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Abstract

Neural networks are notoriously data-hungry.
This represents an issue in cases where data are
scarce such as in low-resource languages. Data
augmentation is a technique commonly used
in computer vision to provide neural networks
with more data and increase their generalization
power. When dealing with data augmentation
for natural language, however, simple data aug-
mentation techniques similar to the ones used in
computer vision such as rotation and cropping
cannot be employed because they would gener-
ate ungrammatical texts. Thus, data augmenta-
tion needs a specific design in the case of neu-
ral logic-to-text systems, especially for a struc-
turally rich input format such as the ones used
for meaning representation. This is the case
of the neural natural language generation for
Discourse Representation Structures (DRS-to-
Text), where the logical nature of DRS needs a
specific design of data augmentation. In this pa-
per, we adopt a novel approach in DRS-to-Text
to selectively augment a training set with new
data by adding and varying two specific lexical
categories, i.e. proper and common nouns. In
particular, we propose using WordNet super-
senses to produce new training sentences using
both in- and out-of-context nouns. We present
a number of experiments for evaluating the role
played by augmented lexical information. The
experimental results prove the effectiveness of
our approach for data augmentation in DRS-to-
Text generation.

1 Introduction

Data augmentation is a systematic way of increas-
ing data examples by altering the original data with
controlled variations (Feng et al., 2021). It is a
prevalent technique in computer vision (CV) for in-
creasing dataset size by introducing slightly differ-
ent and contextually similar examples (Yang et al.,
2022).

Augmentation approaches are also becoming
popular in many Natural Language Processing

(NLP) applications as well. The most commonly
used approaches to augment textual data are based
on random swapping, random insertion, random
deletions, synonyms replacement, back translation,
and using generative models to get new context-
aware data (Feng et al., 2021; Shorten and Khosh-
goftaar, 2019). Notice that data augmentation in
NLP is a very challenging task due to the constraint
of producing a grammatical augmented text (Hou
et al., 2018). Moreover, given the continuous na-
ture of images, in CV the augmented version of an
image rarely is pragmatically incorrect. In contrast,
in NLP, preserving the contextual meaning of the
sentence is, usually, a hard constraint. Indeed, bad
model performance can be the consequence of aug-
mented textual data that is grammatically incorrect
or out-of-scope (Dong et al., 2017).

Recently, researchers working on text gener-
ation from meaning representations, i.e., graph-
based Abstract Meaning Representation (AMR)
(Banarescu et al., 2013; Flanigan et al., 2016) or
Discourse Representation Structure (DRS), have
put their efforts into generating text from logical
representations, and vice-versa, using transformers
and encoder-decoder-based neural models (Basile
and Bos, 2011; van Noord et al., 2018; Noord,
2019; Wang et al., 2021; Amin et al., 2022; Wang
et al., 2023). In this paper, we consider the specific
problem of augmenting data in the context of neu-
ral DRS-to-Text generation task. DRS represents
textual information in the form of events, concepts,
and entities, i.e., names as discourse referents usu-
ally represented as variables in DRS, and logical
relations between these entities i.e., quantifiers,
conjunctions, negations, disjunctions, etc. (Bos,
2021; Kamp and Reyle, 1993; Jaszczolt, 2023). In
Figure 1 a graphical representation of DRS in box
format (on the left), its flattened version i.e., clausal
format (on the right), and its corresponding textual
representation (on the bottom) is displayed.

Neural DRS-to-Text generation is a type of data-
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Figure 1: Box format and Clausal format of DRS along
with their textual representation.

to-text generation task that takes the logical repre-
sentation of a sentence as input and generates text
as output (Wang et al., 2021; Amin et al., 2022).
This is an application of text generation from struc-
tured input data similar to knowledge graphs (Flani-
gan et al., 2016), RDF triplets data (Gardent et al.,
2017), and tables (Parikh et al., 2020). Note that,
in contrast to tables and graphs, the ability to rep-
resent the structured logical nature of the input as
a DRS generation allows for a more fine-grained
investigation of the relation between input and out-
put in DRS-to-Text. In other words “changing the
meaning of a DRS in a controlled way, the robust-
ness of systems can be monitored in detail and as-
sessed accordingly” (Wang et al., 2021). However,
this robustness property discourages the applica-
tion of large language models (LLMs) for augment-
ing data because LLMs would generate noise in
the augmented data (Feng et al., 2021; Hou et al.,
2018; Dong et al., 2017) – see also Section 4.

In this paper, we exploit the robustness property
of neural DRS-to-Text generation by designing and
evaluating data augmentation for the specific cate-
gories of (i) proper nouns and (ii) common nouns.
In particular, we have designed and evaluated a pro-
cedure for augmenting a DRS training dataset by
adding context-aware new sentences that are pro-
duced by varying the proper and common nouns in
the original sentences. We consider different strate-
gies and propose to use Supersense Tagging (SST)
for creating new training sentences using both in-
and out-of-context nouns. In this way, we want to
analyze the role played by lexical information in
the performance of a neural DRS-to-Text system.

The research questions and contributions ad-
dressed in this paper are:

• Is it possible to augment a logical data repre-

sentation such as DRS?

• How to generate new data that is contextually
similar to the original one?

• What is the role played by the in- and out-
of-contextual vocabulary for char-level and
word-level decoder models? And what is
the role of grammatical-semantic-pragmatic-
world knowledge in learning?

• Does augmentation result in an increase or
decrease in model performance by training a
seq-to-seq model or fine-tuning a Transformer
model?

• What is the behavior of pre-trained large lan-
guage models (LLMs) i.e., ChatGPT and
Claude, while analyzing DRS structures given
as prompt?

To the best of our knowledge, apart from the pre-
liminary work on augmentation of verbs presented
in (Amin et al., 2022), this is the first work on data
augmentation in DRS-to-Text generation analyzing
its impact on model performance.

Notice that our augmentation techniques could
generate factually incorrect texts (e.g., starting
from “at dawn, the sun rises”, “at night, the sun
rises” could be generated. However, since humans
can generate texts that are not factually correct
(consider, for example, a sci-fi story), preventing
this situation would actually be not only beneficial
but detrimental for the system.

The statistical nature of the neural networks does
not allow for an easy analysis of the kind of knowl-
edge really learned by the system. When we pro-
vide a specific example as Brad Pitt is an actor,
the network is learning that the verb follows the
subject (e.g. grammatical competence), and/or that
a man can be an actor (semantic and pragmatic
knowledge), and/or that a specific man is an actor
(world knowledge)? How can we exploit this multi-
level nature of neural learning? A side effect of our
study on data augmentation is to investigate these
theoretical questions as well.

The paper is structured as follows: in Section 2,
we describe the procedure adopted for noun aug-
mentation; in Section 3, we give architectural in-
sights on the neural DRS-to-Text pipeline; in Sec-
tion 4, we describe the experimental results of DRS-
to-text generation that uses (1) automatic metrics-
based and pre-trained model-based evaluations on
a standard test set, (2) a reduced test set comparing
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Figure 2: Graphical representation of the DRS transformation as a proper noun (in blue) and common noun (in
green). The DRS on the left generates the sentence Brad Pitt is an actor., while the DRS on the right generates
Louis Olivia is a performer.

our neural systems with two general LLMs, and
(3) applying both automatic and human evaluation
metrics. Finally, in Section 5, we conclude the
paper.

2 Logical Data Augmentation with Nouns

Data augmentation is a relatively complex task in
the case of neural DRS-to-Text: each augmented
example in the training set consists of a pair of new
DRS structures together with a new corresponding
sentence. While applying systematic transforma-
tions on training data, it is essential to keep track
of both types of data representations as they are
treated as input value pairs in the neural model. So,
data transformations should be identical and sym-
metrical on both elements by considering the order
of meaning representations and textual translations.

In the DRS-to-Text generation task, we ap-
plied different augmentation techniques to augment
proper and common nouns. We have used the
gold version of the Parallel Meaning Bank1 (PMB)
dataset, which is organized in the usual train-dev-
test split.

A graphical representation of transformation for
proper (highlighted in blue) and common (high-
lighted in green) nouns in DRS is shown in Figure
2: the DRS on the left generates the sentence Brad
Pitt is an actor, while the DRS on the right gener-

1The PMB is developed at the University of Groningen as
part of the NWO-VICI project “Lost in Translation – Found
in Meaning” (Project number 277-89-003), led by Johan Bos.

ates Louis Olivia is a performer (see Table 1).

2.1 Proper Noun Augmentation

For proper nouns, we considered two specific name
entity (NE) categories, which are the proper name
of a person (PER) i.e., both male and female names,
and of a place i.e., city, state, or country (GPE). We
have used spaCy NE recognizer (https://spacy.io)
to extract proper nouns from the text. There are
a total amount of 3773 proper noun instances for
PER and GPE. The proper nouns are divided as
follows: person names 57%, city names 30%, state
names 6%, country names 6%, and 1% of other
types i.e., island names (see Figure 3 in Appendix).

We have used two procedures for replacing
proper nouns to analyze the impact of adding ex-
ternal linguistic information to the dataset vocabu-
lary2. (1) Replacing them with other proper nouns
inside the same dataset, i.e., inside context. (2) Re-
placing them with proper nouns outside the dataset,
i.e., outside context. Outside context refers to the
fact that we chose just nouns different from the
ones already present in the dataset. For replacing
person names (PER) via outside context approach,
we chose the person names based on the highest
frequency of each name cited in the world (source:
ChatGPT) that were not already in the dataset. For
the city, state, and country names, we replaced
them based on geographical distribution keeping
in mind that the GPE names should not be in the

2While extracting NE, no offensive information was found.
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Transf Type Original Text Transformed Augmented Text

Proper Noun

Brad Pitt is an actor. Louis Olivia is an actor.
Alice and Bob work for this company. Maria and Tom work for this company.
Turin is a beautiful city. Venice is a beautiful city.
Indiana is a very famous state. Georgia is a very famous state.
China is one of the top 5 populous countries in the
world.

Indonesia is one of the top 5 populous countries in
the world.

Common Noun

Brad Pitt is an actor. Brad Pitt is a performer.
Alice and Bob work for this company. Alice and Bob work for this institution.
Turin is a beautiful city. Turin is a beautiful municipality.
We painted the house green. We painted the building green.
The book rested on the table. The novel rested on the furniture.

PN and CN

Brad Pitt is an actor. Louis Olivia is a performer.
The Mona Lisa hung above the antique table. The Leonardo da Vinci hung above the antique

furniture.
Alice and Bob work for this company. Maria and Tom work for this institution.
Noah and Sophia watched a movie at the local the-
ater.

Liam and Emma watched a show at the local edi-
fice.

Oliver and Isabella enjoyed the view of the moun-
tains from the cabin.

Daniel and Lily enjoyed the view of the elevations
from the compartment.

Table 1: Different flavors of augmentation applied to the dataset as single and blended data transformations. (PN =
Proper Noun; CN = Common Noun)

dataset. For GPE, we again used the ChatGPT
prompt which provided the list of available GPE
entities extracted from the original dataset, to get
a new list of GPE entities with the same geograph-
ical distribution. For example, in “The weather
of Dubai is very hot and dry.” we replace ‘Dubai’
with ‘Sharjah’ as the semantic correlation of hot
weather holds true for both cities. Some examples
listing proper noun augmentation are displayed in
Table 1.

2.2 Common Noun Augmentation

Replacing a common noun without altering the
contextual information of the sentence is a chal-
lenging task. To tackle this challenge, we adopt a
novel SST approach to associate a category with
the noun based on its contextual sense in the sen-
tence. For the implementation of SST, we have
used spaCy again. Based on data examples, we
extracted 6193 common nouns belonging to the 26
lexicographic categories of WordNet, including act,
artifact, body, cognition, communication, event,
feeling, food, group, and motion (Ciaramita and
Johnson, 2003) (see Figure 4 in Appendix).

In common noun augmentation, our approach
considers two procedures: inside/outside dataset
and preserving/not preserving supersenses (SS),
thus resulting in four of the following combina-
tions: (1) Replacing a common noun with any other
common noun inside the dataset but not preserv-
ing SS: “inside context without SS”. (2) Replacing
a common noun with another common noun hav-
ing the same category of SS: “inside context with

SS”. (3) Replacing a common noun with another
common noun having the same category of SS but
outside the dataset “outside context with SS”. (4)
Replacing a common noun with another common
noun not having the same category of SS but out-
side the dataset “outside context without SS”. For
points (1) and (4), there is no guarantee of sustain-
ing the contextual sense of the sentence as the noun
replacement can happen between two different SS
categories e.g., cat with chair3. For points (2) and
(3), we make sure that the noun replacement has
the same SS category e.g., cat with dog4.

For points (3) and (4), for the sake of adding
external lexical information for common nouns,
we are taking the support of the WordNet lexical
database. For point (3), we replace the common
noun with its WordNet hypernym and then make
sure that the new noun also belongs to the same
SS category. For point (4), we just perform noun
replacement through WordNet synonyms. All exam-
ples listed in Table 1 are also representing outside
context with SS through WordNet hypernyms.

Note that in this work we have not performed
other possible combinations for proper nouns, that
is: changing GPE without considering the same
class, i.e., changing city with state or country. The
motivation lies in the fact that these combinations
would radically change the semantics of the sen-

3As ‘cat’ belongs to ‘noun animal’ while ‘chair’ belongs
to ‘noun artifact’ classes of SS. This can be grammatically
true but not semantically and contextually.

4As ‘cat’ and ‘dog’ both belong to the same ‘noun ani-
mal’ class of SS. This type of substitution is grammatically,
semantically, and contextually correct.
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tence. In other words, we decided to follow a sort
of principle of minimum variation of the meaning
for choosing the augmentation strategy.

3 Three Neural DRS-to-Text Pipelines

DRS-to-Text generation is a complex logic-to-text
generation task requiring computationally efficient
neural models to transform logical representations.
In our implementation pipelines, we have used
three different neural architectures5. The first two
models are based on an encoder-decoder oriented
recurrent sequences-to-sequence neural networks
with two bi-directional LSTM layers (Hochreiter
and Schmidhuber, 1997; Junczys-Dowmunt et al.,
2018), having (1) char-based lexical encoding (CB-
bi-LSTM henceforth) and, (2) word-based lexical
encoding (WB-bi-LSTM henceforth). Moreover,
we have also used (3) a byT5 variant of Trans-
former’s family (Xue et al., 2022) for fine-tuning
the DRS-to-Text generation task (FT-byT5 hence-
forth).

We are aware that the state-of-the-art DRS-to-
text generation models use sophisticated neural ar-
chitectures (Liu et al., 2021; Wang et al., 2023),
thus, encouraging us to use the Transformers-based
model for our task as well. However, the goals of
this paper are related to analyzing the effects of
data augmentation in the context of neural DRS-to-
text generation rather than providing a system with
the best performances.

Note that the fundamental differences between
CB-bi-LSTM and WB-bi-LSTM are based on in-
put and output data representations, i.e., charac-
ters or words and their ability to handle out-of-
vocabulary (OOV) words. The former deals with
OOV words in a seamless way as it processes char-
acter sequences, while the latter could struggle to
handle OOV words as it is dependent on the size
of the included vocabulary. We believe that these
two different approaches can drive the impact of
specific techniques of data augmentation.

In our sequence-to-sequence implementation,
the model architecture and hyperparameters used
in our experiments are focused on LSTM-based
encryption decryption cells having epochs-based
learning decay strategy while using Adam as an
optimizer. We have used cross entropy as the vali-
dation metric and ce-mean as the cost type function.
Other important hyperparameters are in Table 6 of

5https://github.com/saadamin2k13/
Augmentation-for-DRS-to-text-generation.
git

the Appendix. In our transformers-based imple-
mentation, we have used the default hyperparam-
eter settings of byT5 with a little bit of change in
batch size, update steps, and learning rates, while
using AdamW as an optimizer and fine-tuning the
model for 15 epochs. All hyperparameter settings
of our FT-byT5 model are listed in Table 7 of the
Appendix.

We have used the English version of the Parallel
Meaning Bank (PMB) dataset. Among the different
dataset types, i.e., gold, silver, and bronze, we have
worked on the gold (fully manually annotated and
corrected version) dataset. Gold-PMB follows the
standard dataset division of training, development,
and testing files having 6620, 885, and 898 data
examples. In the process of augmenting the dataset,
we have adopted two types of approaches to trans-
form examples. (1) Apply one type of transforma-
tion and concatenate it with the original data exam-
ples. This approach will result in having more data
with one type of data transformation, e.g., proper
noun or common noun (indicated with the ‘+’ sign
in Table 2 and following). We have applied data
augmentation to training examples only. Develop-
ment and test files are the original ones, without any
augmentation. (2) Apply multiple possible trans-
formations (blend) on each example, e.g., apply
proper noun and common noun augmentation on
one example (indicated with the ‘-’ sign in Table 2
and following). So, in this approach the training
set size is smaller than in approach (1): in this way,
we emphasize the role played by transformations
rather than training set size. In Table 8 of the Ap-
pendix, we have listed the individual and blended
data transformation along with training examples
size.

4 Experimental Results

Evaluation with automatic metrics. We have
conducted a series of different experiments that fo-
cus on analyzing the model performance based on
systematic alterations in lexical semantics-based
input representations. We have listed CB-bi-LSTM,
WB-bi-LSTM, and FT-byT5 (see Table 2), exper-
imental results with the BLEU, NIST, METEOR,
ROUGE, CIDEr, and BERTScore-based automatic
evaluation measures (Wang et al., 2021; Amin et al.,
2022; Zhang et al., 2020). In these experiments, we
have used the standard split of PMB in train-dev-
test sets. Note that the baseline of the experiment
(1) is consistent with the results reported in (Amin
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et al., 2022), but is notably inferior to the value
reported in (Wang et al., 2021) because this latter
study considers mixed gold-silver training data.

If we compare the overall performance of CB-bi-
LSTM and WB-bi-LSTM, we found as expected
that CB-bi-LSTM always wins in all aspects of in-
put data. This reflects the fact that the char-level
model with the ability to handle OOV words is
performing very well in capturing micro-level as-
pects and data patterns of input DRS. This also
shows the effectiveness and morphological accu-
racy of the char-level model in generating correct
output sequences. However, the FT-byT5 model
outperforms the bi-LSTM-based models in most
experiments.

In the proper noun augmentation, our experi-
ments are twofold: (1) inside context and (2) out-
side context as discussed in Section 2. Exp. 2− 3,
11−12, and 20−21 (see Table 2) list the results ob-
tained after performing two flavors of proper noun
augmentation. Considering only LSTM architec-
tures, the experimental findings show that vocabu-
lary plays a vital role in the case of CB-bi-LSTM
model as this is more independent in sequence gen-
eration. Therefore, we have the highest score in
CB-bi-LSTM for the proper noun augmentation
outside context to the dataset (Exp. 3). On the
other hand, the word-level decoder is more focused
on vocabulary, therefore it has the highest scores
in proper noun augmentation inside context to the
dataset (Exp. 11). The latter represents the effec-
tiveness of word-level models in generating coher-
ent and grammatically correct output sequences
while capturing correct syntax and semantic mean-
ings of input DRS. P.N. augmentation shows the
best results in the case of the FT-byT5 model (Exp.
21). In particular, we note that FT-byT5 with P.N.
produced the highest values over all the metrics
over all the experiments. We speculate that this
result could depend on the peculiarities of the T5
original model. However, the important point for
our study is to note that also in pretrained LLMs,
data augmentation can play an important role in
performance.

For common noun augmentation, our experi-
ments are fourfold: (1) inside context with SS, (2)
inside context without SS, (3) outside context with
SS, and (4) outside context without SS: Exp. 4-7,
13-16, and 22-25 regard these four different flavors
of common noun augmentation. We believe that
the important role played by the vocabulary holds
for common nouns as well, with the highest scores

of CB-bi-LSTM decoder for outside context with
SS (Exp. 6) and best WB-bi-LSTM score for inside
context with SS (Exp. 13). Again, the FT-byT5
shows the best CN augmentation results for outside
context with SS (Exp. 24) and produced the highest
scores for all flavors of CN augmentation: when
compared to both LSTM models.

Finally, in Exp. 8-9, 17-18, and 26-27, we have
applied the best augmentation techniques of proper
and common nouns (i.e., outside context for CB-bi-
LSTM, and inside context for WB-bi-LSTM and
outside context for FT-byT5) as blended and indi-
vidual data examples. In Exp. 8, 17, and 26, the
augmentation techniques have been applied simul-
taneously to each input data example (i.e., as we
are applying 2 data transformations on one exam-
ple, we name it blended, see proper and common
noun example in Table 1). Here dataset examples
are concatenated as (original + P.N.-with-C.N.).
While in Exp. 9, 18 and 27, these augmentation
techniques have been applied separately and con-
catenated as (original + P.N + C.N) augmentation
data examples. Comparing all experimental results,
we achieved the highest scores for LSTM models
while applying the best augmentation flavors of
P.N and C.N concatenated as separate individual
training examples (Exp. 9 and 18). Similarly, in
FT-byT5 the best value is for concatenated exam-
ples (Exp. 27). However, surprisingly, in contrast
with LSTM, we do not achieve the best values in
FT-byT5 in the experiment 27 (Exp. 21). Again,
we believe that this different pattern of T5 w.r.t.
LSTM depends on the peculiarities of the original
model.

Finally, in Exp. 28, we preliminarily evaluated
the impact of the size of the augmented data. So,
we repeated Exp. 21, by halving the size of the
augmented part of the training set. The results,
with scores that are intermediate w.r.t. the baseline
and the best model, suggest that there is a linear
increase w.r.t. the size of the augmented training
set. However, more experiments are necessary to
verify this hypothesis. We tested the statistical
significance of the results with a Wilcoxon Signed
Rank Test (Dror et al., 2018).
Comparing neural DRS-to-Text and LLMs.
We compare the quality of the generated text of
our neural DRS-to-Text systems with two recent
general LLMs, ChatGPT 3.5 (OpenAI, 2023) and
Claude 2.0 (Turpin et al., 2023) in order to provide
a preliminary insight in the performance of our ap-
proach with respect to a general LLM that was not
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Exp. Implementation Type BLEU NIST METEORROUGE CIDEr BERT
Score

01 Gold-PMB (no Aug) 47.72 7.68 39.42 72.59 4.84 95.3
02 Orig + P.N. (in ctx) Aug 51.37 † 7.96 † 41.19 † 74.78 † 5.15 † 95.8
03 Orig + P.N. (out ctx) Aug 53.16 † 8.11 † 42.00 † 75.30 † 5.27 † 95.9
04 Orig + C.N. (in ctx with SS) Aug 50.28 † 7.94 40.90 † 74.24 † 5.02 † 95.7
05 Orig + C.N. (in ctx w.o. SS) Aug 49.99 † 7.91 40.14 † 74.06 † 4.96 † 95.6
06 Orig + C.N (out ctx with SS) Aug 50.89 † 7.98 † 40.70 † 74.38 † 5.08 95.7
07 Orig + C.N (out ctx w.o. SS) Aug 50.63 † 7.93 † 40.39 † 74.33 † 5.06 † 95.7
08 Orig + P.N (out ctx)-with-C.N

(out ctx with SS) Aug
52.51 † 8.06 † 41.23 † 75.28 † 5.24 † 96.0

09 Orig + P.N (out ctx) + C.N (out
ctx with SS) Aug

54.00 † 8.19 † 42.32 † 76.15 † 5.35 96.1

10 Gold-PMB (no Aug) 32.91 5.80 29.99 61.39 3.49 94.4
11 Orig + P.N. (in ctx) Aug 44.37 ‡ 7.37 ‡ 36.56 ‡ 69.54 ‡ 4.38 ‡ 95.1
12 Orig + P.N. (out ctx) Aug 42.70 ‡ 7.16 ‡ 35.39 ‡ 67.69 ‡ 4.18 94.9
13 Orig + C.N. (in ctx with SS) Aug 44.41 ‡ 7.28 ‡ 36.22 ‡ 68.78 ‡ 4.34 ‡ 95.1
14 Orig + C.N. (in ctx w.o. SS) Aug 42.94 ‡ 7.14 ‡ 35.11 ‡ 67.56 ‡ 4.19 94.8
15 Orig + C.N (out ctx with SS) Aug 41.84 ‡ 6.97 ‡ 34.25 ‡ 66.38 ‡ 4.05 94.6
16 Orig + C.N (out ctx w.o. SS) Aug 42.41 ‡ 7.13 ‡ 35.01 ‡ 67.47 ‡ 4.16 ‡ 94.8
17 Orig + P.N. (in ctx)-with-C.N. (in

ctx with SS) Aug
43.78 ‡ 7.21 ‡ 35.87 ‡ 68.52 ‡ 4.27 ‡ 95.0

18 Orig + P.N (in ctx)+C.N. (in ctx
with SS) Aug

44.39 ‡ 7.36 ‡ 36.63 ‡ 69.53 ‡ 4.29 ‡ 95.2

19 Gold-PMB (no Aug) 51.88 7.94 43.55 76.04 5.63 96.7
20 Orig + P.N. (in ctx) Aug 55.72 ⋄ 8.23 ⋄ 45.05 ⋄ 77.81 ⋄ 5.91 ⋄ 97.1
21 Orig + P.N. (out ctx) Aug 57.15 ⋄ 8.33 ⋄ 45.90 ⋄ 78.81 ⋄ 6.08 ⋄ 97.2
22 Orig + C.N. (in ctx with SS) Aug 53.08 8.04 44.20 76.64 5.68 96.8
23 Orig + C.N. (in ctx w.o. SS) Aug 52.85 8.00 44.50 76.32 5.69 96.8
24 Orig + C.N (out ctx with SS) Aug 54.71 ⋄ 8.13 ⋄ 44.77 77.27 5.84⋄ 97.0
25 Orig + C.N (out ctx w.o. SS) Aug 52.78 8.02 44.29 76.31 5.66 ⋄ 96.8
26 Orig + P.N. (out ctx)-with-C.N.

(out ctx with SS)
52.89 8.03 44.68 76.60 5.76 96.9

27 Orig + P.N. (out ctx) + C.N. (out
ctx with SS) Aug

53.34 8.02 44.60 77.05 5.71 96.9

28 Orig + half P.N. (out ctx) (ran-
domly sampled) Aug

53.42 8.04 44.44 76.50 5.74 97.0

Table 2: CB-bi-LSTM (Exp. 01-09), WB-bi-LSTM (Exp. 10-18), FT-byT5 (Exp. 19-28) individual and blended
proper noun (P.N.) and common noun (C.N.) augmentation experiments. †, ‡ and ⋄ show that the model is statistically
significant using Wilcoxon Test on all evaluation metrics scores w.r.t. the baselines (Exp. 01, 10 and 19 respectively).
All experiments are an average of 5 runs.
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Model Type Data Type BLEU NIST METEOR ROUGE CIDEr BERT
Score

CB-bi-LSTM
Gold without Aug 45.42 6.43 38.42 71.70 4.75 95.4
PN Aug 50.64 6.69 40.67 74.22 5.22 95.9
CN Aug 48.70 6.70 39.67 73.38 5.03 95.7

Claude-2.0
zero-shot 11.33 3.05 29.39 42.43 1.69 92.3
few-shot 27.25 5.39 38.58 64.25 3.51 95.3

ChatGPT-3.5
zero-shot 9.82 2.63 27.91 39.80 1.59 91.9
few-shot 9.58 2.51 26.01 37.40 1.53 91.5

byT5
Gold without Aug 47.55 6.46 42.90 74.56 5.49 96.5
PN Augmentation 54.28 6.86 45.81 78.25 5.96 97.1
CN Augmentation 53.04 6.73 45.21 76.97 5.90 96.9

Table 3: Evaluation of DRS-to-Text by LLMs reporting scores for the baseline (without augmentation), ChatGPT
3.5, Claude 2.0, and our best (augmented) models.

fine-tuned on this specific task. We have applied
both zero-shot and few-shot learning to analyze the
LLMs performance.

To capture performance insights, we considered
a sample of 215 sentences from the test set, both
(1) on the best neural DRS-to-Text models i.e., CB-
bi-LSTM and FT-byT5 (see Table 3), and (2) to
the prompt of ChatGPT 3.5 and Claude 2.0 to get
model-generated texts (see the exact prompts in
the Appendix). We evaluated the output with auto-
matic evaluation metrics scores (see Table 3). The
experimental evaluation clearly states that LLMs
being general-purpose generative models do not
perform well for the low-resource domain-specific
task thus highlighting the need for task-specific
neural models for the DRS-to-Text generation task.

ROSE based Expert Evaluation. Our final eval-
uation is based on the human evaluation of two
experts, who evaluated the generated text by an-
alyzing the model-generated systematic errors in
the form of ill-formed semantics, grammaticaliza-
tion, and phenomenon and produced a ROSE (Ro-
bust Overall Semantic Evaluation) score. Table 14
in the Appendix lists some interesting examples
generated by our best augmentation model “byT5
PN Aug”. As defined in (Wang et al., 2021), the
ROSE score is the conjunction of three 0-1 eval-
uation scores: (1) a Boolean Semantic measure
that checks if the generated text preserves the true
meaning w.r.t. to the gold reference; (2) a Boolean
Grammatical measure that checks if the generated
text is not containing any spelling or grammatical
errors; (3) a Boolean Phenomenon measure that
checks if in the generated text the “phenomenon
of control is generated at all” w.r.t. to the gold ref-

erence (Wang et al., 2021). If the text passes all
these three scores (conjunction), it gets a 1 score,
otherwise, it gets a 0 score. In Table 4, we have re-
ported the average ROSE scores on a sample of 100
sentences from the test set. This evaluation con-
firms the quality of our best augmentation model
in producing good-quality texts, showing the best
results in the ROSE measure too.

Implementation Sem. Gram. Phen. ROSE
byT5 wo Aug 45 86 48 43
ChatGPT-3.5 44 62 23 13
Claude-2.0 25 84 61 23
byT5 CN Aug 49 90 64 49
byT5 PN Aug 57 92 65 55

Table 4: Expert evaluation based on Semantics, Gram-
matical Structure, and Phenomenon for the baseline
(byT5 without augmentation), LLMs (ChatGPT and
Claude), and our best (augmented) models byT5 PN
and byT5 CN. All scores are listed in (%).

Comparative Error Analysis. To have a better
understanding of the evaluations, we further in-
vestigate the model-generated text through man-
ual inspection while comparing the same examples
generated by different models i.e., without augmen-
tation, LLMs (ChatGPT and Claude), and with
byT5 PN augmentation. In Table 5, we provide
examples indicating different aspects of semantics,
grammar, missing information, hallucinatory be-
havior of LLMs, extra information, and perfectly
generated examples. We have evaluated the model-
generated text based on: (1) wrong information (in
red), (2) extra irrelevant information (underlined),
and (3) semantically correct but with different tex-
tual representations (in blue).
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Reference Text Model Type Model Generated Text

You can’t live on that island.

Without Aug Everybody can’t live in the island.
ChatGPT-3.5 If a person does not live on an island, it is possible.
Claude-2.0 If x1 is a person, then x1 does not live on an island,

which is presumed.
With Aug You cannot live on the island.

It will cost around 10000 yen.

Without Aug It will cost about 1000 yen.
ChatGPT-3.5 The cost of the entity referred to by x1 is pre-

supposed to be now and is equal to 10,000 yen
per unit.

Claude-2.0 An entity costs 10000 yen now.
With Aug It will cost about 10 thousand yen.

Have you googled her?

Without Aug You googled her.
ChatGPT-3.5 The hearer (you), who is a female, is currently

googling something at the present time.
Claude-2.0 The hearer is currently googling a presumed fe-

male.
With Aug Have you googled her?

Table 5: Error analysis of different byT5 P.N. augmented model-generated examples w.r.t. reference text.

In Table 5, we have reported three important as-
pects of natural language generation text including
negation, question, and quantity. In the context of
the examples listed in the table, the model with-
out augmentation was facing difficulties in captur-
ing the true semantics of the sentences (completely
wrong semantics are highlighted in red). The model
was also facing problems in identifying the exact
quantity and the grammatical structure of the sen-
tences (see examples in Table 5 for the model
without augmentation).

ChatGPT and Claude, did not perform well as
both models failed to generate exact translations
for the DRS examples. It can be analyzed from
the examples that the models started to explain
the logical representation of the DRS rather than
generating the exact translation (irrelevant text is
underlined). We believe that this is because no
semantic/formal meaning representation was used
in the training of these LLMs. While performing
manual inspection of LLM-generated text, we have
chosen examples from the best models i.e., few-
shot text for Claude, and zero-shot text for chatGPT
(see LLM results in Table 3 for few-shot and zero-
shot).

Our best augmentation model was able to cap-
ture the semantic and grammatical representation
in the best possible way thus struggling a bit to
copy the exact information as listed in the test set.
These minor alterations (highlighted in blue) in the

model-generated text do not affect the human evalu-
ation (though it will cause low scores for automatic
evaluations because of exact word overlaps of text
pairs) as the generated text sustains the exact mean-
ing, semantics, and grammatical structure of the
sentences.

5 Conclusion
In this paper, we have performed a series of ex-
periments on data augmentation for neural DRS-
to-Text generation. Using the PMB dataset, we
adopted a novel approach to augment lexical in-
formation in DRS for proper and common nouns
along with the ability to sustain contextual simi-
larly through SS approach on different in- and out-
of-context transformations. Experimental results
reflect both individual and blended implementation
scores for our seq-to-seq models (from a training
perspective) and Transformer model (from a fine-
tuning perspective). The significantly improved
results for the char, word, and transformer level
models prove the effectiveness and reliability of
our proposed approach.

Limitations

As PMB is a multilingual dataset, we have not ex-
panded our implementation on other low-resource
languages like Italian, Dutch, and German. We are
also exploring other possible augmentation strate-
gies to transform verb phrases.

2172



Acknowledgements

We would like to thank evaluators for performing
ROSE human evaluation for our experiments. We
would also like to thank the anonymous reviewers
for their insightful comments.

References
Muhammad Saad Amin, Alessandro Mazzei, and Luca

Anselma. 2022. Towards data augmentation for drs-
to-text generation. In Proceedings of the Sixth Work-
shop on Natural Language for Artificial Intelligence
(NL4AI 2022) co-located with 21th International
Conference of the Italian Association for Artificial
Intelligence (AI*IA 2022), Udine, November 30th,
2022, volume 3287 of CEUR Workshop Proceedings,
pages 141–152. CEUR-WS.org.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. in Proc., 7:178–186.

Valerio Basile and Johan Bos. 2011. Towards generat-
ing text from discourse representation structures. in
ENLG’, 11:145–150.

Johan Bos. 2021. Quantification annotation in dis-
course representation theory. in ISA 2021-17th
Workshop on Interoperable Semantic Annotation,
Groningen/Virtual, Netherlands.

Massimiliano Ciaramita and Mark Johnson. 2003. Su-
persense tagging of unknown nouns in wordnet. In
Proc, pages 168–175. 2003 Conference on Empirical
Methods in Natural Language Processing.

Hao Dong, Jingqing Zhang, Douglas McIlwraith, and
Yike Guo. 2017. I2t2i: Learning text to image syn-
thesis with textual data augmentation. In IEEE in-
ternational conference on image processing (ICIP),
pages 2015–2019. vol. 2017. IEEE.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi
Reichart. 2018. The hitchhiker’s guide to testing
statistical significance in natural language processing.
in Proc., 56:1383–1392.

Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chan-
dar, Soroush Vosoughi, Teruko Mitamura, and Ed-
uard Hovy. 2021. A survey of data augmentation
approaches for NLP. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 968–988, Online. Association for Computa-
tional Linguistics.

Jeffrey Flanigan, Chris Dyer, Noah A Smith, and
Jaime G Carbonell. 2016. Generation from abstract
meaning representation using tree transducers. in
Proc., 2016:731–739.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. The webnlg chal-
lenge: Generating text from rdf data. In Proceedings
of the 10th International Conference on Natural Lan-
guage Generation, pages 124–133.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Yutai Hou, Yijia Liu, Wanxiang Che, and Ting Liu.
2018. Sequence-to-sequence data augmentation for
dialogue language understanding. arxiv. Preprint.

Katarzyna Jaszczolt. 2023. Semantics, Pragmatics, Phi-
losophy: A Journey Through Meaning. New York,
NY: Cambridge University Press.

Marcin Junczys-Dowmunt, Kenneth Heafield, Hieu
Hoang, Roman Grundkiewicz, and Anthony Aue.
2018. Marian: Cost-effective high-quality neural
machine translation in c++. Arxiv. /abs/, 1805:12096.

Hans Kamp and Uwe Reyle. 1993. From Discourse to
Logic: Introduction to Modeltheoretic Semantics of
Natural Language, Formal Logic and Discourse Rep-
resentation Theory. Kluwer Academic Publishers,
Dordrecht.

Jiangming Liu, Shay B. Cohen, and Mirella Lapata.
2021. Text generation from discourse representation
structures. In Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 397–415, Online. Association
for Computational Linguistics.

Rik van Noord. 2019. Neural boxer at the IWCS shared
task on DRS parsing. in Proc. IWCS Shared Task on
Semantic Parsing, Gothenburg, Sweden. Association
for Computational Linguistics[.

OpenAI. 2023. Gpt-4 technical report.

Ankur Parikh, Xuezhi Wang, Sebastian Gehrmann, Man-
aal Faruqui, Bhuwan Dhingra, Diyi Yang, and Di-
panjan Das. 2020. Totto: A controlled table-to-text
generation dataset. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1173–1186.

Connor Shorten and Taghi M Khoshgoftaar. 2019. A
survey on image data augmentation for deep learning.
Journal of big data, 6(1):1–48.

Miles Turpin, Julian Michael, Ethan Perez, and
Samuel R. Bowman. 2023. Language models don’t
always say what they think: Unfaithful explanations
in chain-of-thought prompting.

Rik van Noord, Lasha Abzianidze, Hessel Haagsma,
and Johan Bos. 2018. Evaluating scoped meaning
representations. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. European
Language Resources Association (ELRA).

2173

https://ceur-ws.org/Vol-3287/paper14.pdf
https://ceur-ws.org/Vol-3287/paper14.pdf
https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.18653/v1/2021.findings-acl.84
https://doi.org/10.18653/v1/2021.findings-acl.84
https://doi.org/10.18653/v1/N16-1087]
https://doi.org/10.18653/v1/N16-1087]
http://arxiv.org/abs/1807.01554
http://arxiv.org/abs/1807.01554
https://doi.org/10.18653/v1/2021.naacl-main.35
https://doi.org/10.18653/v1/2021.naacl-main.35
https://doi.org/10.18653/v1/W19-1204]
https://doi.org/10.18653/v1/W19-1204]
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2305.04388
http://arxiv.org/abs/2305.04388
http://arxiv.org/abs/2305.04388
https://aclanthology.org/L18-1267
https://aclanthology.org/L18-1267


Chunliu Wang, Huiyuan Lai, Malvina Nissim, and Jo-
han Bos. 2023. Pre-trained language-meaning mod-
els for multilingual parsing and generation.

Chunliu Wang, Rik van Noord, Arianna Bisazza, and
Johan Bos. 2021. Evaluating text generation from
discourse representation structures. In Proceedings
of the 1st Workshop on Natural Language Generation,
Evaluation, and Metrics (GEM 2021), pages 73–83,
Online. Association for Computational Linguistics.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-
Rfou, Sharan Narang, Mihir Kale, Adam Roberts,
and Colin Raffel. 2022. ByT5: Towards a token-free
future with pre-trained byte-to-byte models. Transac-
tions of the Association for Computational Linguis-
tics, 10:291–306.

Suorong Yang, Wei-Ting Xiao, Mengcheng Zhang,
Suhan Guo, Jian Zhao, and Shen Furao. 2022. Im-
age data augmentation for deep learning: A survey.
ArXiv, abs/2204.08610.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Evalu-
ating text generation with BERT. In 8th International
Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

2174

http://arxiv.org/abs/2306.00124
http://arxiv.org/abs/2306.00124
https://doi.org/10.18653/v1/2021.gem-1.8
https://doi.org/10.18653/v1/2021.gem-1.8
https://doi.org/10.1162/tacl_a_00461
https://doi.org/10.1162/tacl_a_00461
https://api.semanticscholar.org/CorpusID:248240105
https://api.semanticscholar.org/CorpusID:248240105
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr


Appendix

In this appendix, we report some details about the
experimental parameters and the experimental re-
sults. In Appendix A.1 we report hyperparameter
settings for LSTM and T5, dataset information,
and prompts for ChatGPT and Claude. In Ap-
pendix A.2 we report some details about the ex-
perimental results, including precision, recall, and
F1-Score BERTScore for char-level, word-level,
and byT5 experiments, and an error analysis for
ROSE evaluation.

A.1 Experimental Settings

In this section, we report the hyperparameters for
CB-bi-LSTM and WB-bi-LSTM (Table 6), the hy-
perparameters for T5 experiments (Table 7), dataset
size (Table 8), the graphical distribution of Named
Entities for Proper Noun Augmentation (Figure 3),
SS-based graphical distribution of Common Noun
Entities for Common Noun Augmentation (Fig-
ure 4), the prompts for ChatGPT-3.5 (Table 9) and
for Claude-2.0 (Table 10).

HyperParameters Values
Embedding Dimensions 300
Enc/Dec Cell LSTM
Enc/Dec Depth 2
Mini-batch 48
Normalization Rate 0.9
lr-decay 0.5
lr-decay-strategy Epoch
Optimizer Adam
Validation Metric Cross-Entropy
Cost-Type ce-mean
Beam Size 10
Learning Rate 0.002

Table 6: Hyperparameter settings for CB-bi-LSTM and
WB-bi-LSTM.

HyperParameters Values
Batch size 15
Update steps 8
Max learning Rate 1e-4
Min learning Rate 1e-5
Warmup updates 3000
Max decay steps 30000
No. of epochs 15
Optimizer AdamW

Table 7: Hyperparameter settings for FT-byT5.

A.2 Additional Experimental Results

In this section we report BERT-Scores for CB-bi-
LSTM (Table 11), BERT-Scores for WB-bi-LSTM
(Table 12), BERT-Scores for FT-byT5 (Table 13),

Transformation Type Size Examples
Orig Training Examples x1 6620

Orig + P.N. Aug x2 13240
Orig + C.N. Aug x2 13240
Orig + P.N.-with-C.N. Aug x2 13240
Orig + P.N. + C.N. Aug x3 19860

Validation Examples 885
Test Examples 898

Table 8: Dataset size (‘+’ indicates augmentation ap-
plied in individual form and ‘-’ in blended form).

Figure 3: Distribution of proper noun entities in Gold-
PMB dataset.

and ROSE analysis w.r.t semantic, grammar, and
phenomena scores (Table 14).

A direct inspection of the sample of sentences in
Table 14 shows that there are some differences be-
tween reference and generated texts and that these
are due to the specificity of DRS representation. Ex.
1 provides a true lexical error that does not correctly
generate the word for the semantic category of goat.
Ex. 2 provides a grammatical error, where the lack
of the post-meridian specifier provokes an underde-
fined sentence. Ex. 3 provides a completely correct
generation since the DRS format does not allow to
specify the cardinality of the agent. Similarly, Ex.
4 provides a complete correct generation, since the
difference in the representation of numbers (digits
vs words) does not change the true meanings of the
sentence. These types of sentences are penalized
in automatic evaluation due to the exact match of
generated and reference text, thus highlighting the
true need for human evaluation. Similar to Ex. 3,
Ex. 5 provides a completely correct generation
since the DRS format does not allow to specify the
definiteness of the agent.
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Figure 4: SS tagging based categorical division of common noun entities in Gold-PMB dataset.

Prompt
Discourse Representation Structure (DRS) refers to a formal representation used to capture the meaning of a sentence or
a piece of text in a way that can be processed and analyzed by computational systems. Given a clausal format of DRS,
can you generate an English translation of the given DRS?
ChatGPT Response
Absolutely, I can assist you in generating English translations from a clausal format of Discourse Representation
Structure (DRS). Please provide me with the specific DRS you have in mind, and I’ll do my best to provide you with the
corresponding English translation.
Prompt
b2 REF s1
b2 Attribute x1 s1
b2 Value s1 "?"
b2 far "a.01" s1
b2 REF t1
b2 EQU t1 "now"
b2 Time s1 t1
b2 time "n.08" t1
b1 REF x1
b1 PRESUPPOSITION b2
b1 entity "n.01" x1
ChatGPT Response
The provided Discourse Representation Structure (DRS) corresponds to the following English sentence:
"Is it far now in time?"
Explanation:
The lines in the DRS represent the following:
b2 REF s1 introduces a reference to a situation "s1."
b2 Attribute x1 s1 attributes "x1" (later determined to be "it") to situation "s1."
b2 Value s1 "?" indicates that the value of situation "s1" is a question mark, implying an interrogative context.
b2 far "a.01" s1 specifies that situation "s1" is associated with being "far" (distant).
b2 REF t1 introduces a reference to a time "t1."
b2 EQU t1 "now" equates time "t1" with "now," indicating the present time.
b2 Time s1 t1 associates situation "s1" with time "t1."
b2 time "n.08" t1 relates the concept of time "t1" to the noun "time."
b1 REF x1 introduces a reference to an entity "x1."
b1 PRESUPPOSITION b2 establishes a presupposition relationship with "b2."
b1 entity "n.01" x1 indicates that "x1" is an entity, often referred to as "it."
Putting it all together, the English translation is "Is it far now in time?" This DRS representation and its translation
capture the structure and meaning of the given sentence.
Prompt
The translation should be without explanation. Just one line English sentence.
ChatGPT Response
My time is ?.
Actual Translation
How far is it?

Table 9: Example of a prompt and the related response from ChatGPT 3.5 for DRS-to-Text generation.
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Prompt
Discourse Representation Structure (DRS) refers to a formal representation used to capture the meaning of a sentence or
a piece of text in a way that can be processed and analyzed by computational systems. Given a clausal format of DRS,
can you generate an english translation of the given DRS?
Claude Response
Sure, here is an example of generating an English translation from a clausal DRS format:
Given DRS:
x, y, e
book(x)
person(y)
own(e, y, x)
English translation:
"There is a book x and a person y such that y owns x."
The key aspects are:
The discourse referents x, y, e represent objects or events introduced in the DRS conditions.
The conditions like book(x) and person(y) provide information about these referents.
own(e, y, x) represents a relation between the referents.
These conditions can be translated into English by referring back to the introduced referents and expressing the relations
between them.
Additional discourse context like tense, temporal relations, modality etc. can also be represented in the DRS and
translated appropriately.
So in essence, I would analyze the DRS conditions and referents, identify the objects, events and relations they represent,
and generate corresponding English sentences to verbalize those meanings.
Let me know if you need any other examples of translating DRS representations into natural language!
Prompt
b2 REF s1
b2 Attribute x1 s1
b2 Value s1 "?"
b2 far "a.01" s1
b2 REF t1
b2 EQU t1 "now"
b2 Time s1 t1
b2 time "n.08" t1
b1 REF x1
b1 PRESUPPOSITION b2
b1 entity "n.01" x1
Claude Response
Here is my attempt at translating the given DRS into English:
There is a referent s1.
s1 has the attribute x1.
The value of s1 is "?".
s1 is far away "a.01".
There is a referent t1.
t1 is equated to "now".
s1 occurs at time t1.
t1 is the present time "n.08".
There is a referent x1.
x1 presupposes referent b2.
x1 is an entity "n.01".
In plain English:
There is something s1. It has some attribute x1 and its value is unknown (?). s1 is far away. There is a time t1 which is
the present. s1 occurs at this present time. There is something x1 which presupposes something else b2. x1 is an entity.
Let me know if this translation captures the meaning represented in the DRS or if you have any other feedback! I’m still
learning how to translate from DRS to natural language.
Prompt
The translation should be without explanation. Just one line English sentence.
Claude Response
Here is a one line English translation of the given DRS:
There is a far away entity with an unknown attribute occurring now which presupposes something else.
Actual Translation
How far is it?

Table 10: Example of a prompt and its related response from Claude 2.0 for DRS-to-Text generation.

2177



Exp. No Implementation Type Precision Recall F1-Score
01 Gold (without augmentation) 95.2 95.4 95.3
02 Gold + PN (inside context) 95.8 95.9 95.8
03 Gold + PN (outside context) 95.9 95.9 95.9
04 Gold + CN (inside context with SS) 95.7 95.7 95.7
05 Gold + CN (inside context without SS) 95.7 95.5 95.6
06 Gold + CN (outside context with SS) 95.5 95.8 95.7
07 Gold + CN (outside context without SS) 95.8 95.7 95.7
08 Gold + PN-with-CN 96.1 95.9 96.0
09 Gold + PN + CN 96.1 96.1 96.1

Table 11: BERT-Score for all Char-level-based implementation of augmentation experiments with Precision, Recall,
and F1-Score.

Exp. No Implementation Type Precision Recall F1-Score
01 Gold (without augmentation) 94.6 94.3 94.4
02 Gold + PN (inside context) 95.2 95.0 95.1
03 Gold + PN (outside context) 95.0 94.8 94.9
04 Gold + CN (inside context with SS) 95.2 95.0 95.1
05 Gold + CN (inside context without SS) 94.9 94.7 94.8
06 Gold + CN (outside context with SS) 94.6 94.5 94.6
07 Gold + CN (outside context without SS) 95.0 94.7 94.8
08 Gold + PN-with-CN 95.1 94.9 95.0
09 Gold + PN + CN 95.3 95.1 95.2

Table 12: BERT-Score for all Word-level-based implementation of augmentation experiments with Precision, Recall,
and F1-Score.

Exp. Implementation Type Pre. Rec. F1
01 Gold (without augmentation) 96.6 96.9 96.7
02 Gold + PN (inside context) 96.9 97.3 97.1
03 Gold + PN (outside context) 97.0 97.4 97.2
04 Gold + CN (inside context with SS) 96.6 97.1 96.8
05 Gold + CN (inside context without SS) 96.5 97.1 96.8
06 Gold + CN (outside context with SS) 96.8 97.2 97.0
07 Gold + CN (outside context without SS) 96.6 97.1 96.8
08 Gold + PN-with-CN 96.6 97.2 96.9
09 Gold + PN + CN 96.6 97.2 96.9
10 Gold + half (randomly sampled) P.N. (outside context)

Aug
96.7 97.2 97.0

Table 13: BERT-Score for all byT5-based implementation of augmentation experiments with Precision (Pre), Recall
(Rec), and F1-Score (F1).

Ex. Reference Text Generated Text Sem. Gram. Phen. ROSE
1 I am milking my goat. I’m milking my squirrel. 0 1 1 0
2 Susan shined your father’s

shoes.
Susan shined your father’s. 0 0 1 0

3 We arrived two days ago. I arrived two days ago. 1 1 1 1
4 Three times five is fifteen. 3 times 5 is 15. 1 1 1 1
5 An elephant has a long

nose.
The elephant has a long
nose.

1 1 1 1

Table 14: Analysis of byT5 PN augmentation model-generated examples w.r.t reference text for ROSE evaluation.
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