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Abstract
Sentence alignment – establishing links be-
tween corresponding sentences in two related
documents – is an important NLP task with sev-
eral downstream applications, such as machine
translation (MT). Despite the fact that exist-
ing sentence alignment systems have achieved
promising results, their effectiveness is based
on auxiliary information such as document
metadata or machine-generated translations, as
well as hyperparameter-sensitive techniques.
Moreover, these systems often overlook the
crucial role that context plays in the alignment
process. In this paper, we address the afore-
mentioned issues and propose CROCOALIGN:
the first context-aware, end-to-end and fully-
neural architecture for sentence alignment. Our
system maps source and target sentences in
long documents by contextualizing their sen-
tence embeddings with respect to the other sen-
tences in the document. We extensively eval-
uate CROCOALIGN on a multilingual dataset
consisting of 20 language pairs derived from
the Opus project, and demonstrate that our
model achieves state-of-the-art performance.
To ensure reproducibility, we release our code
and model checkpoints at https://github.
com/Babelscape/CroCoAlign.

1 Introduction

Sentence alignment is the task of matching sen-
tences in two or more documents that are related
to each other (Abdul-Rauf et al., 2012), as shown
in Figure 1. The task is important in many down-
stream applications, including machine translation
(MT, Shi et al., 2021), text simplification (Jiang
et al., 2020) and paraphrase generation (Barzilay
and Lee, 2003). Although current approaches have
achieved promising results on standard benchmarks
for the task (Volk et al., 2010), they are strongly
focused on hyperparameter-sensitive heuristics and
on using auxiliary MT systems, hence overlook-
ing the primary role that context plays when per-
forming sentence alignment (Sennrich and Volk,

Figure 1: Examples of 1-to-1, many-to-1 and 1-to-many
alignments between source and target sentences written
in English and Italian, respectively.

2011; Thompson and Koehn, 2019). Indeed, sen-
tences can be ambiguous when taken out of context,
whereas modeling the surrounding sentences helps
in disambiguating meanings, leading to a more ac-
curate alignment. In particular, we note that exist-
ing approaches are not suitable for fully addressing
complex challenges like many-to-many alignments
and the identification of non-alignable sentences,
which also require the modeling and understand-
ing of context. We emphasize that the foregoing
are not uncommon challenges when aligning long
texts, such as books, which may have been adapted
through transcreation, according to socio-economic
and cultural factors (Gaballo, 2012).

Moreover, current approaches are mainly fo-
cused on European parliament transcriptions (Eu-
roparl, Koehn, 2005) and on other extremely spe-
cific domains, such as the digitized heritage of Ger-
man and French alpine literature (Text+Berg, Volk
et al., 2010) and the Bible (Christodouloupoulos
and Steedman, 2015). However, we observe that
the peculiarities of the aforementioned corpora –
the shortness of Text+Berg and its focus on a sin-
gle language pair, the political-financial domain
of Europarl and its transcriptive style, as well as
the genre of the Bible – may not provide a suit-
able framework for training current approaches and
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evaluating their generalizability.
To address the above-mentioned limitations, in

this paper we carry out an in-depth investigation on
the role of modeling cross-sentence context in the
process of sentence alignment in long texts, and
put forward the following three main contributions:

• We introduce CROCOALIGN, the first fully-
neural sentence alignment system equipped
with a novel cross-sentence encoder to model
context in long texts;

• We train and evaluate CROCOALIGN on a
multilingual dataset derived from the Opus
books project,1 which includes 16 languages,
64 language pairs, and 251 parallel books,
showing that our system consistently outper-
forms the current state of the art on the task
of sentence alignment in long texts;

• We demonstrate the quality of the data that
CROCOALIGN can produce with downstream
experiments on machine translation of books,
reporting improved performance over strong
MT baselines.

Ultimately, we hope that this study will stimulate
further research into sentence alignment systems
that can improve the understanding and analysis of
long texts as a whole.

2 Related Work

In this section, we review the literature of the sen-
tence alignment task. To highlight the unique as-
pects of this task, we also outline the differences
between sentence alignment and bitext mining, a
closely related task, and describe why bitext mining
systems are not suitable for sentence alignment. Fi-
nally, we showcase applications of sentence align-
ment systems in MT, underlining the importance
of the task in real-world scenarios.

2.1 Sentence Alignment

Traditional ways of aligning sentences were to
leverage sentence length information, or to look
for lexical patterns. The first sentence alignment
systems relied solely on the number of words
or characters within each sentence (Brown et al.,
1991; Gale and Church, 1993). Similarly, Kay and
Röscheisen (1993) presented an alignment algo-
rithm based on word correspondences, while Chen

1https://opus.nlpl.eu/Books.php

(1993) calculated the probability of an alignment
by using a word-to-word translation model.

To speed up computation, later research merged
word-level features with sentence-level translations
(Moore, 2002; Varga et al., 2007). It is also possible
to align sentences based on their degree of textual
and metatextual structure. For instance, Tiedemann
(2007) indicated that movie subtitles can be highly
attractive for alignment thanks to their time stamps.
MT-based methods were introduced in subsequent
literature (Sennrich and Volk, 2011), followed five
years later by pruned phrase tables from a statistical
MT system (Gomes and Lopes, 2016). In both
the foregoing methods, high-probability one-to-one
alignments were anchored in the search space and
then the alignments were filled in and refined.

More recently, Thompson and Koehn (2019)
introduced Vecalign, which uses a dynamic pro-
gramming algorithm based on a combination of
LASER (Artetxe and Schwenk, 2019) sentence em-
beddings and Fast Dynamic Time-Warping, setting
a new state of the art in sentence alignment. Al-
though previous work has greatly improved the per-
formance of sentence alignment systems, we still
lack an in-depth investigation on how to encode
cross-sentence context in long texts.

2.2 Bitext Mining
Bitext mining, also known as bitext retrieval, is
the task of mining sentence pairs that are transla-
tions of each other from large text corpora. Dif-
ferently from sentence alignment, where global
context and sequentiality play a key role and many-
to-many alignments are possible, bitext mining sys-
tems focus on standalone, 1-to-1 sentence pairs.
Typically, bitext mining systems undergo assess-
ment through established benchmarks, such as the
United Nations (Ziemski et al., 2016, UN), BUCC
(Zweigenbaum et al., 2017), and the Tatoeba cor-
pora (Artetxe and Schwenk, 2019). Nevertheless,
these datasets are organized in a manner where,
given two monolingual corpora, only a portion of
them is assumed to be parallel. This suggests that
the source domain can vary greatly from one sen-
tence to another, thereby being in significant con-
trast with sentence alignment datasets, where the
domain tends to remain consistent throughout the
entire document. For this reason, state-of-the-art bi-
text mining systems, such as LASER (Artetxe and
Schwenk, 2019) and LaBSE (Feng et al., 2022),
are not designed to handle sequential relationships
between sentences within a document, and over-
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look situations where source or target sentences are
fragmented into multiple segments.

2.3 Sentence Alignment for MT

Bitext mining has gained significant attention ow-
ing to its ability to generate high-quality parallel
data for training MT systems as a result of its
straightforward approach and wide-ranging util-
ity (NLLB team et al., 2022). In contrast, sentence
alignment systems have received limited recogni-
tion, despite the potential advantages they offer by
capturing not only the broader context found within
parallel documents but also the ordering of the sen-
tences therein. As an example, Shi et al. (2021)
illustrated the substantial advantages that an aux-
iliary sentence alignment system can yield during
the training of MT models. Additional studies have
also demonstrated that even sentence alignment
systems can be employed effectively to automati-
cally generate data for training MT models (Thomp-
son and Koehn, 2019); however, to the best of our
knowledge, we still lack an in-depth investigation
of how sentence alignment can be used as a means
of producing training data for fine-tuning MT sys-
tems on long texts or specific domains/genres.

3 CroCoAlign

In this section, we describe CROCOALIGN, a
language-agnostic, fully-neural method for align-
ing sentences between pairs of documents, de-
signed specifically to model context in long texts.
Our core intuition is that the embedding of an in-
dividual sentence, independently of how expres-
sive it may be, lacks information about its sur-
rounding context, i.e., the previous and follow-
ing sentences. Therefore, the fundamental nov-
elty of CROCOALIGN lies in its modeling of the
document-level sequentiality of the sentence repre-
sentations. CROCOALIGN accomplishes this pro-
cess by initially encoding source and target sen-
tences using a sentence transformer (Section 3.1).
It subsequently enhances the resulting sentence-
level representations by employing a novel context
encoder to incorporate additional contextual infor-
mation at the document level (Section 3.2). Then,
it proceeds by determining whether or not a source-
target sentence pair is an alignment by feeding the
element-wise product of the resulting contextual-
ized sentence embeddings to a multi-label classifier
(Section 3.3), minimizing the training objective ex-
plained in Section 3.4. Finally, CROCOALIGN also

features a novel two-step procedure, which we refer
to as POINTING and RECOVERY, needed at infer-
ence time to address the problem of locating the
sentences to be aligned and refining the predictions,
as described in Section 3.5. Figure 2 shows the
overall architecture.

3.1 Cross-lingual Sentence Embeddings

There is a significant body of research that shows
that sentence embeddings can be employed effec-
tively in bitext mining to filter and locate paral-
lel sentences across multiple corpora (Schwenk
et al., 2021). Given the strong relationship be-
tween sentence alignment and bitext mining, we
build our approach on pretrained sentence embed-
dings. Specifically, we exploit the inherent struc-
ture of cross-lingual sentence embeddings, where,
given two sentences written in different languages
but having similar meanings, these are mapped
to nearby vectors in the space. Differently from
previous approaches that exploit bilingual embed-
dings (Artetxe and Schwenk, 2019), hence requir-
ing one model for each language pair, we employ a
language-agnostic sentence transformer.

We stress that our method is independent of the
sentence transformer used, and also allows the use
of bilingual embeddings. Thus, let s1, ..., sn and
t1, ..., tm be a sequence of source and target sen-
tences, respectively. We encode each of these by
means of the aforementioned sentence transformer
in order to generate their respective sentence em-
beddings Es1 , ..., Esn and Et1 , ..., Etm .

3.2 Encoding Context Across Sentences

In order to refine Es1 , ..., Esn and Et1 , ..., Etm , we
input these embeddings to a randomly-initialized
transformer encoder, which we refer to as context
encoder (see Figure 2), that, by means of positional
embeddings and the attention mechanism, captures
the inherent information in the surrounding context.
The output of this procedure consists of source and
target contextualized sentence embeddings, namely
Cs1 , ..., Csn and Ct1 , ..., Ctm . It is worth noting
that it is theoretically possible to obtain a contex-
tual representation of every sentence in a document
by encoding all its sentences in a single batch, and
that this choice is dictated by hardware constraints.

3.3 Classification

Given Cs1 , ..., Csn and Ct1 , ..., Ctm from the pre-
vious step, we create a matrix Mn×m where the
entry Mij contains the element-wise product of



Figure 2: The overall architecture of CROCOALIGN. Given a set of source and a target sentences, each individual
sentence si and tj is first encoded to obtain sentence embeddings Esi and Etj , respectively. Then, the resulting
sentence embeddings are given as input to a context encoder, which produces contextualized sentence embeddings,
i.e. Csi and Ctj . Subsequently, the element-wise product of Csi and Ctj is computed and fed to a linear layer for
classification.

the embeddings Csi and Ctj . The resulting vec-
tor is then fed into a classification head in order
to output the logits associated with the sentences
to be aligned, updating the value of Mij . These
values are converted to probabilities by means of
the sigmoid activation function and then rounded
to binary values using a threshold of 0.5. This
probability is calculated for every pair of source
and target sentences in the input batch. As a result,
each source sentence can be mapped to zero, one,
or multiple target sentences, and vice versa, there-
fore modeling scenarios such as those in which no
sentence in one book has an equivalent in another,
or when the alignment is 1-to-many, many-to-1, or
many-to-many. Figure 2 shows examples of 1-to-1,
many-to-1 and 1-to-many alignments, pictured as
green cells in the matrix.

3.4 Training Objective

The model is trained to maximize the element-wise
product between the contextualized embeddings of
source and target sentences that correspond to an
alignment according to the ground truth. At the
same time, the model is also trained to minimize
the element-wise product of sentences that should

not be aligned. More formally, the loss is computed
as follows:

L(M,M̂) =− 1

n

1

m

n∑
i=1

m∑
j=1

[
M̂ij · log (σ(Mij))

+(1− M̂ij) · log (1− σ(Mij))
]
,

where M and M̂ are both matrices in Rn×m cor-
responding to the predicted and gold alignments,
respectively, while σ is the sigmoid activation func-
tion, applied element-wise to the elements of M .

3.5 Identifying Target Contexts and Reducing
Noise at Inference Time

While gold alignments are available at training
time, allowing us to construct predefined source
and target batches to be aligned, this information
is missing at inference time. In order to mitigate
this issue, we introduce a procedure that we refer
to as POINTING, to first identify the source and tar-
get batches to be aligned. This procedure uses an
approximate nearest neighbor algorithm to find the
most closely related target contexts, given a source
context. Specifically, using the FAISS algorithm



(Johnson et al., 2019), we identify the set of k can-
didate target sentence embeddings that are closest
to a given source embedding Esi , according to their
cosine similarity. Afterwards, in order to identify
the correct target embedding, for each candidate
we construct a context of N sentences surrounding
and including both the source and the pointed tar-
get sentences. After obtaining such contexts, we
provide them as input to our model and ask for a
prediction. We finally select the target context T
with the highest alignment probability, that is, the
one with the highest number of alignments.2

Additionally, to guarantee alignment between
each source sentence and its corresponding target
fragments (if any), the subsequent iteration gener-
ates a new source context by intersecting ⌈N/2⌉
sentences with the previous context. This approach
makes it possible to align source sentences with tar-
get fragments that were originally located outside
the boundaries of T .

Due to the strategy just described, there may be
some noise in the final prediction. As an example,
in different iterations, a source sentence might be
aligned with two or more non-adjacent target sen-
tences. In this scenario, we apply a RECOVERY

procedure in order to determine which of the non-
adjacent target sentences (or combination of target
sentences) is most similar to the source sentence.
We experiment with different recovery procedures
and we explain these in detail in Section 4.3.

4 Experimental Setup

Our system is developed using the Pytorch Light-
ning framework3 and the HuggingFace models li-
brary.4 In order to generate the initial sentence
embeddings (Section 3.1) for each source and tar-
get batch of sentences, we use the sentence trans-
former Language-Agnostic Bert Sentence Embed-
dings5 (LaBSE, Feng et al., 2022). During training,
we keep the weights of the sentence transformer
frozen. For the transformer encoder (Section 3.2),
we employ DistilBERT6 (Sanh et al., 2019), which
is initialized with random weights and then trained
with six attention heads, six layers and a dropout

2We experiment with k ∈ {5, 10, 20, 100} and observe
the best results with k = 10. We highlight that we penalize
retrieved target contexts that are relatively far away in the
document from the source context, regardless of the alignment
probability.

3
https://www.pytorchlightning.ai/

4
https://huggingface.co/docs/transformers/

5
https://huggingface.co/sentence-transformers/LaBSE

6
https://huggingface.co/distilbert-base-uncased

of 0.2. For the classification head (Section 3.3),
we use a dropout of 0.2 and the ReLU activation
function. We train our system on a RTX 3090 Ti
for a maximum of 1.25 million steps and an early
stopping mechanism with a patience set to 10. We
use the AdamW optimizer with a weight decay of
0.01, a learning rate of 10−5, and a linear scheduler
with a warmup of 10% of the maximum number
of training steps. We select the best model based
on its strict F1 score on the validation set, which
demands an exact match between the predicted and
the gold alignments. In the following, we describe
the dataset we use for our experiments (Section
4.1), the baselines we compare with (Section 4.2),
and the variants of our model (Section 4.3).

4.1 Dataset
We extract our dataset from the book section of
the Opus project website.7 The website provides a
collection of copyright-free books aligned by An-
dras Farkas.8 The dataset contains 16 languages,
64 language pairs and a total of 251 parallel books.
For each available parallel book, there is a corre-
sponding file specifying the ground truth of the
sentences to be aligned according to their IDs. Ta-
ble 1 summarizes dataset information, such as cov-
ered languages, number of books written in the
source language, number of sentences and tokens.
In addition, Table 2 shows the details about the oc-
currences of each alignment type contained in the
dataset. For validation and test purposes, we select
books whose language pairs appear at least 2 times
in the overall corpus. We divide the resulting 20
books into half for validation and half for testing,
and we use the remaining 231 books for training
purposes. Further statistics about our dataset can
be found in Appendix A.

4.2 Baseline Systems
Bleualign. The algorithm proposed by Sennrich
and Volk (2011) makes use of an external MT sys-
tem to guide the alignment based on the BLEU
score between the given translation and the tar-
get sentence. The alignment can also be cross-
validated by entering both source and target trans-
lations in order to enhance the performance. The
system uses the Gale and Church (1993) algorithm
to obtain an initial alignment, and then refines it us-
ing MT. However, when the BLEU score between
the target sentence and the source translation is

7
https://opus.nlpl.eu/Books.php

8
http://www.farkastranslations.com/

https://www.pytorchlightning.ai/
https://huggingface.co/docs/transformers/
https://huggingface.co/sentence-transformers/LaBSE
https://huggingface.co/distilbert-base-uncased
https://opus.nlpl.eu/Books.php
http://www.farkastranslations.com/


Lang. # Books # Sentences # Tokens

CA 1 5.0K 93.3K
DE 12 71.0K 1.3M
EL 1 1.6K 36.5K
EN 42 0.2M 5.9M
EO 2 2.0K 38.8K
ES 18 0.1M 2.4M
FI 1 3.8K 54.5K
FR 29 0.2M 3.6M
HU 28 0.2M 3.3M
IT 8 36.0K 0.8M
NL 9 55.1K 1.3M
NO 1 4.0K 67.9K
PL 1 3.3K 43.5K
PT 1 1.5K 32.3K
RU 3 27.3K 0.5M
SV 1 3.2K 76.6K
TOTAL 158 0.9M 19.5M

Table 1: Statistics of the dataset extracted from the Opus
project. # Books, # Sentence and # Tokens represent the
number of books, sentences and tokens associated with
the corresponding language.

not sufficiently high, the algorithm returns the ini-
tial alignment. During their experiments, Sennrich
and Volk (2011) used an old version of Google
Translate as well as a statistical MT system. To
ensure a fair comparison, we replace the latter with
OPUS-MT, a robust neural MT system developed
by Helsinki NLP, available on HuggingFace.9

Vecalign. Thompson and Koehn (2019) intro-
duced Vecalign, which is the current state of the
art in sentence alignment. The alignment is per-
formed through the use of LASER bilingual sen-
tence embeddings (Artetxe and Schwenk, 2019)
and Fast-Dynamic Time-Warping (see Section 2).

4.3 Model Variants
Each version of our model uses the same POINT-
ING strategy, discussed in Section 3.5, which em-
ploys the LaBSE sentence transformer (Feng et al.,
2022). Therefore, in this section, we focus on de-
scribing the different variants of our RECOVERY

procedure. Let si be a source sentence which has
been aligned to non-adjacent target sentences tj
and tk with k > j + 1, constituting an unlikely
alignment. We underline that, in general, this pro-
cedure can be extended to cases where si is aligned

9https://huggingface.co/Helsinki-NLP

Split Align. Type # Ann. %

Train

1-to-1 892,320 77.3
1-to-0 11,136 1.0
0-to-1 19,966 1.7
n-to-1 110,580 9.6
1-to-m 105,918 9.2
n-to-m 13,853 1.2

Validation

1-to-1 34,282 75.4
1-to-0 257 0.6
0-to-1 669 1.5
n-to-1 5,955 13.1
1-to-m 3,597 7.9
n-to-m 684 1.5

Test

1-to-1 35,162 77.4
1-to-0 298 0.7
0-to-1 396 0.9
n-to-1 6,015 13.2
1-to-m 2,978 6.6
n-to-m 601 1.3

Table 2: Statistics of the alignment types in our dataset.
# Ann. refers to the amount of examples annotated with
each type of alignment, while % represents the ratio of
each alignment type with respect to the total.

with more than two target sentences. For instance,
if there are three candidate target sentences, namely
tx, ty and tz , with tx adjacent to ty, the procedure
will be applied to each sentence individually, as
well as to groups of adjacent sentences.

CROCOALIGN-LaBSE. As a means of deter-
mining the correct target sentence among the avail-
able options, we encode si, tj and tk independently
using LaBSE (Feng et al., 2022). Afterwards, we
select the target sentence having the embedding
with the highest cosine similarity with the source
sentence embedding.

CROCOALIGN-WSD. For the purpose of select-
ing which target sentence we should keep, we em-
ploy a state-of-the-art multilingual Word Sense
Disambiguation (WSD) system, namely AMuSE-
WSD (Orlando et al., 2022). The system identifies
the meanings (i.e. BabelNet synsets) of the words
associated with the sentences si, tj , and tk. Given
the synsets associated with each sentence, we se-
lect the target sentence with the highest synset in-
tersection. Importantly, we note that this is possible
thanks to BabelNet encoding each synset multilin-
gually, i.e. as the set of lexicalizations that are used

https://huggingface.co/Helsinki-NLP


Algorithm EN-IT EN-ES EN-FR EN-NL EN-RU EN-HU DE-IT DE-HU DE-FR DE-ES DE-EN

Bleualign 93.7 87.0 87.0 87.8 85.3 92.9 63.7 62.6 67.3 93.2 86.8
Vecalign-LASER 95.4 85.7 87.1 87.6 91.3 96.3 70.1 76.3 70.7 94.4 88.4
Vecalign-LaBSE 95.7 89.1 88.4 90.6 92.0 95.7 71.3 72.7 70.6 94.7 87.1

CROCOALIGN-WSD 96.3 77.5 95.7 82.8 95.7 90.4 75.9 78.9 68.9 97.8 94.4
CROCOALIGN-LaBSE 96.0 76.8 95.5 82.0 95.4 89.8 75.2 78.8 78.7 97.5 94.2
CROCOALIGN-LaBSEB 96.4 77.7 97.0 83.8 95.7 90.8 80.0 81.6 75.8 98.9 95.6

(a)

Algorithm ES-IT ES-FR ES-NL ES-HU FR-IT FR-NL FR-HU HU-IT HU-NL Macro Average

Bleualign 72.8 88.8 86.9 — — — 74.4 — — 82.0
Vecalign-LASER 86.4 91.2 86.5 97.8 65.9 82.7 88.1 89.9 86.9 85.9
Vecalign-LaBSE 85.7 88.0 87.8 92.7 65.6 82.3 85.0 90.3 85.1 85.5

CROCOALIGN-WSD 87.3 93.9 85.2 97.5 66.6 90.7 72.9 85.9 88.1 86.1
CROCOALIGN-LaBSE 87.1 93.6 85.0 97.5 65.8 90.4 75.5 85.2 88.0 85.7
CROCOALIGN-LaBSEB 89.5 92.7 86.0 98.9 66.2 92.3 76.1 85.1 88.9 87.5

(b)

Table 3 (a) and (b): Results of CROCOALIGN and its variants (bottom part of the tables) compared with the baseline systems
(upper part of the tables). The columns represent strict F1 scores (%) for the corresponding language pairs. In Table (b), the last
column reports the average F1 scores obtained by each system across all language pairs. Bold represents the best results, while
underline represents the second-best results.

in different languages to express the given con-
cept (Navigli et al., 2021). Therefore, translated
words are ideally assigned the same synset across
languages. Our intuition is that, thanks to the as-
sumption that parallel sentences should share the
same semantics, our synset intersection approach
is likely to select target sentences with the most
accurate translation.

CROCOALIGN-LaBSEB . By exploring in detail
the output of the RECOVERY procedure explained
in CROCOALIGN-LABSE, we observe that the
source sentence si alone may not provide enough
context to make the right choice between tj and
tk. To better grasp the contextual information,
we concatenate si together with N surrounding
sentences and then encode the resulting text with
LaBSE, generating a single sentence embedding.
We then do the same for tj and tk. Finally, we
select the target sentence associated with the em-
bedding having the highest cosine similarity with
the source sentence embedding. We experiment
with N ∈ {3, 5, 7} and observe the best results
on the validation set with N = 3. We name this
procedure as CROCOALIGN-LABSEBatched, or
alternatively CROCOALIGN-LABSEB for short.

5 Results

In this section, we present the results obtained by
CROCOALIGN and its competitors on the dataset

introduced in Section 4.1 in terms of strict F1 score.

Quantitative Results. Table 3 summarizes the re-
sults. We can observe that our model, along with its
variants, outperforms the baselines 14 times out of
20, while the best variant, namely CROCOALIGN-
LaBSEB , outperforms all the other solutions 11
times out of 20. Indeed, on average our best model
achieves +1.6 F1 points in comparison to Vecalign,
the current state of the art in sentence alignment.
However, we also point out that, for specific lan-
guage pairs, the baselines achieve higher results.
For instance, Bleualign is able to reach the highest
score for the EN-ES, EN-NL and ES-NL language
pairs, thanks mainly to the quality of the underlying
MT systems for the three languages involved. We
note that the absence of results for the Bleualign
baseline for some language pairs is attributable to
the non-availability of a bilingual MT model from
Helsinki NLP for that specific language pair, which
is an essential requirement for Bleualign and this,
therefore, represents a possible limitation for lower-
resource languages. Vecalign, instead, achieves the
highest score 3 times out of 20, in the EN-HU, FR-
HU and HU-IT language pairs, respectively, thanks
mainly to the strength of its underlying bilingual
encoder for the Hungarian language.

Finally, despite the fact that Vecalign employs
LASER as the underlying sentence encoder, in or-
der to ensure a fair comparison we also evaluate
it using LaBSE. The main difference between the



two encoders is that the former is designed as a
bilingual model – requiring a distinct model for
each language pair – while the latter is language
agnostic. As shown in Table 3, we observe that
replacing LASER with LaBSE has no beneficial
impact on Vecalign’s performance. On the con-
trary, the results of Vecalign with LaBSE are lower
than those with LASER, i.e., 85.5 versus 85.9 in
F1 score on average across all languages.

Alignment Analysis. In addition to the quanti-
tative results presented in the previous paragraph,
weperformed an analysis of the accuracy of dif-
ferent alignment types, comparing our best model
with Vecalign. In Figure 3 we report the accuracy,
expressed as a percentage, of the number of times
a specific type of alignment is predicted correctly
by the two systems. From the results we can see
that, on average, both CROCOALIGN and Vecalign
perform similarly when tested on 1-to-1 up to 1-
to-7 alignments. However, when presented with
particularly challenging types of alignment (upper
entries in Figure 3), which can happen frequently in
long texts, our system consistently outperforms its
competitor. Moreover, CROCOALIGN is also more
resilient to other very common situations in long
texts where, given a sentence, there is no equivalent
in its corresponding parallel document (1-to-0 and
0-to-1 alignments in Figure 3).

Inference Speed. When assessing sentence align-
ment systems, it is crucial to consider their infer-
ence speed, especially given their typical appli-
cation to extensive datasets. In this context, we
conducted a comparative analysis between CRO-
COALIGN and Vecalign, our primary competitor.
Notably, Vecalign employs a combination of dy-
namic programming and sentence embeddings for
a fast alignment process. However, it necessitates
a preprocessing step where sentences from source
and target documents undergo a complex encod-
ing process using a sentence transformer. Indeed,
the algorithm requires the encoding of clusters of
adjacent sentences to identify many-to-many align-
ments, introducing an overhead in the overall pro-
cess before the execution of the alignment step. As
a consequence, CROCOALIGN is 2.7× faster than
Vecalign-LASER and 3.3× faster than Vecalign-
LaBSE. On a single GTX 1080 Ti, CROCOALIGN

requires 84 seconds on average (9.49 of which are
devoted to the generation of sentence embeddings
and 75.12 to produce the final alignment) to align
a pair of parallel books in our dataset. In con-
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Figure 3: Histogram showing the accuracy (%) on one-
to-many, many-to-one and many-to-many alignments.
Alignments on the Y-axis are clustered together, e.g.
(1,2) includes 1-to-2 and 2-to-1 alignments.

trast, Vecalign requires 224 seconds on average
to encode both source and target documents (112
seconds for a single document) and 3 seconds to
find the optimal alignment, for a total of 227 sec-
onds. As a rough estimate, when a single GPU
is adopted, CROCOALIGN can align around 1000
pairs of books and 50 million tokens in a day, com-
pared to the 380 pairs of books and 18.5 million
tokens of Vecalign.

6 Experiments on Machine Translation

Sentence alignment serves as a fundamental tool
in MT systems, as it can be used for the creation
of parallel datasets for training purposes. Here, we
demonstrate the effectiveness of CROCOALIGN

for the automatic creation of a high-quality parallel
fine-tuning set that can be used to adapt an existing



MT system to specific domains. Our hypothesis is
that, with a high-quality alignment, we only require
a small amount of parallel sentences to significantly
boost the performance of a pretrained MT model.

Experimental setup We compare the perfor-
mance of a strong MT baseline when used out of
the box with the performance of the same system
when fine-tuned on the parallel data created with
CROCOALIGN. We evaluate the impact of our data
on the bilingual MT models from the OPUS-MT
family, for a total of 15 bilingual models. We fine-
tune each MT model on the alignments produced by
CROCOALIGN-LaBSEB when applied on the vali-
dation set of the dataset introduced in Section 4.1.
Finally, we report the sacreBLEU scores obtained
by the MT models on the corresponding test sets,
before and after fine-tuning.

Results Table 4 provides an overview of the re-
sults obtained by the OPUS-MT models when used
to translate books with and without fine-tuning.
We can observe a significant increase in terms of
sacreBLEU across all 15 language pairs, resulting
in an average improvement of 4.1 points with a
minimum improvement of 2.0 points in DE-HU

and DE-IT and a maximum improvement of 7.5
points in EN-FR. These results further demonstrate
the high quality of our automatically-aligned data,
which leads autoregressive models to better trans-
late domain-specific texts.

7 Conclusion and Future Work

In this paper, we presented CROCOALIGN, the
first fully-neural and language-agnostic architec-
ture to perform sentence alignment in very long
texts. The strength of our approach lies in its abil-
ity to create better sentence representations by tak-
ing advantage of their surrounding context in a
fully-neural model equipped with a novel encoder
that captures cross-sentence information, includ-
ing the position and the meaning of a sentence
with respect to the previous and following ones.
Our experiments on sentence alignment in books –
which feature extremely long contexts and present
various instances of many-to-many alignments –
show that CROCOALIGN outperforms the previ-
ous state of the art, i.e. Vecalign, by a significant
margin across 20 language pairs (+1.6 points in
F1 score on average). Moreover, we evaluate the
impact that the data produced by CROCOALIGN

has on the task of machine translation, and show

Language Pair Fine-Tuning BLEU Score ∆

DE-ES
✗ 23.9

+4.4
✓ 28.3

DE-EN
✗ 20.7

+2.1
✓ 22.8

DE-FR
✗ 9.2

+4.1
✓ 13.3

DE-HU
✗ 8.5

+2.0
✓ 10.5

DE-IT
✗ 4.2

+2.0
✓ 6.2

EN-ES
✗ 17.8

+6.1
✓ 23.9

EN-FR
✗ 33.6

+7.5
✓ 41.1

EN-HU
✗ 11.8

+3.0
✓ 14.8

EN-IT
✗ 17.9

+6.0
✓ 23.9

EN-NL
✗ 15.6

+6.9
✓ 22.5

EN-RU
✗ 20.6

+4.9
✓ 25.5

ES-FR
✗ 19.5

+2.6
✓ 22.1

ES-IT
✗ 12.7

+2.1
✓ 14.8

ES-NL
✗ 10.4

+5.2
✓ 15.6

FR-HU
✗ 8.2

+2.8
✓ 11.0

Table 4: sacreBLEU results on the machine translation
downstream task. Each bilingual model is evaluated
with and without fine-tuning over the test split of our
dataset. The fine-tuning data is produced by applying
CROCOALIGN on the validation split.

that fine-tuning strong MT systems on our parallel
data enables them to increase their performance in
domain-specific translations by a significant mar-
gin (+4.1 points in BLEU on average). We publicly
release CROCOALIGN and our alignments to the
research community. We hope that our contribu-
tions can foster the development of better systems
for long-text sentence alignment and the creation of
better silver MT datasets, as well as renewing the
interest in the task and encouraging its utilization in
other downstream tasks such as extractive text sum-
marization, paraphrase generation, and plagiarism
detection.



8 Limitations

The system does not present any significant lim-
itations. However, due to hardware constraints,
we implemented two procedures during inference:
one to identify the source and target batches of
sentences to be aligned, and the other to correct er-
rors resulting from multiple alignments to the same
source sentence. We emphasize that these proce-
dures are only required when the entire source and
target documents do not fit within the GPU memory
available. Moreover, if sufficient computational
power was available, the model would not only
eliminate the need for these two procedures, but it
would also make use of the larger textual context
in order to align all the sentences simultaneously
and, possibly, more accurately.

Acknowledgements
We gratefully acknowledge the sup-
port of the PNRR MUR project
PE0000013-FAIR.

This work has been carried out while Francesco
Maria Molfese, Stefan Andrei Bejgu and Simone
Tedeschi were enrolled in the Italian National Doc-
torate on Artificial Intelligence run by Sapienza
University of Rome. Simone Conia is fully funded
by the PNRR MUR project PE0000013-FAIR.

References
Sadaf Abdul-Rauf, Mark Fishel, Patrik Lambert, Sandra

Noubours, and Rico Sennrich. 2012. Extrinsic eval-
uation of sentence alignment systems. In Workshop
on Creating Cross-language Resources for Discon-
nected Languages and Styles, pages 6–10.

Mikel Artetxe and Holger Schwenk. 2019. Mas-
sively multilingual sentence embeddings for zero-
shot cross-lingual transfer and beyond. Transactions
of the Association for Computational Linguistics,
7:597–610.

Regina Barzilay and Lillian Lee. 2003. Learning to para-
phrase: An unsupervised approach using multiple-
sequence alignment. In Proceedings of the 2003 Hu-
man Language Technology Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 16–23.

Peter F. Brown, Jennifer C. Lai, and Robert L. Mercer.
1991. Aligning sentences in parallel corpora. In
29th Annual Meeting of the Association for Computa-
tional Linguistics, pages 169–176, Berkeley, Califor-
nia, USA. Association for Computational Linguistics.

Stanley F. Chen. 1993. Aligning sentences in bilingual
corpora using lexical information. In 31st Annual

Meeting of the Association for Computational Lin-
guistics, pages 9–16, Columbus, Ohio, USA. Associ-
ation for Computational Linguistics.

Christos Christodouloupoulos and Mark Steedman.
2015. A massively parallel corpus: the bible in
100 languages. Language resources and evaluation,
49:375–395.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Ari-
vazhagan, and Wei Wang. 2022. Language-agnostic
BERT sentence embedding. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
878–891, Dublin, Ireland. Association for Computa-
tional Linguistics.

Viviana Gaballo. 2012. Exploring the boundaries of
transcreation in specialized translation. ESP Across
Cultures, 9(1):95–113.

William A. Gale and Kenneth W. Church. 1993. A
program for aligning sentences in bilingual corpora.
Computational Linguistics, 19(1):75–102.

Luís Gomes and Gabriel Pereira Lopes. 2016. First
steps towards coverage-based sentence alignment. In
Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16),
pages 2228–2231, Portorož, Slovenia. European Lan-
guage Resources Association (ELRA).

Chao Jiang, Mounica Maddela, Wuwei Lan, Yang
Zhong, and Wei Xu. 2020. Neural crf model for sen-
tence alignment in text simplification. arXiv preprint
arXiv:2005.02324.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019.
Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547.

Martin Kay and Martin Röscheisen. 1993. Text-
translation alignment. Comput. Linguistics, 19:121–
142.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Proceedings of
Machine Translation Summit X: Papers, pages 79–86,
Phuket, Thailand.

Robert C. Moore. 2002. Fast and accurate sentence
alignment of bilingual corpora. In Proceedings of
the 5th Conference of the Association for Machine
Translation in the Americas: Technical Papers, pages
135–144, Tiburon, USA. Springer.

Roberto Navigli, Michele Bevilacqua, Simone Conia,
Dario Montagnini, and Francesco Cecconi. 2021.
Ten years of BabelNet: A survey. In Proceedings
of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI-21, pages 4559–4567.
International Joint Conferences on Artificial Intelli-
gence Organization. Survey Track.

https://doi.org/10.5167/uzh-62565
https://doi.org/10.5167/uzh-62565
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://doi.org/10.1162/tacl_a_00288
https://aclanthology.org/N03-1003
https://aclanthology.org/N03-1003
https://aclanthology.org/N03-1003
https://doi.org/10.3115/981344.981366
https://doi.org/10.3115/981574.981576
https://doi.org/10.3115/981574.981576
https://link.springer.com/content/pdf/10.1007/s10579-014-9287-y.pdf?pdf=button%20sticky
https://link.springer.com/content/pdf/10.1007/s10579-014-9287-y.pdf?pdf=button%20sticky
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.18653/v1/2022.acl-long.62
https://edipuglia.it/wp-content/uploads/ESP%202012/Gaballo.pdf
https://edipuglia.it/wp-content/uploads/ESP%202012/Gaballo.pdf
https://aclanthology.org/J93-1004
https://aclanthology.org/J93-1004
https://aclanthology.org/L16-1354
https://aclanthology.org/L16-1354
https://arxiv.org/pdf/2005.02324.pdf
https://arxiv.org/pdf/2005.02324.pdf
https://www.computer.org/csdl/journal/bd/2021/03/08733051/1aFvgKKpjoc
https://aclanthology.org/J93-1006.pdf
https://aclanthology.org/J93-1006.pdf
https://aclanthology.org/2005.mtsummit-papers.11
https://aclanthology.org/2005.mtsummit-papers.11
https://link.springer.com/chapter/10.1007/3-540-45820-4_14
https://link.springer.com/chapter/10.1007/3-540-45820-4_14
https://doi.org/10.24963/ijcai.2021/620


NLLB team, Marta Costa-jussa, James Cross, Onur
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janicec Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loïc Bar-
rault, Gabriel Gonzalez, Prangthip Hansanti, and
Jeff Wang. 2022. No language left behind: Scal-
ing human-centered machine translation. ArXiv,
abs/2207.04672.

Riccardo Orlando, Simone Conia, Stefano Faralli, and
Roberto Navigli. 2022. Universal semantic annota-
tor: the first unified API for WSD, SRL and seman-
tic parsing. In Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, pages
2634–2641, Marseille, France. European Language
Resources Association.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Holger Schwenk, Vishrav Chaudhary, Shuo Sun,
Hongyu Gong, and Francisco Guzmán. 2021. Wiki-
Matrix: Mining 135M parallel sentences in 1620 lan-
guage pairs from Wikipedia. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 1351–1361, Online. Association for Computa-
tional Linguistics.

Rico Sennrich and Martin Volk. 2011. Iterative, mt-
based sentence alignment of parallel texts. In Pro-
ceedings of the 18th Nordic conference of compu-
tational linguistics (NODALIDA 2011), pages 175–
182.

Xuewen Shi, Heyan Huang, Ping Jian, and Yi-Kun Tang.
2021. Improving neural machine translation with sen-
tence alignment learning. Neurocomputing, 420:15–
26.

Brian Thompson and Philipp Koehn. 2019. Vecalign:
Improved sentence alignment in linear time and space.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1342–
1348, Hong Kong, China. Association for Computa-
tional Linguistics.

J. Tiedemann. 2007. Improved sentence align-
ment for movie subtitles. In Proceedings of
RANLP 07, Borovets, Bulgaria. INCOMA Ltd.
2007/j.tiedemann/pub006.

Dániel Varga, Péter Halácsy, András Kornai, Viktor
Nagy, László Németh, and Viktor Trón. 2007. Paral-
lel corpora for medium density languages. Amster-
dam Studies In The Theory And History Of Linguistic
Science Series 4, 292:247.

Martin Volk, Noah Bubenhofer, Adrian Althaus, Maya
Bangerter, Lenz Furrer, and Beni Ruef. 2010. Chal-
lenges in building a multilingual alpine heritage cor-
pus. In Proceedings of the Seventh International

Conference on Language Resources and Evaluation
(LREC’10), Valletta, Malta. European Language Re-
sources Association (ELRA).

Michał Ziemski, Marcin Junczys-Dowmunt, and Bruno
Pouliquen. 2016. The United Nations parallel cor-
pus v1.0. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC’16), pages 3530–3534, Portorož, Slovenia.
European Language Resources Association (ELRA).

Pierre Zweigenbaum, Serge Sharoff, and Reinhard Rapp.
2017. Overview of the second BUCC shared task:
Spotting parallel sentences in comparable corpora. In
Proceedings of the 10th Workshop on Building and
Using Comparable Corpora, pages 60–67, Vancou-
ver, Canada. Association for Computational Linguis-
tics.

A Dataset Statistics

The following tables (Table 5, 6, 7) present the
number of source sentences, target sentences, and
annotations for each language pair in the validation,
training and test set, respectively. The data high-
lights the variation in dataset size and annotation
levels across different languages. An annotation is
defined as an alignment between 1-to-1, many-to-
1, 1-to-many and many-to-many source and target
sentences.

Language pair # Source # Target # Annotations

DE-EN 2,449 2,456 2,310
DE-ES 349 341 324
DE-FR 4,476 3,178 2,810
DE-HU 5,311 6,597 5,174
DE-IT 522 374 345
EN-ES 4,528 5,062 4,265
EN-FR 6,777 5,838 5,811
EN-HU 3,127 3,115 3,012
EN-IT 1,612 1,567 1,517
EN-NL 1,444 1,303 1,287
EN-RU 4,831 4,337 4,141
ES-FR 607 680 578
ES-HU 142 140 140
ES-IT 890 673 634
ES-NL 2,501 2,408 2,321
FR-HU 4,836 4,320 4,034
FR-IT 1,656 1,563 1,250
FR-NL 4,430 3,288 3,263
HU-IT 419 375 358
HU-NL 2,154 2,113 1,942

Table 5: Validation dataset statistics
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Language pair # Source # Target # Annotations

CA-DE 5,010 4,825 4,646
CA-EN 5,010 4,943 4,760
CA-HU 5,010 5,455 4,874
CA-NL 5,010 4,879 4,718
DE-EN 54,008 53,177 47,663
DE-EO 1,454 1,985 1,528
DE-ES 30,520 34,573 28,340
DE-FR 34,119 33,343 30,056
DE-HU 47,126 47,357 43,087
DE-IT 30,520 28,998 27,189
DE-NL 17,029 17,463 16,184
DE-PT 1,168 1,454 1,171
DE-RU 18,157 18,412 17,422
EL-EN 1,587 1,526 1,345
EL-ES 1,587 1,198 1,130
EL-FR 1,587 1,348 1,258
EL-HU 1,587 1,191 1,120
EN-EO 1,723 1,985 1,648
EN-ES 91,347 94,235 84,637
EN-FR 123,043 122,760 114,052
EN-HU 145,831 152,962 136,243
EN-IT 34,421 32,903 30,092
EN-NL 4,3481 39,957 37,702
EN-PL 3,832 3,284 2,976
EN-PT 1,440 1,454 1,413
EN-RU 10,677 9,786 9,279
EN-SV 3,203 3,210 3,106
EO-ES 1,986 2,077 1,754
EO-FR 1,985 1,822 1,642
EO-HU 1,985 1,994 1,694
EO-IT 1,986 1,609 1,511
EO-PT 1,701 1,454 1,300
ES-FR 55,278 52,685 49,567
ES-HU 86,511 87,431 78,344
ES-IT 36,534 30,836 28,465
ES-NL 33,709 30,248 28,759
ES-NO 3,716 4,049 3,610
ES-PT 1,787 1,454 1,343
ES-RU 21,208 18,412 16,973
FI-FR 3,758 3,937 3,556
FI-HU 3,758 4,136 3,541
FI-PL 3,758 3,284 2,960
FR-HU 88,877 95,414 84,352
FR-IT 14,418 13,883 12,773
FR-NL 36,886 36,217 34,704
FR-PL 3,937 3,284 2,976
FR-PT 1,539 1,454 1,312
FR-RU 9,672 8,843 8,284
FR-SV 3,651 3,210 3,026
HU-IT 37,409 32,155 30,741
HU-NL 48,980 43,513 41,385
HU-PL 4,136 3,284 3,006
HU-PT 1,714 1,454 1,240
HU-RU 27,017 27,255 26,219
IT-NL 3,157 2,935 2,429
IT-PT 1,319 1,454 1,220
IT-RU 18,245 18,412 17,941
IT-SV 3,130 3,210 3,010

Table 6: Training dataset statistics

Language pair # Source # Target # Annotations

DE-EN 2,377 2,488 2,310
DE-ES 339 346 324
DE-FR 4,323 3,083 2,810
DE-HU 5,599 6,236 5,174
DE-IT 479 375 344
EN-ES 4,605 4,746 4,264
EN-FR 7,074 5,817 5,811
EN-HU 3,088 3,129 3,011
EN-IT 1,592 1,564 1,517
EN-NL 1,430 1,291 1,287
EN-RU 4,771 4,290 4,141
ES-FR 592 669 578
ES-HU 148 140 139
ES-IT 898 647 634
ES-NL 2,600 2,423 2,321
FR-HU 4,837 4,257 4,033
FR-IT 1,560 1,595 1,249
FR-NL 4,406 3,328 3,262
HU-IT 413 373 358
HU-NL 2,094 2,086 1,941

Table 7: Test dataset statistics
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