed failure is not due to an inher-
ent flaw in transformer architectures themselves,
but instead may be due to deficiencies in their train-
ing procedure and/or the structure of their input
data (see the discussion in Section 7).

3 Can Transformers Model LEM?

Before evaluating NLI models’ ability to induc-
tively learn the law of the excluded middle (LEM),
we first establish whether—learnability aside—it is
theoretically possible for transformer architectures

1926

to model LEM at all: Theorem 1 proves that (en-
coder) transformer architectures are in fact capable
of modeling LEM (at least, with respect to NLI
tasks) for arbitrary-length sequences of any combi-
nation of external negation prefixes. Note that the
NLI datasets, transformer models (with the excep-
tion of BART), and set of external negation prefixes
used in Experiments 1-3 satisfy the assumptions of
Theorem 1.

Theorem 1. Let D = {(Pi, Hi, Li)}i∈I be a finite-
cardinality NLI dataset, and for any NLI model M ,
let Acc(M,D) denote the classification accuracy
of M on D. Let Σ′ be a finite alphabet such that
D ⊂ (Σ′)∗ × (Σ′)∗ × Λ (where Λ = {E ,N , C}
denotes the set of labels). Let N ⊂ (Σ′)∗ be any
finite-cardinality set of external-negation prefixes
such that no prefix is a substring of one or more
other prefixes2.

Then there exists an alphabet Σ ⊃ Σ′ and an
injective f : (Σ′)∗ → Σ∗ such that for any fixed
(finite) w > maxi∈I |PiHi| and any fixed-precision
transformer encoder (with an NLI classification
head) T , there exists a fixed-precision transformer
encoder T ′ such that T ′ matches the accuracy of
T on D and on any dataset D′ formed by prefixing
any η ∈ N∗ to each hypothesis sentence in D3.

Proof. Appendix A.

However, the proof of Theorem 1 relies on a
function f that re-structures the input data; the
transformer NLI models evaluated in Experiments
1-3 (Sections 4, 5, 6) are obviously not equipped
with such a function, and the ability of transform-
ers to model LEM with respect to unstructured
plain text is not established in Theorem 1. Further-
more, Theorem 1 merely states that there exists
an encoder transformer capable of modeling LEM
for external negation with respect to NLI tasks,
and makes no claim regarding its architectural con-
figuration (i.e. layer size, floating-point precision,
etc.). It is unclear whether the transformer mod-
els evaluated in the present work have the specific
architecture required to accomplish this task.

Critically, the proof of Theorem 1 does not
make any claims regarding the (inductive) learn-
ability of LEM; while it is theoretically possible
to model LEM with an encoder transformer, these

2Formally: for all η ∈ N , η′, η′′ ∈ (N − {η})∗, there
does not exist i, j such that η = η′i: || η′′:j

3Formally: Acc(T ′, f(D)) = Acc(T,D), and for
any η ∈ N∗ such that maxi∈I |PiηHi| ≤ w:
Acc(T ′, {f(PiηHi)}i∈I) = Acc(T,D)

language models’ ability to inductively learn LEM
remains uncertain from the conclusions of Theorem
1 alone. In the following section (Experiment 1),
we observe experimental evidence demonstrating
that some transformer NLI models (in particular,
RoBERTa) are able to learn LEM for a single ex-
ternal negation prefix.

4 Experiment 1

Experiment 1 probes six different transformer NLI
models’ ability to inductively learn the law of
the excluded middle (LEM) with respect to ex-
ternal negation. The DeBERTa (He et al., 2020)
model, denoted DeBERTaS4, is DeBERTa-large
fine-tuned on SNLI. The first BART model, de-
noted BARTM

5, is BART-large fine-tuned on
MNLI, while the second, BARTSMFA

6, is BART-
large fine-tuned on MNLI, SNLI, FEVER (Thorne
et al., 2018), and ANLI (Nie et al., 2020).
The first RoBERTa model, RoBERTaM 7, is
RoBERTa-large fine-tuned on MNLI, and the sec-
ond, RoBERTaS8, is RoBERTa-large fine-tuned
on SNLI, while the third, RoBERTaSMFA

9,
is RoBERTa-large fine-tuned on SNLI, MNLI,
FEVER, and ANLI.

4.1 Experimental Setup

For each 1 ≤ n ≤ 5 and each NLI dataset
D ∈ {MNLI,SNLI}, let D≤n denote the depth-
≤n challenge set (consisting of train and devel-
opment splits). D≤n is generated from examples
randomly drawn from the original dataset’s train
splits: each MNLI≤n consists of 4,906 entailment,
neutral, and contradiction examples (14,718 total;
9,813 train/4,905 development), and each SNLI≤n

consists of 14,997 examples (4,999 per class; 9,999
train/4,998 development).

Challenge Data Generation For each 1 ≤ k ≤
n, 1/nth of the examples in each class in D≤n are
depth-k negated by prepending the trigger prefix
TNT = “it is not true that” to the original hypoth-
esis sentence k times (i.e. by converting (P,H)
to (P, (TNT)

kH); see Table 5 in the appendix for

4https://huggingface.co/pepa/deberta-v3-large-snli
5https://huggingface.co/facebook/bart-large-mnli
6https://huggingface.co/ynie/bart-large-

snli_mnli_fever_anli_R1_R2_R3-nli
7https://huggingface.co/roberta-large-mnli
8https://huggingface.co/pepa/roberta-large-snli
9https://huggingface.co/ynie/roberta-large-

snli_mnli_fever_anli_R1_R2_R3-nli

1927

https://huggingface.co/pepa/deberta-v3-large-snli
https://huggingface.co/facebook/bart-large-mnli
https://huggingface.co/ynie/bart-large-snli_mnli_fever_anli_R1_R2_R3-nli
https://huggingface.co/ynie/bart-large-snli_mnli_fever_anli_R1_R2_R3-nli
https://huggingface.co/roberta-large-mnli
https://huggingface.co/pepa/roberta-large-snli
https://huggingface.co/ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli
https://huggingface.co/ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli

examples). For example, in D≤5, 1/5th of the ex-
amples in each class are depth-5 negated, 1/5th

are depth-4 negated, 1/5th are depth-3 negated, etc.
One may object that concatenating TNT five times
(for example) in front of the original hypothesis
does not a result in a particularly natural sentence,
and that a model is highly unlikely to encounter
such a sentence in real-world text data. Regard-
less of its naturality, however, this pattern is fairly
trivial (for a human) to learn: given a challenge
example (P, (TNT)

kH)—derived from an original
example (P,H)—simply count the number k of
occurrences of TNT . The class label remains the
same if k is even, and contradiction flips to en-
tailment (and vice-versa; neutral examples do not
change their class label) if n is odd (see Appendix
B.1 for a detailed discussion).

Finally, for all m > 1 and each NLI dataset D ∈
{MNLI,SNLI}, let Dm

NT denote the depth-m test
set. The procedure for generating Dm

NT is nearly
identical to that of D≤m (Dm

NT is the size of the
development split ofD≤m), with the exception that
Dm

NT consists only of depth-m externally-negated
examples.

Note that the two datasets (MNLI and SNLI)
contain many examples that are not complete sen-
tences—but rather sentence fragments—in which
case the external negation prefix TNT = “it is not
true that” is grammatically nonsensical. To ac-
count for this, the pool of possible examples to
be included into the challenge datasets consists
only of those in which the hypothesis H is a com-
plete sentence. If the first word in H is (part of) a
named entity (as determined by SpaCy’s EntityRec-
ognizer10 named entitiy recognition pipeline), then
the augmented (i.e. challenge) hypothesis is set to
(TNT)

nH . If the first word in H does not belong
to a named entity, then the augmented hypothe-
sis is (TNT)

nH0, where H0 is formed from H by
lower-casing the first character. This is to control
for potential confounding factors due to irregular
capitalization.

Inoculation and Evaluation For all 1 ≤ n ≤ 5,
each NLI model was inoculated against the chal-
lenge set(s)D≤n. Following the paradigm of inocu-
lation by fine-tuning, the models were fine-tuned on
the train split of D≤n, and validated at each epoch
on the original NLI dataset’s development split,
with early-stopping if validation performance does
not improve after five epochs. Once inoculated on

10https://spacy.io/api/entityrecognizer

the depth-≤n external negation data (D≤n), the
models were evaluated on Dm

NT for multiple values
of m > n. This is to measure the degree to which
the models are able to generalize LEM beyond the
number of external negation prefixes seen during
inoculation.

Each model was evaluated and inoculated
on the challenge dataset(s) generated from the
dataset(s) that the model was originally fine-tuned
on: BARTM and RoBERTaM were evaluated
on MNLI-derived examples, RoBERTaS and
DeBERTaS on SNLI-derived examples, and
BARTSMFA and RoBERTaSMFA on examples
derived from both datasets. All models were fine-
tuned with a batch size of 64 at a learning rate
of 10−5 using the Adam (Kingma and Ba, 2014)
optimizer.

4.2 Results and Discussion
For the sake of brevity, model original/challenge de-
velopment set accuracies pre- and post-inoculation
are located in Appendix B.2. Most models were
able to inoculate against the depth-≤n external
negation data for all 1 ≤ n ≤ 5; they retain their
high-performing accuracy on the original devel-
opment sets, and perform as well (or nearly so)
on the challenge development sets after inocula-
tion. The notable exceptions were BARTM and
BARTSMFA, which struggled to inoculate for
n ∈ {1, 4, 5} and n ∈ {3, 4}, respectively—recall
that BART is the only model architecture evalu-
ated in this experiment that does not satisfy the
assumptions of Theorem 1.

In spite of their ability to inoculate against depth-
≤n challenge data, the models struggled to gener-
alize this knowledge to depth-m negation for val-
ues of m > n. Table 1 reports average model
accuracy (individual model accuracies are located
in Appendix B.3) on depth-m>n external nega-
tion after depth-≤n inoculation for 1 ≤ n ≤ 3,
2 ≤ m ≤ 6. A clear pattern emerges in this
table: before any inoculation, we observe high
model accuracy (∼80%) on the depth-m negtion
data for even values ofm, and near-random-chance
accuracy (∼34%) for odd values of m. This in-
dicates that, before inoculation, the models were
essentially entirely ignoring the external negation
prefixes and treating them as distractors; depth-m
negation does not alter the class label for even val-
ues of m, and so a model treating the prefix as a
distractor will retain high accuracy on those exam-
ples, purely by chance. To reiterate: these mod-

1928

https://spacy.io/api/entityrecognizer

Depth-m test No inoc. Depth-1 inoc. Depth-≤2 inoc. Depth-≤3 inoc.
2 0.72 0.39 — —
3 0.36 0.86 0.32 —
4 0.84 0.39 0.95 0.35
5 0.32 0.82 0.32 0.91
6 0.86 0.43 0.95 0.35

Table 1: Average accuracy across all models on depth-(m>n) external negation (Dm
NT) after depth-≤n inoculation

(n ∈ {1, 2, 3}) on D≤n. For the sake of brevity, individual results for each model are located in Appendix B.3;
most individual model accuracies do not substantially deviate from the mean values in this table.

Depth- No Depth-
Model m test inoc. ≤4 inoc.
BARTM 5 0.33 0.34
RoBERTaM 5 0.32 0.34
DeBERTaS 5 0.30 0.33
RoBERTaS 5 0.34 0.89
BARTSMFA 5 0.30 0.32
RoBERTaSMFA 5 0.32 0.79
BARTM 6 0.86 0.93
RoBERTaM 6 0.89 0.95
DeBERTaS 6 0.88 0.95
RoBERTaS 6 0.83 0.93
BARTSMFA 6 0.86 0.93
RoBERTaSMFA 6 0.84 0.95

Table 2: Accuracy for all models on depth-m external
negation after depth-≤4 inoculation (m ∈ {5, 6}).

els—ostensibly fine-tuned on a logical-reasoning
task—have learned to entirely ignore external nega-
tion when predicting inferential relations.

Furthermore, when inoculated against depth-1
external negation, the pattern reverses: we note
near-random-chance accuracy for even values ofm,
and high accuracy for odd values ofm. After depth-
1 inoculation, the models have learned to treat any
depth-m external negation prefix as equivalent to a
depth-1 (i.e. single) prefix.

Interestingly, after depth-≤2 inoculation, the
models revert to the original pattern of high ac-
curacy for even values of m, and poor performance
for odd values. Despite training on both depth-1
and depth-2 external negation, the models merely
memorize the effect of depth-1 negation on class la-
bels, and do not generalize to odd values of m > 1.
A similar pattern emerges after depth-≤3 inocu-
lation: after fine-tuning on depth-1, depth-2, and
depth-3 external negation, the models memorize
the effect (or lack thereof) of depth-2 negation on
class labels, and do not generalize to even values
of m > 2.

Depth- No Depth-
Model m test inoc. ≤5 inoc.
BARTM 6 0.86 0.34
RoBERTaM 6 0.89 0.91
DeBERTaS 6 0.88 0.31
RoBERTaS 6 0.83 0.94
BARTSMFA 6 0.86 0.30
RoBERTaSMFA 6 0.84 0.95
BARTM 7 0.32 0.93
RoBERTaM 7 0.32 0.96
DeBERTaS 7 0.28 0.95
RoBERTaS 7 0.36 0.94
BARTSMFA 7 0.29 0.92
RoBERTaSMFA 7 0.31 0.95

Table 3: Accuracy for all models on depth-m external
negation after depth-≤5 inoculation (m ∈ {6, 7}).

However, Table 2 indicates that, after depth-
≤4 inoculation, two of the RoBERTa models
(RoBERTaS and RoBERTaSMFA) do in fact
inductively learn to repeatedly cancel double nega-
tion for values of m > 4. After depth-≤5 inocula-
tion, RoBERTaM also learns the desired pattern
(see Table 3); all three RoBERTa models have in-
ductively learned LEM for arbitrary values of m.

Given all six models’ difficulty with inocula-
tion against depth-m external negation (for ar-
bitrary values of m), it is reasonable to ques-
tion the RoBERTa models’ ability to general-
ize the negation-cancellation patterns that they
have learned after depth-≤5 inoculation to exter-
nal negation strings beyond the trigger TNT =

“it is not true that” that they saw during inoculation.
The following experiment (Section 5) evaluates
the three RoBERTa models’ ability to repeatedly
cancel double negation with respect to the pre-
fix “it is false that”, after inoculation against D≤5

(i.e. depth-≤5 “it is not true that” prefixes).

1929

5 Experiment 2

This experiment restricts its analysis to the three
RoBERTa models, as they were the only models of
the six evaluated in Experiment 1 (Section 4) that
were able to fully generalize depth-m negation-
cancellation to arbitrary values of m > 5.

5.1 Experimental Setup

For all m ≥ 1 and each NLI dataset D ∈
{MNLI,SNLI}, let Dm

F denote the depth-m chal-
lenge test set. Each Dm

F was created in an identical
manner to the depth-m challenge test sets Dm

NT

defined in Section 4.1 above: Dm
F consists only of

examples (drawn from the dataset’s original devel-
opment split) modified to have depth-m externally-
negated hypothesis sentences with an equal number
of examples per class label (and |Dm

F | = |Dm
NT |).

However, in place of the trigger TNT = “it
is not true that” used to construct Dm

NT , in this
experiment Dm

F was generated using the trigger
TF = “it is false that”. These two triggers are ef-
fectively semantically equivalent; the phrase “not
true” has simply been replaced with the (effec-
tively) synonymous “false”. Assuming that the
models have truly learned the law of the excluded
middle (LEM), we should expect to see similar
performance on Dm

F to that of Dm
NT .

After inoculation on the depth-≤5 TNT

external negation data, each of the three
RoBERTa models (RoBERTaS , RoBERTaM ,
RoBERTaSMFA) was evaluated on Dm

F for all
1 ≤ m ≤ 8. As in the procedure for Experiment 1
(see Section 4.1), each model was evaluated on the
challenge dataset(s) generated from the dataset(s)
that the model was originally fine-tuned on.

5.2 Results and Discussion

Figure 1 shows the results of this experiment:
RoBERTaS failed to generalize LEM from TNT

to TF for values of m > 2, while RoBERTaM
and RoBERTaSMFA experience precipitous de-
creases in accuracy at m = 5 (and erratic accuracy
thereafter). While these models are able to gen-
eralize external negation-cancellation to arbitrary-
length repeated TNT prefixes, they clearly cannot
extend this pattern to near-synonymous prefixes.

We may object that the models have failed to
learn the pattern for TF because they did not see
it during inoculation. This objection may be valid,
but belies the critical point: these models have
failed to generalize LEM from TNT to TF . While

Figure 1: Accuracy for the depth-≤5 TNT -inoculated
RoBERTa models on depth-m externally-negated exam-
ples with TNT (dashed) and TF (solid).

the models very well may learn to cancel external
negation prefixes after fine-tuning on all possible
sequences of this type (see the discussion in Section
7), at that point they are not learning—but rather
memorizing—the pattern.

Given the conclusions of Theorem 1 and the
RoBERTa models’ ability to generalize double-
negation cancellation for TNT as observed in Ex-
periment 1 (Section 4), the results of Experiment
2 beg the question as to why the RoBERTa models
cannot fully generalize LEM from TNT to TF . The
following experiment (Section 6) examines the em-
beddings generated by the RoBERTa models pre-
and post-inoculation, shedding light on the root of
their failure to learn to generalize LEM to arbitrary
prefixes.

6 Experiment 3

As in Experiment 2 (Section 5), this experiment
restricts its analysis to the three RoBERTa models.

6.1 Experimental Setup

As mentioned above, this experiment probes the
embeddings that these models generate before
and after depth-≤5 TNT inoculation. The exper-
iment proceeds as follows: for each dataset D ∈
{MNLI,SNLI}, take a subset D′ of the original
development set (D′ contains ∼50-100 examples
of each class, depending on the size of the dataset).
For each 1 ≤ m ≤ 8 and each (Pi, Hi) ∈ D′,
compute the cosine similarity between the (mean-
pooled) embeddings of (TNT)

mHi and (TF)
mHi.

For even values of m, compute the cosine
similarity between (TNT)

mHi and (TF)
2Hi;

1930

(TNT)
2Hi and (TF)

mHi; (TNT)
mHi and

(TNT)
2Hi; (TF)

mHi and (TF)
2Hi; (TNT)

mHi

and Hi; and (TF)
mHi and Hi. For odd m,

compute the similarity between (TNT)
mHi and

(TNT)
1Hi; (TF)

mHi and (TF)
1Hi; (TNT)

mHi

and (TF)
1Hi; and (TF)

mHi and (TNT)
1Hi.

As in Experiments 1 and 2 (Sections 4 and 5,
respectively), each model was evaluated using the
challenge dataset(s) generated from the dataset(s)
that the model was originally fine-tuned on.

6.2 Results and Discussion

Figure 2: Mean cosine similarity between (TNT)
nHi

and (TNT)
1Hi for the three RoBERTa models before

(dashed) and after (solid) depth-≤5 TNT inoculation.

Figure 3: Mean cosine similarity between (TF)
nHi and

(TF)
1Hi for the three RoBERTa models before (dashed)

and after (solid) depth-≤5 TNT inoculation.

For the sake of brevity, Appendix C reports the
majority of the results of this experiment.

We observe that depth-≤5 inoculation drastically
increases the similarity between (TNT)

mHi and
(TNT)

1Hi for all three models for odd values of

Model Before After
RoBERTaM 0.996 0.268
RoBERTaS 0.996 0.712
RoBERTaSMFA 0.996 0.646

Table 4: Cosine similarity between the RoBERTa mod-
els’ (mean-pooled) embeddings of the strings “false”
and “not true” before and after depth-≤5 inoculation.

m (Figure 2), but decreases the similarity between
(TF)

mHi and (TF)
1Hi for m ≥ 5 (Figure 3)—re-

call that for odd m, (TNT)
mHi / (TF)mHi should

be synonymous with (TNT)
1Hi / (TF)1Hi. The

results are analogous for even values of m (see
Figures 4-7 in the appendix).

Additionally, as m increases, mean cosine simi-
larity decreases between (TF)

mHi and (TNT)
2Hi,

and (TF)
mHi and (TNT)

1Hi (see Figures 8 and 10
in the appendix, respectively). We also observe de-
creases in cosine similarity between (TF)

mHi and
(TNT)

mHi for even and odd m > 4 (see Figure 12
in the appendix).

These results indicate that the inoculation pro-
cedure conducted in Experiment 1 (Section 4) has
lead to catastrophic forgetting. In particular, it
seems that learning to cancel double negation for
TNT has drastically altered the models’ encodings
of the string “not true”, pulling its representation
in the embedding space away from those of similar
phrases such as “false”. This conjecture is sup-
ported by Table 4: we observe that—before inocu-
lation—the models’ representations of the strings

“not true” and “false” are nearly identical. How-
ever, after depth-≤5 TNT inoculation, the models’
representations of the two strings are substantially
further apart in the embedding space.

Furthermore, the results of this experiment indi-
cate that the models have not learned the linguistic
function of negation during pre-training or origi-
nal fine-tuning on the MNLI and SNLI datasets,
analogous to the findings of Yuan et al. (2023) with
respect to deductive reasoning tasks. Aside from
the results in Table 1 indicating that these NLI mod-
els simply treat external negation prefixes as dis-
tractors (before inoculation), note that if the mod-
els already understood the logical function of pre-
fixes such as TNT , then further refining the models’
knowledge of the function of that prefix (i.e. fine-
tuning on the depth-≤5 TNT data) should not sig-
nificantly alter its representation in the embedding
space relative to highly similar prefixes such as TF ,
contrary to what we observe in Table 4.

1931

7 Discussion

The results of Experiments 1-3 (Sections 4, 5, 6)
raise the question as to why these models are un-
able to inductively learn the law of the excluded
middle (LEM)—especially in light of Theorem 1,
which states that (in theory) transformers are able
to model LEM with respect to NLI tasks. A rea-
sonable explanation for this seemingly paradoxical
state of affairs can be found within the conclusions
of Theorem 1 itself.

Note that the proof of Theorem 1 relies on a
function f that re-structures the input data (as men-
tioned in Section 3); it is possible that the structure
(or lack thereof) of purely textual data may be in-
sufficient for transformers to inductively learn to
model LEM.

Additionally, recall that the proof of Theorem
1 does not establish the (inductive) learnability of
LEM; it may be the case that the specific parameter
values required to model the role of (external) nega-
tion in the context of NLI tasks cannot be reached
by training on any NLI dataset using gradient de-
scent or any other currently known training proce-
dures. It may also be the case that the function of
(external) negation is in fact learnable, but only via
the brute-force approach of training these models
on multiple-depth external negation for every such
prefix. In other words, (encoder) transformers may
not be capable of inductively learning LEM—at
least not with standard training procedures.

Hosseini et al. (2021) and Asai and Hajishirzi
(2020) propose training procedures designed to en-
hance language models’ ability to learn the role
of negation, which may provide fruitful avenues
for improving transformer NLI models’ perfor-
mance on the tasks laid out in Experiments 1-3
(Sections 4, 5, 6). Hosseini et al. (2021) introduce
unlikelihood with reference training for masked
language models, which penalizes models for pre-
dicting unlikely tokens in negated contexts—for
example, a model would be penalized for predict-
ing fly in the context “birds cannot [MASK]”. After
unlikelihood with reference training, the authors
record marginal improvement (∼1-2%) for BERT
on negation-augmented SNLI and MNLI datasets
(see Hossain et al., 2020).

Asai and Hajishirzi (2020) use logic-based reg-
ularization and data augmentation to improve lan-
guage models’ transitive and symmetric consis-
tency (c.f. Jang et al., 2022)—in particular, nega-
tion is subsumed under their notion of symmet-

ric consistency. Using this approach, the authors
record marked improvement over the SoTA on a
variety of question-answering tasks, although they
do not evaluate this regularization method on any
NLI datasets.

However, Hosseini et al. (2021) and Asai and Ha-
jishirzi (2020) do not explicitly study the efficacy
of their respective training methods with respect to
double-negation cancellation. Therefore, it is un-
clear whether the improvements obtained by their
approaches would translate to a task such as LEM,
and we leave an evaluation thereof to future work.

8 Conclusion

The results of Experiments 1-3 (Sections 4, 5, 6)
demonstrate that near-SoTA transformer NLI mod-
els struggle to inductively learn the law of the ex-
cluded middle (LEM). Furthermore, the results of
Experiment 1 (Section 4) strongly suggest that all
six NLI models studied in this work learned to treat
the external negation prefix “it is not true that” as
a distractor when initially fine-tuned on the NLI
dataset(s) (see Table 1). Experiment 1 also suggests
that DeBERTa and BART models are incapable of
learning to inductively generalize LEM, despite
extensive fine-tuning.

These findings lend further support to a large
body of existing evidence (e.g. Niven and Kao,
2019; Naik et al., 2018; Yuan et al., 2023;
Laverghetta Jr. et al., 2021; Rogers et al., 2020;
Ettinger, 2020; Laverghetta Jr. and Licato, 2022;
Kassner and Schütze, 2020) indicating that trans-
formers are unable to model the meaning of nega-
tion. Unique to this work is our finding that certain
encoder transformers (in particular, RoBERTa) can
learn LEM for a single external negation prefix.

While the three RoBERTa models did manage
to grasp the function of the prefix “it is not true
that”, the process of learning this behavior resulted
in catastrophic forgetting, entirely inhibiting their
generalization of this pattern to the highly similar
prefix “it is false that” (see Sections 5 and 6).

Theorem 1 proves that encoder transformers
are—in principle—capable of modeling LEM for
arbitrary-length sequences of any combination of
external negation prefixes with respect to any NLI
dataset. This suggests that these models’ inability
to inductively learn LEM might not be a conse-
quence of their transformer architectures, but rather
may result from the (lack of) structure of their input
data and/or the procedure used to train them.

1932

9 Limitations

While Experiments 1-3 (Sections 4, 5, 6) probe a va-
riety of encoder and encoder-decoder transformers,
they do not consider decoder-only models such as
LLaMa-2 (Touvron et al., 2023) or GPT-3 (Brown
et al., 2020); evaluation of decoder transformers is
left to future work. Additionally, these experiments
only utilize MNLI and SNLI for challenge data
generation and evaluation, although both datasets
have been shown to consist of non-representative
data and contain annotation artifacts that permit
models to achieve high performance by leveraging
shallow heuristics (McCoy et al., 2019; Richardson
et al., 2020). However, the use of more challenging
NLI datasets such as ANLI was precluded by all
six models’ (including those fine-tuned on ANLI)
already-poor performance on the original ANLI
test set prior to any inoculation.

The main limitation regarding the challenge
datasets themselves is the fact that they we gen-
erated using only two external negation prefix trig-
gers: “it is true that” and “it is false that”. While
this suffices to demonstrate the models’ inability
to inductively learn the law of the excluded middle
(LEM) and/or generalize this knowledge to similar
prefixes, future work should incorporate a wider
variety of negation triggers in similar experimental
settings.

Note that Theorem 1 applies only to encoder
transformers, as the proof is formulated using a
variant of first-order logic (FOC[+;MOD]; Immer-
man, 2012) that has only been shown to be an
upper-/lower-bound for fixed-precision encoder
transformers (Chiang et al., 2023). Additionally,
the proof of Theorem 1 requires a fixed input length
w; while the input sequence length of all “real-
world” transformers is practically bounded by the
quadratic growth rate of their self-attention mech-
anism (Beltagy et al., 2020), this assumption of
a fixed input size still presents a limitation to the
scope of the theorem.

References
Akari Asai and Hannaneh Hajishirzi. 2020. Logic-

guided data augmentation and regularization for con-
sistent question answering. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5642–5650, Online. Asso-
ciation for Computational Linguistics.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.

Transactions of the Association for Computational
Linguistics, 7:49–72.

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. arXiv
preprint arXiv:1508.05326.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

David Chiang, Peter Cholak, and Anand Pillay. 2023.
Tighter bounds on the expressivity of transformer
encoders. In Proc. ICML.

Tiffany Chien and Jugal Kalita. 2020. Adversarial anal-
ysis of natural language inference systems. In 2020
IEEE 14th International Conference on Semantic
Computing (ICSC), pages 1–8. IEEE.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Allyson Ettinger. 2020. What BERT is not: Lessons
from a new suite of psycholinguistic diagnostics for
language models. Transactions of the Association for
Computational Linguistics, 8:34–48.

Yaroslav Fyodorov, Yoad Winter, and Nissim Francez.
2000. A natural logic inference system. In Proceed-
ings of the 2nd Workshop on Inference in Computa-
tional Semantics (ICoS-2).

Ivan Habernal, Henning Wachsmuth, Iryna Gurevych,
and Benno Stein. 2018. SemEval-2018 task 12: The
argument reasoning comprehension task. In Proceed-
ings of the 12th International Workshop on Semantic
Evaluation, pages 763–772, New Orleans, Louisiana.
Association for Computational Linguistics.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

1933

https://doi.org/10.18653/v1/2020.acl-main.499
https://doi.org/10.18653/v1/2020.acl-main.499
https://doi.org/10.18653/v1/2020.acl-main.499
https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.1162/tacl_a_00254
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.18653/v1/S18-1121
https://doi.org/10.18653/v1/S18-1121

Md Mosharaf Hossain, Venelin Kovatchev, Pranoy
Dutta, Tiffany Kao, Elizabeth Wei, and Eduardo
Blanco. 2020. An analysis of natural language infer-
ence benchmarks through the lens of negation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9106–9118, Online. Association for Computa-
tional Linguistics.

Arian Hosseini, Siva Reddy, Dzmitry Bahdanau, R De-
von Hjelm, Alessandro Sordoni, and Aaron Courville.
2021. Understanding by understanding not: Model-
ing negation in language models. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1301–1312,
Online. Association for Computational Linguistics.

Paul Hovda. 2009. What is classical mereology? Jour-
nal of Philosophical Logic, 38:55–82.

Neil Immerman. 2012. Descriptive complexity.
Springer Science & Business Media.

Myeongjun Jang, Deuk Sin Kwon, and Thomas
Lukasiewicz. 2022. BECEL: Benchmark for con-
sistency evaluation of language models. In Proceed-
ings of the 29th International Conference on Com-
putational Linguistics, pages 3680–3696, Gyeongju,
Republic of Korea. International Committee on Com-
putational Linguistics.

Nora Kassner and Hinrich Schütze. 2020. Negated and
misprimed probes for pretrained language models:
Birds can talk, but cannot fly. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 7811–7818, Online. Asso-
ciation for Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Antonio Laverghetta Jr. and John Licato. 2022. De-
velopmental negation processing in transformer lan-
guage models. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 545–551,
Dublin, Ireland. Association for Computational Lin-
guistics.

Antonio Laverghetta Jr., Animesh Nighojkar, Jamshid-
bek Mirzakhalov, and John Licato. 2021. Can trans-
former language models predict psychometric proper-
ties? In Proceedings of *SEM 2021: The Tenth Joint
Conference on Lexical and Computational Semantics,
pages 12–25, Online. Association for Computational
Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,

pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Nelson F. Liu, Roy Schwartz, and Noah A. Smith. 2019a.
Inoculation by fine-tuning: A method for analyz-
ing challenge datasets. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 2171–2179, Minneapolis, Minnesota.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right
for the wrong reasons: Diagnosing syntactic heuris-
tics in natural language inference. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3428–3448, Florence,
Italy. Association for Computational Linguistics.

Aakanksha Naik, Abhilasha Ravichander, Norman
Sadeh, Carolyn Rose, and Graham Neubig. 2018.
Stress test evaluation for natural language inference.
In Proceedings of the 27th International Conference
on Computational Linguistics, pages 2340–2353,
Santa Fe, New Mexico, USA. Association for Com-
putational Linguistics.

Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal,
Jason Weston, and Douwe Kiela. 2020. Adversarial
NLI: A new benchmark for natural language under-
standing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4885–4901, Online. Association for Computa-
tional Linguistics.

Timothy Niven and Hung-Yu Kao. 2019. Probing neu-
ral network comprehension of natural language argu-
ments. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
4658–4664, Florence, Italy. Association for Compu-
tational Linguistics.

Kyle Richardson, Hai Hu, Lawrence Moss, and Ashish
Sabharwal. 2020. Probing natural language inference
models through semantic fragments. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 34, pages 8713–8721.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in BERTology: What we know about
how BERT works. Transactions of the Association
for Computational Linguistics, 8:842–866.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a large-scale dataset for fact extraction
and VERification. In Proceedings of the 2018
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long

1934

https://doi.org/10.18653/v1/2020.emnlp-main.732
https://doi.org/10.18653/v1/2020.emnlp-main.732
https://doi.org/10.18653/v1/2021.naacl-main.102
https://doi.org/10.18653/v1/2021.naacl-main.102
https://aclanthology.org/2022.coling-1.324
https://aclanthology.org/2022.coling-1.324
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2022.acl-short.60
https://doi.org/10.18653/v1/2022.acl-short.60
https://doi.org/10.18653/v1/2022.acl-short.60
https://doi.org/10.18653/v1/2021.starsem-1.2
https://doi.org/10.18653/v1/2021.starsem-1.2
https://doi.org/10.18653/v1/2021.starsem-1.2
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/N19-1225
https://doi.org/10.18653/v1/N19-1225
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://aclanthology.org/C18-1198
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/2020.acl-main.441
https://doi.org/10.18653/v1/P19-1459
https://doi.org/10.18653/v1/P19-1459
https://doi.org/10.18653/v1/P19-1459
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074

Papers), pages 809–819, New Orleans, Louisiana.
Association for Computational Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

Zhangdie Yuan, Songbo Hu, Ivan Vulić, Anna Korho-
nen, and Zaiqiao Meng. 2023. Can pretrained lan-
guage models (yet) reason deductively? In Proceed-
ings of the 17th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 1447–1462, Dubrovnik, Croatia. Association
for Computational Linguistics.

A Proof of Theorem 1

A.1 FOC[+;MOD]

Chiang et al. (2023) prove that FOC[+;MOD] (a
variant of first-order logic defined over strings over
a finite alphabet Σ; see Immerman, 2012) is both
an upper bound for fixed-precision transformer en-
coders and a lower bound for arbitrary-precision en-
coder transformer encoders, in the sense that every
language that is recognizable by a fixed-precision
encoder transformer (binary) classifier is defin-
able by a sentence of FOC[+;MOD] (Chiang et al.,
2023, Theorem 2), and every language defined by
a sentence of FOC[+;MOD] is recognizable by an
(arbitrary-precision) encoder transformer (binary)
classifier (Chiang et al., 2023, Theorem 5). Given
an FOC[+;MOD] formula ϕ, the language defined
by ϕ is the set of all strings σ ∈ Σ∗ such that ϕ
holds with respect to σ.

The syntax of FOC[+;MOD] consists of two
sorts:

• Positions: (positive) integer variables p that
range over positions in strings σ.

• Counts: variables x ranging over the rational
numbers, and terms c0 + c1x1 + · · ·+ cnxn,
where each ci is a (constant) rational number
and each xi is a count variable.

Formulas of FOC[+;MOD] are defined as one
of:

• ⊤ (true) or ⊥ (false).

• Qa(p), where a ∈ Σ, and Qa(p) := σp = a

• MODa
b (p), where a ≥ 0, b > 0, and p is a

position variable; MODa
b (p) := p ≡b a

• ϕ ∧ ψ, ϕ ∨ ψ, or ¬ψ, where ϕ and ψ are
formulas.11

• x1 = x2 or x1 < x2, where x1, x2 are in the
sort of counts.12

• ∃x.ϕ or ∀x.ϕ, where x is a count variable and
ϕ is a formula.

• ∃=xp.ϕ, where x is a count variable, p is a
position variable (∃=xp.ϕ binds p but leaves
x free), and ϕ is a formula; ∃=xp.ϕ holds if
and only if ϕ is true for exactly x values of p.

In particular, note that FOC[+;MOD] does not
permit arithmetic operations (addition or multipli-
cation) or comparisons (=,<) of position variables,
only of count variables. This is the primary moti-
vation for much of the machinery introduced in the
proof of Theorem 1 (Appendix A.3).

A.2 Notation
We now introduce additional notation employed in
the proof of Theorem 1:

• σ || σ′: denotes the concatenation of the
strings σ and σ′. Note that when convenient
(and unambiguous), we omit the operator and
write σσ′ to denote σ || σ′.

•
n

||
i=k

(. . .): denotes iterated string concatena-

tion.

• |σ|: unless otherwise specified, denotes the
length of the string σ.

• σi: denotes the ith character of the string σ.

• Σ∗ =
∞⋃
i=1

Σi: denotes the set of all non-empty

strings over the alphabet Σ. Note that un-
less otherwise specified, we slightly abuse

11We can derive ϕ → ψ and ϕ ↔ ψ as ψ ∨ ¬ϕ and
ϕ→ ψ ∧ ψ → ϕ, respectively.

12We can derive x1 ≤ x2 as x1 = x2 ∨ x1 < x2, x1 > x2
as x2 < x1, x1 ≥ x2 as x2 ≤ x1, and x1 ̸= x2 as ¬(x1 =
x2).

1935

https://aclanthology.org/2023.eacl-main.106
https://aclanthology.org/2023.eacl-main.106

notation and let A∗ (for any A ⊆ Σ∗) de-
note the set of “flattened” strings of A—i.e.

A∗ =
∞⋃
i=1

⋃
a∈Ai

{
|a|
||

k=1

ak} so that for all a′ ∈

A∗, a′ ∈ Σ∗.

• ϵ: denotes the empty string.

• σi:j =
j

||
k=i

σk: denotes the substring spanning

the ith to jth (inclusive) characters of σ; if
i = j, then σi:j = σi.

• σi:, σ:j : denote σi:|σ| when i ≤ |σ| and σ1:j
when j ≥ 1, respectively. If i > |σ|, then
σi: = ϵ.

• σn =
n

||
i=1
σ: denotes the string σ repeated n

times (σ0 = ϵ).

• ϕ[x ⇒ y] = λx.[ϕ](y): denotes the formula
obtained from ϕ by replacing all instances
of the free variable x with the variable (or
constant) y.

• [ϕ](σ) = σ |= ϕ: indicates that the formula
ϕ holds for the string σ (i.e. σ belongs to the
language defined by ϕ).

A.3 Proof

Let Λ = {E ,N , C} denote the set of NLI labels
and let Σ′ denote the input alphabet of (i.e. set of
tokens for) the transformer T—we assume without
loss of generality that Λ and Σ′ are disjoint (i.e.
Λ ∩ Σ′ = ∅); Theorem 1 applies only to encoder
transformers, so we need not consider the label-
ing approach taken by encoder-decoder or decoder-
only transformers.

By Chiang et al. (2023) Theorem 2, T cor-
responds to the FOC[+;MOD] formula ST de-
fined in Equation 1. To be explicit: Chiang et al.
(2023) Theorem 2 guarantees that there exists some
FOC[+;MOD] formula ST that defines the lan-
guage recognized by T . For each (Pk, Hk, Lk) ∈
D, the input to ST is the string PkHkLk: for all
x ∈ Λ, [ST](PkHkLk) holds if and only if the
transformer T assigns the label Lk to (Pk, Hk).

ST :=
∧

x∈Λ
ϕx ↔ ∃=1p.Qx(p) (1)

Note that we may assume the existence of ϕE ,
ϕN , and ϕC (and therefore ST) as in Equation 1

without loss of generality. Regardless of the ap-
proach that the particular transformer T takes to
predicting labels, the output of T with respect to
an input σ ∈ (Σ′)∗ (OT (σ)) must be an element
of Λ. As such, for each x ∈ Λ and σ ∈ (Σ′)∗,
[ϕx](σ) := OT (σ) = x.

Let Σ = Σ′ ∪{Ω}, where Ω is a special padding
character introduced for formal reasons, and dis-
tinct from the actual padding character used by
the transformer T . For any σ ∈ (Σ′)∗, define
f(σ) ∈ Σ∗ as follows in Equation 2 (where w
is the fixed input length specified in Theorem 1).

f(σ) :=
|σ|+1

||
i=1

(Ωi−1 || σi: || Ωw−|σ|) (2)

For all (integer) count terms 1 < b ≤ w, define
MODCb(a, x) (where a, x are count variables) as
follows (Equation 3):

MODC1(a, x) := ⊤ (3a)

MODCb(a, x) :=
w∨

y=−w

yb+ a = x (3b)

Note that by Chiang et al. (2023) Theorem 1, we
may assume without loss of generality that each ϕx
in Equation 1 is in normal form (for some integer
k ≥ 0), as in Equation 4.

ϕx = ∃z1 . . . ∃zk[
k∧

i=1

∃=zip.(ϕx)i ∧ χ] (4)

Where each (ϕx)i is quantifier-free and has no
free count variables, and χ is quantifier-free.

Now, for each such (ϕx)i, construct α((ϕx)i) as
follows: for each a ∈ Σ′ such that Qa(p) appears
in (ϕx)i, replace Qa(p) with Q′

a(p) as defined in
Equation 5 (where p is a position variable in the for-
mer, and a count variable in the latter), and replace
each instance of a modular predicate MODx

y (p)
with MODCy(x, p) (where again p is a position
variable in the former, and a count variable in the
latter).

Q′
a(p) := ∃=pp′[Qa(p

′)∧
w∨

i=1

(MODi
w(p

′)∧p = i)]

(5)
Lemma 1. For any σ ∈ (Σ′)∗ such that |σ| ≤ w,
all a ∈ Σ′, and all 1 ≤ p ≤ w: [Q′

a(p)](f(σ)) ↔
[Qa(p)](σ)

1936

Proof. First, assume [Qa(p)](σ) holds. By as-
sumption, σp = a, so by construction (Equation 2),
f(σ)yp = a for all 1 ≤ y ≤ p and f(σ)y′p =
Ω for all y′ > p. Therefore [Qa(p)](σ) →
[Q′

a(p)](f(σ)) by definition (Equation 5).
Now, assume [Q′

a(p)](f(σ)) holds. By assump-
tion and construction (Equation 2), f(σ)yp = a for
all 1 ≤ y ≤ p, so in particular f(σ)p = a. By con-
struction, f(σ):|σ| = σ. This implies that σp = a;
therefore [Q′

a(p)](f(σ)) → [Qa(p)](σ).

Now, for any count variables p, z and any
FOC[+;MOD] formula ϕ, define E(p, z, ϕ) as fol-
lows (Equation 6).

Ei
1(p, ϕ) :=

i∧

j=1

ϕ[p⇒ mj] ∧mj ≤ w (6a)

Ei
2 :=

i−1∧

a=1

i∧

b=a+1

ma ̸= mb (6b)

Ei+2
3 (p, ϕ) := ∃m1 . . .mi+2[E

i+2
1 (p, ϕ) ∧ Ei+2

2]
(6c)

E1
3(p, ϕ) := ∃m1.E

1
1(p, ϕ) (6d)

E0
3(p, ϕ) := ⊤ (6e)

E(p, z, ϕ) :=
w∨

i=0

(Ei
3(p, ϕ) ∧ z = i) (6f)

WhereEi
1(−,−), Ei

2, and Ei
3(−,−) are defined

for all integers 1 ≤ i ≤ w, 2 ≤ i ≤ w, and
0 ≤ i ≤ w, respectively.

Now, for each (ϕx)i in Equation 4, define
A((ϕx)i) as in Equation 7 (where zi and p are free
count variables).

A1((ϕx)i) := E(p, zi, α((ϕx)i)) (7a)

A2((ϕx)i) := ¬∃y[y > zi ∧ E(p, y, α((ϕx)i))]
(7b)

A((ϕx)i) := A1((ϕx)i) ∧A2((ϕx)i) (7c)

Lemma 2. For any σ ∈ (Σ′)∗ such that |σ| ≤
w, all x ∈ Λ, and all (ϕx)i as in Equation 4:
[∃zi∃=zip.(ϕx)i](σ) ↔ [∃zi.A((ϕx)i)](f(σ))

Proof. First, note that (ϕx)i is quantifier-free and
has no free count variables (Chiang et al., 2023,
Theorem 1); therefore (ϕx)i consists only of po-
sitional (Qa(p)) and modular (MODx

y (p)) predi-
cates (where the only bound position variable is p)
and logical operators acting on them. A((ϕx)i)

is constructed from (ϕx)i by replacing each in-
stance of Qa(p) and MODx

y (p) with Q′
a(p) and

MODCy(x, p) (where p is a position variable in
the first pair of terms, and a count variable in the
second), respectively.

By Lemma 1, [Qa(p)](σ) ↔ [Q′
a(p)](f(σ)) for

all 1 ≤ p ≤ w, where p is a position variable in the
left-hand side of the equation and a count variable
in the right-hand side. Similarly, for all p, x and
all 1 ≤ y ≤ w, MODx

y (p) ↔ MODCy(x, p) by
construction (Equation 3), where again p is a posi-
tion variable in the left-hand side of the equation
and a count variable in the right-hand side.

Therefore, for all 1 ≤ p ≤ w, (ϕx)i holds with
respect to σ if and only if α((ϕx)i) holds with
respect to f(σ).

By construction (Equation 6), E(p, z, ϕ) holds
for any predicate ϕ with the count variable p free if
and only if there are ≥ z unique values of p such
that ϕ holds. By definition (Equation 7), A((ϕx)i)
holds if and only if there are exactly zi values of p
such that α((ϕx)i) holds.

Now, for each ϕx in Equation 1, we defineA(ϕx)
as in Equation 8.

A(ϕx) := ∃z1 . . . ∃zk[
k∧

i=1

A((ϕx)i) ∧ χ] (8)

Lemma 3. For all x ∈ Λ and all σ ∈ (Σ′)∗ such
that |σ| ≤ w: [ϕx](σ) ↔ [A(ϕx)](f(σ))

Proof. By Lemma 2, each A((ϕx)i) of Equation
8 holds for f(σ) if and only if each (ϕx)i holds
for σ. As such, for each bound count variable zi,
the set (of cardinality zi) of count values that make
A((ϕx)i) true with respect to f(σ) is identical to
the set of position values that make (ϕx)i true with
respect to σ. The predicate χ contains no position
variables (Chiang et al., 2023, Theorem 1), and is
defined identically in Equation 8 as in Equation 4;
therefore, χ (within A(ϕx)) holds for f(σ) if and
only if χ (within ϕx) holds for σ.

Now, for each external negation prefix η ∈ N ,
define ψη(i) and ψ′

η(i, j) (where i and j are count
variables) as in Equation 9, where Q′

(−)(−) is de-
fined as in Equation 5.

ψη(i) :=

|η|−1∧

k=0

Q′
ηk
(i+ k) (9a)

ψ′
η(i, j) := ψη(i) ∧ i+ |η| − 1 = j (9b)

1937

Then define ψ(i) and ψ′(i, j) (where i and j are
count variables) as in Equation 10.

ψ(i) :=
∨

η∈N
ψη(i) (10a)

ψ′(i, j) :=
∨

η∈N
ψ′
η(i, j) (10b)

Now define ρ(i, j) (where i and j are count vari-
ables) as in Equation 11.

ρ1(k, a, b, i, j) := i ≤ a ≤ k ∧ k ≤ b ≤ j ∧ ψ′(a, b)
(11a)

ρ(i, j) := ∀k[i ≤ k ≤ j → ∃a, b.ρ1(k, a, b, i, j)]
(11b)

Lemma 4. For any σ ∈ (Σ′)∗ such that |σ| ≤ w,
and all 1 ≤ i < j ≤ w: [ρ(i, j)](f(σ)) ↔ σi:j ∈
N∗ (i.e. ρ(i, j) holds for f(σ) if and only if the
span i → j in σ is a sequence of one or more
external negation prefixes).

Proof. We first prove the right-to-left direction:
σi:j ∈ N∗ → [ρ(i, j)](f(σ)). The proof proceeds
by induction. First, assume that σ is a single ex-
ternal negation prefix (i.e. σi:j ∈ N). Then by
assumption and definition (Equation 9), ψ′

σi:j
(i, j)

holds; by definition (Equation 10), this implies
ψ′(i, j). For all i ≤ k ≤ j, let a = i, b = j:
by definition (Equation 11), ρ1(k, a, b, i, j) holds.
This implies ρ(i, j). This proves the base case.

Now suppose σi:j = η || η′, with η ∈ N∗ and
η′ ∈ N . By the inductive hypothesis, ρ(i, i+ |η| −
1) holds. By the base case above, ρ(i + |η|, j)
holds. It now remains to prove that ρ(i, i + |η| −
1) ∧ ρ(i+ |η|, j) → ρ(i, j). For all 1 ≤ k ≤ j, if
k < i+ |η|, then there exist a, b < i+ |η| such that
ρ1(k, a, b, i, j) (by the validity of ρ(i, i+ |η| − 1)),
and if k ≥ i + |η|, there exist a, b ≥ i + |η| such
that ρ1(k, a, b, i, j) (by the validity of ρ(i+ |η|, j));
therefore, ρ(i, j) holds. This proves the induction
step.

We now prove the right-to-left direction by con-
tradiction: assume ρ(i, j) and σi:j /∈ N∗. By as-
sumption, there exists η ∈ N∗ ∪ {ϵ} such that η is
a substring of σi:j . For all i ≤ k ≤ j such that σk
is not contained within η: ¬∃a, b.ρ1(k, a, b, i, j),
by the assumption that external negation prefixes
do not overlap (see Theorem 1). Therefore, ρ(i, j)
does not hold—this is a contradiction.

Now define ρ′(i, j) as in Equation 12.

ρ′1(a, b, i, j) := (a ≤ i ∧ b > j) ∨ (a < i ∧ b ≥ j)
(12a)

ρ′2(a, b, i, j) := a > 1 ∧ ρ′1(a, b, i, j)
(12b)

ρ′(i, j) := ρ(i, j) ∧ ¬∃a, b[ρ′2(a, b, i, j) ∧ ρ(a, b)]
(12c)

For all x ∈ Λ, define F1(x) as in Equation 13.

F1(x) := ¬∃i, j[j > i > 1 ∧ ρ′(i, j)] ∧A(ϕx)
(13)

F1(x) is intended to coincide with ϕx on any
(Pk, Hk, Lk) ∈ D (i.e. where the hypothesis is not
externally negated). The term j > i > 1 in Equa-
tion 13 allows for the possibility that the premise
Pk may be externally negated in the original dataset
D.

Lemma 5. For all x ∈ Λ and all σ ∈ (Σ′)∗ such
that |σ| ≤ w and there does not exist η ∈ N∗

such that η is a subsequence of σ2:: [ϕx](σ) ↔
[F1(x)](f(σ))

Proof. By Lemma 3, [ϕx](σ) ↔ [A(ϕx)](f(σ)).
By assumption, ¬∃i, j[j > i > 1 ∧ ρ′(i, j)] holds
for all such f(σ).

We then define A′(ϕx) by replacing each predi-
cate Q′

a(p) in A(ϕx) (Equation 8) with β(Q′
a(p)),

as defined in Equation 14 (where i and j are free
count variables in A′(ϕx)).

β1(Q
′
a(p)) := p < i ∧Q′

a(p) (14a)

β2(Q
′
a(p)) := p ≥ i ∧Q′

a(p+ (j − i) + 1)
(14b)

β(Q′
a(p)) := β1(Q

′
a(p)) ∨ β2(Q′

a(p)) (14c)

Lemma 6. For all (Pk, Hk, Lk) ∈ D, all x ∈
Λ, and all η ∈ N∗ such that |PkηHk| ≤ w:
[ϕx](PkHk) ↔ [A′(ϕx)](f(PkηHk)) when the
free variables i = |Pk|+ 1, j = |Pkη| in Equation
14.

Proof. We first prove that [A(ϕx)](f(PkHk)) ↔
[A′(ϕx)](f(PkηHk)). Note that A′(ϕx) is con-
structed from A(ϕx) by replacing each instance
of Q′

a(p) with β(Q′
a(p)). It therefore suffices to

prove that for all a ∈ Σ′ and all 1 ≤ p ≤ w:
[Q′

a(p)](f(PkHk)) ↔ [β(Q′
a(p))](f(PkηHk)).

1938

If p ≤ |Pk|, then [Q′
a(p)](f(PkHk)) ↔

[β(Q′
a(p))](f(PkηHk)) by definition (Equa-

tion 14). Otherwise, [Q′
a(p)](f(PkHk)) ↔

[β(Q′
a(p))](f(PkηHk)) if and only if

(PkHk)p = (PkηHk)p+(j−i)+1. By assumption,
p+(j−i)+1 = p+(|Pkη|−(|Pk|+1))+1 = p+|η|
and (PkHk)p = (PkηHk)p+|η|.

By Lemma 3 and the above result, we
have: [ϕx](PiHi) ↔ [A(ϕx)](f(PiHi)) ↔
[A′(ϕx)](f(PiηHi)).

Now, define F2(x) as in Equation 15, where
G(E) = C, G(C) = E , and G(N) = N .

γ1x(n) :=MODC2(1, n) ∧A′(ϕG(x)) (15a)

γ2x(n) :=MODC2(0, n) ∧A′(ϕx) (15b)

γ3x(k) := i ≤ k ≤ j ∧ ψ(k) (15c)

γ4x(n) := E(k, n, γ3x(k)) (15d)

γ5x(n) := ¬∃y[y > n ∧ E(k′, y, γ3x(k
′))] (15e)

γx := ∃n[γ4x(n) ∧ γ5x(n) ∧ (γ1x(n) ∨ γ2x(n))]
(15f)

F2(x) := ∃i, j[j > i > 1 ∧ ρ′(i, j) ∧ γx] (15g)

Lemma 7. Define N0, N1 ⊂ N∗ as the sets of
even- and odd-length (in terms of number of pre-
fixes, rather than characters) sequences of external
negation prefixes, respectively. Then for all x ∈ Λ
and all (Pk, Hk, Lk) ∈ D:

i. for all η ∈ N0: [ϕx](PkHk) ↔
[F2(x)](f(PkηHk))

ii. for all η′ ∈ N1: [ϕG(x)](PkHk) ↔
[F2(x)](f(Pkη

′Hk))

Proof. We first prove (i). By Lemma 4 and the
definition of ρ′(i, j) (Equation 12), the respective
values of i, j that make the term j > i > 1∧ρ′(i, j)
hold in Equation 15 are i = |Pk| + 1 and j =
|Pkη|. By the definitions of E(k, n,−), ψ(−), and
γx (Equations 6, 10, and 15, respectively)—and
the assumption that η ∈ N0—the value of n that
makes [γx](f(PkηHk)) hold is even. Therefore,
the term MODC2(0, n) in γ2x(n) holds, and so
[A′(ϕx)](f(PkηHk)) ↔ [F2(x)](f(PkηHk)).

By Lemma 6 and the above result:
[ϕx](PkHk) ↔ [A′(ϕx)](f(PkηHk)) ↔
[F2(x)](f(PkηHk)).

We now prove (ii); the proof proceeds in a
similar fashion as that of (i) above. But now n
is odd, and so the term MODC2(1, n) in γ1x(n)

holds. Therefore, [A′(ϕG(x))](f(Pkη
′Hk)) ↔

[F2(x)](f(Pkη
′Hk)).

Again by Lemma 6 and the above result:
[ϕG(x)](PkHk) ↔ [A′(ϕG(x))](f(PkηHk)) ↔
[F2(x)](f(PkηHk)).

For all x ∈ Λ, we define F (x) as follows (Equa-
tion 16).

F (x) := F1(x) ∨ F2(x) (16)

We may now define the formula ST ′ in Equation
17 below.

ST ′ :=
∧

x∈Λ
F (x) ↔ ∃=1p.Qx(p) (17)

Lemma 8. For all (Pk, Hk, Lk) ∈ D, all η ∈ N0

such that |PkηHk| ≤ w, and all η′ ∈ N1 such that
|Pkη

′Hk| ≤ w:

i. [ST ′](f(PkHk)Lk) ↔ [ST](PkHkLk)

ii. [ST ′](f(PkηHk)Lk) ↔ [ST](PkHkLk)

iii. [ST ′](f(Pkη
′Hk)G(Lk)) ↔ [ST](PkHkLk)

Proof. By Lemma 5, [F1(Lk)](f(PkHk)) holds
if and only if [ϕLk

](PkHk) does as well, for all
(Pk, Hk, Lk) ∈ D. F2(x) does not hold for
any x ∈ Λ by definition (Equation 15), and
[F1(x)](f(PkHk)) ↔ [ϕx](PkHk) for any x ∈
Λ− {Lk} by Lemma 5. This proves (i).

For all η ∈ N0 such that |PkηHk| ≤
w, [F1(x)](f(PkHk)) does not hold for any
x ∈ Λ by definition (Equation 13), and
[F2(x)](f(PkHk)) ↔ [ϕx](PkHk) for all x ∈ Λ
by Lemma 7(i). This proves (ii).

For all η′ ∈ N1 such that |Pkη
′Hk| ≤

w, [F1(x)](f(PkHk)) does not hold for any
x ∈ Λ by definition, and [F2(x)](f(PkHk)) ↔
[ϕG(x)](PkHk) for all x ∈ Λ by Lemma 7(ii). This
proves (iii).

By Chiang et al. (2023) Theorem 5, there
exists a transformer encoder T ′′ that recog-
nizes the language defined by ST ′ . By
Lemma 8(i), Acc(T ′′, f(D)) = Acc(T,D), and
Acc(T ′′, {f(PiηHi)}i∈I) = Acc(T,D) for any
η ∈ N∗ such that maxi∈I |PiηHi| ≤ w by Lemma
8(ii-iii).

But T ′′ is an arbitrary-precision transformer.
It remains to show that we can derive a fixed-
precision transformer T ′ from T ′′. Note that by
definition (Equation 2), for any σ ∈ (Σ′)∗ such

1939

that |σ| < w: |f(σ)| = w(|σ|+1). By assumption
(Theorem 1), no input example (challenge or other-
wise) exceeds the fixed (finite) w > maxi∈I |PiHi|
in length. It follows that the upper bound on the
length of possible inputs to T ′′ (within the assump-
tions of Theorem 1) is w2 + w.

By definition, the floating-point precision of
an arbitrary-precision transformer varies as a
function of input length. Let π : N → N be
the function mapping input length to floating-
point precision (in bits) of T ′′—presumably, π
is monotone-increasing, but it need not be. De-
fine T ′ as T ′′ with floating-point precision fixed at
max1≤n≤w2+wπ(n).

This completes the proof of Theorem 1.

B Experiment 1

B.1 Deriving Class Labels
Given a premise, hypothesis, label triple (P,H,L)
in an NLI dataset, the label L is defined as follows
(where E , C, and N denote entailment, contradic-
tion, and neutral, respectively):

L = E ⇔ P → H (18a)

L = C ⇔ P → ¬H (18b)

L = N ⇔ L ̸= E ∧ L ̸= C (18c)

Where the left-hand sides of the bidirectional ar-
rows in Equation 18a-b hold in every logically
possible state of affairs. Now consider the triple
(P,H ′, L′), where H ′ = ¬H . If L = E , then we
have:

P → H = P → ¬¬H = P → ¬H ′ ⇔ L′ = C
(19)

By the law of the excluded middle, the definition
of H ′, and Equation 18b. Therefore, L = E ↔
L′ = C. Similarly, if L = C, then we have:

P → ¬H = P → H ′ ⇔ L′ = E (20)

By the definition of H ′ and Equation 18a. There-
fore, L = C ↔ L′ = E .

Now suppose that L = N . By the above discus-
sion (Equations 19 and 20), we have L = E ↔
L′ = C and L = C ↔ L = E . Therefore
L′ /∈ {E , C} and so (by Equation 18c) L′ = N .
So we have L = N → L′ = N . Swapping
L and L′ in the above discussion in this para-
graph, we have L′ = N → L = N . Therefore,
L = N ↔ L′ = N .

1940

Template Premise Hypothesis Label
(P,H) A young boy dressed in plaid about A young boy is about to take Entailment

to take a picture. a picture.
(P, (TNT)

1H) It is not true that a young boy Contradiction
is about to take a picture.

(P, (TNT)
2H) It is not true that it is not true Entailment

that a young boy is about to
take a picture.

(P, (TNT)
3H) It is not true that it is not true Contradiction

that it is not true that a young
boy is about to take a picture.

(P,H) A race between friends at the park. The park is deserted. Contradiction
(P, (TNT)

1H) It is not true that the park is Entailment
deserted.

(P, (TNT)
2H) It is not true that it is not true Contradiction

that the park is deserted.
(P, (TNT)

3H) It is not true that it is not true Entailment
that it is not true that the park
is deserted.

(P,H) People kneeling on the ground. People are praying. Neutral
(P, (TNT)

1H) It is not true that people are Neutral
praying.

Table 5: Examples of depth-n negated challenge data points (P, (TNT)
nH) generated from SNLI (some examples

have been slightly modified for presentability).

B.2 Inoculation Development Set Accuracies

Initial Acc. Initial Acc. Inoculated Acc. Inoculated Acc.
Model (Original) (Challenge) (Original) (Challenge)
BARTM 0.89 0.52 0.77 0.94
RoBERTaM 0.89 0.51 0.87 0.93
DeBERTaS 0.9 0.39 0.9 0.91
RoBERTaS 0.88 0.57 0.88 0.89
BARTSMFA 0.89 0.69 0.87 0.92
RoBERTaSMFA 0.87 0.51 0.86 0.91

Table 6: Model accuracy on the original and challenge
development sets before and after depth-1 inoculation.

Initial Acc. Initial Acc. Inoculated Acc. Inoculated Acc.
Model (Original) (Challenge) (Original) (Challenge)
BARTM 0.89 0.61 0.86 0.94
RoBERTaM 0.89 0.63 0.87 0.97
DeBERTaS 0.9 0.48 0.9 0.96
RoBERTaS 0.88 0.66 0.88 0.94
BARTSMFA 0.89 0.72 0.88 0.95
RoBERTaSMFA 0.87 0.65 0.88 0.95

Table 7: Model accuracy on the original and challenge
development sets before and after depth-≤2 inoculation.

1941

Initial Acc. Initial Acc. Inoculated Acc. Inoculated Acc.
Model (Original) (Challenge) (Original) (Challenge)
BARTM 0.89 0.53 0.87 0.95
RoBERTaM 0.89 0.54 0.87 0.96
DeBERTaS 0.9 0.45 0.9 0.96
RoBERTaS 0.88 0.57 0.88 0.93
BARTSMFA 0.89 0.6 0.76 0.93
RoBERTaSMFA 0.87 0.54 0.88 0.94

Table 8: Model accuracy on the original and challenge
development sets before and after depth-≤3 inoculation.

Initial Acc. Initial Acc. Inoculated Acc. Inoculated Acc.
Model (Original) (Challenge) (Original) (Challenge)
BARTM 0.89 0.61 0.62 0.75
RoBERTaM 0.89 0.62 0.74 0.88
DeBERTaS 0.9 0.54 0.89 0.76
RoBERTaS 0.88 0.64 0.89 0.89
BARTSMFA 0.89 0.66 0.62 0.86
RoBERTaSMFA 0.87 0.61 0.88 0.89

Table 9: Model accuracy on the original and challenge
development sets before and after depth-≤4 inoculation.

Initial Acc. Initial Acc. Inoculated Acc. Inoculated Acc.
Model (Original) (Challenge) (Original) (Challenge)
BARTM 0.89 0.55 0.32 0.74
RoBERTaM 0.89 0.56 0.88 0.93
DeBERTaS 0.9 0.5 0.9 0.91
RoBERTaS 0.88 0.58 0.88 0.89
BARTSMFA 0.89 0.59 0.87 0.88
RoBERTaSMFA 0.87 0.54 0.86 0.87

Table 10: Model accuracy on the original and challenge
development sets before and after depth-≤5 inoculation.

B.3 Post-Inoculation Test Accuracy

Depth-m test No inoc. Depth-1 inoc. Depth-≤2 inoc. Depth-≤3 inoc.
2 0.71 0.32 — —
3 0.36 0.93 0.31 —
4 0.82 0.36 0.94 0.31
5 0.33 0.88 0.31 0.94
6 0.86 0.41 0.94 0.31

Table 11: Accuracy for BARTM on depth-(m>n)
external negation after depth-≤n inoculation (n ∈
{1, 2, 3}).

1942

Depth-m test No inoc. Depth-1 inoc. Depth-≤2 inoc. Depth-≤3 inoc.
2 0.77 0.36 — —
3 0.34 0.89 0.33 —
4 0.85 0.33 0.97 0.32
5 0.32 0.88 0.33 0.95
6 0.89 0.34 0.97 0.33

Table 12: Accuracy for RoBERTaM on depth-(m>n)
external negation after depth-≤n inoculation (n ∈
{1, 2, 3}).

Depth-m test No inoc. Depth-1 inoc. Depth-≤2 inoc. Depth-≤3 inoc.
2 0.56 0.62 — —
3 0.4 0.61 0.32 —
4 0.84 0.64 0.96 0.5
5 0.3 0.51 0.32 0.96
6 0.88 0.77 0.96 0.36

Table 13: Accuracy for DeBERTaS on depth-(m>n)
external negation after depth-≤n inoculation (n ∈
{1, 2, 3}).

Depth-m test No inoc. Depth-1 inoc. Depth-≤2 inoc. Depth-≤3 inoc.
2 0.74 0.32 — —
3 0.4 0.89 0.3 —
4 0.84 0.35 0.94 0.39
5 0.34 0.88 0.3 0.74
6 0.83 0.33 0.93 0.53

Table 14: Accuracy for RoBERTaS on depth-(m>n)
external negation after depth-≤n inoculation (n ∈
{1, 2, 3}).

Depth-m test No inoc. Depth-1 inoc. Depth-≤2 inoc. Depth-≤3 inoc.
2 0.77 0.37 — —
3 0.33 0.91 0.31 —
4 0.84 0.34 0.94 0.29
5 0.3 0.85 0.31 0.92
6 0.86 0.41 0.94 0.28

Table 15: Accuracy for BARTSMFA on depth-(m>n)
external negation after depth-≤n inoculation (n ∈
{1, 2, 3}).

1943

Depth-m test No inoc. Depth-1 inoc. Depth-≤2 inoc. Depth-≤3 inoc.
2 0.79 0.35 — —
3 0.32 0.93 0.32 —
4 0.83 0.31 0.95 0.32
5 0.32 0.94 0.32 0.94
6 0.84 0.32 0.95 0.32

Table 16: Accuracy for RoBERTaSMFA on depth-
(m>n) external negation after depth-≤n inoculation
(n ∈ {1, 2, 3}).

C Experiment 3

Figure 4: Mean cosine similarity between (TNT)
nHi

and (TNT)
2Hi for the three RoBERTa models before

(dashed) and after (solid) depth-≤5 TNT inoculation.

Figure 5: Mean cosine similarity between (TNT)
nHi

and Hi for the three RoBERTa models before (dashed)
and after (solid) depth-≤5 TNT inoculation.

Figure 6: Mean cosine similarity between (TF)
nHi and

(TF)
2Hi for the three RoBERTa models before (dashed)

and after (solid) depth-≤5 TNT inoculation.

Figure 7: Mean cosine similarity between (TF)
nHi and

Hi for the three RoBERTa models before (dashed) and
after (solid) depth-≤5 TNT inoculation.

1944

Figure 8: Mean cosine similarity between (TF)
nHi

and (TNT)
2Hi for the three RoBERTa models before

(dashed) and after (solid) depth-≤5 TNT inoculation.

Figure 9: Mean cosine similarity between (TNT)
nHi

and (TF)
2Hi for the three RoBERTa models before

(dashed) and after (solid) depth-≤5 TNT inoculation.

Figure 10: Mean cosine similarity between (TF)
nHi

and (TNT)
1Hi for the three RoBERTa models before

(dashed) and after (solid) depth-≤5 TNT inoculation.

Figure 11: Mean cosine similarity between (TNT)
nHi

and (TF)
1Hi for the three RoBERTa models before

(dashed) and after (solid) depth-≤5 TNT inoculation.

Figure 12: Mean cosine similarity between (TNT)
nHi

and (TF)
nHi for the three RoBERTa models before

(dashed) and after (solid) depth-≤5 TNT inoculation.

1945

