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Abstract

Inductive reasoning is a core component of
human intelligence. In the past research of
inductive reasoning within computer science,
formal language is used as representations of
knowledge (facts and rules, more specifically).
However, formal language can cause system-
atic problems for inductive reasoning such as
disability of handling raw input such as natu-
ral language, sensitiveness to mislabeled data,
and incapacity to handle ambiguous input. To
this end, we propose a new paradigm (task) for
inductive reasoning, which is to induce natural
language rules from natural language facts, and
create a dataset termed DEER containing 1.2k
rule-fact pairs for the task, where rules and facts
are written in natural language. New automatic
metrics are also proposed and analysed for the
evaluation of this task. With DEER, we investi-
gate a modern approach for inductive reasoning
where we use natural language as representa-
tion for knowledge instead of formal language
and use pretrained language models as “reason-
ers”. Moreover, we provide the first and com-
prehensive analysis of how well pretrained lan-
guage models can induce natural language rules
from natural language facts. We also propose
a new framework drawing insights from phi-
losophy literature for this task, which we show
in the experiment section that surpasses base-
lines in both automatic and human evaluations.
We discuss our future perspectives on inductive
reasoning in detail in Section 7. Dataset and
code are available at https://github.com/
ZonglinY/Inductive_Reasoning.

1 Introduction

Inductive reasoning is to reach to a hypothesis (usu-
ally a rule that explains an aspect of the law of
nature) based on pieces of evidence (usually ob-
served facts of the world), where the observations
can not provide conclusive support to the hypothe-
sis (Salmon, 1989). It is ampliative, which means

∗Contribution during internship at Microsoft Research.

that the hypothesis supports more than mere refor-
mulation of the content of the evidence (Norton,
2005). An example is shown in Table 1 that after
observing three carnivorous plants each having a
trapping structure, one might reach to a hypothe-
sis (rule) that every carnivorous plant has a trapping
structure. Inductive reasoning was firstly proposed
by Aristotle in the 4th century B.C. in his Posterior
Analytics (Aristotle, 1994). Since then it is used as
a fundamental tool to obtain axioms, and therefore
subjects can be developed from these axioms. It
is also recognized as a core component of human
intelligence (Mercier, 2018).

Past research works on inductive reasoning
within computer science are investigated by Induc-
tive Logic Programming (ILP) (Muggleton et al.,
2012). ILP investigates the inductive construction
of first-order logic (FOL) (Smullyan, 1995) rules
from examples and background knowledge (Mug-
gleton and Raedt, 1994). However, ILP uses for-
mal language as representation and uses symbolic
reasoner, which results in systematic disadvan-
tages (Cropper et al., 2022). Specifically, ILP sys-
tems heavily rely on human effort, since it typically
assumes that the input has already been prepro-
cessed into symbolic declarative form, otherwise
ILP systems cannot handle raw inputs such as natu-
ral language and images. In addition, ILP systems
are very sensitive to label error and ambiguity in
data, since the final induced rules are required to
satisfy all input facts, and symbolic systems can not
recognize different symbols with the same meaning
(e.g. be capable of, be able to).

To overcome the challenges above, we present
a novel paradigm for inductive reasoning based
entirely on natural language, i.e., inducing natu-
ral language rules from natural language facts. In
particular, we create a first-of-its-kind natural lan-
guage inductive reasoning dataset named DEER
containing 1.2k rule-fact pairs (more details illus-
trated in §3.1). With this dataset, we investigate
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Short fact 1 Short fact 2 Short fact 3 Rule

The Venus flytrap is a carnivorous
plant native to subtropical wetlands

on the East Coast of the United States
in North Carolina and South Carolina.

It catches its prey-chiefly insects
and arachnids—with a trapping structure

formed by the terminal portion of each
of the plant’s leaves, which is triggered

by tiny hairs on their inner surfaces.

Pitcher plants are several different
carnivorous plants which have modified

leaves known as pitfall traps—a prey
-trapping mechanism featuring a deep
cavity filled with digestive liquid. The

traps of what are considered to be "true"
pitcher plants are formed by

specialized leaves. The plants attract
and drown their prey with nectar.

Drosera, which is commonly known
as the sundews, is one of the largest genera

of carnivorous plants, with at least
194 species. The trapping and digestion
mechanism of Drosera usually employs
two types of glands: stalked glands that

secrete sweet mucilage to attract and ensnare
insects and enzymes to digest them, and sessile
glands that absorb the resulting nutrient soup.

If a
plant is

carnivorous
, then it

probably
has a

trapping
structure.

Table 1: An example of inductive reasoning in DEER dataset. We embolden the words in facts that contain the key
information to induce this rule (just to explain the relation between facts and rule, in DEER there’s no special word
annotations for fact).

a modern approach to inductive reasoning where
both facts and rules are in natural language, and
pretrained language models (PLMs) are used as the
inductive reasoner. Note that the inductive reason-
ing considered in this paper has several distinctions
considered by other reasoning tasks over text (Clark
et al., 2020; Bhagavatula et al., 2020; Sinha et al.,
2019). We defer a more detailed discussion to §2.

With natural language as representation and
PLMs as the reasoner, such an inductive reason-
ing system can avoid the systematic disadvantages
of formal language and symbolic reasoners. Specif-
ically, with natural language as representation,
it can naturally handle raw input as natural lan-
guage text. In addition, different from symbolic
methods, PLMs contain knowledge via pretrain-
ing (Davison et al., 2019) and use embedding for
concepts (Mikolov et al., 2013), making it less af-
fected by input errors (Meng et al., 2021) and more
robust to paraphrasing.

Based on the proposed dataset, we study the
PLM’s ability to induce (generate) natural language
rules from natural language facts under different
settings, such as different FOL rule types and topics
with varying input facts and PLM model sizes.

We also propose a new framework for this task,
named chain-of-language-models (CoLM) which
is shown in Figure 1. It draws insights from the
requirements of rule induction in philosophy litera-
ture (Norton, 2005). Specifically, CoLM consists
of five modules all based on PLMs, where one
model proposes rules (rule proposer M1), and the
other four models (M2, M3, M4, M5) each classify
whether a generated rule satisfies one particular
requirement of induction. In our experiments, we
find that our framework surpasses the baselines in
terms of both automatic and human evaluations.

To sum up, our contributions are three-fold:

• We propose a new paradigm (task) of inducing

natural language rules from natural language
facts, which naturally overcomes three system-
atic disadvantages of past works on inductive
reasoning. In particular, we create a first-of-
its-kind natural language inductive reasoning
dataset DEER containing 1.2k rule-fact pairs,
where fact and rule are both written in natural
language. New automatic metrics are also pro-
posed for task evaluation, which shows strong
consistency with human evaluation.

• We provide the first and comprehensive anal-
ysis of how well PLMs can induce natural
language rules from natural language facts.

• Drawing insights from philosophy litera-
ture (Norton, 2005), we propose a framework
for inductive reasoning. Empirically, we show
that it surpasses baselines substantially in both
automatic and human evaluations.

In §7 we discuss our future perspectives on in-
ductive reasoning in detail.

2 Related Work

Definition of Inductive Reasoning It is still un-
der debate on the definition of inductive reasoning
in philosophy research (Yang et al., 2023c). Here
we adopt Flach and Kakas (2000)’s view that an
inductive argument should satisfy (1) its premise
cannot provide conclusive support to its conclu-
sion since its conclusion amplify or go beyond the
information found in their premises; (2) its con-
clusion generalize over its premise in a way that
the conclusion can be applied to more instances
other than instances mentioned in its premise. An
example of inductive argument is that “if a white
ball is found in a bag, then all balls in this bag
are white.” In this paper, we call the premises as
“facts”, and conclusions as “rules”. Prior computa-
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Rule Template
(First Order Logic)

Rule Template
(Natural Language)

∀x, condition(x) =⇒ conclusion If __, then __.
∃x, condition(x) =⇒ conclusion There exists __, which __.

∀x, condition(x) [∧ condition(x)]+

=⇒ conclusion
If __ and __, then __.

∀x, condition(x) [∨ condition(x)]+

=⇒ conclusion
If __ or __, then __.

Table 2: The mapping relation between basic first-order
logic rule template and natural language rule template.

tional method for inductive reasoning is inductive
logic programming, which is introduced in §A.13.

Inductive Reasoning & Neural Networks
Sinha et al. (2019) propose CLUTRR dataset, but
they do not focus on inducing explicit natural lan-
guage rules. Instead they try to “learn” certain
rules internally with PLMs, and use the PLMs to
predict the correctness of other facts. Inductive
relation induction task (Teru et al., 2020; Misra
et al., 2022) focuses on prediction of relation that
involves unseen entities, which only involves an
induction from specific entities to specific entities,
where we focus on the induction from specific enti-
ties or individual phenomenons to general knowl-
edge. Yang and Deng (2021) also works on rule
induction, but their induced rule is not in real natu-
ral language, and uses symbolic reasoners.

Relation with Other Reasoning Tasks The goal
is quite different from (1) deductive reasoning as
given facts and rules and reach to new facts (Clark
et al., 2020) (2) abductive reasoning as given facts
and finding the casual reasons (Bhagavatula et al.,
2020). Rather, we want to induce rules that gener-
alize over facts. Yang et al. (2023c) provide a com-
prehensive discussion on the difference between
deductive, inductive, and abductive reasoning.

3 Dataset Collection and New Metrics

In this section, we discuss the data collection pro-
cess for our proposed dataset, and our proposed
metrics for automatic and human evaluation.

In general, we propose two datasets. The first
one, named DEER (inDuctive rEasoning with nat-
ural languagE Representation), contains 1.2k rule-
fact pairs, where rules are written by human an-
notators in English, and facts are existing English
sentences on the web. The other one, named DEER-
LET (classification of inDucEd rulEs with natuRal
LanguagE representaTion), including (fact, rule,
label0, label1, label2, label3) tuples, where facts

are the same as in DEER, rules are generated out-
put from PLMs, and label0/1/2/3 are classification
labels describing different aspects of induced rules.
Specifically, rules in DEERLET are collected from
GPT-J (Wang and Komatsuzaki, 2021) using the
in-context learning setting. We choose this setting
because (1) GPT-J in this setting can generate rea-
sonable rules, and (2) not all generated rules are cor-
rect so that the annotations on the generated rules
can be used for fine-tuning. Overall, DEER is used
as the main dataset for the task, and DEERLET is
used to measure the classification performance of
specific capabilities described in §3.2.

3.1 Dataset Collection of DEER
Collected by a human expert (the first author),
DEER contains 1.2k natural language rule-fact
pairs where rules cover 6 topics and 4 common rule
types of FOL. The 6 topics are zoology, botany, ge-
ology, astronomy, history, and physics. Shown in
Table 2, sequentially the 4 FOL rule types are impli-
cations with universal quantifier, implications with
existential quantifier, conjunctive implications with
universal quantifier, and disjunctive implications
with universal quantifier. In practice we collect
rules with the natural language rule templates.

Natural language rule is firstly written by a hu-
man expert, then for each rule 6 supporting facts (3
long facts and 3 short facts) are collected from ex-
isting human-written text from commercial search
engines and Wikipedia. Long facts are paragraphs
collected from different web pages to for more dif-
ference, and short facts are core sentences selected
from corresponding long facts. Each fact itself
should contain enough information that is possible
to induce the full corresponding rule (an example
is shown in Table 1).

To validate the correctness of the DEER dataset,
we randomly split DEER data to 4 subsets, and
4 graduate students manually check each of the
subsets on whether each fact contains enough in-
formation that is possible to induce the given rule.
The overall correctness of DEER is 95.5%.

The reason that DEER is not larger is that it
requires experts who are familiar enough with in-
ductive reasoning and possesses a relatively high
level of science knowledge to annotate.

3.2 Dataset Collection of DEERLET
DEERLET is a dataset collected by a human ex-
pert (the first author) in inductive reasoning for
classification tasks to evaluate the specific capabil-
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Generated rules
with top

0%∼top10%
METEOR

Generated rules
with top

10%∼top20%
METEOR

...
Generated rules

with top
90%∼top100%

METEOR

Weight weight0(45) weight1(35) ... weight9(−45)
Recall recall0 recall11 ... recall9

Table 3: Illustration of the weights and recalls in WRe-
call, one of our proposed automatic evaluation metrics.
Here weights reflect the importance of blocks of rules.

ities required by inductive reasoning. It contains
846 tuples with format (fact, rule, label0, label1,
label2, label3). Among the tuples, 546 are used
for training, 100 for validation, and 200 for testing.
Here, facts are directly from DEER, and the corre-
sponding rules are collected from PLMs. Label0
to label3 are classification labels evaluating spe-
cific aspects of the generated rules. The reason in
DEERLET we collect rules from the generation of
PLMs is that we want to avoid human annotation
biases (Amidei et al., 2020).

We develop label 0/1/2 based on the require-
ments of induced rules in philosophy litera-
ture (Norton, 2005), and develop label 3 based
on a NLP aspect. In particular, label0 measures
whether a rule is not in conflict with its fact; la-
bel1 measures whether a rule reflects reality; label2
measures whether a rule is more general than its
fact, as inductive reasoning is “ampliative”, and
requires the induced rule to have higher coverage
than facts (Norton, 2005). More details on label2
is illustrated in §A.10. Label3 measures whether
a rule is not trivial (mostly incomplete sentence or
the latter part is a repetition of its former part).

Inspired by Obeid and Hoque (2020), label 0/1/2
are annotated on a 3-point scale (true / partially
true / false), and label 3 are annotated on a 2-point
scale (true / false). More details on annotation of
DEERLET are illustrated in §A.5.

3.3 Adopted & New Evaluation Metrics

3.3.1 Human Evaluation Metric
DEERLET provides human annotations for eval-
uation of the generated rules from four different
aspects. Here we use precision / recall / f1, and the
four aspects in DEERLET for human evaluation.

3.3.2 Automatic Evaluation Metric
For the DEER dataset, as it requires generating
rules based on input facts, the first metric we
adopt is METEOR (Banerjee and Lavie, 2005),
which has been widely used for evaluating machine-

generated text quality. §A.7 compares METEOR
and BLEU (Papineni et al., 2002), and illustrates
the reasons why METEOR should be a better met-
ric for this task. More specifically, we calculate the
averaged METEOR score of the generated rules
(after filtering, if a model had a filtering phase).
From the observation that even humans still con-
stantly make mistakes on inductive reasoning, we
assume any framework for this task might (but not
necessarily) contain two phases as generation and
filtering to obtain higher performance. However, if
with a filtering phase, METEOR only considers the
rules that are not filtered.

It makes the METEOR metric here a similar
metric to “precision”, as it only calculates the score
for rules that are classified as “true”. As a result, the
model might have a low recall in that it might only
keep the rule with the highest confidence score, and
classify many reasonable good rules as “false”.

To measure the “recall” of inductive reasoning
models, we propose “weighted recall (WRecall)”
as the second automatic evaluation metric for this
task. The difficulty lies in that we don’t have the
ground truth labels for generated rules without hu-
man evaluation. To calculate WRecall, we make
an assumption, which is that the higher METEOR
a rule has, generally the higher probability it is a
reasonable rule for given facts. This assumption
is reasonable given the relatively high correlation
coefficient between METEOR and human evalu-
ation shown in §A.7. Specifically, as shown in
table 3, we can first calculate the METEOR for
each generated rule, and sort them based on the
value of METEOR. Then we calculate the recall
value for each block of generated rules, during
which we assume only the rules in that block have
“true” ground truth label. We also add a linearly
changing weight for each block according to their
importance. To ensure WRecall is in the range
[0,1], WRecall is linearly normalized:

WRecall =

∑9
i=0 weighti ∗ recalli + 125

250
(1)

Now that we have a METEOR metric that
provides a similar measurement of “preci-
sion”, and WRecall for “recall”, we propose
GREEN (GeometRic mEan of METEOR aNd
WRecall) to consider METEOR and WRecall to-
gether. It is defined as a geometric mean instead of
a harmonic mean because METEOR is not in the
range [0, 1]. More specifically,

GREEN =
√
METEOR ∗ WRecall (2)
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Fact(s)

Rule Proposer

Module 1

Generalization

Checker

𝑃𝑀4(𝑓𝑎𝑐𝑡|𝑟𝑢𝑙𝑒)

Module 4  
Deductive 

Consistency 

Evaluator

𝑃𝑀2(𝑓𝑎𝑐𝑡|𝑟𝑢𝑙𝑒)

Module 2

Indiscriminate 

Confirmation

Handler

𝑃𝑀3(𝑟𝑢𝑙𝑒)

Module 3

Rules Rules Rules Rules Triviality

Detector

𝑃𝑀5(𝑟𝑢𝑙𝑒)

Module 5  

Rules

E.g., Three facts in Table 1

If a plant is carnivorous, 

then it does not have a 

trapping structure.

If a plant is carnivorous, 

then it uses traps with 

sharpened bamboos.

If Drosera is carnivorous, 

then it uses traps to catch 

insects.

If a plant is carnivorous, 

then it is carnivorous.

If a plant has

a trapping

mechanism,

then it 

probably will 

attract 

insects and 

other small 

creatures to 

obtain 

nutrients.

Figure 1: Our proposed framework (CoLM) for inductive reasoning with natural language representation task. Rule
Proposer is a generative model based on input facts and desired rule template, aiming at generating (a large number
of) rule candidates. Deductive consistency evaluator, indiscriminate confirmation handler, generalization checker,
and triviality detector are classification models that filter improper rules according to four requirements of the
induced rules in inductive reasoning. Texts with ✗ are representative filtered rules for each module.

In general, compared with METEOR, GREEN
gives a more comprehensive evaluation of the in-
duced rules. Therefore GREEN can be a more
favorable metric when the recall is an important fac-
tor (e.g., computational power is limited). However,
when the precision of the induced rules is more fa-
vored, METEOR should be a more proper metric
than GREEN. §A.6 discusses more on the impor-
tance of each metric for this task. More discussions
on the usage of automatic evaluation metrics and
how should we interpret the results of automatic
metrics can be found in §A.8.

4 Methodology

In this section, we formally present the task def-
inition and our proposed framework for natural
language inductive reasoning. Figure 1 illustrates
the general architecture of our proposed approach.

4.1 Task Definition

DEER dataset is used as the dataset for the natu-
ral language inductive reasoning task. The data
format for DEER is (rule, fact), where both rule
and fact are natural language sentences. The goal
of the task is to generate reasonable natural lan-
guage rules given fact in an inductive reasoning
way (the rules should be more general and therefore
cover more information than fact).

4.2 Our Framework

Hypothetical Induction is an important induction
type in inductive reasoning (Norton, 2005). It can
be understood as when people make observations,
they might propose a hypothesis as a general rule
that can entail the observations. For example, when
people observe that the Sun rises and falls every
day, they might induce a hypothesis that the Earth
is rotating itself, which is more general than the

observations as the hypothesis can also help to ex-
plain the observable movements of the other Milky
Way stars relative to the Earth.

Hypothetical induction fits our task well, as in
DEER we also want to induce a hypothesis as a
more general rule that can entail the facts. We
borrow insights from the requirements for the in-
duced rules in hypothetical induction to develop
our framework. Specifically, there are mainly three
requirements (Salmon, 1989; Norton, 2005). The
first is that a correct hypothesis should be able to
entail deductively as many observations as possible.
The second is that the hypothesis should follow the
laws of nature, as one could always concoct some
imaginary hypothesis that is able to explain the
observations but violates reality (e.g., the Earth is
the center of the Universe so that the Sun orbits
around the Earth). In inductive reasoning, the fail-
ure to recognize a rule that runs counter to reality is
called “indiscriminate confirmation”. The third is
a basic requirement for inductive reasoning, where
the hypothesis should be a more general statement
than the observations (Appendix A.10 illustrates
the meaning of “general”). We additionally intro-
duce a fourth requirement from NLP aspects since
this task uses natural language as knowledge repre-
sentation. It is that a rule should not be trivial (e.g.
incomplete sentence or the latter sub-sentence sim-
ply repeats its former sub-sentence).

More concretely, we define the requirements for
designing our framework as 1) there should be as
fewer contradictions between facts and the rule as
possible, and 2) the rule should reflect the reality,
3) the content in facts should be relevant specific
statements that are covered by the rule, 4) the rule
should not be trivial.

Based on this, we develop our framework as
shown in Figure 1. It consists of five modules,

213



where module 1 (M1) is the rule proposer, module
2 (M2) is the deductive consistency evaluator, mod-
ule 3 (M3) is the indiscriminate confirmation han-
dler, module 4 (M4) is the generalization checker,
and module 5 (M5) is the triviality detector. Specif-
ically, M1 is in charge of the generation of rules.
M2, M3, M4, M5 are independent classification
models each verifying rules with different require-
ment. The role of M2/3/4/5 is similar to the verifier
developed for deductive reasoning to make more
solid reasoning steps (Yang et al., 2022). The in-
dependence of M2/3/4/5 makes it possible to run
them in parallel.

In practice, we implement all five modules
with PLMs. We call our implementation as
CoLM (Chain-of-Language-Models). The goal of
M1 is to generate rules based on the input facts and
a given rule template. Thus, M1’s input contains
facts, a rule template, and prompts that demonstrate
the rule induction task.M2 and M4’s inputs include
prompts that explain the rule-fact compatibility, a
rule, and fact(s); M3 and M5’s inputs include again
prompts that explain the task and a rule, as their
targets are independent of fact.

More interestingly, although our framework
is solely based on the insights from philosophy
literature, we also find a mathematical interpre-
tation of this approach. Here, we denote P (A)
as the probability indicating whether A is valid
for simplicity. Thus, M2 and M4 jointly measure
the validness of a fact given the corresponding
rule P (fact|rule) ≈ PM24(fact|rule) =
PM2(fact|rule)PM4(fact|rule), M3 and
M5 directly measure the validness of the
rule itself P (rule) ≈ PM35(rule) =
PM3(rule)PM5(rule). Here PM24 and PM35 are
parameterized as the product of two corresponding
probabilities. By using Bayes’ rule, we can easily
show that the validness of a rule based on the input
fact is (here we omit constant P (facts))

P (rule|fact) ≈ PM24(fact|rule)PM35(rule). (3)

Note that this score is merely a discrimination score
and thus different from the generation probability
from M1. In other words, the rules proposed by
M1 are then selected by M2/3/4/5 in a Bayesian
inference fashion.

5 Experiments

In this section, we discuss the evaluation metrics
and baselines, and then present the main results of
our framework (all are averaged by 5 runs).

5.1 Evaluation Metrics

We carry out evaluations for the framework (the
rule generation task with DEER) and individual
modules for classification using DEERLET.

For evaluation of the rule generation of the over-
all framework, we use METEOR, WRecall, and
GREEN as automatic evaluation metrics; And
use precision, recall, f1, and the four metrics in
DEERLET as human evaluation metrics. WRecall,
GREEN, and the four metrics in DEERLET are our
newly proposed metrics for inductive reasoning
introduced in §3.3.

For evaluation of the classification tasks on
DEERLET, we use accuracy, f1, and averaged pre-
cision as metrics.

5.2 Baselines

We use a non-neural method and a neural method
as baselines for the framework. We call the non-
neural baseline “R+F”, as it randomly fills the given
rule template with sentences or phases from the
given fact. The neural baseline we use is the rule
proposer itself in Figure 1.

We use majority class and TF-IDF (Jones, 2004)
as baselines for individual modules. The major-
ity class baseline always predicts “yes”, which is
equivalent to not using M2/3/4/5 to filter rules from
M1. TF-IDF is another reasonable baseline as the
induced rules contain similar contents compared
to input facts. In practice, each input fact-rule pair
is assigned a TF-IDF value, and a threshold for
correctness (to compare with the TF-IDF value) is
tuned on the DEERLET validation set.

5.3 Main Results

Most modules are implemented with GPT-J (Wang
and Komatsuzaki, 2021), a pre-trained language
model with 6 billion parameters. Results on other
LLMs such as LLaMA (Touvron et al., 2023) can
be found in §A.9. For better analysis, we con-
duct the experiments in two settings, including in-
context learning setting (Liu et al., 2021; Brown
et al., 2020) and finetuning setting. The only ex-
ception is that we do not test finetuning setting
on M1 (the only generative module), since we are
mainly investigating (out-of-box) PLM’s ability.
However if with finetuning, language model might
perform worse on out-of-distribution data and lose
their generality for input facts from different top-
ics (Kumar et al., 2022). For this reason we do not
implement with T5 (Raffel et al., 2020).
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Models METEOR WRecall GREEN Precision (%) Recall (%) F1 Consistent Reality General Non-trivial

R+F 11.20 0.50 2.37 9.0 100 0.17 0.90 0.15 0.28 0.85
M1 25.28 0.50 3.56 45.0 100 0.62 0.63 0.60 0.83 0.86

M1 + M2 25.68 / 25.69 0.53 / 0.54 3.68 / 3.71 45.9 / 59.8 87.8 / 71.1 0.60 / 0.65 0.63 / 0.75 0.62 / 0.72 0.83 / 0.92 0.86 / 0.94
M1 + M3 25.39 / 26.57 0.50 / 0.59 3.57 / 3.95 45.2 / 60.2 84.4 / 75.6 0.59 / 0.67 0.63 / 0.77 0.60 / 0.74 0.83 / 0.89 0.87 / 0.91
M1 + M4 26.12 / 26.30 0.53 / 0.58 3.74 / 3.92 48.5 / 53.3 92.2 / 88.9 0.64 / 0.67 0.64 / 0.67 0.64 / 0.65 0.84 / 0.91 0.88 / 0.89
M1 + M5 25.28 / 25.76 0.50 / 0.54 3.55 / 3.74 46.1 / 48.1 97.8 / 97.8 0.63 / 0.65 0.64 / 0.66 0.61 / 0.63 0.83 / 0.83 0.88 / 0.91

CoLM 26.44 / 27.32 0.54 / 0.62 3.78 / 4.11 48.1 / 70.0 72.2 / 54.4 0.58 / 0.61 0.65 / 0.81 0.64 / 0.80 0.84 / 0.94 0.90 / 0.97

Table 4: Result of CoLM and baselines on DEER under in-context learning / finetuning setting. The first three
metrics are automatic metrics, and the last seven metrics are human evaluation metrics.

We report the results of in-context learning set-
ting and finetuning setting in Table 4 and Table 8.
The thresholds of M2/3/4/5 used in Table 4 and
Table 8 are tuned on the DEERLET validation set.
More details on setting up thresholds are illustrated
in §A.11. The results on DEER are shown in Ta-
ble 4. As expected, the M1 alone outperforms
the R+F baseline across the board, indicating that
the PLM has some rule induction capability. Aug-
menting the M1 with some filtering mechanism
can reliably improve the generated rule quality fur-
ther. Lastly, our full model, CoLM, outperforms
all baselines justifying the effectiveness of our pro-
posed framework for natural language inductive
reasoning. Due to page limit, DEERLET results
are analyzed in § A.2.

6 Analysis

In this section, we investigate the question of “how
well can pretrained language models perform induc-
tive reasoning?”. Specifically, we provide analyses
in terms of rule types, topics, variations of input
fact, and scales of language models. Except for
Table 7, the input used is short fact, 3 fact, full
fact. Except for Table 2, the model used is GPT-J.
All experiments in this section are based on the in-
context learning setting, each averaged by 5 runs.
Similar trends are also observed in other settings.
We report METEOR and GREEN as metrics in
this section. In addition to analyses with automatic
evaluation results in this section, we also manu-
ally analyze the failure cases of CoLM in §A.3, by
classifying error types and give a statistics on the
percentage of the identified error types.

6.1 Different Rule Types

Table 5 shows the breakdown evaluation of CoLM
based on four basic rule types in formal lan-
guage (Russell and Norvig, 2020). The mapping
between the logic forms and corresponding natural
language templates can be found in Table 2.

Models If __,
then __.

There exists __,
which __.

If __ and __,
then __.

If __ or __,
then __.

R+F 9.87 / 2.22 17.45 / 2.95 10.63 / 2.30 12.53/ 2.50
M1 23.05 / 3.39 32.03 / 4.00 27.01 / 3.67 29.09 / 3.81

M1+M2 23.76 / 3.58 33.13 / 4.39 26.00 / 3.43 28.76 / 3.69
M1+M3 23.34 / 3.46 31.35 / 3.80 26.64 / 3.58 29.56 / 3.95
M1+M4 23.58 / 3.43 32.16 / 4.06 25.94 / 3.48 29.80 / 4.05
M1+M5 23.04 / 3.40 32.60 / 4.17 27.05 / 3.68 29.08 / 3.81
CoLM 24.15 / 3.55 32.50 / 4.16 26.41 / 3.58 29.60 / 3.96

Table 5: Analysis of PLM (GPT-J)’s performance (mea-
sured in METEOR / GREEN) in with different rule
templates.

Models Zoology Botany Astronomy Geology History Physics

R+F 9.65 / 2.20 10.24 / 2.26 13.09 / 2.56 13.28 / 2.58 11.07 / 2.35 11.44 / 2.39
M1 28.88 / 3.80 31.14 / 3.95 34.40 / 4.15 27.71 / 3.72 22.17 / 3.33 20.01 / 3.16

M1+M2 29.70 / 4.00 30.59 / 3.76 32.88 / 3.82 28.67 / 4.08 22.65 / 3.50 20.49 / 3.30
M1+M3 29.17 / 3.85 31.03 / 3.88 33.86 / 4.04 28.16 / 3.87 22.30 / 3.36 20.16 / 3.17
M1+M4 29.00 / 3.77 31.54 / 4.06 34.17 / 4.20 28.63 / 4.04 25.00 / 3.89 20.16 / 3.22
M1+M5 28.72 / 3.76 31.26 / 3.99 34.60 / 4.21 27.33 / 3.62 22.01 / 3.26 20.00 / 3.10
CoLM 29.25 / 3.84 31.00 / 3.86 35.33 / 4.46 29.51 / 4.23 24.34 / 3.72 20.67 / 3.30

Table 6: Analysis of PLM (GPT-J)’s performance (mea-
sured in METEOR / GREEN) in under different topics.

The table shows that “there exists _, which _”
achieves the best performance. It is reasonable, as
simply copying the contents of facts to compose a
rule will be acceptable for ∃ quantifier in logic.

6.2 Different Topics

Table 6 shows the performance of CoLM over dif-
ferent topics. CoLM performs much worse on His-
tory and Physics than the other topics. We attribute
it to that the rules in history and physics have high
variance, demand a higher level of abstraction, and
are not very similar to the input facts. For exam-
ple, in physics, many rules are natural language
descriptions of physical laws such as Newton’s law
of universal gravitation, while the input facts might
be the values of gravitational force and mass of
specific objects. In contrast, CoLM achieves better
performance in Botany. One possible reason is that
many rules in botany can be very similar to the
input facts (an example is shown in Table 1).
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Models Long facts
1 full facts

Short facts
1 full facts

Short facts
2 full facts

Short facts
3 full facts

Short facts
3 missing facts

R+F 9.35 / 2.16 10.87 / 2.33 11.16 / 2.36 11.20 / 2.37 11.52 / 2.40
M1 23.12 / 3.40 24.75 / 3.52 25.22 / 3.55 25.28 / 3.56 24.67 / 3.51

M1+M2 23.43 / 3.49 25.30 / 3.68 25.88 / 3.74 25.68 / 3.68 25.01 / 3.58
M1+M3 23.25 / 3.44 24.91 / 3.55 25.32 / 3.57 25.39 / 3.57 24.77 / 3.52
M1+M4 23.65 / 3.52 25.48 / 3.65 26.04 / 3.73 26.12 / 3.74 25.09 / 3.59
M1+M5 23.23 / 3.44 24.81 / 3.54 25.31 / 3.58 25.28 / 3.55 24.81 / 3.57
CoLM 24.03 / 3.60 25.89 / 3.73 26.71 / 3.85 26.44 / 3.78 25.41 / 3.65

Table 7: Analysis of PLM (GPT-J)’s performance (mea-
sured in METEOR / GREEN) with different input
lengths and whether fact contains enough information.

GPT-Neo 
125M

GPT-Neo 
1.3B

GPT-Neo 
2.7B

GPT-J 6B
GPT-NeoX
20B

Number of parameters

M
ET

EO
R

Figure 2: Influence of the scale of PLM on inductive
reasoning task with DEER (measured with METEOR).

6.3 Variations of Input Facts
In table 7, long facts mean the paragraph-level facts
in DEER, and short facts mean the core sentence-
level facts selected from corresponding paragraph-
level facts. The different number of facts indicates
the different number of facts given as input that ex-
hibit similar rule patterns (e.g. Lemon tree / orange
tree / apple tree can conduct photosynthesis). We
consider the number of facts as an important factor
because psychological research shows that more
facts with similar patterns can help with inductive
reasoning (Heit, 2000). Missing fact experiments
are also conducted, where for each fact we ran-
domly throw the former half or the latter half of
the sentences. It is an important setting as it is
hard for the input facts to cover all the elements of
the desired rule in a realistic scenario. As a result,
it might be common that some required pieces of
fact are missing. The results indicate that larger
number of concise but full facts are beneficial for
rule induction, while too many facts with similar
patterns might not be helpful.

6.4 Different Scales of PLMs
Figure 2 shows the influence of the scale of pre-
trained language models (under in-context learn-
ing setting) on induction. Here, we consider GPT-
Neo 125M, GPT-Neo 1.3B, GPT-Neo 2.7B, GPT-J

Conflict with Facts
4% Not Fits 

Commonsense
15%

Not General
9%

Trivial
11%

Correct
35%

Correct but less 
informative

10%

Correct but not 
very related

5%

Correct but not 
completely

6%

Meaningless
5%

Figure 3: Error Analysis of CoLM with finetuned Mod-
ule 2/3/4/5. In total 100 rules are manually checked.

6B and GPT-NeoX 20B (Wang and Komatsuzaki,
2021). The figure shows that generally perfor-
mance of M1 steadily improves as the scale being
larger, and M2/3/4/5 are only helpful since 6B pa-
rameters. The only exception is that both M1 and
M2/3/4/5 might reach a plateau in 20B parameters.

6.5 Error Analysis

We sampled 100 rules from CoLM (rules that gen-
erated by M1 and pass all M2/3/4/5), and have
conducted an error analysis of the samples. Fig-
ure 3 shows the results. Among them, “Conflict
with Facts”, “Not Fits Commonsense (not reflects
reality)”, “Not General”, and “Trivial” corresponds
to the rules that should be filtered by CoLM but not.
We find that beyond “Correct” and errors made by
classification modules, there are also some other
classes that worth mentioning, but they could be
seen as other kinds of “Trivial”. This figure shows
that the four criteria we proposed are important for
verification. More details about error analysis can
be found at § A.3.

7 Overview and Future Perspectives of
Inductive Reasoning

The first version of this paper was finished in 2022.
At that time, inductive reasoning—in the sense
of deriving explicit natural language hypotheses
(rules) from observations (input facts), where the
hypotheses and observations adhere to specific re-
lations defined by induction—was a new and unex-
plored research area.

Previously, the most closely related works came
from the ILP (Inductive Logic Programming) com-
munity, which focused on symbolic approaches to
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the task of inductive reasoning (inducing explicit
formal language hypotheses). This paper aims to
act as a bridge between the ILP and NLP commu-
nities by (1) demonstrating how natural language
and related techniques (foundation models) can ad-
dress challenges within the ILP community, and
(2) introducing the definition and task of inductive
reasoning to NLP. Moreover, this paper can serve
as a preliminary study, suggesting that language
models have the potential to function as inductive
reasoners. The transcription of requirements for
inductive arguments from philosophical literature,
as illustrated in Section 4.2, could remain useful
even in the era of powerful LLMs.

The possible future challenges of research on in-
ductive reasoning include (1) establishing and solv-
ing more challenging tasks for inductive reasoning,
and (2) overcoming the fundamental challenges
inherent in induction.

7.1 Establishing and Solving More
Challenging Tasks for Inductive
Reasoning

A naturally more challenging task is scientific hy-
potheses discovery, which is to generate novel and
valid scientific hypotheses. Here, “novel” means
“not known or recognized by any literature”. In fact,
inductive reasoning is one of the primary types of
reasoning in the development of science. Essen-
tially, scientists use inductive reasoning whenever
they move from limited data to a more general con-
clusion (Okasha, 2002). Thus, exploring how to
generate preliminary hypotheses (a.k.a. research
ideas) and possibly act as a “copilot” for scientists
could be an intriguing research topic. Yang et al.
(2023b) extend inductive reasoning to the task of
scientific hypothesis discovery, demonstrating that
LLMs can generate novel and valid hypotheses in
some social science disciplines. However, there are
still many challenging questions to address, such
as how to develope a system for other disciplines.

Another challenging task is pattern induction,
which is to induce (executable) rules/patterns from
complex (synthetic) facts. This task currently en-
compass (1) identifying patterns in a sequence of
numbers (Qiu and Jiang, 2023), (2) discerning arith-
metic calculation patterns (Zhu et al., 2023), and (3)
detecting change patterns of 2D grid images (Wang
et al., 2023b). The term “executable” is used here
because many of these patterns can be described
in the form of program. An advantage of pattern
induction tasks is that challenging datasets can

be efficiently constructed using synthetic methods.
This direction is also interesting as it can aid in
understanding the inductive reasoning capabilities
of LLMs and requires a combination of this under-
standing with the ability to generate program.

7.2 Overcoming Fundamental Challenges
Inherent in Induction

This challenge stems from certain fundamental re-
quirements for the induced rules. As illustrated in
Section 4.2, some of these requirements include

• Checking whether the induced rule accurately
reflects reality.

• Determining whether the hypotheses are more
general than the observations.

Here, the “reflects reality” in the first require-
ment refers to whether the rule mirrors the objec-
tive world (or the environment of the task). In
certain task settings, such as scientific hypothesis
discovery, verifying whether an induced hypothesis
mirrors the objective world can be very challeng-
ing, given that LLMs do not directly interact with
the world. To ascertain the validity of the hypothe-
ses, LLMs might need to utilize tools to conduct
actual experiments to test the induced hypotheses.
In other tasks, such as pattern induction, meeting
this requirement could be much simpler, as whether
it catches the designed patterns can be examined
by executing the program and checking whether it
produces the expected output.

The second requirement can be interpreted as
“whether the hypothesis is novel compared to the
all existing literature” in the task of scientific hy-
pothesis discovery (Yang et al., 2023b). Meeting
this requirement involves key challenges including
information retrieval and novelty checking.

8 Conclusion

To overcome the systematic problems of using for-
mal language for inductive reasoning, we propose
a new paradigm (task) of inducing natural language
rules from natural language facts, and correspond-
ingly propose a dataset DEER and new evaluation
metrics for this task. We provide the first and com-
prehensive analysis of PLM’s ability to induce natu-
ral language rules from natural language facts. We
also propose a new framework, drawing insights
from philosophical literature, which, as shown in
the experimental section, surpasses baselines in
both automatic and human evaluations.
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Limitations

In this work, the size of dataset (DEER) contains
1.2k fact-rule pairs, which is relatively small. The
reason is that the “rules” in this task are required to
be very general. It is not easy to collect a large set
of such rules in high-quality. Additionally, a rule
can be collected only if (1) there are several facts
findable in online texts, and (2) these facts satisfy
certain relation with the rule required by induction
(the rule generalizes over the facts).

In addition, the DEER dataset mainly covers
commonsense knowledge. A successive work to
this paper (Yang et al., 2023b) focuses on a more
challenging setting of inductive reasoning, which
is to generate novel and valid scientific hypothe-
ses (e.g., Newton’s Laws are scientific hypotheses).
Here novel is defined as “not known or recognized
by any literature”, which means this new setting
is very challenging even for the most advanced
LLMs.
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A Appendix

A.1 Hyperparameters
For finetuning experiments, we use learning rate
1e-5; weight decay 0.1; adam epsilon 1e-8; batch
size 4; and early stopping with accuracy as the
metric. We perform our experiments on RTXA6K
GPU. We use nltk package to calculate BLEU and
METEOR.

A.2 DEERLET Results
The results on DEERLET are summarized in Ta-
ble 8. In this experiment, we investigate the classifi-
cation performance of language models in terms of
different aspects required by inductive reasoning,
which includes deductive consistency, indiscrim-
inate confirmation, and generalization / triviality
classification. It shows that TF-IDF achieves the
same performance with majority class baseline in
accuracy and f1 metrics. The reason is that the best
thresholds obtained for TF-IDF are all zero, which
means that TF-IDF value is not effective for the
four tasks. It also shows that with in-context learn-
ing GPTJ performs worse than the majority class
baseline, while finetuned GPTJ steadily performs
better.

A.3 Failure Analysis
We sampled 100 rules from CoLM (rules that gen-
erated by M1 and pass all M2/3/4/5), and have con-
ducted an error analysis of the samples. Figure 3
shows the results.

Among them, “Conflict with Facts”, “Not Fits
Commonsense (not reflects reality)”, “Not Gen-
eral”, and “Trivial” corresponds to the rules that
should be filtered by CoLM but not. However,
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Metrics Accuracy (%) F1 Averaged Precision

Deductive Consistency Evaluator (M2)

Majority class 62.5 0.77 0.63
TF-IDF 62.5 0.77 0.69

GPT-J 61.5 / 74.0 0.71 / 0.83 0.75 / 0.83
Indiscriminate Conformation Handler (M3)

Majority class 60.0 0.75 0.60
TF-IDF 60.0 0.75 0.64

GPT-J 56.0 / 70.5 0.57 / 0.77 0.66 / 0.79
Generalization Checker (M4)

Majority class 83.0 0.91 0.83
TF-IDF 83.0 0.91 0.86

GPT-J 71.0 / 86.0 0.82 / 0.92 0.87 / 0.97
Triviality Detector (M5)

Majority class 86.0 0.93 0.86
TF-IDF 86.0 0.93 0.90

GPT-J 78.5 / 89.5 0.87 / 0.94 0.89 / 0.94

Table 8: Results on DEERLET for different modules
under in-context learning / finetuning settings.

we find that beyond “Correct” and errors made by
classification modules, there are also some other
classes that worth mentioning.

“Correct but less informative” means some facts
that is not trivial (by our former description of trivi-
ality – incomplete sentences or the conclusion sim-
ply repeats some part of premises.), not incorrect,
but not very informative. Examples include “if a
bird can help a plant to reproduce, then it is prob-
ably a good thing for the plant”, and “if a land is
green, then it probably contains forests”.

“Correct but not very related” means although
the rule is correct, but it is not very related to the
facts given. For example, the facts are only about
the depth and shape of Marianas Trench, while
the rule is “if there exists a place with a greater
depth, then it is possible to find something strange
and interesting” (the “find something strange and
interesting” aspect is not mentioned in facts).

“Correct but not completely” means the rule is
somewhat to mostly correct, such as “if a fruit has
a strong smell, then it probably tastes good” (while
facts are about durian, champedek, and morinda
citrifolia); “if an economy is based on textiles, then
it might experience an industrial revolution” (this
rule is only true during a specific period of time
in history); “if a wire moves, then it might induce
voltage in the conductor” (this rule is only true if
given magnetic fields).

“Meaningless” means the rule is from a strange
angle and it’s hard to justify whether it is correct or
not, such as “if an event has a positive impact on

an individual and on family, then the impact on the
family is greater”, and “if a man has experienced
hardships and life has been tough, then he might
be able to understand and change his ways in the
future”.

A.4 More Details on Difference with Other
Reasoning Tasks

In this paper, we strictly follows the definition and
categorization of logical reasoning (including de-
ductive, inductive, and abductive reasoning) in a
survey of logical reasoning (Yang et al., 2023c).

There have been some NLP works on case-based
reasoning (Das et al., 2021, 2022; Yang et al.,
2023a), which can also be seen as inductive reason-
ing. However, CBR is a different inductive reason-
ing type than the “generalization” process (from
facts to rules) described in Flach and Kakas (2000),
but more on the general description on inductive
reasoning (Salmon, 1989) that premises cannot con-
clusively provide support to the conclusion.

Inductive reasoning is also different from com-
monsense reasoning (Yang et al., 2020), where
commonsense reasoning focuses more on the
“knowledge” aspect, and inductive reasoning fo-
cuses more on the “reasoning” aspect (Yang et al.,
2023c).

A.5 Annotation Details for DEERLET
In DEERLET, given fact(s) and a rule, the anno-
tation targets are whether the rule satisfies four
requirements.

Specifically, the requirements are “if the rule is
deductively consistent with the fact”, “if the rule
reflects reality”, “if the rule is more general than
the fact”, and “if the rule is not trivial”.

The first three requirements are annotated on a
3-point scale (true / partially true / false), and the
last is annotated on a 2-point scale (true / false).

Here we explain the standards of annotation on
the four requirements.

For “if the rule is deductively consistent with the
fact”, a 2-point will be assigned if the rule is totally
relevant and consistent with the facts; a 1-point will
be assigned if the rule introduces new information
that does not show in facts but is consistent with the
given fact as well as some limited amount of com-
monsense knowledge related to the facts; a 0-point
will be assigned if the rule is (1) in conflict with
given facts or (2) totally irrelevant to given facts
or (3) introduces new information that is obviously
wrong.
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For “if the rule reflects reality”, a 2-point will be
assigned if the rule totally reflects reality; a 1-point
will be assigned if the rule reflects reality at most of
the time; a 0-point will be assigned if (1) the rule is
totally incorrect or (2) the rule is only occasionally
correct.

For “if the rule is more general than the fact”, a 2-
point will be assigned if (1) the rule is more general
than the facts or (2) it is obvious that the rule is
trying to be more general than the facts; a 1-point
will be assigned if (1) it is even hard for humans
to induce a more general rule from the given facts
or (2) the rule copies part of the given facts that
are already containing very general information; a
0-point will be assigned if (1) from the facts it’s
easy for humans to induce a more general rule but
the rule is not more general or (2) the rule is totally
irrelevant to the facts.

For “if the rule is not trivial”, a 0-point will be
assigned if (1) the rule is an incomplete sentence or
(2) the latter sub-sentence of the rule only repeats
the information in the former sub-sentence of the
rule; otherwise, a 1-point will be assigned.

A.6 METEOR or GREEN?
Since inductive reasoning over natural language
is a new task, and new metrics are designed (e.g.,
WRecall, GREEN), it is important to understand
which aspects each metric focus on and which met-
ric should we pay more attention to.

As mentioned in §3.3, METEOR can be seen as
evaluating the “precision” of the final rules, while
GREEN evaluates “precision” and “recall” at the
same time.

However, it should be aware that the “recall”
here is not as important as the “recall” in other
tasks. More specifically, here “recall” measures
how many good rules generated by M1 are filtered
by M2/3/4/5. However, we can use M1 to generate
a large number of rules, and as long as CoLM has
good precision, it is easy to obtain a large number
of high-quality rules, especially considering that
the computational cost of only inference of M1 is
relatively very low.

Based on this observation, we argue that “pre-
cision” should be a much more important aspect
of evaluation compared to “recall” (measured by
WRecall) or even “f1” (measured by GREEN) for
this task. More specifically, “recall” can be used to
mainly measure at what efficiency can the system
obtain rules with high precision.

This viewpoint of evaluation metrics, of course,

can raise the question of whether some typical
kinds of rules are mostly filtered when pursuing
rules with high precision, and in the end inductive
reasoning system with high precision might only
be able to obtain some other typical kinds of rules.
We leave this question as an open question for this
task to solve in the future.

A.7 Why METEOR not BLEU
We choose METEOR since METEOR has a higher
correlation coefficient with human evaluation than
BLEU.

More specifically, on DEERLET, we calculate
the METEOR and BLEU for each generated rule
with its golden rule in DEER and collect the human
evaluation for the generated rule from label0/1/2/3
annotations in DEERLET (we normalize each label
to [0,1] and use the product of label0/1/2/3 as the
overall human evaluation score for the generated
rule). Then, we can calculate the correlation coef-
ficient between METEOR / BLEU and the overall
human evaluation score.

On DEERLET, the correlation coefficient be-
tween METEOR and human evaluation is 0.29, it is
statistically significant as its p-value is 4.48 ∗ 10−6,
smaller than the significance level (0.05). Similarly,
the correlation coefficient between BLEU and hu-
man evaluation is 0.24, with p-value of 1.17∗10−72,
which is also significant.

We called 0.29 relatively high since in other
open-ended NLP tasks such as dialogue systems,
the Pearson correlation is typically only around
0.14 0.19 (shown in Table 3 in (Liu et al., 2016),
BLEU’s Pearson correlation is lower than ME-
TEOR’s in most of the time). However recent
papers published in ACL 2023 on dialogue sys-
tems still adopt METEOR or BLEU as automatic
evaluation metrics (Li and Zhao, 2023; Zhao et al.,
2023; Li et al., 2023).

Developing better metrics for measuring the sim-
ilarity between sentences is a challenging topic in
NLP. Of course, METEOR is not a “perfect” au-
tomatic evaluation metric for inductive reasoning.
We leave the question of “what is a better metric
for inductive reasoning over natural language” as
an open question for future works in the field.

One good thing is that WRecall and GREEN
can be applied with many metrics measuring sen-
tence similarity such as METEOR and BLEU, so
the evaluation of “recall” should be able to also
benefit from the advance of metrics that evaluate
“precision”.
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A.8 Difficulty in Designing Automatic
Evaluation Metrics for Inductive
Reasoning Tasks and How Should We
Interpret the Results of Automatic
Metrics

Designing automatic evaluation methods for induc-
tive reasoning is fundamentally difficult, mainly
because of two reasons. Firstly, generalizing over
existing facts is not restricted in a single way. Given
existing facts, multiple rules that are very diverse
from each other could all be true. Secondly, when
it comes to more difficult inductive reasoning data,
it is nearly inevitable to use long sentences for facts
and rule, which make it even harder for common
evaluation metrics such as BLEU or METEOR.

However, we argue that although we don’t have
perfect automatic evaluation metrics for inductive
reasoning now, it is not a reason to stop explor-
ing research on inductive reasoning. In fact, with
the fast development of LLMs, more difficult tasks
are needed to further explore the scientific bound-
ary in NLP, and many recently proposed tasks are
so difficult to be evaluated with automatic evalua-
tion metrics that they fully rely on human evalua-
tion (Zhong et al., 2023; Wang et al., 2023a). In
terms of human evaluation metrics, we also have
proposed meaningful human evaluation metrics for
inductive reasoning tasks shown in the last four
columns in Table 4, which are derived from philos-
ophy literature (the four requirements for induced
rules, and the four requirements are also used to
develop the CoLM framework).

The reason we try to propose suitable automatic
evaluation metrics is that we hope to simplify
the evaluation process for the inductive reason-
ing task (at least for preliminary evaluations). We
have illustrated why these metrics should be rea-
sonable in §A.6 and §A.7. Similar to inductive
reasoning, abductive reasoning also have multi-
ple diverse correct generations, however abductive
reasoning generation task also utilizes METEOR
or BLEU (Bhagavatula et al., 2020) as automatic
metrics. In the future, the automatic metrics are
possible to be further improved with the help of
the community. While for now, just like other re-
cent difficult tasks (Zhong et al., 2023; Wang et al.,
2023a), human evaluations are always preferred,
but automatic evaluation metrics, though not per-
fect, can still be used as a fast evaluation metrics
that can provide some insights for experiments.

A.9 Results on Other LLMs

Table 9 shows the results of CoLM using LLaMA,
under in-context learning setting. Overall, CoLM
outperforms all baselines, but the gap between
M1 and CoLM are smaller. The reason is that
LLaMA tends to generate very sound rules, thus the
M2/3/4/5 of CoLM barely filter any rules. There-
fore the results of CoLM and M1 are closer. We
think there are two reasons: (1) with the fast de-
velopment of LLMs, our proposed dataset is less
challenging for more recent LLMs such as LLaMA;
(2) M2/3/4/5 instantiating with LLaMA have not
been finetuned, but just in-context learning setting.
Given that finetuned GPT-J largely improves GPT-
J under in-context learning setting in Table 4, a
finetuned LLaMA should be able to filer more un-
reasonable generations.

While our work takes the first step to inductive
reasoning in NLP and provide the first analysis,
introducing more challenging inductive reasoning
benchmarks would be beneficial to the the further
development of the inductive reasoning field in
NLP.

A.10 Meaning of “More General” Required
by Inductive Reasoning

Given an argument consisting of a premise and a
conclusion, if the conclusion involves new infor-
mation that is not covered by the premise and can
not be conclusively entailed by the premise, the
argument is an inductive argument (Salmon, 1989).

When the conclusion has a larger scope of infor-
mation coverage than the premise, and can entail
the premise, it can be said that the conclusion is
“more general” to the premise. In this case, we
termed the premise as a “fact”, and the conclu-
sion as a “rule”; When the conclusion contains new
pieces of information and cannot entail the premise,
as defined by Salmon (1989), the argument is still
an inductive argument. But in this case, we termed
the premise as a “fact”, and the conclusion as an-
other “fact”.

For instance, if facts that are about cats and dogs
are good accompaniment of humans, then some
examples of a “more general” rule can be (1) mam-
mals are good accompaniment of humans, or (2)
domesticated animals are good accompaniment of
humans, or (3) animals with four legs are good
accompaniment of human.

In these examples, the rules cover a larger scope
than the facts (e.g., mammals compared to cats;
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Model LLaMA-7B

R+F 11.20 / 2.37
M1 24.94 / 3.53

M1+M2 25.12 / 3.54
M1+M3 24.77 / 3.49
M1+M4 25.42 / 3.60
M1+M5 25.74 / 3.68
CoLM 29.37 / 3.95

Table 9: In context learning results of LLaMA, mea-
sured in METEOR and GREEN.

domesticated animals compared to cats), and there-
fore the rules are “more general” than the facts.

“More general” means not only about finding
higher taxonomic rank, but can be in unlimited
forms. For instance, if the fact is about the Sun
rises and falls every day, then some examples of a
“more general” rule can be (1) the Earth is the king
of the universe or (2) the Earth is rotating itself.

Both rule examples are “more general” than the
given fact, since the rule can entail not only the
given fact, but also other not mentioned facts such
as the observable movements of the other stars in
the Milky Way.

A.11 Set up Thresholds for M2/3/4/5
Setting up thresholds is an important step for our
framework, since different thresholds can lead to
different inductive reasoning results. We discuss
the details of setting up thresholds in the section.

We design the standard for setting up thresholds
based on heuristics that the thresholds should be
set up that each module (in M2/3/4/5) should filter
some rules but a single module should not filter
too many rules (in this case, since we have many
modules, there might not remain a reasonable pro-
portion of rules left).

More specifically, given a rule (and facts),
M2/3/4/5 can produce a score on evaluating the
validity of the rule from a specific aspect. The
score is the ratio of the probability of the “yes” to-
ken and “no” token obtained from the last layer of
PLM. The score is in the range of [0,1].

We find that getting a specific threshold for each
module is more beneficial than using the default
0.5 threshold. We obtain the thresholds on the
DEERLET validation set.

More concretely, on the validation set, if there
exists a global optimal threshold that (1) achieves
the best f1 or accuracy and (2) the threshold should
not be very close to 0 or 1 and (3) recall is not
very close to 0 (when close to 1, it should not be in

the case that the threshold accepts nearly all gener-
ated rules but should be that the threshold already
rejects some rules), then the global optimal thresh-
old is adopted; if there is no such global optimal
threshold, then find a local optimal threshold that
(1) achieves the best f1 or accuracy compared to its
neighboring thresholds and (2) the threshold should
not be very close to 0 or 1, and (3) the recall range
is in [0.7, 0.9], then the local optimal threshold is
adopted.

A.12 More Details to Prevent Collection of
Generated Trivial Rules

We use a simple heuristic method to prevent col-
lection of generated trivial rules. Specifically, only
rules generated from Module 1 that is with more
than 45 tokens (not 45 words) do we pass to it
Module 2/3/4/5, otherwise we directly filter it.

The reason that we set it up is that we find gen-
erated rules with less than 45 tokens are mostly (if
not all) incomplete sentences. If we collect and
label these incomplete sentences to finetune Mod-
ule 2/3/4/5, then Module 2/3/4/5 mostly learn to
classify whether the rules are complete or not, but
not to learn the designed patterns (since the la-
bel0/1/2/3 in DEERLET for incomplete sentences
are all false).

For this reason, all annotated data in DEERLET
only use rules that contain at least 45 tokens.

A.13 Related Works on Inductive Logic
Programming

Inductive Logic Programming (ILP) is a subfield
of machine learning that uses FOL to represent
hypotheses and data. It relies on formal lan-
guage for knowledge representation and reasoning
purposes (De Raedt, 2010). We propose a new
paradigm that can naturally avoid three systematic
disadvantages of ILP (Cropper et al., 2022). Crop-
per et al. (2022) summarizes the challenges for ILP,
including disability of handling raw input such as
natural language and image, sensitiveness to mis-
labeled data and incapacity to handle ambiguous
input. In this work, we propose a new paradigm/ for
inductive reasoning to use natural language as rep-
resentation for knowledge and PLM as inductive
reasoners, which can naturally avoid these chal-
lenges.

Recently, Dai and Muggleton (2021) propose to
use logic programming to induce knowledge form
image raw input. Our work instead focus on natural
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Models Specific facts General facts

R+F 10.15 / 2.25 12.79 / 2.53
M1 25.61 / 3.58 24.57 / 3.51

M1+M2 26.47 / 3.82 24.14 / 3.42
M1+M3 25.88 / 3.64 24.38 / 3.45
M1+M4 27.19 / 3.91 24.36 / 3.48
M1+M5 25.59 / 3.57 24.61 / 3.51
CoLM 27.74 / 3.98 24.34 / 3.47

Table 10: Analysis of PLM (GPT-J)’s performance (mea-
sured in METEOR / GREEN) in with specific or general
input facts (Under in-context learning setting).

Models Ada Babbage Curie GPTJ Davinci

R+F 1.21 1.81 1.88 1.86 1.86
M1 5.41 4.29 5.76 4.00 7.52

Table 11: GPT-3’s performance as well as GPT-J’s per-
formance as Rule Proposer (Measured in BLEU).

language raw input, and use PLMs as reasoning
methods to induce knowledge.

A.14 Induce Rules from General Facts and
Specific Facts

Sixty percent of the rules in DEER are more gen-
eral than any of their facts alone at least in one
dimension. We describe this process as “inducing
general rules from specific facts”. However, we
find that there are many general statements (also
referred to as general fact) of a rule on the web.
Therefore, for rule induction systems to be able
to utilize both “specific facts” and “general facts”,
forty percent of the rules in DEER are equipped
with general facts. We describe this process as
“inducing general rules from general facts”.

Table 10 shows the result from specific vs gen-
eral facts under in-context learning and finetuning
settings correspondingly. We have discussed that a
rule induction system would be more widely appli-
cable if it can utilize both specific fact and general
fact. In table 10, general facts cases result in lower
performance. We think one of the most possible
reasons is that in DEER many general facts do not
directly contain the content of the corresponding
gold rules. For example, general facts can be mot-
tos from philosophers such as Socrates, and rules
can be an understandable description of such mot-
tos in natural language rule format.

A.15 GPT3’s Performance as Rule Proposer

Table 11 shows the result to use GPT-3 and GPT-J
as rule proposer (M1). It is measured in BLEU

because it’s a very early result, and we haven’t
adopted METEOR yet. If use METEOR as met-
ric, the trend should be similar (the trend of BLEU
and METEOR are very similar in our other experi-
ments). The reason we do not test the scale perfor-
mance of CoLM compared to M1 is that OpenAI’s
API does not support return full embeddings, and
our current code relies on embedding to implement
M2/3/4/5 of CoLM. We will modify our code and
try it on GPT-3 in the next version of our paper.

A.16 Method for Prevention of Personal
Information

The first author collected the datasets. During col-
lection, (1) most of the data are collected from
Wikipedia, where personal information is nearly
none; (2) the first author checks the data first before
collects them.

A.17 Prompt for ALL Modules
We have uploaded the full code to GitHub, con-
taining the full prompts. The full prompts can be
also found in the uploaded supplementary materials
along with this submission in utils.py.

A.18 Dataset Split of DEER and DEERLET
Out of the 1,200 rule-fact paris of DEER, 438 / 762
are designed for train / test. Out of 846 examples of
DEERLET, 546 / 100 / 200 are designed for train /
val / test.

In our previous arXiv version, we use a different
dataset split (train 100 rules / test 100 rules), the
current dataset split is (train 73 rules / test 127
rules) to better utilize the data (each rule has 6
annotated facts). The last 22 rules in test set (id:
105 126) are inspired by gpt-3.5-turbo, while all
other rules are proposed by an expert. All facts are
existing texts collected from the web using search
engine, after given a rule.

A.19 More Illustration on Human Evaluation
Here the human annotations for human evaluation
in Table 4 are from the DEERLET annotations.
DEERLET is annotated by an expert (the first au-
thor). The dataset (DEERLET) is annotated before
M2/3/4/5 (full CoLM) or any baseline experiments,
so that the human evaluation is not influenced by
the performance of any specific method.

More details about the DEERLET annotation are
illustrated in §A.5.
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