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Abstract

Negation is a common everyday phenomena
and has been a consistent area of weakness for
language models (LMs). Although the Infor-
mation Retrieval (IR) community has adopted
LMs as the backbone of modern IR architec-
tures, there has been little to no research in
understanding how negation impacts neural IR.
We therefore construct a straightforward bench-
mark on this theme: asking IR models to rank
two documents that differ only by negation.
We show that the results vary widely according
to the type of IR architecture: cross-encoders
perform best, followed by late-interaction mod-
els, and in last place are bi-encoder and sparse
neural architectures. We find that most informa-
tion retrieval models (including SOTA ones) do
not consider negation, performing the same or
worse than a random ranking. We show that al-
though the obvious approach of continued fine-
tuning on a dataset of contrastive documents
containing negations increases performance (as
does model size), there is still a large gap be-
tween machine and human performance.1

1 Introduction

Recent work in natural language processing (NLP)
has shown that language models (LMs) struggle
to understand text containing negations (Ravichan-
der et al., 2022; McKenzie et al., 2022) and have
poor performance compared to humans. This un-
resolved problem has downstream implications for
information retrieval (IR) models, which use LMs
as the starting backbone of their architectures.

However, work on negation in IR has mainly
focused on pre-neural (e.g. no LM) retrieval (Kim
and Kim, 1990; McQuire and Eastman, 1998; Aver-
buch et al., 2004; Kim et al., 2019), with no re-
search into how negation affects modern neural
IR. This failure to understand negation in IR can
lead to devastating consequences in high stakes

1Code and data are available at https://github.com/
orionw/NevIR

Had a seizure Now what?

Hold the person down or try to stop their movements.
Put something in the person's mouth (this can cause
tooth or jaw injuries) Administer CPR or other mouth-
to-mouth breathing during the seizure. Give the person
food or water until they are alert again. 

Figure 1: Negation is something not well understood
by IR systems. This screenshot shows Google Search
making a deadly recommendation because of its failure
to catch the negation in the article (e.g. “do not ...").

situations, like the prominent case where Google
Search told users what to do during a seizure by
listing off bullet points from a website that was
specifically specifying what not to do (Figure 1).
One can easily imagine other serious failure cases
in high-stakes domains such as law, education, or
politics. Even for casual everyday usage, a lack
of understanding of negation by neural IR ignores
an entire category of user queries, such as “Where
should I not stay in [vacation town]?", “Who did
not win an Oscar in 2023?", or “What information
has OpenAI failed to release about GPT-4?"

We aim to fill this gap in the literature by pro-
viding a benchmark for Negation EValuation in
Information Retrieval, dubbed NevIR (pronounced
“never"). NevIR builds off of existing work in nega-
tion (Ravichander et al., 2022) by using 2,556 in-
stances of contrastive document pairs that differ
only with respect to a crucial negation. We then
crowdsource query annotations for the two docu-
ments in each pair, where each query is only rel-
evant to one of the respective documents and is
irrelevant to the other document (Figure 2). By do-
ing so, we can test whether models correctly rank
the documents when accounting for the negation.

We find that nearly all IR systems ignore the
negation, generally scoring one document of the
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Because it is resistant to corrosion, nickel was
occasionally used as a substitute for decorative silver.
Nickel was also occasionally used in some countries
after 1859 as a cheap coinage metal (see above), but in
the later years of the 20th century, it was replaced by
cheaper stainless steel (i.e. iron) alloys, except in the
United States and Canada.

Because it is resistant to corrosion, nickel was
occasionally used as a substitute for decorative silver.
Nickel was also occasionally used in some countries
after 1859 as a cheap coinage metal (see above), but in
the later years of the 20th century, it was replaced by
cheaper stainless steel (i.e. iron) alloys, throughout the
United States, Canada, and elsewhere in the Americas.

Doc #2Doc #1

What countries did not replace nickel with
iron alloys in the 20th century?

What countries replaced nickel with iron
alloys in the 20th century?

Doc #1

Doc #2

IR Model
Ranked List
1 Doc #1
2 Doc #2

Doc #1

Doc #2

IR Model
Ranked List
1 Doc #1
2 Doc #2

Figure 2: An example instance and the evaluation process. The initial documents from CondaQA (Ravichander
et al., 2022) are used to create the queries via Mechanical Turk. The lower half shows the pairwise accuracy
evaluation process, where the model must rank both queries correctly. In this example, the IR model scored zero
paired accuracy, ranking Doc #1 above Doc #2 in both queries (and failing to take into account the negation).

two higher for both queries. Furthermore, state-of-
the-art models perform nearly the same or much
worse than randomly ranking the document pairs.
We provide analysis of these results, showing that
bi-encoder representations of the two documents
are nearly identical despite negation words and that
late-interaction models such as ColBERT ignore
negation words in the MaxSim operator.

We also show that continued fine-tuning of IR
models on negation data provides some gains on
NevIR, but still leaves significant room to improve
(while also slightly hurting performance on tradi-
tional benchmarks such as MSMarco). We hope
that our analysis will spur increased attention to the
problem of negation in information retrieval and
provide a dataset for IR training and evaluation.

2 Background

2.1 Motivation
Information Retrieval (IR) is a broadly defined task
of finding relevant pieces of information based on a
query in natural language. The specifics of IR can
vary broadly across languages, domains (e.g. legal),
and purposes (e.g. counterarguments, lists, general
factoids). Note that many of these specialized cases
would be improved through a better understanding

of negation, such as lists, counterarguments, and
domain-specific language (e.g. legal or medical).

Along with the improvement from neural IR,
there has been a surge of interest in retrieval-
augmented language models, such as RAG (Lewis
et al., 2020), FiD (Izacard and Grave, 2021), and
SeeKeR (Shuster et al., 2022). In just the last few
months, generative retrieval has been production-
ized, with systems such as Google’s Bard, Bing
Chat, and You.com.2 These systems combine IR
models with large language models, enabling them
to find and generate responses to queries on the fly.

Thus, as LMs and IR systems become more in-
tertwined and used in production, understanding
and improving their failure cases (such as negation)
becomes crucial for both companies and users.

2.2 Neural IR
Since 2020, neural models for information re-
trieval have generally outperformed traditional
sparse methods (such as BM25) in most situa-
tions (Karpukhin et al., 2020; Khattab and Zaharia,
2020). Given a large collection of training data,
these models are optimized using a contrastive loss
in order to learn how documents are related to a

2https://bard.google.com/, https://www.bing.com/new, and
https://you.com
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given query. These methods provide several advan-
tages over sparse methods, including the ability to
go beyond simple lexical matches to encode the
semantic similarity of the natural language text.

Recent work has focused on the ability of neural
models to generalize to new domains, without any
domain-specific training data (e.g. zero-shot). One
prominent benchmark for this type of work is the
BEIR dataset suite (Thakur et al., 2021) which eval-
uates models’ generalization on a range of diverse
IR datasets. Our work provides both zero-shot (no
model fine-tuning) and standard train/test splits to
accommodate both paradigms.

2.3 Negation in NLP
Negation has also been an area where LMs typi-
cally perform below average (Li and Huang, 2009;
He et al., 2017; Hartmann et al., 2021; Ettinger,
2020). Recent work on negation in NLP has shown
that although LMs struggle with negation, it does
improve with model scaling and improved prompt-
ing techniques (McKenzie et al., 2022; Wei et al.,
2022). Despite scale improvements, these works
(and other follow up works, c.f. Ravichander et al.
(2022); Hossain et al. (2022)) have shown that LMs
still struggle with negation and are in need of new
datasets and methods to improve performance.

As modern IR models use LMs as the back-
bone of their architectures, it is intuitive that nega-
tion will pose problems to IR systems as well.
This problem is compounded as IR models are not
able to scale to larger LMs as easily, due to effi-
ciency and latency constraints on processing large
amounts of documents in real-time.

2.4 Negation in IR
Negation has been a weak point for information re-
trieval methods throughout the years. Early work in
information retrieval (Kim and Kim, 1990; Strza-
lkowski et al., 1995) has demonstrated the diffi-
cultly of negation for non-neural methods like TF-
IDF (Sparck Jones, 1972) and BM25 (Robertson
et al., 1995) when used out of the box.

To the best of our knowledge, there is little to no
published work on negation for neural models. The
most similar area in IR is that of argument retrieval
(Wachsmuth et al., 2018; Bondarenko et al., 2022),
also included in the BEIR dataset, whose aim is to
find a counterargument for the given query. How-
ever, these datasets implicitly ask the model to find
the counterargument to the query through the task
design and specifically don’t include negation in

the query. So although argument retrieval datasets
contain a larger amount of negations compared to
standard IR datasets like MSMarco (Nguyen et al.,
2016), negation is not a conscious choice in the
design of either the documents or the queries and is
confounded by the implicit task definition. In con-
trast, we explicitly provide and measure the impact
of negation on both documents and queries.

Another recent work by Opitz and Frank (2022)
incorporates features from Abstract Meaning Rep-
resentation (AMR) parsing (including negation, as
one of many) to improve SBERT training. How-
ever, they only evaluate negation for AMR parsing
(and on AMR datasets) whereas we focus on nega-
tion in IR and create a benchmark for ranking.

2.5 Contrastive Evaluation
Contrastive evaluation has emerged as a promis-
ing evaluation technique: constructing datasets that
consist of minor differences but that test crucial
distinctions (Gardner et al., 2020; Kaushik et al.,
2019). For IR specifically, this has included test-
ing sentence order (Rau and Kamps, 2022), lex-
ical structures (Nikolaev and Padó, 2023), gen-
eral axiom creation (Völske et al., 2021), para-
phrases, mispellings, and ordering (Penha et al.,
2022), LLM-based query and document expansion
(Weller et al., 2023a), and factuality, formality, flu-
ency, etc. (MacAvaney et al., 2022). We follow
these works by evaluating not on a classical IR
evaluation corpus, but rather with paired queries
and documents.

3 Creating NevIR

We test negation in neural IR using a contrastive
evaluation framework, which has shown great util-
ity in understanding neural models (Section 2.5).

3.1 Contrastive Documents
We start by collecting pairs of documents that differ
as minimally as possible but include negation, us-
ing the CondaQA (Ravichander et al., 2022) dataset
as a starting point. CondaQA consists of “in-the-
wild" natural paragraphs that contain negation and
human-edited versions of those paragraphs that ei-
ther paraphrase, change the scope of the negation,
or undo the negation. For our IR benchmark, we
exclude the paraphrase edits, as they do not provide
different semantic meanings for comparison. Thus,
this allows us to compare the effect of the negation
between document pairs with a minimal lexical
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Statistic Train Dev Test

# Pairs 948 225 1383

Question 1 Length 10.9 11.1 11.0
Question 2 Length 11.2 11.4 11.4
Average Length Diff 0.95 1.05 1.01

Document 1 Length 112.5 113.0 113.7
Document 2 Length 115.6 116.8 116.8
Average Length Diff 4.39 4.71 4.16

Table 1: NevIR statistics, where length is measured in
words. Note that the average length differences only
take into account total length; for the distribution of
unique word differences see Figure 3.

difference (see Table 1 and Figure 3 for statistics).

3.2 Collecting Contrastive Queries
To test whether IR models correctly rank the docu-
ments, we collect natural language queries for those
document using workers on Amazon’s Mechanical
Turk. We ask workers to create one query for each
of the two paragraphs, with four constraints:

1. The answer to the queries are the same for
both paragraphs

2. The question is answered by a span (e.g. not
a yes/no or boolean answer)

3. The question contains enough information to
identify the relevant passage from a collection
of documents (e.g. it contains relevant entity
names, not just “when was he born?")

4. The question can only be answered by one
of the two paragraphs (thus making the other
paragraph irrelevant)

Note that boolean questions would be relevant to
both documents, and hence they were excluded.
To help annotators understand the task, we al-
lowed them to test their queries against a small neu-
ral cross-encoder model (all-mpnet-base-v2 from
Reimers and Gurevych (2019)) but did not require
them to. The annotation interface is in Appendix A.

Through a series of initial pilot HITs, we found
that annotators would typically quote verbatim
from the passage and use the words that were only
present in only one document. To prevent mod-
els from exploiting this shallow heuristic, we in-
cluded a 5th constraint: not allowing workers to
use any word in the query that was only present
in one of the two documents. Note that this was
an effective but not perfect constraint (as is shown

by TF-IDF’s 2% performance in Table 2), as any
non-exact string match including subwords, plural
versions, etc. would pass this validation check.

We recruited annotators with greater than 99%
HIT acceptance rate and greater than 5000 com-
pleted HITs. All annotators participated in two
paid trial HITs where their work was assessed be-
fore moving on. Workers were paid $2.5 USD for
approximately six minutes per HIT, for an average
of $15 USD per hour. Overall, we had 28 unique
annotators with an average of 91 query pairs each.

3.3 Dataset Statistics
Dataset statistics are in Table 1, showing that the
average number of words is around 11 for questions
and 113 for documents. The average difference in
word length between questions and documents is
1 and 4 respectively, showing that items in each
pair are nearly the same length. The distribution of
unique word differences between queries and doc-
uments is in Figure 3 and shows that most queries
have small differences of 2 to 5 words, although
some differ only by a single negation word and
some differ by more than five. The difference be-
tween the two documents is much more variable,
with about 5-10 different words between them.

3.4 Human Performance
To verify that this dataset is trivial for humans,
we asked three annotators to perform the ranking
task on 10 randomly sampled test instances. In all
three cases, all human annotators ranked all queries
correctly, indicating the simplicity of the task.

4 Experimental Settings

4.1 Metric
In early investigations we observed that IR models
tended to rank one document above the other for
both queries. This motivates our usage of a pair-
wise accuracy score to avoid score inflation when
models don’t actually understand the negation. We
start by having the IR model rank both documents
for each query. Then, if the model has correctly
ranked the documents for both queries (flipping the
order of the ranking when given the negated query)
we know that the model has correctly understood
the negation and the pair is marked as correct.

4.2 Models
We evaluate a wide variety of models in order to
show a comprehensive evaluation across common
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Figure 3: The distribution of the number of different (e.g. unique) words between the queries (left) or documents
(right) in each pair. The average length differences are shown in Table 1.

neural IR model types. We note that although there
are other models we do not use (as well as many
different strategies for model training), all the ma-
jor types of retrieval models are accounted for here.
We evaluate on the following IR model categories:

Sparse We evaluate sparse IR models that use the
bag-of-words representation during retrieval. This
includes TF-IDF (the only non-neural IR method,
here as a baseline), and two variants of SPLADE
v2++ (Formal et al., 2022, 2021; Lassance and
Clinchant, 2022), the ensemble distillation and self-
distillation methods. Note that other variants of
SPLADE perform worse than these two methods.
We do not include BM25 as implementations of
BM25 perform similar to TF-IDF due to the small
collection and lexical similarity within the pair.

Late Interaction Late interaction models like
ColBERT (Khattab and Zaharia, 2020; Santhanam
et al., 2022b) embed documents and queries into
one vector for each sub-word token. At inference
time, these models need to compute a MaxSim op-
eration between query vectors and document vec-
tors to determine similarity. We use both ColBERT
v1 and v2 in our experiments.3

Bi-Encoders Another common category of IR
models are bi-encoders, which embed both doc-
uments and queries into a single vector represen-
tation. At inference time the similarity is com-
puted via a simple dot product or cosine simi-
larity. Due to the popularity of this category,
we include a broad spectrum: models from Sen-

3We reproduce ColBERT v1 weights from their repository.
We do not use PLAID (Santhanam et al., 2022a) or quanti-
zation as there are only two documents in the collection per
query and thus no efficiency requirements.

tenceTransformer (Reimers and Gurevych, 2019)
trained on MSMarco and/or Natural Questions,
DPR (Karpukhin et al., 2020), CoCondenser (Gao
and Callan, 2022), and RocketQA (Qu et al., 2021;
Ren et al., 2021). Note that these models span a
wide variety of pre-training tasks, base models, and
complex training/additional fine-tuning strategies
like hard negative mining and distillation.

Cross-Encoders Cross-encoders encode both the
document and query at the same time, comput-
ing attention across both pieces of text. This
type of representation is the most expressive but
also the most time-intensive, especially for larger
models. We use various SentenceTransformer
cross-encoders including those trained on MS-
Marco and various NLI datasets (Demszky et al.,
2018; Williams et al., 2018; Cer et al., 2017),
RocketQAv2 cross-encoders (Qu et al., 2021; Ren
et al., 2021), as well as MonoT5 cross-encoders
(Nogueira et al., 2020). Note that MonoT5 models
are significantly larger (up to 33x larger for 3B)
and more expensive than the other cross-encoders.4

Random We include a baseline that randomly
ranks the two documents. Since there are two pairs,
the expected mean pairwise accuracy is 25% (12 ∗ 1

2 ).

5 Results

5.1 Main Results
The main results are presented in Table 2. We see
that the more expressive the representation, the
better the models generally perform.

4T5 models are also typically used for generative retrieval
(GR) (Tay et al., 2022); thus we do not evaluate GR methods
since (1) T5 is evaluated with MonoT5 already and (2) GR has
been shown to be unable to scale to standard-sized collections
(Pradeep et al., 2023) and is not used in practice.
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Type Data Params Model Name Score

Random N/A 0 Random 25%

Sparse
N/A N/A TF-IDF (Pedregosa et al., 2011) 2.0%
MSMarco 110M SPLADEv2 ensemble-distill (Formal et al., 2022) 8.0%
MSMarco 110M SPLADEv2 self-distill (Formal et al., 2022) 8.7%

Late Interaction
MSMarco 110M ColBERTv2 (Santhanam et al., 2022b) 13.0%
MSMarco 110M ColBERTv1 (Khattab and Zaharia, 2020) 19.7%

Bi-Encoders

NQ 219M DPR (Karpukhin et al., 2020) 6.8%
MSMarco 110M msmarco-bert-base-dot-v5 6.9%
MSMarco 110M coCondenser (Gao and Callan, 2022) 7.7%
MSMarco 85M RocketQA v2 (Ren et al., 2021) 7.8%
NQ 66M nq-distilbert-base-v1 8.0%
MSMarco 110M all-mpnet-base-v2 8.1%
MSMarco 66M msmarco-distilbert-cos-v5 8.7%
MSMarco 170M RocketQA v1 (Qu et al., 2021) 9.1%
QA Data 110M multi-qa-mpnet-base-dot-v1 11.1%

Cross-Encoders

MSMarco 85M RocketQA v2 (Ren et al., 2021) 22.4%
STSB 355M stsb-roberta-large 24.9%
MSMarco 303M RocketQA v1 (Qu et al., 2021) 26.3%
MSMarco 61M MonoT5 small (Nogueira et al., 2020) 27.7%
MNLI 184M nli-deberta-v3-base 30.2%
QNLI 110M qnli-electra-base 34.1%
MSMarco 223M MonoT5 base (default) (Nogueira et al., 2020) 34.9%
MSMarco 737M MonoT5 large (Nogueira et al., 2020) 45.8%
MSMarco 2.85B MonoT5 3B (Nogueira et al., 2020) 50.6%

Table 2: Results for pairwise contrastive evaluation using paired accuracy. All models are from sentence-transformers
(Reimers and Gurevych, 2019) unless otherwise cited. Data indicates the main source of training data for the model,
while score indicates Pairwise Accuracy (see Sec 4.1). Note that RocketQA includes both a cross-encoder and
bi-encoder for both versions. TF-IDF scores were designed to be low in the task instruction (Section 3.2).

No bi-encoder architecture scores higher than
12% paired accuracy despite the method of pre-
training (e.g. CoCondenser) or the type of con-
trastive training data (MSMarco, NQ, etc.) with
most models performing in the 5-10% range.

In the sparse category, we see that TF-IDF scored
only 2% paired accuracy. Since we did not allow
annotators to use words that were in only one of
the paragraphs, this is to be expected.5 For neural
sparse models, all SPLADEv2++ models perform
similarly to the bi-encoders, at around 8% paired
accuracy.

The late interaction style models perform signif-
icantly better than bi-encoders and sparse models,
with ColBERTv1 scoring 19.7% and ColBERTv2
scoring 13.0%. Due to the nature of this model

5Note that the 2% performance, instead of 0%, is due to
our annotation interface not restricting partial matches (e.g.
‘version" vs “versions", “part" vs “parting" etc.).

we are able to visualize the MaxSim operator to
understand its performance (Section 5.3).

The cross-encoder models performed the best,
with MonoT5 (the default “base" version) perform-
ing at 34.9% paired accuracy (and the largest ver-
sion at 50.6%). Interestingly, the cross-encoders
trained on NLI datasets generally performed better
than cross-encoders trained on MSMarco, likely
due to the fact that MSMarco contains little nega-
tion while NLI datasets typically do have negation.

Overall, despite the strong scores of these mod-
els on various standard IR benchmarks, nearly
all models perform worse than randomly ranking.
Only a handful of cross-encoder models perform
better, and they are the slowest and most expensive
category of retrieval models. Even these models
however, perform significantly below humans and
have far from ideal performance.
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Figure 4: Error analysis of the model predictions, detailing whether models preferred (e.g. by ranking first for both
queries) the document with negation (green), the edited non-negation document (orange), or predicted the reversed
ranking for both queries (blue). Models that performed better generally preferred negation documents when they
made incorrect predictions while bi-encoder models were more balanced in their errors.

5.2 How does model size affect the results?
We note that Table 2 includes different sizes of
MonoT5. We see that as model size increases, so
does the accuracy (from around 28% with MonoT5-
small to around 51% for MonoT5-3B). This aligns
with results shown in the natural language process-
ing community about model size (McKenzie et al.,
2022; Wei et al., 2022; Ravichander et al., 2022;
Weller et al., 2023b).

However, unlike NLP, IR is typically more la-
tency constrained. Thus, models like MonoT5-3B
are only feasible for re-ranking and not for first-
stage retrieval (c.f. Section 7 for more discussion).

5.3 ColBERT analysis
As ColBERT models provide token-level vectors
and use the MaxSim operator, we are able to vi-
sualize whether the max operator pays attention
to the negation words (Figures 9 and 10 in the
appendix, due to space constraints). We find in
all sampled instances that the MaxSim operator in
ColBERTv1 ignores negation words, not selecting
them as the max for any query token. Thus, with
default training this is a crucial flaw when it comes
to processing negation, which causes its less-than-
random performance. However, it is possible to
fine-tune these representations to put more weight
on the negation words so that the MaxSim correctly
identifies them, as seen in Section 6.

5.4 Error Analysis
We conduct an error analysis to determine which
document models prefer for a given pair. Models

can prefer (e.g. rank highest in both queries) the
document with negation, the edited non-negation
document, or predict the reversed rank for both
queries. Figure 4 shows that the models trained
on NLI (and cross-encoders) greatly preferred the
document with negation, while bi-encoder models
tended to prefer them equally. Reversed rankings
are uncommon, with bi-encoder models having the
highest percentage (e.g. RocketQA at ∼20%).

6 Fine-Tuning on NevIR

Table 2 shows that models trained on standard IR
training datasets do not show strong results on
NevIR. However, none of the standard IR datasets
include much negation in their queries (potentially
due to production systems biasing users, c.f. Sec-
tion 7). Thus, in this section we fine-tune IR mod-
els on NevIR’s training set to see how negation-
specific training data improves performance.

We use the top performing model from non-
sparse categories: multi-qa-mpnet-base-dot-v1
from SentenceTransformers, ColBERTv1, and
MonoT5-base from PyGaggle. We fine-tune them
using SentenceTransformers, the original Col-
BERTv1 code, and the original PyGaggle code. We
train for 20 epochs and evaluate them on NevIR
test and MSMarco dev after each epoch.

Figure 5 shows that fine-tuning on negation data
improves performance significantly, but still leaves
a large gap to perfect (and the human score of)
100% paired accuracy. As would be expected,
the large MonoT5 model quickly learns and then
overfits to the data (while quickly losing perfor-
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Figure 5: How fine-tuning on NevIR’s training set affects results on NevIR and MSMarco: upper shows NevIR’s
pairwise accuracy scores on test while training for up to 20 epochs, lower shows MSMarco dev MRR@10 scores.
For QNLI-electra-base see Appendix E.

mance on MSMarco). Interestingly, ColBERT
takes much longer to learn (due to the MaxSim
operator), slowly increasing over nearly 20 epochs
to learn what the bi-encoder model quickly learned
in less than 3. However, we find that ColBERT has
a much lower and slower drop in ranking scores
on MSMarco (Figure 5 lower). We show visual-
izations of the MaxSim operator before and after
NevIR training in Appendix D, illustrating that be-
fore training the MaxSim operator ignores negation,
while after training it learns to correctly include it.

7 Discussion and Implications

Implication for Current Systems IR model’s
performance on NevIR indicates that first stage re-
trievers do not take negation into account when
doing retrieval. Thus, to perform well on negation
with current models, expensive cross-encoder re-
rankers are necessary but not sufficient to achieve
good results. Furthermore, our analysis indicates
that in order to best learn negation (and signifi-
cantly improve their performance), models should
incorporate negation into their training data.

Thus, when high precision for negation retrieval
is not needed (e.g. some first stage retrieval set-
tings), current models may be effective, as they will
retrieve lexically similar documents regardless of
negation. However, in order to have high-precision
retrieval with negation (and documents with both
negation and non-negation have high lexical over-

lap), expensive cross-encoders are the only current
models that perform better than random ranking.
NevIR provides the only dataset for measuring and
improving retrieval with negation.

Implications for Current Users Anecdotally,
most users tend to avoid using negation queries
in production IR systems like Google Search. This
may be a self-reinforcing problem, as users have
found poor results when they use negation in search
and hence avoid using negations in the future. For
example, the webpage for the University of Utah
article that is shown in Figure 1 has since been
updated and currently includes no negation words.

Thus, it is unclear whether queries with negation
are less common because of people’s actual infor-
mation needs or because production systems have
biased users (and content creators) into an avoid-
ance of negation. We hope that by introducing a
benchmark for IR evaluation we can help enable
these types of queries in the future.

8 Conclusion

We proposed to benchmark negation in neural in-
formation retrieval and built a benchmark called
NevIR to explore this problem, crowdsourcing
annotations from Mechanical Turk. We found
that modern IR models perform poorly on this
task, with cross-encoder models performing the
best (slightly above random performance) and all
other architectures (bi-encoder, sparse, and late-
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interaction) performing worse than random. Fur-
ther we showed that simply including negation
in fine-tuning provides significant gains, although
there is still room for improvement to reach human
performance. We hope that this benchmark inspires
future work into improving information retrieval
model’s ability to recognize negation.

9 Limitations

Our work provides results for a broad range of
IR models (including the most common and popu-
lar), but does not provide results for all possible IR
models due to space and time. We welcome future
research into investigating alternative methods and
models to improve performance on NevIR.

Our dataset follows previous work in design-
ing contrastive evaluation datasets (Kaushik et al.,
2019; Penha et al., 2022; MacAvaney et al., 2022)
and we note that because of this our work does
not provide a large-scale collection to go along
with our queries (enabling an analysis of recall
along with the precision we measure), as might be
found in classic IR datasets. However, as shown
by a large body of work (see Section 2.5), con-
trastive evaluations can provide important insight
into understanding and improving neural models.
We leave large collection creation with negation
and analysis of recall performance to future work.
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A Annotation Interface

In Figure 6 we show the annotation interface pro-
vided to workers on Mechanical Turk.
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Figure 6: Number of unique words between the two queries.
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Figure 7: Edit types from the CondaQA dataset and
their average pairwise scores. Error bars indicate a 95%
confidence interval.

B Document Edit Types

We also analyze the edit types from the original
CondaQA dataset to see if they impact the pairwise
accuracy. We see in Figure 7 that there is no statis-
tical difference (given the 95% confidence interval)
between the two types of edits for the MonoT5-3B
model (and we note that other models are similar
and hence we only include one model).

C Cosine Similarity after Fine-Tuning

In Figure 8 we see the results for cosine similar-
ity between each document pair during different
epochs. We can see that the representations start
nearly identically, but shift to be further apart and

to have more variance as training continues. This
plot was created using the multi-qa-mpnet model,
but other dense models show similar results.

D ColBERT Analysis

We show two heatmaps for ColBERTv1 models,
the first using the original model trained on MS-
Marco and the 2nd after fine-tuning for 20 epochs
on NevIR. We see in Figure 9 that the model fails
to associate any maximum tokens with the cru-
cial word “rather" instead associating “not" with
“usually". In contrast, after training on NevIR, the
model correctly associates “rather" with “not".

E Results with training
QNLI-electra-base on NevIR

Figure 11 shows results with QNLI-electra-base
also, which shows similar results to MonoT5 in the
main paper. We do not show results for MSMarco
as QNLI-electra-base was not trained on MSMarco.

F Importance of Negation in Retrieval

We include pictures of the tweet refer-
enced at https://x.com/soft/status/
1449406390976409600 in Figure 12, show-
ing the dangers of not understanding negation.

G Hyperparameters and Computational
Resources

All experiments were run on a cluster of V100s
with each experiment taking less than an hour on
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Figure 8: Cosine similarity scores between documents in the pairs during fine-tuning for the multi-qa-mpnet
bi-encoder model. Error bars indicate one standard deviation.
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[SEP]
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Figure 9: An example instance with results from ColBERT’s MaxSim operator from the ColBERTv1 model. Red
highlights indicate the tokens corresponding to the negation (or lack of negation) while blue highlights indicate the
max token for the MaxSim operator. Note that this model predicts the MaxSim token of “usually" for “not" and has
no Max for the crucial word “rather". However, further fine-tuning helps improve this, see Figure 10.

one V100.
We use default hyperparameters for all models

for inference (and many models do not have any hy-
perparameters). For ColBERT training we use their
code that has a default learning rate of 3e-6 and for
bi-encoder training we use Sentence-Transformers
that has a default of 2e-5.
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Figure 10: An example instance with results from ColBERT’s MaxSim operator from the ColBERTv1 model trained
for 20 epochs on NevIR. Red highlights indicate the tokens corresponding to the negation (or lack of negation)
while blue highlights indicate the max token for the MaxSim operator. Note that this model correctly associates the
word “not" with the crucial word “rather" unlike Figure 9.
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Figure 11: Results from fine-tuning IR models on the NevIR training set, including QNLI-electra-base. The plot
shows NevIR test set pairwise accuracy scores while training for up to 20 epochs

Figure 12: Reproduction of the tweet showing Google Search making a life-threatening recommendation and failing
to catch the negation in the article.
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