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Abstract

Siamese encoders such as sentence transform-
ers are among the least understood deep models.
Established attribution methods cannot tackle
this model class since it compares two inputs
rather than processing a single one. To address
this gap, we have recently proposed an attribu-
tion method specifically for Siamese encoders
(Möller et al., 2023). However, it requires mod-
els to be adjusted and fine-tuned and therefore
cannot be directly applied to off-the-shelf mod-
els. In this work, we reassess these restrictions
and propose (i) a model with exact attribution
ability that retains the original model’s predic-
tive performance and (ii) a way to compute ap-
proximate attributions for off-the-shelf models.
We extensively compare approximate and exact
attributions and use them to analyze the models’
attendance to different linguistic aspects. We
gain insights into which syntactic roles Siamese
transformers attend to, confirm that they mostly
ignore negation, explore how they judge seman-
tically opposite adjectives, and find that they
exhibit lexical bias.

1 Introduction

Siamese Encoders (SE) are a class of deep-learning
architectures that are trained by comparing embed-
dings of two inputs produced by the same encoder.
In NLP they are often realized in the form of sen-
tence transformers or STs (Reimers and Gurevych,
2019), which have been successfully applied to the
prediction of semantic similarity (Cer et al., 2017),
natural language inference (Conneau et al., 2017),
and in information retrieval (Thakur et al., 2021).

Despite their wide use, our understanding of
which aspects of inputs STs base their decisions
on is still limited, partly due to the fact that estab-
lished attribution methods like integrated gradients

∗The work was done while Dmitry Nikolaev was a post-
doc at the Institute for Natural Language Processing, Univer-
sity of Stuttgart.

(Sundararajan et al., 2017) cannot be directly ap-
plied to SEs as they compare two inputs rather than
processing a single one.

In a recent publication (Möller et al., 2023), we
have derived an attribution method specifically tar-
geted for SEs by generalizing the concept of in-
tegrated gradients to models with two inputs and
introduced integrated Jacobians (IJ). Resulting at-
tributions take the form of token–token matrices (cf.
Figure 1) and they inherit theoretical guarantees
from integrated gradients. However, they require
models to be adjusted in two ways: (1) embeddings
need to be shifted by a reference input and (2) the
usual cosine similarity is replaced by a dot product.
This has a number of disadvantages: the (unnormal-
ized) dot-product is not a sufficient similarity mea-
sure, the adjustments lead to a drop in predictive
performance, and models need to be fine-tuned.

In this work, we address these drawbacks. Our
main contributions are twofold:

• We show that it is possible to compute attri-
butions for models using cosine similarity as
a similarity measure. A resulting model with
exact attribution ability can retain the down-
stream performance of the original ST.

• We propose a method to compute approximate
attributions for off-the-shelf SE models that
do not require adjustments. These attributions
do not come with the theoretical guarantees
of their exact counterparts: They agree with
them partly but have their limits.

These updates to our original method close the per-
formance gap between standard and interpretable
STs. Our additional evaluations provide important
guidance for the use and the limitations of approx-
imate attributions for off-the-shelf models. Our
code is available on github at
https://github.com/lucasmllr/xsbert.
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2 Related Work

Model Explainability. A large number of con-
cepts and methods are associated with model ex-
plainability, and no unified definition exists (Mur-
doch et al., 2019). Feature-attribution methods,
showing which parts of an input the model consults
for a given prediction, are a means of local explain-
ability for individual predictions (Li et al., 2016).
They provide post-hoc explanations for models that
are not inherently interpretable, because we cannot
decompose their decision making process into in-
tuitively understandable pieces at prediction time
(Rudin, 2019). The framework of Integrated Gradi-
ents (IG; Sundararajan et al., 2017) provides a way
to do this in a provably correct way and with mea-
surable accuracy. In the terminology introduced by
Doshi-Velez and Kim (2017), such feature attribu-
tions are individual cognitive chunks that may be
cumulated across input dimensions and add up to
the total prediction.

Analysis of Transformers. A number of publi-
cations have analyzed Transformer-based language
models (Rogers et al., 2020). A lot of attention has
been directed towards interpreting the self-attention
weights and visualizing the process of token predic-
tion (Clark et al., 2019; Voita et al., 2019). It has
been pointed out, however, that attention weights
alone are insufficient for explaining model predic-
tions (Wiegreffe and Pinter, 2019; Kobayashi et al.,
2024), and Bastings and Filippova (2020) conclude
that feature attribution methods should be used in-
stead. The latter were surveyed by Danilevsky et al.
(2020), and Atanasova et al. (2020) found IG to be
among the most robust methods.

Analysis of Siamese Transformers. Less work
aims at better understanding STs. Opitz and Frank
(2022) fine-tune STs to encode well-defined AMR-
based semantic features in selected dimensions of
the model’s embedding space. MacAvaney et al.
(2022) focus on IR models and analyze predictions
for pairs of input queries and documents with cer-
tain known properties. Nikolaev and Padó (2023)
construct synthetic sentence pairs with specific lex-
ical and syntactic characteristics and regress simi-
larity scores on these features. Finally, Möller et al.
(2023) extend IG to apply to STs and, as a case
study, analyze which parts of speech STs preferen-
tially attend to (cf. Section 3.1 of this paper).

3 Method

3.1 Exact Attributions
In Möller et al. (2023), we derived an exact attribu-
tion method for a Siamese model f with an encoder
e mapping two inputs a and b to a scalar score s:

f(a,b) = eT (a) e(b) = s (1)

Due to space limits, we can only summarize the
most important results here; see the original pub-
lication for a full derivation. The approach begins
by extending the concept of integrated gradients
(Sundararajan et al., 2017) to the Siamese case:

f(a,b)− f(a, rb)− f(b, ra) + f(ra, rb)

=

∫ b

rb

∫ a

ra

∂2

∂xi∂yj
f (x,y) dxi dyj

=
∑

ij

(a− ra)i
(
JT
a Jb

)
ij
(b− rb)j

(2)

Here a and b are two inputs, i and j index their
respective features, and ra and rb are reference
inputs which are required to be semantically neutral
(i.e. yield a similarity score of zero). In analogy
to Sundararajan et al., we defined the integrated
Jacobian Ja as:

(Ja)ki =

∫ 1

α=0

∂ek(x(α))

∂xi
dα

≈ 1

N

N∑

n=1

∂ek(x(αn))

∂xi
,

(3)

which we calculate numerically by summing over
interpolation steps along the straight line between
ra and a given by x(α) = ra + α(a− ra).

The expression inside the sum of the last line
in Equation 2 is a matrix of all possible feature
pairs ij in the two inputs, which we will refer to as
A. It can be reduced to a token–token matrix, as
illustrated in Figure 1. Provided that the reference
inputs r are dissimilar to any other input sentence
· (i.e., f(r, ·)=0), the last three terms on the left-
hand side in Equation 2 vanish and the sum over the
attribution matrix, A, is exactly equal to the model
prediction, f(a,b). This is why these attributions
can be considered provably correct and we can say
they faithfully explain which parts of the inputs the
model attends to for a given prediction.

To guarantee the side condition of f(r, ·)=0, we
proposed in Möller et al. (2023) to adjust the model
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Figure 1: Attributions for the same example in the Exact
(top) and Tuned (bottom) models. Plots include individ-
ual terms from the LHSs of Equation 2.

architecture in two ways. First, we shift all embed-
dings by the references, so that e(·) = e′(·)−e′(r),
where e′ is the original encoder and · is an arbitrary
input. This shift results in references to be mapped
onto the zero vector in the embedding space, which
is why all terms involving r vanish in Equation
2. Unfortunately, Siamese sentence encoders typ-
ically use cosine as a similarity measure, which
normalizes embedding vectors to unit length. For
the zero vector, normalization is undefined. This is
why, second, we replace the cosine by a dot product
in the previous publication.

The application of these adjustments to a model
requires fine-tuning. Thus, attributions cannot be
derived for the original model, but only an adapted
version of it. The adjustments also result in a slight
decrease of predictive performance (cf. row Orig.
in Table 1). Finally, a dot-product as similarity mea-
sure does not guarantee the similarity of a sentence
to itself to be one (i.e. maximal).

3.2 Proposed Extensions

In this work we address these two limitations.

Utilizing cosine similarity. In Equation 3, the
integrated Jacobian Ja results from computing
forward- and backward-passes of all interpolation
steps x(αn) along the integration path. However,
due to the numerical calculation of the integral, the
closest input to the reference ra that is actually ever
used is x(α) with α=∥a−ra∥/N , the first interpo-
lation step for input a. For a large number of steps
N , this input may come arbitrarily close to ra, but
never reaches it. Therefore, in practice we actually
never need to normalize the zero embedding-vector
e(ra), which ra is mapped to, and we can safely
use cosine as a similarity measure.

Approximate References. We can loosen the re-
quirement for references to yield exact zero similar-
ities, which allows us to avoid the embedding shift.
We still use sequences of padding tokens with the
same length as the respective input as references,
but we now subtract their emebddings from input
embeddings. Padding sequences are nevertheless
uninformative and should yield similarities close
to zero for most input sentences.

As a result, the last three terms on the left-hand
side of Equation 2 do not vanish any more. The
two reference similarity terms involving either in-
put will become close to zero: f(a, rb) ≈ 0 and
f(b, ra) ≈ 0. The reference term will not, but it
will become close to one as references should be
similar to another, f(ra, rb) ≈ 1. It may not be
exactly one, because if the two inputs are of dif-
ferent lengths, so are the two references, and their
sentence representations will not be mapped onto
the exact same embedding.

Approximate Attributions. Combining the ap-
proximations from above, we obtain the following
approximate attribution method:

f(a,b) + 1 ≈
∑

ij

(a− ra)i
(
JT
a Jb

)
ij
(b− rb)j

(4)
The attribution matrix on the right-hand side no

longer exactly corresponds to the model prediction,
because it is now influenced by the reference term
and non-zero reference similarities. A priori, we
cannot tell how both contributions distribute among
individual feature pairs ij, and whether they influ-
ence the relative order of attributions. That being
said, the ability to utilize cosine similarity and the
lack of need for an embedding shift obviates the
need for fine-tuning to adjust the model architec-
ture, and Equation 4 offers a means to compute
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approximate attributions for off-the-shelf models.

4 Experiments 1: Analysis of Attributions

Our approximate attributions do not provide a the-
oretical guarantee to be correct. Therefore, in this
section, after evaluating predictive performances in
different settings, we first quantify the influence of
reference contributions to approximate attributions,
and then evaluate how well exact and approximate
attributions agree. We work with attributions to
layer nine, because they are expressive, while still
being accurate with reasonable computational cost
(Möller et al., 2023).

4.1 Experimental Setup

We experiment with Siamese sentence transform-
ers trained to predict semantic textual similarity,
and base our evaluation on the well-established
STS benchmark (Cer et al., 2017), consisting of
5749 training, 1500 development and 1379 test sen-
tence pairs from various SemEval1 tasks. Our im-
plementation builds on the sentence-transformers2

package (Reimers and Gurevych, 2019). Training
details are provided in Appendix A.

4.2 Predictive Performance

We first evaluate the performance of Siamese mod-
els on the STS data corresponding to different pos-
sible configurations for exact and approximate at-
tributions. The aspects discussed in Section 3.1
give rise to four such configurations, shown in Ta-
ble 1: they differ in whether we apply an embed-
ding shift (Shift), and whether we train the model
on the STS train set (Train). Shelf refers to the
unmodified off-the-shelf version. Tuned undergoes
the same training as the other fine-tuned models
but keeps its unmodified architecture. The Exact
model introduces the embedding shift enabling ex-
act attributions. Finally, Orig. is the configuration
from Möller et al. (2023) with a dot product as
the similarity measure. We evaluate all models3

on the STS test set using the standard metric of
Spearman correlation between the cosine similarity
of embeddings and annotations.

The Tuned model achieves the best performance.
The Orig. and Exact models sacrifice 1.8 and 0.3
points in average correlation, respectively. Using

1https://semeval.github.io
2https://www.sbert.net
3All models are based on the all-mpnet-base-v2 sen-

tence transformer from https://www.sbert.net/docs/
pretrained_models.html

Model Shift Train Attr. rS× 100

Shelf ✗ ✗ appr. 83.4
Tuned ✗ ✓ appr. 87.8
Exact ✓ ✓ exact 87.5
Orig. ✓ ✓ exact 86.0

Table 1: Spearman correlation of cosine similarities
between embeddings and target labels in different model
settings as described in the text. Top and second best
performances are bold / underlined.
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Figure 2: Contributions of reference similarities,
f(a, rb) and f(b, ra) (left), and the reference term,
f(ra, rb) (right), to attributions.

the framework for assessing statistical significance
introduced by Dror et al. (2019), the superiority of
the Tuned model over the Exact one is, however,
not significant (p < 0.05, details in Appendix B).
This shows that the embedding shift only minimally
harms the performance when compared against the
unmodified model undergoing identical training
(Tuned).

4.3 Reference Contributions

For off-the-shelf models that have not been adapted
for the similarities to the references f(a, rb) and
f(b, ra) to vanish, we can test how close similar-
ities of inputs to the references actually are. Fig-
ure 2 (left) shows the distribution of similarities
between all STS test set sentences and correspond-
ing reference inputs consisting of padding tokens.
85.8% of all similarities are within an interval of
±0.1 around zero. Thus, in many cases the as-
sumption for reference similarities to be negligible,
f(r, ·) ≈ 0, may be assumed. However, the width
of this distribution also shows that in a substantial
fraction of test examples reference similarities are
not sufficiently small. Whenever they become non-
negligible, they can confound attributions and the
approximation of Equation 4 cannot be assumed
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safely. Fortunately, we can perfectly quantify this
error case by case by explicitly computing the ref-
erence similarities of both inputs.
Similarly, we can evaluate how large the contri-
bution of the reference term, f(ra, rb), to the at-
tributions is. Figure 2 (right) shows a histogram
of all values for this term. As expected, they are
mostly close to one. Only 6.7% of all contributions
are smaller than 0.9. Different from the reference
similarities for the two inputs, the reference term
is never negligible.

4.4 Agreement between Exact and
Approximate Attributions

Due to the non-zero reference contributions
f(a, rb), f(b, ra) and f(ra, rb), the attribution ma-
trix A can no longer be assumed to exactly refor-
mulate the model prediction f(a,b), because we
cannot tell how the former terms distribute among
A (cf. Equation 2). In order to evaluate how much
reference similarities and the reference term con-
found attributions, we compare approximate attri-
butions from the Tuned model against exact ones
from the Exact one. For this evaluation, it is impor-
tant that both models undergo an identical training,
with the only difference being that embeddings in
the Exact model are shifted. Therefore, we do not
compare attributions of the Shelf or Orig. model
in this experiment.

The plots in Figure 1 show example attributions
of both models for a random sentence pair from the
STS test set. As expected, in the Exact model both
reference similarities and the reference term vanish,
while in the Tuned one, the former come close to
zero and the latter is approximately one. Some attri-
butions are quite different, however, a general pat-
tern appears to be rather well preserved. We evalu-
ate how consistently this is the case by computing
attributions from both models for all sentences in
the STS test set and compare them. We are also
interested how the agreement of attributions be-
haves as a function of similarity score. In Figure
3, we plot Spearman correlation values of attribu-
tions to layer eleven against the average similarity
score predicted by the two models. The correlation
steadily increases with higher similarity scores. For
scores s>0.75 it reaches rS = 0.81±0.07.

We repeat this experiment for attributions to all
layers down to the seventh, for which we have
previously found attributions to be sufficiently ac-
curate with N < 200 (Möller et al., 2023). Fig-
ure 4 summarizes the results for similarity scores
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Figure 3: Spearman correlation between attributions
from the Tuned and Exact model for all STS test set pairs
(y axis) plotted against the mean predicted similarity of
both models (x axis).
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Figure 4: Agreement between attributions by the Tuned
and Exact model. We compute Spearman and Pearson
correlations, as well as the intersections between the
top-3 and top-10 attributions for different layers and
similarity scores s > 0.5.

s > 0.5. Spearman correlation declines to rS =
0.60 ± 0.13 and rS = 0.40 ± 0.17 in layer ten
and nine, respectively. We note that Spearman
correlation only regards the rank of attributions
and will be strongly influenced by small attribu-
tions, which may be dominated by noise and do
not interest us very much. Pearson correlation, on
the other hand, which remains relatively high with
rP = 0.80 ± 0.11 in layer eight, is technically
not suitable because we cannot presuppose a linear
relation between attributions. We are mostly in-
terested in the agreement of attributions that stand
out. Therefore, we also evaluate the overlap among
the top ten (and three, shown in parentheses) attri-
butions in all pairs. The Jaccard coefficient starts
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at 0.83±0.10 (0.88±0.17) in layer eleven and de-
creases to 0.60±0.14 (0.75±0.20) in layer eight.

These results show that approximate attributions
are trustworthy for very deep layers. Attributions to
deeper intermediate representations may still pro-
vide interesting insights, but must be interpreted
with caution and cannot be taken to be completely
reliable. The results also show that care must be ap-
plied regarding dissimilar sentence pairs, because
for very low scores, approximate attributions do
not agree with exact ones.

4.5 Positive and negative attributions
Intuitively, pairs of tokens with congruent seman-
tics, which make a pair of sentences more semanti-
cally similar, should positively contribute to the
similarity score and receive positive attribution
scores. Conversely, pairs of tokens that contradict
each other should be assigned negative attributions
in order to push the similarity score towards zero,
cf. the effect of not in Figure 7. Examination of
attribution matrices shows, however, that this sce-
nario is quite rare and we often fail to see noticeable
negative attributions where we expect them.

A possible reasons for this behavior is that mod-
els tend to “overshoot” the contributions of seman-
tically congruent tokens and need to balance them
out by assigning negative contributions to neutral
token pairs (unlike the final scores, token-pair con-
tributions can take any value).

In order to test if this is the case, we separately
extract the sums of all positive and all negative ele-
ments of the attribution matrices computed based
on the sentence pairs from the STS test set using
two similarity models. The relationship between
the sums of positive and negative token-pair attribu-
tions across sentences is shown in Figure 5. Both
models demonstrate cases when positive attribu-
tions sum to more than the score maximum, which
is 1 for the exact model and 2 for the off-the-shelf
model (cf. Equations. 2 and 4), thus demanding a
proportional total negative contribution. However,
this analysis also shows a difference between the
exact model and the approximate model: we see ap-
proximate attributions computed on the basis of the
off-the-shelf model summing to more than 2 much
more frequently than exact attributions summing
to more than 1. We cannot tell whether this effect
is an artifact of the approximate attribution method
or whether the model itself actually assigns such
large contributions, while the weights of fine-tuned
exact model become normalized. Overall, the data
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Figure 5: The relationships (with LOWESS smoothing)
between sums of positive and negative elements of attri-
bution matrices computed on the STS test set using the
Shelf and the Exact model (left pane of top and bottom
row, respectively) and the distribution of sums of posi-
tive elements in these matrices (right pane).

show that, unfortunately, negative attributions are
not entirely reliable even in the exact attribution
setting, given that positive attributions sometimes
sum to more than 1, and in the approximate setting
the proportion of these cases is higher.

5 Experiments 2: Analysis of Sentence
Transformers

The attributions derived by our method let us di-
rectly analyze the decision making process inside
STs for the first time. In this section, we extend the
analysis to concrete levels of linguistic structures
including syntactic functions, negation, adjectives,
and general lexical effects.

5.1 Syntactic Relations
Möller et al. (2023) evaluated which relations be-
tween parts of speech Siamese language models
typically consult. We extend this analysis to re-
lations between the syntactic functions of words.
Using a Universal Dependencies parser,4 we ob-
tain parse trees for all sentence pairs from the STS
test set, and replace labels of multi-word expres-
sions and coordinated constructions with the label
of their closest parent that is not phrase internal.
On the attribution side, we combine token- to word-
attributions by averaging. We then extract syntactic

4We use Stanza (Qi et al., 2020).
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Figure 6: Distribution of relations between syntactic
functions of word-pairs in the top 10% of all attributions
for instances in the STS test set.

relations of the top 10% of all attributions in every
sentence pair. Figure 6 shows a distribution of the
most attributed relations in our Exact model and
the (off-the-) Shelf model.

As one may expect, subject (nsubj), predicate
(root marks the predicate of the main clause),
direct object (obj), and oblique (obl) relations
appear among the top attributions. Notably, top-
contributing pairs are based on words with identi-
cal syntactic function, which suggests that models
begin by matching major syntactic roles before con-
sidering mixed relations. Same-function word pairs
also show high agreement between models. The
two models do not agree so well on attributions to
word-pairs of different function. The Exact model
tends to attribute to subject–object (nsubj–obj)
pairs much more often. The opposite is true for
subject–predicate (nsubj–root) relations, which
the Shelf model attributes more often than any
other mixed relation. In the exact model, somewhat
surprisingly, this relation only appears on rank 14.
With a fraction of around 7% subject–subject attri-
butions are by far the most frequent. Nevertheless,
this is not a large share of all top attributions, and
the rest of the distribution does not decline steeply.
Therefore, we can conclude that the models regard
a wide range of relations between syntactic roles
and do not overly focus on specific ones. At the
same time, the relative important of participant-like
elements supports that the conclusions reached by
Nikolaev and Padó (2023) for synthetic sentences
generalize to natural text.
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to the not-token when computing the similarity of a
negated sentence to its non-negated version.

5.2 Negation

It is a well-known fact that sentence transformers
do not handle negation well (Vahtola et al., 2022).
We use our attribution method to seek a deeper un-
derstanding of this phenomenon. From the STS test
set, we extract 87 sentences that contain a simple
not-negation. We then derive attributions for the
similarity to the identical but non-negated sentence
and compute the total attribution to the not-token.

The negation should show a negative contribu-
tion in the attribution; Figure 7 shows an exam-
ple where this is actually the case. However, the
distribution of attributions in Figure 8 shows that
this is not the usual behaviour. In the Shelf (Ex-
act) model only approximately 16% (9%) of all
not-attributions are negative. In 90% of the cases
relative attributions to the not-token account for
less than 8% (14%) of the prediction. This pro-
vides additional evidence for the fact that sentence
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transformers mostly ignore negation.

5.3 Adjectives as Predicates
As another test of the STs’ ability to model polarity,
we construct adjective triplets. These combine an
anchor adjective with one synonymous and one
opposite adjective, e.g. pretty with beautiful and
ugly. From a total of 23 such triplets, we then
build a synthetic data set consisting of two sentence
pairs per triplet (Appendix C) built from the same
sentence template. The sentences differ only in
the adjective position: One sentence combines the
original and the synonymous adjective (This house
is beautiful., This house is pretty.), one the original
with the opposite one (This house is pretty., This
house is ugly.).

We then compute attribution matrices for the
two sentence-pairs from every instance, combine
token-level to word-level attributions by averag-
ing and evaluate the attributions to the respective
adjective pairs. We expect the synonymous pairs
to contribute pronounced positive attributions to
sentence-similarities. Opposite pairs, on the other
hand, result in two sentences with opposing mean-
ing. One may expect that respective adjective-pairs
should, hence, receive negative attributions. How-
ever, we find that this is not typically the case. In
Figure 9, we plot histograms of the attributions to
synonymous and opposite adjective pairs for both
the Exact and the Shelf model.

In both cases the distributions show that opposite
adjective pairs, generally, do receive lower, but only
rarely negative attributions.

5.4 Lexical effects
Finally, we investigate whether attributions are lex-
ically biased, i.e. whether similarity scores pro-
duced by SEs are sensitive to the exact lexical
choice. E.g., given a pair of sentences like A puppy
was born in X. vs. How many hurricanes occur in
X each year?, intuitively we do not expect the sim-
ilarity score to noticeably vary with the choice of
X. However, the Shelf model predicts scores above
0.3 when X is in Auckland, Cambodia, Granville
but only 0.13 for the USA and 0.19 for Europe.

In order to study this more systematically, we
use the QQP dataset5 containing more than 400k
question pairs6 and record values of all matrix cells
corresponding to same-token pairs. We then extract

5https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs

6See Appendix D for experimental details.
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Figure 9: Histograms of attributions to synonymous and
opposite adjective pairs from the Exact (top) and the
Shelf model (bottom).

all attributions for words appearing 30 and more
times and assign them ranks based on their average
attributions.

As should be expected, both the Exact model
and the Shelf model pay little attention to EOS,
CLS, and punctuation signs, which obtain the low-
est ranks in both models. As for the top ranks,
both models give high ranks to certain place names
(Kerala, Pune), words describing emotions (anger,
boredom), and a seemingly random assortment of
other words corresponding to different question top-
ics (hacking, vocabulary, furniture). Interestingly,
while the Exact model also assigns very high im-
portance to particular numbers (2500, 1500, etc.),
the Shelf is less sensitive to them (the top number
token, 1500, has rank 91). Comparison of ranks
for top tokens is shown in Figure 10. Overall, the
attribution ranks show high agreement (Spearman’s
r = 0.81) between the two models, and the stan-
dard deviations for the contributions are rather low
(cf. Table 3 and 4 and Figure 12 in the appendix),
which shows that lexical effects are both strong and
consistent.

6 Conclusion

The updates to our original method proposed in
this paper (i) result in a Siamese Transformer with
exact attribution ability to retain the predictive per-
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Figure 10: Top-ranking words by their same-token at-
tributions over the QQP dataset sentence pairs. X-axis:
ranks (Exact model ranks shown in green, Shelf model
ranks in brown).

formance of the equivalent unmodified model, and
(ii) enable a way to compute approximate attribu-
tions for Siamese encoders which can be directly
applied to off-the-shelf models without the need for
fine-tuning. Unlike their exact counterparts, these
approximate attributions do not come with the the-
oretical guarantee to exactly reflect the model pre-
diction. Our evaluation, however, shows that for
deep intermediate representations they are reliable
to a certain extent and often agree with exact attri-
butions.

Analyses carried out based on our attributions
show that Siamese transformers primarily match
subjects, predicates and objects but also consider-
ing different syntactic relations. They mostly do
not attend to negation and often assign small yet
positive contributions to semantic opposites. On a
lexical level, some words always obtain high attri-
butions with small variance whenever they appear.

On the methdological level, we suggest that due
to the practicality of approximate attributions, they
may be used to obtain a first round of insights into
off-the-shelf models. Whenever reliable attribu-
tions of predictions are required, however, an exact
attribution model should be employed. Therefore,
an interesting future perspective will be to train
large Siamese models with exact attribution ability
from scratch.

7 Limitations

We first emphasize that in this paper a central limita-
tion of our original attribution method for Siamese
encoders (Möller et al., 2023), namely that a dot-
product instead of cosine needs to be used as a
similarity measure, is removed. This results in the
fact that self-similarity of sentences is guaranteed
to be one, instead of being unbound.

The central limitation of approximate attribu-
tions for off-the-shelf Siamese Encoders in this
paper is that they do not exactly reflect model pre-
dictions, which is elaborately discussed above.

A second important limitation remain the high
computational costs for attributions to input and
shallow intermediate representations. With our
available computational resources and the current
implementation accurate attributions to shallow lay-
ers are not tractable (Möller et al., 2023). In the
future it will also be important to look into potential
options to increase the efficiency for the computa-
tion of these attributions.

Finally, deeper intermediate representations in
transformer models are contextualized and hence
do not represent the associated token alone, but
its context. In the future it will also be interesting
to investigate the relation between attributions to
different layers and contextualization.
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A Training Details

We fine-tune all models in the same way and
mostly stick to the default setting that is used in the
sentence-transformers package. The batch size is
16, and wen run all trainings for five epochs. We
use an AdamW-optimizer with a weight decay of
0.1 and learning rate of 2 × 10−5, taking 10% of
the data for linear warm-up.

B Significance Testing

Dror et al. (2019) introduced a framework that
is particularly suitable to test the significance of
performance improvements between deep learning
models. We apply this test on the distribution of
squared errors between predictions and targets on
the STS test set (MSE is used as a loss function
at training time). We set the tests ϵ-parameter to
the suggested value of ϵ = 0.3 and choose a sig-
nificance level of p<0.05, which is not an overly
strict criterion for superiority.

C Adjective Sentences

Table 2 lists the 23 adjective triplets that we use
to construct sentence pairs. From these triplets we
construct sentence tuples like the following: (This
house is beautiful., This house is pretty.) and (This
house is beautiful., This house is ugly.). Figure
11 shows attribution matrices for this example and
marks the adjective attributions that we compare in
red.

D Lexical Effects

We compute attribution matrices for 148315 sen-
tence pairs at level 8; N = 100. Due to time con-
straints we could not compute attributions for all
sentence pairs for both models. However, we com-
puted them for the Shelf model, and the results

Anchor Synonym Opposite

beautiful pretty ugly
ugly hideous beautiful
small little big
big huge small
gigantic enormous tiny
tiny minuscule enormous
old elderly young
young youthful old
difficult hard easy
simple easy difficult
thorough comprehensive erroneous
faulty erroneous thorough
dirty messy clean
clean tidy dirty
heavy massive light
common normal unusual
untypical unusual normal
boring dull interesting
exciting interesting boring
calm peaceful hectic
chaotic hectic calm
balanced equal uneven
unequal uneven balanced

Table 2: Adjective triplets used for our synthetic dataset
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Figure 11: Example attributions for adjective sentences.
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Figure 12: Densities of same-token-pair contributions of
30 lexical items with the highest average contribution.

are nearly identical to those achieved on the sub-
sample, with Spearman’s r > 0.99. Top-20 and
bottom-20 tokens by average contribution to the
similarity score in identical pairs for the two mod-
els are shown in Table 3 and 4. Densities of same-
token-pair contributions of 30 lexical items with
the highest average contribution are shown in Fig-
ure 12.

Word Mean StDev

2500 0.399 0.169
1500 0.370 0.116
anger 0.236 0.096
vocabulary 0.218 0.087
boredom 0.216 0.051
30 0.212 0.178
pp 0.212 0.185
pune 0.205 0.110
20 0.203 0.142
anxiety 0.199 0.116
iq 0.191 0.122
calculus 0.190 0.176
2017 0.189 0.090
kerala 0.182 0.067
hacking 0.181 0.105
cfa 0.178 0.120
mumbai 0.174 0.112
karma 0.171 0.086
sydney 0.170 0.100
economics 0.168 0.115

very 0.003 0.005
described 0.003 0.003
( 0.003 0.004

0.003 0.004
" 0.003 0.004
hear 0.003 0.004
because 0.003 0.003
) 0.002 0.003
, 0.002 0.003
. 0.002 0.005
@ 0.002 0.009
ones 0.002 0.001
[ 0.002 0.003
{ 0.001 0.001
] 0.001 0.001
_ 0.001 0.001
\ 0.001 0.001
} 0.001 0.001
EOS 0.000 0.000
CLS 0.000 0.000

Table 3: Top-20 and bottom-20 tokens by average con-
tribution to the similarity score in identical pairs. Values
for level 8 of the Exact model.
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Word Mean StDev

auckland 0.737 0.045
cambodia 0.713 0.098
somme 0.656 0.087
sahara 0.533 0.079
shotgun 0.514 0.032
surgical 0.507 0.127
hacking 0.503 0.143
swiss 0.502 0.116
turkey 0.496 0.150
edmonton 0.490 0.068
anger 0.477 0.093
##oop 0.477 0.168
pune 0.472 0.124
kerala 0.461 0.084
goa 0.455 0.113
coding 0.455 0.169
wikipedia 0.454 0.116
enfield 0.453 0.114
vocabulary 0.449 0.086
furniture 0.447 0.103

their 0.008 0.009
’ 0.007 0.006
the 0.007 0.007
that 0.007 0.007
" 0.005 0.009
those 0.005 0.011
[ 0.004 0.010
( 0.004 0.010
@ 0.004 0.026

0.004 0.005
, 0.002 0.004
ones 0.002 0.004
{ 0.002 0.004
) 0.002 0.006
\ 0.001 0.001
_ 0.001 0.002
] 0.001 0.001
} 0.000 0.000
CLS 0.000 0.001
EOS 0.000 0.000

Table 4: Top-20 and bottom-20 tokens by average con-
tribution to the similarity score in identical pairs. Values
for level 8 of the Shelf model.
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