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Abstract

Uncertainty estimation is an important diag-
nostic tool for statistical models, and is often
used to assess the confidence of model predic-
tions. Previous work shows that neural machine
translation (NMT) is an intrinsically uncertain
task where there are often multiple correct
and semantically equivalent translations, and
that well-trained NMT models produce good
translations despite spreading probability mass
among many semantically similar translations.
These findings suggest that popular measures
of uncertainty based on token- and sequence-
level entropies which measure surface form di-
versity may not be good proxies of the more
useful quantity of interest, semantic diversity.
We propose to adapt similarity-sensitive Shan-
non entropy (S3E), a concept borrowed from
theoretical ecology, for NMT. By demonstrat-
ing significantly improved correlation between
S3E and task performance on quality estima-
tion and named entity recall, we show that S3E
is a useful framework for measuring uncertainty
in NMT.

1 Introduction

Uncertainty estimation has a wide range of applica-
tions in neural machine translation (NMT), includ-
ing unsupervised quality estimation (Fomicheva
et al., 2020b), semi-supervised learning (Jiao et al.,
2021; Wang et al., 2019), curriculum learning
(Zhou et al., 2020), active learning (Zhao et al.,
2020), interactive translation (Lam et al., 2018),
and more. Many different measures exist for captur-
ing uncertainty, each developed for the application
at hand.

NMT is an intrinsically uncertain task, where a
source sentence can have multiple correct transla-
tions which are equivalent in meaning (Stahlberg
et al., 2022). Even large NMT models are known
in practice to spread probability mass across a large
number of translations. But the diffusive quality of
the NMT distribution is not necessarily a problem

in theory or in practice; in theory, the true data
distribution may be diffuse, hence a perfect model
will also be diffuse. In practice, high-probability
translations are highly semantically similar to each
other, and model probability correlates reasonably
well with actual quality (Ott et al., 2018).

NMT models are generally evaluated on their
ability to generate the desired semantics irrespec-
tive of lexical form (Freitag et al., 2021), hence the
uncertainty measure used to assess the confidence
of a model prediction should also measure semantic
diversity rather than lexical diversity. NMT distri-
butions are known to be highly diverse over surface
forms, i.e. token sequences, but diversity over to-
ken sequences does not necessarily reflect semantic
diversity. We therefore suspect that surface form
uncertainty measures over the model distribution
such as token- or sequence-level entropy would not
be good measurements of model confidence com-
pared to ones that accounts for semantic similarity
across sequences.

With this motivation, we propose to adapt
similarity-sensitive Shannon entropy (S3E) (Ri-
cotta and Szeidl, 2006) to measure semantic un-
certainty in NMT. S3E was originally proposed in
theoretical ecology to quantify biodiversity while
accounting for species similarity, but it is a general
framework that permits flexibility in defining the
similarity function, and thus has broad applicability
beyond ecology.

We adapt S3E to NMT tasks by specifying ap-
propriate similarity functions. We also show how
the S3E framework relates to and generalizes pre-
vious work on uncertainty estimation, and present
practical methods for estimating S3E efficiently
and accurately for NMT. In quality estimation (QE)
experiments, we estimate S3E using embeddings
from models pretrained on large amounts of data,
and show that this has higher correlation with
translation quality than previously used similarity-
insensitive uncertainty measures. Further, to illus-
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trate the flexibility of S3E and the importance of
matching the similarity function to the task, we
perform a named entity recall task, where we find
that the best correlation with task performance is
achieved when specifying a similarity function fo-
cusing exclusively on named entities.

2 Background

2.1 Neural machine translation

In the conventional setup for conditional language
generation problems such as NMT, a transformer
encoder-decoder language model (LM) is trained
to predict p(y(t)|y(<t), x; θ), where y(t) is the next
token, y(<t) is the sequence of previous tokens
(the prefix), x is the source sentence, and θ are the
model parameters. By the chain rule of probability,
the probability of a sequence under the model is
p(y|x; θ) =

∏T
t p(y(t)|y(<t), x; θ). The model is

trained with backpropagation and stochastic gradi-
ent descent to minimize the cross-entropy between
the model prediction and the distribution of all to-
ken, prefix, and source sentence combinations in a
dataset D, equivalent to maximizing the log proba-
bility of D.

At test time, a decision rule is used to produce
an output. The typical choice for producing a high-
quality output is beam search; however, rerank-
ing methods have been shown to consistently im-
prove results, including noisy channel reranking
(Yee et al., 2019), quality estimation (Fernandes
et al., 2022), and minimum Bayes risk decoding
(MBR) (Freitag et al., 2022).

Some applications utilize random samples from
the model; unbiased samples can be generated by
successively drawing tokens from the model distri-
bution, appending them to the prefix, and repeat-
ing this process until an end-of-sequence token is
reached, a procedure sometimes known as ances-
tral sampling. Quite often, the token distribution
is truncated or reshaped in order to produce higher
quality sequences at the expense of diversity (Meis-
ter et al., 2023).

2.2 Uncertainty and diversity

Uncertainty is an overloaded term but generally
refers to the confidence of the prediction of a sta-
tistical model. For probabilistic models, it is some-
times formally defined in information-theoretic
terms, such as the sequence- or token-level entropy
of an LM (Malinin and Gales, 2021). Entropy in
LMs can be measured over word alignment dis-

tributions (Jiao et al., 2021) or attention weights
(Rikters and Fishel, 2017) instead.

Some works attempt to disentangle aleatoric un-
certainty, i.e. ambiguity in the data, from epistemic
uncertainty i.e. lack of knowledge of which pa-
rameters best model the data. When parameter un-
certainty is modeled, for example in Monte Carlo
dropout (Gal and Ghahramani, 2016), then epis-
temic uncertainty might be measured as the vari-
ance of some statistic over parameter settings (Ma-
linin and Gales, 2021; Fomicheva et al., 2020b).

The term diversity often refers to similar con-
cepts as uncertainty (diffuse distributions are both
uncertain and diverse), but is usually but not ex-
clusively applied when it is desirable in conjunc-
tion with quality, e.g. for open-ended tasks such
as story generation (Alihosseini et al., 2019; Zhu
et al., 2018a).

In our work, we limit our study of uncertainty to
quantities derivable from the standard conditional
distribution, e.g. p(y|x; θ) or p(y(t)|y(<t), x; θ).
S3E is applicable to any probabilistic model
p(y|x; θ) including non-autoregressive (Xiao et al.,
2023) and energy-based models (Bhattacharyya
et al., 2021).

2.3 Intrinsic uncertainty in NMT
A task which has multiple correct outputs is said
to have intrinsic uncertainty. In NMT, a source
sentence may have multiple acceptable translations.
This mostly occurs when there are multiple correct
translations which are equivalent in meaning, but it
can happen when the source sentence is ambiguous,
such as when translating to a more highly inflected
language, e.g., the source sentence may not specify
number, tense, or gender which are required in the
target language (Ott et al., 2018).

Stahlberg et al. (2022) show that NMT models
spread probability mass across a much larger num-
ber of outputs compared to models trained on the
less intrinsically uncertain task of grammatical er-
ror correction (Bryant et al., 2023). But this is
not necessarily problematic for NMT distributions:
high-probability outputs are highly semantically
similar to each other, beam search with small beam
size finds good translations on average (Ott et al.,
2018), and various statistics derived from randomly
sampled outputs match those of the data distribu-
tion well, which may explain the success of MBR
decoding for NMT (Eikema and Aziz, 2020).

We posit that the NMT task is mostly intrinsi-
cally uncertain in the surface form of the target,
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but not in its semantics (excluding cases like ambi-
guity in the source sentence). Therefore, distribu-
tions that are diverse in surface forms are a natural
outcome of NMT training, and a measure of un-
certainty that captures semantic variation should
better relate to prediction quality than

2.4 Shannon entropy
The Shannon entropy of a discrete probability dis-
tribution over a variable Y is defined as:

H(Y) = −
∑

y∈Y
p(y) log p(y)

= −Ey∼Y [log p(y)].

(1)

− log p(y) is the information content or surprisal
of an event y, hence entropy is the expected sur-
prisal over a distribution. Entropy can be computed
exactly for the LM next-token distribution, but for
the sequence-level distribution which has infinite
support, it must be estimated. An unbiased and con-
sistent estimator for the sequence-level Shannon
entropy is the mean surprisal over samples:

H(p(·|x; θ)) ≈ 1

|Y|
∑

y∈Y
log p(y|x; θ), (2)

where Y is an array of samples drawn i.i.d. from
p(·|x; θ).

3 Similarity-sensitive entropy

In theoretical ecology, similarity-sensitive mea-
sures of biodiversity which allow for flexible speci-
fications of similarity have been studied extensively
(Rao, 1982; Ricotta, 2005). The similarity-sensitive
Shannon entropy (S3E), originally proposed by
Ricotta and Szeidl (2006) and for which Leinster
(2022) provides a comprehensive treatment, is de-
fined as:

HS(Y) = −Eyi∼Y
[
log(Eyj∼Y [S(yi, yj)])

]
,
(3)

where S(y, y) = 1 and 0 ≤ S(y, y′) ≤ 1.
The difference between S3E and Shannon en-

tropy (SE) is that the negative surprisal of an event
is not log probability but log of the expected simi-
larity between the outcome and all other outcomes.
We call this the similarity-sensitive surprisal (SSS).
Intuitively, outcomes are less surprising or informa-
tive if they are similar to other outcomes. We note
a few desirable properties of S3E:

• SE is recovered when S(y, y′) = equals 1
when y = y′ and 0 otherwise. Hence, SE is a
special case of S3E with the strictest possible
similarity function.

• For any given distribution, SE is the largest
possible entropy in the family of S3Es.

• If S(y, y′) = 1 for all y, y′ in the support,
then the SSS is always 0, and thus HS = 0.
In other words, there is no uncertainty if all
outcomes are the same.

Proofs for these properties and of all theoretical
details in this work are in the Appendix.

The close relation between SE and S3E means
that by comparing the two empirically, we study
the impact of the choice of S on the usefulness of
the uncertainty measure.

3.1 Estimation

Like SE, sequence-level S3E can also be estimated
with Monte Carlo samples. Let y be a collection of
samples y1, ..., yn drawn i.i.d. from p(·|x; θ). An
unbiased estimator for Equation 3 is

− 1

n

n∑

i=1

log
( 1

n− 1

n∑

j=1,i ̸=j

S(yi, yi)
)
. (4)

The inner summation is an unbiased estimator for
the expected similarity of yi because the chance of
each yi appearing in the samples list is independent
of yi, except for yi itself, which always appears,
so we exclude it. Alternately, we can incorporate
the exact contribution of yi in estimating its own
expected similarity. Let p(yi) be shorthand for
p(yi|x; θ). Then we estimate S3E with:

− 1

n

∑

yi∈y
log
(
p(yi)A+ (1− p(yi))B)

)
,

A = S(yi, yi) = 1,

B =
1

|y¬yi |
∑

|y¬yi |
S(yi, yi),

(5)

where |y¬yi | denotes the elements in y excluding
those equal to yi. We split the estimation similarity
of yi into two terms: p(yi)A and (1 − p(yi))B.
The first term, p(yi)A = p(yi)S(yi, yi) = p(yi),
is the contribution of yi to the expected similarity.
The second term is the contribution from the rest
of the distribution p(yi|yi ̸= yi). We refer to the
estimators from Equations 4 and 5 as X and X̂
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respectively. Both are biased estimates of S3E but
are nevertheless effective in practice. A detailed
treatment can be found in the Appendix.

3.2 Similarity functions
S3E is not a single measure of uncertainty, but a
class of uncertainties over choices of S. We argue
that S should be chosen to the reflect the desired
type of uncertainty for the application. A common
use case of uncertainty is to estimate the quality of
a prediction. For NMT, where the quality of predic-
tion is rated based mostly on where the prediction
captures the desired semantics, the relevant uncer-
tainty measure should reflect semantic diversity
rather than lexical diversity. Hence, S should re-
turn the semantic similarity between two sentences.

Semantic similarity functions are largely eval-
uated on their correlation with human judgments.
Early n-gram based metrics like BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004) are still
widely used. These were followed by feature-based
learned metrics (Stanojević and Sima’an, 2014).
Today, state-of-the-art NMT metrics and task-
agnostic sentence embedding models (Reimers and
Gurevych, 2019; Gao et al., 2021) are all based
on pretrained transformers such as BERT (Devlin
et al., 2019).

These metrics vary in the type of semantic dif-
ferences they measure. Masked language model
training produces models that capture a wide range
of linguistic features (Tenney et al., 2019) despite
being trained on unlabeled data. SimCSE (Gao
et al., 2021) is fine-tuned on natural language in-
ference datasets. COMET (Rei et al., 2020) and
BLEURT (Sellam et al., 2020) are fine-tuned on hu-
man ratings of translation quality. In this work, we
focus on BERT-based models and thereby inherit
their strengths (Yenicelik et al., 2020) and weak-
nesses (Mickus et al., 2020) in modeling semantic
similarity.

The scaling of similarity functions can be arbi-
trary or follow certain distributions, such as when
using cosine similarity in BERT embedding spaces.
For example, we find that the BERT cosine simi-
larity between random samples from a well-trained
model can consistently exceed 0.8. Even when the
metric is good (in that higher values correspond to
higher similarity), poor scaling can diminish the
discriminative power of expected similarity. There-
fore, we endow S with a scaling parameter α and
define Sα(x, x

′) = S(x, x′)exp(α) which allows us
to reshape the similarity function.

3.3 Connection to MBR
Minimum Bayes risk decoding (Goel and Byrne,
2000) is a decision rule that chooses the output with
the lowest risk, or highest utility, over the model
distribution. For conditional LMs, the MBR output
sequence is:

argmax
y

Ey′∼p(·|x;θ)[u(y, y
′)], (6)

where u is some measure of text similarity. MBR is
related to S3E as seen in Equation 3 in that it also
uses the expected similarity of an output against
other outputs from the model distribution. Kumar
(2005) observes that if the utility function only re-
turns 1 for identical inputs and 0 otherwise, this
recovers the more common maximum a posteriori
(MAP) objective which seeks the highest probabil-
ity output. Analogously, equipping S3E with such
a similarity function recovers SE. Also, MAP seeks
the output with the highest probability and there-
fore minimum surprisal. If u satisfies the require-
ments for similarity function S defined in Section
3, then MBR seeks the output with the minimum
SSS.

There are important differences between MBR
and S3E. The utility function u, unlike S, has no
restriction on its range of output. More importantly,
the magnitude of S should be comparable across
different inputs. Let û(y, y′) = u(y, y′) + a where
a is a real constant. MBR decoding with u or û
has the same result, hence only relative utility is
relevant for MBR. For uncertainty measurement,
uncertainty scores across distributions conditioned
on different source sentences must be comparable,
hence the magnitude of S needs to be comparable
across input pairs sampled from different condi-
tional distributions.

3.4 Related work
Similarity-sensitive uncertainty and diversity mea-
sures have been considered recently in machine
learning and NLP. Kuhn et al. (2023) measure un-
certainty for question answering by clustering ele-
ments into meaning classes of semantically differ-
ent outputs, then estimating the Shannon entropy
over meaning classes. This turns out to be a special
case of S3E where S(y, y′) = 1 if and only if y
and y′ are deemed equivalent by a textual entail-
ment detector1. S3E can be seen as generalizing

1This is accurate of the basic definition of semantic en-
tropy given in the work, excluding their length-normalization
procedure.
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their semantic entropy measure for soft similarity
metrics, which are typical for many NLP tasks in-
cluding NMT. Their uncertainty measure correlates
with question answering accuracy better than previ-
ous methods, which supports our argument that the
choice of similarity measure in S3E is application-
dependent.

Friedman and Dieng (2023) propose the Vendi
Score to score the diversity of a generative model.
The Vendi Score is a function of the von Neumann
entropy of a similarity matrix over model sam-
ples. Like our work, they define an information-
theoretic measure of diversity that incorporates a
user-specified similarity measure, but their goal
is to measure the diversity over a very large sim-
ilarity matrix over a dataset or samples from an
unconditional generative model.

Fomicheva et al. (2020b) use a variety of uncer-
tainty measures to predict NMT prediction quality.
Our quality estimation experiments closely resem-
ble theirs, as they use a lexical similarity metric
like self-BLEU (Zhu et al., 2018b), which is also
known outside of NLP as Rao’s quadratic entropy
(Rao, 1982). We extend their work in a number of
ways: by relating lexical diversity to information-
theoretic concepts, by using better similarity func-
tions, and by introducing estimation and tuning
methods which greatly improve correlation with
translation quality.

4 Experiments

Our experiments are conducted on English-German
(en-de), Estonian-English (et-en), and Nepali-
English (ne-en), representing high, medium, and
low resource language pairs respectively. We use
pre-trained translation models for all experiments.
For en-de, we use the ensemble translation model
from Ng et al. (2019)2. For et-en and ne-en, we
use the many-to-one multilingual model from Tang
et al. (2021)3. In Sections 4.1.1 and 4.4,

Our S3E estimation procedure requires O(n2)
calls to the semantic similarity function. In order
to keep a reasonable runtime, we use sentence em-
bedding models where similarity is computed with
cosine distance. This way, the expensive embed-
ding step is linear time, while only the faster cosine
similarity computation is quadratic time. For Ger-
man sentence embedding, we use a multilingual

2https://github.com/facebookresearch/fairseq/
blob/main/examples/translation

3https://github.com/facebookresearch/fairseq/
tree/main/examples/multilingual

SBERT model4. For English, we use supervised
SimCSE5.

Cosine similarity ranges from -1 to 1. To create
a valid S3E similarity function S, we replace neg-
ative values with 0 following (vor der Brück and
Pouly, 2019). Negative cosine similarity is rare in
practice and may be caused by antonymy, which
we ignore. Let f be a sequence embedding model.
Then:

S(y, y′) = max(0,
f(y) · f(y′)

∥f(y)∥∥f(y′)∥). (7)

As a baseline similarity function, we use the Sacre-
BLEU (Post, 2018) implementation of chrF++
(Popović, 2017) with default settings and normalize
the range to [0, 1].

To obtain model predictions, we use beam search
with beam size 5 for all language pairs. When-
ever random samples are employed, we obtain 128
samples for each instance with ϵ-sampling (Hewitt
et al., 2022) with ϵ = 0.02, which was shown by
Freitag et al. (2023) to perform well in MBR de-
coding.

In all experiments, we first tune the S3E simi-
larity scaling parameter α for best performance on
a validation set and only report results on the test
set. We search for the optimal α over all integers
in [−1, 10]. In Tables 1, 2, and 3, the optimal α
found in validation and used in test is displayed
in parentheses beside relevant results. Our code is
publicly available6.

4.1 Quality estimation
We show that similarity-sensitive diversity mea-
sures equipped with high-quality semantic sim-
ilarity metrics correlate better with translation
quality than the ones based on various similarity-
insensitive entropies used in previous work (Zhao
et al., 2020; Fomicheva et al., 2020a; Malinin and
Gales, 2021).

In the first experiment, we measure the corre-
lation between the various uncertainty measures
against the quality of the model prediction as es-
timated by a supervised QE model. In the second
one, we measure the correlation between various
uncertainty measures against human judgments of
quality, where the prediction comes from a differ-
ent model than the one used to measure uncertainty.

4https://huggingface.co/sentence-transformers/
paraphrase-multilingual-mpnet-base-v2

5https://huggingface.co/princeton-nlp/
sup-simcse-roberta-large

6https://github.com/juliusc/s3e
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en-de et-en ne-en

ρ r ρ r ρ r

Prediction-based
Total token surprisal 0.370 0.205 0.261 0.150 0.402 0.339
Avg. token surprisal 0.352 0.282 0.356 0.333 0.333 0.357
Total token SE 0.218 0.089 0.180 0.078 0.326 0.250
Avg. token SE 0.244 0.251 0.248 0.196 0.242 0.211

SSS, BERT, α = 0 0.369 0.344 0.591 0.606 0.573 0.510
SSS, BERT, best α (5) 0.436 (4) 0.406 (3) 0.648 (4) 0.649 (6) 0.623 (5) 0.547

Distribution-based
Sequence SE 0.371 0.232 0.369 0.258 0.567 0.484
Avg. token surprisal 0.315 0.319 0.539 0.542 0.530 0.489
Avg. token SE 0.265 0.280 0.535 0.543 0.545 0.510

S3E, chrF++, α = 0 0.138 0.176 0.399 0.417 0.440 0.473
S3E, chrF++, best α (4) 0.390 (3) 0.332 (3) 0.523 (3) 0.493 (4) 0.591 (4) 0.556
S3E, BERT, α = 0 0.304 0.303 0.543 0.568 0.562 0.569
S3E, BERT, best α (6) 0.487 (6) 0.424 (5) 0.655 (4) 0.647 (6) 0.676 (5) 0.659

Table 1: Spearman (ρ) and Pearson (r) correlations between the COMETKiwi score of the model prediction
and uncertainty measures. Sections are divided between distribution-based vs. prediction-based measures,and
similarity-sensitive vs. insensitive measures. S3E is presented with different choices of similarity function and
optimized vs. unoptimized scaling parameter α.

In the former, uncertainty measures can be seen as
a measure of prediction confidence. In the latter,
uncertainty serves as a general QE method.

We do not expect S3E to outperform strong su-
pervised methods such as COMET because uncer-
tainty is a limited predictor of quality; a model
can be confidently wrong or unconfidently right.
However, S3E can be useful as a diagnostic tool or
when supervised QE is unavailable.

4.1.1 Model confidence

We explore the performance of similarity-
sensitive uncertainty measures against well-known
similarity-insensitive ones. We additionally or-
ganize our measures into ones based on the dis-
tribution versus those based on the prediction.
Distribution-based measures, unlike prediction-
based ones, are unaware of the prediction and
gather statistics over randomly sampled sequences.
Here, we use S3E with two choices of similar-
ity metric: BERT and chrF++. Our baselines are
sequence-level SE, average token surprisal, and
average token SE. Given an array of samples y,
sequence-level SE is the average negative log prob-
ability as in Equation 2. Average surprisal is taken
over all tokens in all samples in y:

− 1

|y|
∑

y∈y

1

|y|

|y|∑

t

log p(y(t)|y(<t), x; θ), (8)

where |y| denotes the length of sequence y. The av-
erage token entropy is computed similarly, except
that the token surprisal is replaced by the SE of the
token distribution at each step:

1

|y|
∑

y∈y

1

|y|

|y|∑

t

H(p(·|y(<t), x; θ)). (9)

For prediction-based measures, we use SSS
with BERT. Recall that SSS is the log aver-
age similarity of a sequence over the model
distribution. Our baselines are similarity-
insensitive token-level measures on a prediction
y: summed and averaged token-level surprisals
− log(p(y(t)|y(<t), x; θ), and summed/average
token-level entropies H(p(·|y(<t), x; θ)).

We measure the correlation between these un-
certainty measures with prediction quality, which
we estimate with CometKiwi7 (Rei et al., 2023).
For en-de, et-en, and ne-en language pairs, we use
the WMT22, WMT18, and FLORES (Team et al.,
2022) validation and test sets respectively. The
results are shown in Table 1.

Overall, we see that the choice of similarity met-
ric and α has a large effect on the performance of
S3E. S3E with BERT-based similarity outperforms
chrF++ by a large margin. Tuning α greatly outper-
forms α = 0 for all similarity functions. Between
distribution-based and prediction-based measures,

7https://huggingface.co/Unbabel/
wmt23-cometkiwi-da-xl
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en-de et-en ne-en

ρ r ρ r ρ r

Total token surprisal 0.421 0.426 0.479 0.464 0.220 0.242
Avg. token surprisal 0.405 0.396 0.574 0.567 0.325 0.356
Total token entropy 0.079 0.084 0.270 0.272 0.128 0.115
Avg. token entropy 0.295 0.243 0.339 0.331 0.213 0.254

SSS, BERT, α = 0 0.318 0.322 0.629 0.540 0.641 0.550
SSS, BERT, best α (9) 0.436 (9) 0.438 (6) 0.720 (7) 0.663 (3) 0.648 (3) 0.579

CometKiwi 0.623 0.705 0.859 0.852 0.789 0.783

Table 2: Spearman (ρ) and Pearson (r) correlations between human direct assessment scores for a translation and 1)
token-level surprisal/entropy statistics derived the translation and 2) SSS. CometKiwi performance is included for
comparison against supervised QE methods.

it appears that former are generally better. This
is true both of the similarity-sensitive and insen-
sitive measures. Under suboptimal choices, S3E
is not clearly better than the similarity-insensitive
uncertainties, but the overall best result is S3E with
BERT similarity and α tuning.

We notice that among the similarity-insensitive
uncertainties, none is clearly preferable for all lan-
guage pairs. The best choice may vary due to lan-
guage, tokenization, training data size, or other
factors, but this is currently poorly understood.

Note that the lower correlation scores in en-de
are not necessarily due to poorer uncertainty esti-
mates, but the increased difficulty of the task; en-de
translation quality is consistently high, which re-
duces the variance of quality scores (Fomicheva
et al., 2022).

4.1.2 General QE
We show that SSS correlates well with translation
quality for predictions that come from other mod-
els, making it a competitive unsupervised QE met-
ric. We use the MQLE-PE dataset (Fomicheva
et al., 2022) which contains human-rated direct as-
sessment scores of machine-generated translations.
This experiment resembles the concurrent work of
Naskar et al. (2023), which uses MBR utility as
a quality estimator. Again, we use BERT as the
similarity metrics and tune α on a held-out set.

The results are shown in Table 2. We see again
that S3E with BERT and tuned α outperform all
other uncertainty measures. The improvement over
the baseline is very large for et-en and ne-en but
small for en-de. For comparison, we show that
S3E underperforms against CometKiwi, but this
is to be expected since S3E is unsupervised, and
CometKiwi is trained on datasets with direct as-
sessments scores. Also, SSS as a QE metric is in-

herently limited in the following way: if the model
distribution is highly semantically diverse, then a
sentence can never have low SSS regardless of its
quality. Nevertheless, we show that SSS outper-
forms these well-known unsupervised measures.

4.2 S3E estimator design choices

In all previous experiments, we estimate S3E with
X̂ , use n = 128 samples, and tune α on the valida-
tion set prior to test time. We illustrate the impact
of these choices here. Figure 2 shows the perfor-
mance of S3E estimators X and X̂ across choices
of α and n as measured by Spearman ρ against
COMETKiwi scores.

The choice of α has a significant effect for both
estimators. At α = 6, the performance drops less
slowly for X̂ when reducing n than it does for
X . X̂ has the overall highest performance for all
settings of n.

4.3 Estimator variance

The performance of the various estimators in Sec-
tion 4.1.1 is not due solely to the quality of the
uncertainty metric, but to its estimator as well. In
Figure 1, we examine the performance of these
estimators by measuring the variance in rankings
across random runs as well as the impact of using
different numbers of samples. In this experiment,
we run 4 random runs of each estimator on the en-
de validation dataset given 8, 16, 32, 64, and 128
samples. We compute the average Spearman cor-
relation ρ with COMETkiwi scores on predictions
as per Section 4.1.1. To measure variance for a
particular setting, we take the average ρ between
prediction rankings on the full dataset from two
random runs, which we call self-ρ. For S3E, we set
α = 6 and use both estimators X and X̂ .

S3E with X has much lower self-ρ than other
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Figure 1: Given an uncertainty metric and n samples, the ρ against COMETKiwi scores (left) and self-ρ (right).
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Figure 2: ρ of S3E under estimator choices (X or X̂),
scaling parameter α, and number of samples n.

estimators, and this likely explains its poor correla-
tion with COMETKiwi scores compared to X̂ . De-
spite this, it outperforms the similarity-insensitive
uncertainties at 32 samples, while the others do
not benefit much from more than 32. S3E with
X̂ is the best performer at any number of samples
and has variance comparable to the best similarity-
insensitive uncertainties.

4.4 Named entity recall

To illustrate the importance of specifying the simi-
larity function to match the task and to demonstrate
the flexibility of S3E, we apply S3E to a different
evaluation task: named entity recall. We use the
same setup from Section 4.1.1 including predic-
tions, samples, and datasets, but filter out instances
in the validation and test sets instances which do

not contain named entities.
Like in Section 4.1.1, we measure the correla-

tion of various uncertain measures with task perfor-
mance, but our evaluation metric here is the number
of named entity tokens in the target sentence that
occur in the prediction, or the named entity token
recall (NETR). We also use NETR as a similarity
function for S3E. Let f(y) be the set of tokens in
y which are part of a named entity. Then NETR is
defined as:

S(y, y′) =
{
1, if |f(y)| = 0
|{y(t)∈f(y)|y(t)∈f(y′)}|

|f(y)| , otherwise,
(10)

where y(t) is the tth token in y. This is the portion
of tokens in y recalled by y′. Note that S here is
asymmetric. Tokenization and named entity ex-
traction are performed using spaCy8 transformer
models. We compare S3E with NETR against all
uncertainty measures from Section 4.1.1. The re-
sults are shown in Table 3.

S3E with NETR significantly outperforms all
other methods. S3E with BERT is more predictive
than similarity insensitive uncertainties but under-
performs S3E with NETR similarity by a large mar-
gin. These results further illustrate the importance
of choosing an appropriate similarity function for
the task.

5 Conclusion

We propose to use similarity-sensitive Shannon en-
tropy (S3E) to measure the semantic uncertainty

8https://spacy.io
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et-en ne-en

ρ r ρ r

Shannon entropy 0.006 0.028 0.158 0.134
Avg. token surprisal 0.025 0.019 0.175 0.209
Avg. token entropy 0.019 0.025 0.196 0.233

S3E, chrF++, α = 0 0.172 0.153 0.177
S3E, chrF++, best α (2) 0.193 (0) 0.243 (3) 0.159 (1) 0.180
S3E, BERT, α = 0 0.205 0.287 0.228 0.253
S3E, BERT, best α (5) 0.239 (2) 0.296 (5) 0.256 (3) 0.274
S3E, NETR, α = 0 0.485 0.441 0.346
S3E, NETR, best α (1) 0.500 (1) 0.459 (0) 0.467 (1) 0.375

Table 3: Correlations between various uncertainty measures and NETR of the model prediction. Some cells are left
blank to avoid displaying duplicate results.

of conditional NMT distributions. Previous work
shows that NMT is an intrinsically uncertain task
and that NMT model distributions in practice can
vary greatly in surface without varying as much
in terms of semantic content. We therefore hy-
pothesize that S3E would outperform traditional
similarity-insensitive uncertainty measures in tasks
such as quality estimation for which relevant quan-
tity is semantic diversity rather than surface form
diversity.

In experiments in quality estimation and named
entity recall, we show that S3E with appropriately
selected similarity functions indeed correlate better
with task performance than previous methods, often
by large margins. We propose a sample-efficient
estimator for S3E which reduces estimation vari-
ance along with a scaling parameter for similarity
functions which we observe to have a significant
effect on performance.

We believe that S3E is a useful framework for
understanding, comparing, and developing mea-
sures of uncertainty for tasks in NLP and beyond.
Important steps forward for S3E are: 1) the devel-
opment of faster and/or more accurate similarity
functions, 2) the application of S3E to parts of the
NMT training pipeline, such as semi-supervised
learning and active learning, 3) the application of
S3E to other conditional language generation tasks,
and 4) extensions to theory which explicitly model
other sources of uncertainty, such as epistemic un-
certainty.

Limitations

In this work, we use the term "semantics" in a
functional sense, i.e. semantics is information that
humans decode from text which is used to evaluate
translation quality. We do not define semantics

precisely, but doing so may provide insights on
how to train similarity metrics or measure semantic
similarity.

We have demonstrated that S3E and SSS are use-
ful metrics for unsupervised QE. However, apply-
ing S3E towards QE has several additional require-
ments compared to simpler methods. α needs to be
tuned on a validation set. Random samples are gen-
erated and embedded with advanced BERT mod-
els. S3E adds complexities compared to similarity-
insensitive uncertainties which are simple functions
over NMT model probabilities and require no tun-
ing, and it may not work well when high-quality
similarity functions are not available, such as for
low-resource languages.

We propose the scaling parameter α which we
show to have a large impact on performance in QE.
In fact, Table 1 shows that for en-de, S3E with
BERT and α = 0 is worse than SE. While we have
provided justification in Section 3.2 for why scal-
ing is necessary, further understanding of scaled
similarity functions is needed, and there may be
better ways to apply scaling besides exponentia-
tion.
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A Properties of S3E

This section provides proofs for the properties of
S3E described in Section 3.

A.1 SE is a special case of S3E

SE is a special case of S3E when S(y, y′) equals
1 when y = y′ and 0. Start with the definition of
S3E:

2126

https://doi.org/10.18653/v1/2022.acl-long.591
https://doi.org/10.18653/v1/2022.acl-long.591
https://doi.org/10.18653/v1/2022.acl-long.591
https://doi.org/10.3115/v1/W14-3354
https://doi.org/10.3115/v1/W14-3354
https://doi.org/10.18653/v1/2021.findings-acl.304
https://doi.org/10.18653/v1/2021.findings-acl.304
http://arxiv.org/abs/2207.04672
http://arxiv.org/abs/2207.04672
https://doi.org/10.18653/v1/P19-1452
https://doi.org/10.18653/v1/N19-1181
https://doi.org/10.18653/v1/N19-1181
https://doi.org/10.18653/v1/N19-1181
https://doi.org/10.18653/v1/D19-1073
https://doi.org/10.18653/v1/D19-1073
https://doi.org/10.18653/v1/D19-1571
https://doi.org/10.18653/v1/D19-1571
https://doi.org/10.18653/v1/2020.blackboxnlp-1.15
https://doi.org/10.18653/v1/2020.blackboxnlp-1.15
https://doi.org/10.18653/v1/2020.findings-emnlp.162
https://doi.org/10.18653/v1/2020.findings-emnlp.162
https://doi.org/10.18653/v1/2020.acl-main.620
https://doi.org/10.18653/v1/2020.acl-main.620
https://doi.org/10.1145/3209978.3210080
https://doi.org/10.1145/3209978.3210080


− Eyi∼Y
[
logEyj∼p(yj) [S(yi, yj)]

]
(11a)

=− Eyi∼Y
[
log
(
(p(yi)S(yi, yi)+

(1− p(yi))Eyj∼Y|yj ̸=yi [S(yi, yj)]
)]

(11b)

=− Eyi∼Y [log (p(yi)S(yi, yi))] (11c)

=− Eyi∼Y [log p(yi)]. (11d)

(11b) is the definition of S3E. (11b) splits the ex-
pected similarity over p(yj) to the contribution of
event where yj = yi versus where yj ̸= yi. (11c)
follows because S(yi, yj) = 0 where yj ̸= yi.
(11d) follows from the definition of S, and SE is
recovered.

A.2 SE is the largest possible S3E

For any given distribution, SE is the largest possible
entropy in the family of S3Es. Suppose there is
some S′ that results in a larger S3E than SE for
some distribution p(y). Such an S′ would need to
result in a larger SSS than S(y) for some y. Take
a definition of SSS derived in a similar method as
Line 11b:

− log
(
p(y)S(y, y)+
(1− p(y))Ey′∼p(y′|y′ ̸=y)S(y, y′)

)
. (12)

In order for S′ to result in a larger SSS, S′(y, y′) <
S(y, y′) for some y, y′. Then it is the case that
S(y, y′) < 1 when y′ = y or S(y, y′) < 0 when
y′ ̸= y, either of which violates the definition
of S3E similarity functions. A contradiction is
reached, so the initial claim is proven.

A.3 Zero entropy condition

If S(y, y′) = 1 for all y, y′ in the support of distri-
bution p(y), then HS(p) = 0:

− Eyi∼p(yi) logEyj∼p(yj) [S(yi, yj)]
=− Eyi∼p(yi) log 1 = 0

B Properties of S3E estimators

Recall the S3E estimators in Equations 4 and 5,
which we call X and X̂ . Let y be random col-
lection n of samples drawn from p(y), and let
yyi ,y¬yi denote y only including or excluding ele-
ments in y equal to yi.

X = − 1

n

∑

yi∈y
log

(
1

n− 1

∑

yj∈y,i ̸=j

S(yi, yi)
)

(13)

X̂ = − 1

n

∑

yi∈y
log

(
p(yi)+ (14)

(1− p(yi))
1

|y¬yi |
∑

yj∈y¬yi

S(yi, yi)
)
. (15)

B.1 Bias
Let S, Ŝ refer to the average similarity estimators
(the quantity inside the log functions of the above)
for X and X̂ , and let yi be the element for which
the average similarity is estimated. From on here
onwards, for simplicity, let y a different set of i.i.d.
samples than the one yi was drawn from. X is the
sample mean and is clearly unbiased. To check the
unbiasedness of X̂:

E[S] ?
=
∑

yj∈y
p(yj)S(yi, yj) (16a)

= p(yi) + (1− p(yi))

Ey¬yi


 ∑

yj∈y¬yi

|yyj |
|y¬yi |S(yi, yj)


 (16b)

= p(yi) + Ey¬yi


 ∑

yj∈y¬y

p(yj)S(yi, yj)


.

(16c)

(16c) uses the fact that |yj| given |y¬yi | is a bino-
mial distribution with mean p(yj)/(1−(pi))|y¬yi |.
This form appears to be an unbiased estimate of
average similarity, except that |y¬yi | can be 0 with
probability p(yi)

|yi
¬y |, and is undefined above. In

practice, we use the p(yi)S(yi, yi) as that sample
value in that case, but this results in a bias. A sim-
ple correction can be applied, but |y¬yi | = 0 is
an extremely rare event in practice. Alternatively,
if we relaxed X̂ by guaranteeing nonzero samples
drawn from p(yj |yj ̸= yi), then it would clearly be
unbiased.

While S is and Ŝ can be turned into an unbiased
estimator of similarity, X, X̂ are biased estimators
due to the log function. Due to Jensen’s inequal-
ity and the concavity of logarithms, log(E[S]) ≥
E[log(S)], so these estimators underestimate the
log similarity on average. We leave analysis of this
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source of bias and its impacts on the performance
of S3E to future work.

B.2 Error
Supposing again that instead of y, Ŝ used ŷ which
guarantees n samples drawn from yj ∈ Y|yj ̸= yi.
In this case, it is easy to show that this modified
Ŝ has lower mean squared error (MSE) than S.
For two unbiased estimators, the difference in their
MSE is just the difference of variance:

(E[S2]− E[S]2)− (E[Ŝ2]− E[Ŝ]2) ≥ 0 (17)

E[S2] ≥ E[Ŝ2]. (18)

Expanding E[S2], we obtain:

Ey




∑

yj∈Y

|yyj |
|y| S(yi, yj)




2


(19a)
∑

yj∈Y

∑

yk∈Y

(
S(yi, yj)S(yi, yk)

Ey [|yyj ||yyk |]
|y|2

)

(19b)

Expanding E[Ŝ2] similarly, we arrive at:

∑

yj∈Y

∑

yk∈Y

(
S(yi, yj)S(yi, yk)

Eŷ[αjαk]

|ŷ|2
)
,

(20a)

where αj is p(yi)|y| if yj = yi, or (1−p(yj))|yyj |
otherwise. To show that Ŝ has lower variance, S, it
suffices to show that the individual terms in (20a)
are smaller than those in (19b). When subtracting,
the S and |y|2 cancel out, then we can show that
Eŷ[αjαk] ≤ Ey [|yyj ||yyk |] for all yj , yk. The
remaining derivation is straightforward but lengthy,
so we omit it.

We have shown that a simplified version of Ŝ
which always uses n samples ŷ has lower MSE
than S. For the version that of Ŝ we presented, a
proof in either direction is challenging, owing to
the facts that 1) Ŝ is biased, as stated earlier, and
2) Ŝ uses no more samples that S , which increases
the variance for similarity contribution estimates of
elements yj ̸= yi. We leave such a proof to future
work, meanwhile our empirical results show that Ŝ
is the overall better estimator for our tasks.
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