
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics
Volume 1: Long Papers, pages 2454–2472

March 17-22, 2024 c©2024 Association for Computational Linguistics

STable Table Generation Framework for Encoder-Decoder Models

Michał Pietruszka∗1, 2, Michał Turski∗1, 3, Łukasz Borchmann∗1, Tomasz Dwojak1,
Gabriela Pałka1, 3, Karolina Szyndler1, Dawid Jurkiewicz1, 3, and Łukasz Garncarek1

1Snowflake
2Jagiellonian University

3Adam Mickiewicz University

Abstract

Since the output structure of database-like
tables can cover a wide range of NLP tasks, we
propose a framework for text-to-table neural
models applicable to, e.g., extraction of line
items, joint entity and relation extraction, or
knowledge base population. The permutation-
based decoder of our proposal is a generalized
sequential method that comprehends informa-
tion from all cells in the table. The training
maximizes the expected log-likelihood for a ta-
ble’s content across all random permutations of
the factorization order. During the content infer-
ence, we exploit the model’s ability to generate
cells in any order by searching over possible
orderings to maximize the model’s confidence
and avoid substantial error accumulation,
which other sequential models are prone to.
Experiments demonstrate a high practical value
of the framework, which establishes state-of-
the-art results on several challenging datasets,
outperforming previous solutions by up to 15%.

1 Introduction

It has been previously shown that encoder-decoder
models are capable of unifying a variety of prob-
lems involving natural language. In this setting,
unification is achieved by casting different tasks
as Question Answering with a plain-text answer,
i.e., assuming the text-to-text (Kumar et al., 2016;
Raffel et al., 2020; McCann et al., 2018; Khashabi
et al., 2020) or document-to-text scenario (Powal-
ski et al., 2021; Kim et al., 2022). We argue that the
restriction of output type to raw text is suboptimal
for the plethora of NLP problems and propose a
decoder architecture able to infer aggregate data
types such as a list of ordered tuples or a database-
like table (see Figure 1).

Though the encoder-decoder architecture was
formerly used to infer lists (Powalski et al., 2021),

∗ equal contribution
firstname.lastname@snowflake.com

named tuples (Dwojak et al., 2020), or even more
complex structures (Townsend et al., 2021), it
was often achieved in an autoregressive manner,
without any architectural changes. A model
intended for the generation of unstructured text
in natural language was used to infer an output
with formal structure. In contrast, we exploit
regularities and relationships within the output
data and employ a grammar-constrained decoding
process (Section 2.5).

Specifically, we focus on the text-to-table infer-
ence with applications to problems such as extrac-
tion of line items, key information extraction of
multiple properties, joint entity and relation extrac-
tion, or knowledge base population. Tables as we
understand them are equivalent to database tables
and defined as a set of values structured in horizon-
tal rows and vertical columns identifiable by name.

From receipts and invoices, through paycheck
stubs and insurance loss run reports, to scientific
articles, real-world documents contain explicitly
or implicitly tabular data to be extracted. These
are not necessarily represented as a table per se
within the input document, e.g., the currency name
on the invoice or policy number on the loss run
can be mentioned once and be related to all the
line items within. In other cases, the evidence one
intends to comprehend and represent as a table may
be available in free-text only, as can be found in
problems of joint entity and relation extraction (see
Figure 1-2). Finally, the data may require some
postprocessing, such as the normalization of dates,
before returning them to the end-user.

1.1 Limitation of Current Approaches

Admittedly, models based on the transformer
encoder-decoder or decoder achieve remarkable
results in generating complex, formalized outputs,
such as computer programs or JSON files (Chen
et al., 2021; Townsend et al., 2021). Nevertheless,
we hypothesize that changes leading to the explicit

2454

© 2022 Snowflake Inc. All Rights Reserved

Unification under table generation framework

7

Input OutputDocument, e.g.: Task-dependent data structure, e.g.:

Subject Object Relation

Riddarhuset Sweden country

Royal Court Orchestra Royal Opera part of

Entities and relations / knowledge base records

Description Quantity Unit price Total

Ice cream 2 5 10

Bread 1 2 2

Soda 1 3 3

Extracted line items

Plain text news

Wikipedia articleInvoice

Encoder-decoder
model

Key information / property-value pairs

Property Value

Date of birth 1915-01-15

Place of birth Saint Petersburg

Citizenship Russian Empire

Figure 1: Reinterpreting diverse tasks under a unified paradigm: all these tasks essentially require generating a table
based on a given context. While they were not previously seen in this light, we reinterpret them as text-to-table
tasks, bringing them together under a single paradigm and directly model the table in the output. This unification
has led to significant improvements in each task.

modeling of structured data can outperform the said
implicit decoding that models long-range syntax
dependencies sequentially and does not guarantee
the formal validity of produced outputs.

While generating in a particular predefined order
(e.g., left-to-right, row-by-row), such approaches
have a few drawbacks. Firstly, error propagation
that causal models may show after skipping some
cells or answering them incorrectly. This flaw may
start a chain reaction and directly influence the
subsequent cells’ generation, causing error propa-
gation and a rapid decline in table quality. Strik-
ingly, an error propagation issue is known in Neural
Machine Translation when the right part of the gen-
erated sentence used to be worse than the left one
(Wu et al., 2018). Therefore, previous approaches
to table generation employed preventive measures
to keep the table layout under control (Wang et al.,
2019) and limit the negative effect of error prop-
agation. Secondly, the answers are forced; the
model that cannot give a proper answer consis-
tently has lower confidence and dispersed proba-
bility over multiple possibilities. Therefore, we
use logit-based confidence to guide the generation
process, emergently achieving the property of ab-
staining from generating answers when the model
does not indicate high confidence. Thirdly, the for-
matting of the table plays a role, and the order of
columns may be treated as a hyperparameter in the
previous approaches (Wang et al., 2019; Dwojak
et al., 2020). For example, performing generation
in a predefined and not optimized order may lead
to the case when the model is asked about, e.g.,
date of birth of the person that still needs to be

Input

Output

Name Surname Place of birth

Auguste Lumière Besançon

Luis Lumière

Charles Lumière

Besançon

NULL

People

Auguste and Luis Lumière were born in
Besançon, France, to Charles and Jeanne.

Jeanne Lumière NULL

Figure 2: Example of text-to-table generation given
plain text input. Concurrent extraction and grouping
of the detected entities simplifies the process and may
mitigate error accumulation.

specified. Therefore, we want the model to learn
the optimal order of the generation as part of the
task itself without any implicit human guidance.

Significantly, the advantage the encoder-decoder
framework has is that it can cover problems men-
tioned above in one end-to-end trainable process,
thus simplifying the pipeline and reducing the accu-
mulation of errors along the way. At the same time,
since extracted data is already in the form the end
user requires, one is able to use it directly for down-
stream application without further processing steps.

1.2 Contribution and Related Works

The specific contribution of this work in-
cludes (1) equipping transformer models with
permutation-based decoder training to allow com-
prehending complex, role-dependent relationships
in a series of similar objects we represent as a table,

2455

(2) a sequential, grammar-constrained decoding
mechanism which generates table content cell-by-
cell, in a dynamic, data-dependent order, and (3) in-
troduction of tabular attention bias to the decoder.
The novelty of our approach can be better under-
stood in the context of related works.

Decoding of data structures. A few authors at-
tempted the problem of table generation in the
encoder-decoder framework. Zhong et al. (2020)
proposed a table recognition model consuming in-
put images and decoupled the problem into uncon-
strained table and cell content generation. In com-
parison, (1) we use a single constrained decoder
comprehending both table structure and its content;
(2) we tackle problems of text-to-table inference
where the presence of a table at the model input is
optional. Recently, Wu et al. (2022) introduced a
model relying on constrained decoding of table and
tabular embeddings similar to ours. We share their
motivation and idea but differ as (1) our method is
not restricted to a predefined, row-by-row decoding
order and uses a permutation-based training proce-
dure aligned with the use of optimal, model-guided
cell permutation during inference; (2) we assume
the explicit prediction of the number of rows up-
front (before the table decoding starts), instead of
allowing the model to stop the generation process
after any completed row. The advantage of this
approach is discussed in Section 2 and proven by a
series of experiments reported in Section 3.

The encoder-decoder model was previously
used as is, to infer lists and tuples separated with
special characters (Powalski et al., 2021; Dwojak
et al., 2020). Similarly, Townsend et al. (2021)
experimented with the generation of more complex
data types represented as XML, JSON, or Python’s
string representation. In contrast to previous
approaches, we do not rely on implicit modeling
of the formal structure of the output but opt for
explicit structure generation.

Finally, a text-to-structure approach was recently
taken by Lu et al. (2021) for event extraction.
The authors used trie-based constrained decoding
with event schema injected as the decoder prompt.
It resembles our approach to constrained table
generation, though they rely on only one proper
decoding order resulting from the assumed tree
linearization strategy. Moreover, the authors found
it challenging to train the structure generation
model directly and thus trained it on simple event
substructures first. In contrast, we can directly train

the structure decoder, and our permutation-based
method allows one to generate the structure
flexibly, in an arbitrary order dynamically guided
by the decoding algorithm.

Flexible generation. Even though permutation-
based training, which allows for output generation
in any order, is of minor usability in the task of LM,
it was validated by Stern et al. (2019) for machine
translation and by Song et al. (2021) for summa-
rization. Accordingly, Stern et al. (2019) proposed
to equip a transformer with the insertion operation,
realized by interpreting an additional number gener-
ated with the token as the position in the output se-
quence to which the insertion should be performed.
This framework allows for the flexibility of the de-
coding process, understood as the possibility of
stubbing the output sequence with tokens that the
model recognizes with high confidence first and
then gradually adding more details in the later itera-
tions. In contrast, since the whole output sequence
is passed through the decoder anyway, our one cell-
decoding step is implemented by sampling all cells
at once and then choosing the best-scored ones to
be inserted at its location while disregarding others.
In the ablation studies we evaluate how the num-
ber of cells inserted at once influence the decoding
speed and quality, as higher values indicate more
cells generated in parallel.

Permutation-based language modeling. The
effectiveness of the permutation-based language
modeling objective was demonstrated by Yang et al.
(2019) who conditioned the BERT-like model to
work with the AR objective. However, while the
nature of the LM task allowed them to perturb the
factorization order of the input sequence arbitrar-
ily, our table-decoding problem requires additional
constraints to account for the fact that each cell may
consist of several tokens. Thus, the factorization
order of blocks of tokens (representing cells) is
permuted, while causal order is assumed within
the cell. For permutation-invariance and table-
awareness on reversed tasks (i.e., table-to-text), we
refer the reader to (Wang et al., 2022).

2 STable — Text-to-Table Framework

Serialized representation of the table permits to
treat it as a text sequence, and hence, use text-
centric methods to perform an autoregressive gener-
ation of the output sequence by employing a vanilla
Transformer decoder. However, this approach does

2456

© 2022 Snowflake Inc. All Rights Reserved

Recall the Challenges

23

Color Shape

 red circle

green square

blue triangle

Color Shape

 red circle

green square

blue triangle

Figure 3: A comparative illustration of the training ex-
amples under linearized versus permuted cell ordering.
The left panel depicts a typical linearized ordering, fol-
lowing a top-down, left-to-right progression. The right
panel presents a permuted ordering example where cells
are filled in a non-sequential order.

not exploit the two-dimensional structure of the
table as it expands the answer sequentially and uti-
lizes only uni-directional context.

Consequentially, two challenging problems arise.
Firstly, how to approach the fact that some infor-
mation in the table may depend on other cells (e.g.,
name and surname or the same tax rate for sim-
ilar items on a receipt) while some may not be
dependent (prices of different articles on the shop-
ping list). In general, a model possesses flexibility
with respect to this dependence-independence as-
sumption when it can leverage dependencies during
decoding but is not forced to do so in any specific
order. Our idea (presented in Figure 3) is to solve
this problem by delaying the generation of the most
challenging and complex answers to later stages
and conditioning them on the already generated
answer.

Moreover, the decoding must remain free of
train-inference discrepancies. Generally, the
train-inference alignment means that the state of
the table at every step while decoding a particular
example must also be possible to achieve in
the training phase. Formulating the training
that allows for flexible cell generation without
providing any additional information remains a
non-trivial problem. We rise up to the challenge
and demonstrate the solution below.

2.1 Decoding Invariant Under Cell Order

Instead of generating the cell values in a top-down,
left-to-right manner as previously seen in the liter-
ature (e.g., Wu et al., 2022), we perform the pre-
training by maximizing the expected log-likelihood
of the sequence of cell values over all possible
prediction orders. More specifically, suppose that
we are given a document containing a table with

(B) Gold standard

Color Shape

 red circle

triangle

Color Shape

 red circle

green square

blue triangle
(C) Output after current step

(A) Decoder prompt

(D) Expected output

red </Cell>

Figures

<Column>
Color
<Cell>
<Cell>
<Cell>

</Column>

<Column>
Shape
<Cell> circle </Cell>
<Cell>
<Cell> triangle </Cell>

</Column>

Figure 4: A training example depicting how the
answer red is produced based on the partially filled
cells containing circle and triangle. (A) The
highlighted cell denotes a position where the expected
red </Cell> should be predicted autoregressively
starting from a <Cell> token. A successfully decoded
cell will lead to the state visible in (C), i.e., the partially
decoded gold standard table (B). The generation order
of a table is random for each example in the training.

row labels r = (r1, . . . , rN),1 and column labels
c = (c1, . . . , cM), which we will collectively de-
note h = (r, c). A linear ordering of the table cells
can be represented with a bijection

σ : {1, 2, . . . , C} → {1, . . . , N} × {1, . . . ,M},

where C = NM is the number of cells, so that
σ(n) = (i, j) are the row and column coordinates
of the n-th cell in the ordering. Given such a σ
and cell values v = (vij)i≤N,j≤M , we factorize
the likelihood of v given h as

pθ(v|h) =
C∏

n=1

pθ
(
vσ(n)

∣∣(vσ(k))k<n,h
)
, (1)

and using this factorization, we maximize the ex-
pected log-likelihood

1

C!

∑

σ

C∑

n=1

log pθ
(
vσ(n)

∣∣(vσ(k))k<n,h
)

(2)

over θ. The likelihoods pθ
(
vσ(n)

∣∣(vσ(k))k<n,h
)

themselves can be factorized according to the stan-
dard auto-regressive approach as

pθ
(
vσ(n)

∣∣(vσ(k))k<n,h
)
=

=

ℓ(vσ(n))∏

t=1

pθ
(
vtσ(n)

∣∣(viσ(n))i<t, (vσ(k))k<n,h
)

(3)
1In practice, usually there are no row labels; however, in

the decoder, the special tokens used for distinguishing rows
take this role.

2457

where ℓ(vσ(n)) is the length of vσ(n) represented as
a sequence of tokens (viσ(n))i≤L. In practice, the
expected log-likelihood is estimated by sampling
bijections σ at random.

Training example is presented in Figure 4.

2.2 Tabular Attention Bias

We base our attention computation method on the
relative bias idea popularized by the T5 model.
Given a text consisting of T tokens, in the vanilla
T5 model, raw attention scores αij for tokens i and
j (with 0 ≤ i, j < T) are modified by introducing
a bias term: α′

ij = αij+βij where βij = W (i−j)
is a trainable weight, depending on the relative
sequential position of these tokens (Raffel et al.,
2020).

We modify the decoder’s self-attention by
extending it with two new bias terms, defined
below. The tabular bias τij encodes the relative
position of table cells in which the tokens lie,
while the local sequential bias λij corresponds to
the relative sequential position of tokens belonging
to the same cell.

τij =

{
R(ri − rj) + C(ci − cj) if rj > 0

R0 + C(ci − cj) if rj = 0
,

λij =

{
L(i− j) if (ci, ri) = (cj , rj)

0 otherwise
(4)

where (ci, ri) are cell coordinates as given by its
1-based column and row indices (with 0 reserved
for the header row/column), and R(k), C(k), L(k)
and R0 are trainable weights. The special case
with rj = 0 corresponds to the situation when the
key/value token lies in the column header, in which
case we want to use the same bias independent of
the row of the query token, due to the different na-
ture of the relation between two cells, and a cell and
its column header. After these adjustments, the fi-
nal attention score takes the form α′

ij = αij+βij+
τij+λij , where βij is the bias term defined earlier.

2.3 Predicting Number of Groups

Although the previous work of Wu et al. (2022)
assumed the table is finalized when the appropriate
special token explicitly appears in the output, our
systematic study shows that the explicit prediction
of the number of groups yields better results (see
Section 4 for comparison). This explicit prediction
is achieved with a linear layer that consumes the
first input token’s embedding to perform a predic-

tion on the number of groups. During the training
stage, the layer’s output is scored against the known
number of groups using MSE loss, while during
the inference, it is used as a predictor declaring the
number of groups to populate the template with.

2.4 Inference with Model-Guided Cell Order

Since the model was trained assuming a permuted
factorization of cell ordering, in expectation, the
model learned to understand all possible variants
of a partially-filled table and predict values for all
empty cells. Because each step in the generation
process implicates uncertainty that should be glob-
ally minimized, we propose to estimate the optimal
table decoding algorithm by greedily finding the
cell that minimizes this uncertainty at each step.

The decoding employs an outer loop that pro-
gresses cell-by-cell, an inner loop that generates
each cell that is yet to render, and a selection heuris-
tics that determine which cell, from all the finalized
in the inner loop, should be added to the outer loop.
The heuristic we use selects the cell containing the
token with highest probability among all predicted
(Figure 5). The detailed study of this and alterna-
tive selection criteria is presented in Appendix C.

In the inner loop, each cell is decoded until the
special token determining the end of cell generation
is placed. As the inner loop generates each cell au-
toregressively and independently from other cells,
the process can be treated as generating multiple
concurrent threads of an answer and is well paral-
lelizable. In the worst case, it takes as many steps
as the number of tokens in the most extended cell.

After being selected by a heuristic, the cell from
the inner loop is inserted into the outer loop, and
made visible to all other cells, while the cells that
were not selected are to be reset and continuously
generated in the future steps until they are chosen
by a heuristic (see pseudocode in Appendix A).

2.5 Grammar-Constrained Decoding

As a result of the model design, incorrect tables
cannot be generated. Part of these rules is explicit
(e.g., we overwrite logits, so it is impossible to emit
particular tokens such as the end-of-cell when no
cell is opened), whereas part of the rules results im-
plicitly from the algorithm (template-filling setting,
where the well-formulated table is always ensured).

2458

Input Decoding steps

0.9 red 0.4 square

0.9 green 0.8 square

0.8 blue 0.5 cross

There are toys colored
red, green, and blue on
the table. The square is

green, the triangle is blue,
and the circle is in the

remaining color.

red 0.3 hexagon

green 0.9 square

1.0 blue 0.8 triangle

red 0.6 circle

green square

blue 0.8 triangle

red circle

green square

blue triangle

(2) Two values from the previous step
 are kept. We generate four candidates.

(1) Decoding starts with an empty table.
 Six candidate values are generated.

(3) Four values from the previous steps
 are kept. We generate two candidates.

(4) Table generation is complete.
 Its final form is presented below.

Outer loop with two candidates kept.

Probability Candidate value

Probability High-score candidate

Value kept from the previous step

Legend

Figure 5: A possible progression of decoding a table given the text on the input. Since the probabilities guide the
decoding order, the circle’s color that was not explicitly stated in the text is determined at the last step.

Table 1: Results on public and private datasets assuming task-specific metrics. The results of a sequence-to-sequence
baseline that learns and generates tables as text are provided in the Linearized column. Mean and STD over three
runs. The † symbol denotes our TILT training. Underline signifies our model is significantly better than baseline.

Dataset State-of-the-Art Reference Linearized Our Model

PWC⋆ T5 2D (Borchmann et al., 2021) 26.8 27.8± 1.0 30.8± 0.5 T5 2D + STable

CORD TILT (Powalski et al., 2021) 96.3 92.4± 0.7 95.6± 0.2 TILT† + STable

Rotowire
Player Text-to-Table (Wu et al., 2022) 86.8 84.5± 0.7 84.5± 0.2

T5 + STableTeam (BART backbone) 86.3 83.8± 0.9 84.7± 0.2

DWIE KB-both (Verlinden et al., 2021) 62.9 60.2± 1.5 59.2± 1.5 T5 + STable

Recipe. . .
TILT†

71.9 60.1± 0.3 75.5± 1.6

TILT† + STablePayment. . . 77.0 72.0± 2.3 79.1± 0.9
Bank. . . 61.1 58.7± 4.9 69.9± 4.8

3 Experiments

In addition to state-of-the-art reference and our
results, we provide scores of the same backbone
models (T5, T5 2D, and TILT) while a table lin-
earization strategy follows the assumptions of Wu
et al. (2022)’s baselines. Appendix D covers details
of training procedure.

Metrics. We rely on the original metrics for all
but the DWIE dataset, i.e., GROUP-ANLS for
PWC⋆, F1 for CORD, and non-header exact match
cell F1 for Rotowire (other variants proposed by
the authors are reported in Table 7 in Appendix D).
Use of the original DWIE metric was not possible,
as it assumes a step-by-step process. In contrast,
we tackle the problem end-to-end, i.e., return (ob-
ject, relation, subject) tuples without detecting all
entity mentions within the document and their lo-
cations. To ensure a fair comparison, we use the F1
score calculated on triples; that is, we require the

model to return the exact match of the triple. Such a
setup is very demanding for encoder-decoder mod-
els as the convention in DWIE is to require object
and subject to be returned in the longest form of
appearance in the document.

Pretraining and Adaptation. Due to the switch
to permutative training and the addition of the
regression head, there is a significant change in
the model objective. Consequently, we antici-
pated the necessity of the model adaptation phase.
It consists of the pretraining stage equivalent to
the one conducted by authors of the TILT model
(Powalski et al., 2021) extended by Natural Ques-
tions (Kwiatkowski et al., 2019) and WebTables2

datasets. To utilize WebTables we rendered web-
pages, from which the tables were scraped and
taught models to extract table contents from web-
pages. The said stage is applied to all T5+STable,
T5 2D+STable, and TILT+STable models.

2https://webdatacommons.org/webtables/

2459

Complex Information Extraction. The problem
of information extraction involving aggregated data
types, where one may expect improvement within
the document-to-table paradigm, is prevalent in
business cases. Nevertheless, the availability
of public datasets here is limited to PWC⋆

(Borchmann et al., 2021; Kardas et al., 2020) and
CORD (Park et al., 2019).

In the case of PWC⋆, the goal is to deter-
mine model names, metrics, datasets, and perfor-
mance, given the machine learning paper as an
input. CORD assumes the extraction of line items
from images of Indonesian receipts, among oth-
ers. To determine the gain from our STable de-
coder, the experiments are conducted with state-
of-the-art encoder-decoder models proposed for
these datasets (T5 2D and TILT), assuming the
same training procedure (Borchmann et al. (2021);
Powalski et al. (2021); see Appendix D for details).

Additionally, due to the sparsity of public bench-
marks of this kind, we decided to provide results on
three confidential datasets. They assume, respec-
tively, (1) the extraction of payments’ details from
Payment Stubs, (2) Recipe Composition from docu-
ments provided by a multinational snack and bev-
erage corporation, as well as (3) account balances
from Bank Statements. These are covered in details
in Appendix E and addressed by the TILT+STable
model with vanilla TILT as a reference.

As summarized in Table 1, we outperformed
state-of-the-art information extraction models on
several datasets. At the same time, the CORD
where we underperform was previously considered
solved, e.g., Powalski et al. (2021) point that TILT’s
output and the reference differed insignificantly.
We used it in the experiment as a safety check to
determine whether the model can maintain almost-
perfect scores after applying the STable decoder.
Consequently, we omit it in the ablation studies.

The rest of the experiments were conducted as-
suming the vanilla T5 model (Raffel et al., 2020)
equipped with the STable decoder of our proposal.

Joint Entity and Relation Extraction. To
demonstrate the broad applicability of the model,
we consider the problem of a joint entity and
relation extraction on the example of the DWIE
dataset (Zaporojets et al., 2021). Here, the tuples
consisting of entities and one of the sixty-five
relation types are to be determined given a
plain-text news article. Despite not outperforming
a multi-step state-of-the-art model, we achieved

high scores and were the first to prove that
the problem can be successfully approached
end-to-end using an encoder-decoder framework.
Here, the T5+STable’s errors and issues reflect the
very demanding assumptions of DWIE, where it is
required to return object and subject in the longest
form of appearance in the document.

Reversed Table-to-Text. Finally, following Wu
et al. (2022) we evaluate our approach on the Ro-
towire table-to-text dataset in a reverse direction,
i.e., generate tables from text (Wiseman et al.,
2017). Consequently, the complex tables reporting
teams and player performance are generated given
the game description. Results from Table 1 show
that our T5+STable model can deliver an improve-
ment over the Linearized T5 model on Rotowire
Team. The fact that Linearized BART from Wu
et al. (2022) outperforms our Linearized T5 base-
lines on Rotowire Team and Player datasets by 2.5
and 2.1 points, respectively, suggests that it has a
better capacity as a backbone for this task. Several
of the ablation studies from the next section were
designed to shed light on this subject.

The results of our model (Table 1) demonstrate a
significant improvement over the simple sequence-
to-sequence generation of tables linearized as se-
quences on three out of five public datasets. As ex-
pected, it yields better results in cases where there
is a considerable interdependency between values
in a row and no clear, known upfront name distin-
guishes it from other rows. Note that, e.g., in Ro-
towire, it suffices to correlate all statistics with team
or player name, which is always inferred first due
to the employed linearization strategy. The order
of columns being decoded is a hyperparameter in
the case of linearization. In contrast, the power of
STable comes from learning it from the data itself.

4 Ablation Studies

Models were trained three times with different ran-
dom seeds on the Rotowire, DWIE, and PWC⋆

datasets. To reduce the computational cost, we
relied on base variants of the models reported in
Section 3 – please refer to Appendix D for detailed
specifications and results. While results on a single
dataset can be considered noisy, aggregation over
a diverse set of them helps diminish the random-
ness’s impact and stabilize results on the new ones.

(1) Semi-templated Expansion. To compare our
method of group prediction with a regression-free

2460

Table 2: Results of studies (1), (2), (3), and (5). Mod-
ified models in relation to complete STable. See Ap-
pendix D for per-dataset results.

Model Score Change

Complete STable 62.9± 1.0 —

Semi-templated expansion 61.4± 0.1 −1.5 (1)

Fixed causal order 60.0± 0.4 −2.9 (2)

Decoding constraint (3)
Column-by-column 62.4± 0.6 −0.5
Row-by-row 62.1± 0.6 −0.8
L→R and T→B 62.0± 0.5 −0.9
No distant rows 62.2± 0.5 −0.7

Sequential decoder bias only 3.9± 0.1 −59.0 (5)
Sequential and header bias 33.2± 0.3 −29.7

2 4 6 8 10
Number of cells decoded in parallel

0.00

1.00

2.00

3.00

4.00

Ti
m

e
pe

r d
oc

um
en

t (
s) PWC DWIE Player Team

2 4 6 8 10
Number of cells decoded in parallel

0.85

0.90

0.95

1.00

1.05

S
co

re
 (r

el
at

iv
e

to
 o

ne
 c

el
l)

PWC DWIE Player Team

Figure 6: Results of decoding ablation (4). Three runs
for 1, 2, 3, 5, and 10 cells decoded in parallel.

alternative, we allow the model to work in a
semi-templated manner, where the template is
infinite, and the decoding stops when the group
with NULL-only tokens is generated. For this
method, we add such a group at the bottom of
the table during the training to comply with the
inference. The model performance is significantly
below the STable reference, suggesting explicit
group number prediction superiority.

(2) Non-Permutative Training. To measure
the importance of understanding the bidirectional
contexts within the model, we abstain from
permutation-based training in our study and choose
the predefined factorization order. Here, a fixed
causal order model that reads tables from left to
right and from top to bottom is evaluated. This
alternative is in line with text-to-table approach of
Wu et al. (2022). As shown in Table 3, the lack of
permutative training we introduced in Section 2
leads to significantly worse scores.

(3) Constrained Cell Order. Whereas the
permutation-based training allows for great flexibil-
ity, the questions posed here are whether limiting
the model’s ability to discover new cells can be of
any value. Methods in this group assure either that
the column-by-column constrained model predicts
the whole column before decoding a new one, the
row-by-row constrained model predicts the whole
row before entering a new one, whereas L→R and
T→B is a combination of both (ensures row-by-row
inference from left to right). The no distant rows
constraint forces the decoding to have empty cells
only on the bottom of each column, thus avoiding
skipping cells in the decoding while moving down.

As shown in Table 3, all but column-by-column
constraint lead to a decreased scores. At the same
time, the mentioned performs on par with STable’s
model-guided inference (Section 2.4), and both are
better than the method with left-to-right decoding
order. These results suggest that (1) our method
does not require constraining the decoding order,
(2) it seems to implicitly incorporate the column-
by-column constraint, and (3) it is helpful to be
elastic w.r.t. decoding order within the column.

(4) Parallelization of Cell Decoding. As
outlined in Section 2.4, one may allow multiple
candidates to be kept in each decoding step to
shorten the inference time while expecting the
performance to degrade to some extent. Results
of experiments that follow this observation are pre-
sented in Figure 6. One may notice that processing
time varies across the considered datasets since
it depends mainly on the input sequence length
(ranging from 1k for Rotowire to 6k for PWC) and
the sizes of the table to infer (we infer as many as
320 cells for the Player table). Parallelization of
cell decoding significantly reduces the total per-
document processing time — up to five times for
DWIE in the conducted experiments. Interestingly,
speed-up does not necessarily lead to a decrease in
scores; e.g., in the case of the Team table, there is
four times better processing time when ten cells are
inferred at once, whereas the scores achieved by the
model remain comparable. It can be attributed to
the fact that there are almost no inter-cell dependen-
cies and always only two rows to infer — one for
each team playing. Since the performance changes
w.r.t. this parameter is heavily data-dependent, its
value should be obtained experimentally for each
dataset separately. Additionally, we argue that it
is beneficial to use large values to speed up the

2461

train-time validation as it maintains a correlation
with higher-scoring lower parameter values that
can be employed during test-time inference.

(5) Tabular Attention Biases. In comparison
with the initially introduced two relations (between
cells and within cells), removing them and using
only 1D global bias disrupts the permutation-based
training as the model scores degrade since it cannot
assign answers to correct columns. However,
additional incorporation of the header name (by
attending only to row with headers, rj = 0 in
Equation 4) leads to significant improvement, but
it is still below the full model. Detailed analysis
showed that the model could not benefit from
1D global bias, as (1) the distance between cells
and header is too large for the first cells in the
training since they are randomly chosen from any
position within the table, and (2) a table itself
is considerably bigger, as in permutation-based
training we assumed that every cell in the table
is generated, while for the linearized model, the
headers are generated by the model, and a part
of them can be skipped, thus reducing the size of
the table. The consistent improvements on four
datasets indicate that proposed tabular attention
biases enhance table-modeling efforts.

5 Limitations

The state-of-the-art performance of STable is
its foremost advantage, while the constraining
factors come from different aspects. Of them,
the generated sequence’s length seems to incure
the most long-term cost during inference, while
the increase in training time per example is a
short-term obstacle. The underlying issue is that
the full table context negatively influences the
computational cost of the attention on the decoder
side. This however is also the case for the family
of encoder-decoder models generating the whole
table such as these proposed by Wu et al. (2022)
or Townsend et al. (2021). A possible solution
here is a model with table context limited to
the row and column a given table cell belongs
to. Such a change would have a positive impact
on the memory consumption in the decoder, as
self-attention complexity decreases from O(NM)
toO(N +M), where N,M denotes the number of
rows and columns respectively. The exploitation of
this optimization is an interesting future direction.

To navigate the intricacy of the order employed
by the STable framework, we performed a system-

atical analysis that did not conclude in finding a
visible decoding pattern that could be described
formally beyond the observation already provided
in Figure 5 and in constrained-decoding ablations.
Studying the generation order in the context of
data calls for designing a new explainability-related
method, which is not in the scope of this work.

6 Summary

We equipped the encoder-decoder models consum-
ing text (T5, T5 2D) and documents (TILT) with the
capabilities to generate tables in a data-dependent
order. Firstly, an aligned training procedure based
on permuting factorization order of cells was pre-
sented, and secondly, the parallelizable decoding
process that fills the table with values in a flexible
and unconstrained order was proposed. The
important design choices for both contributions
were motivated by an extensive ablation study.
The proposed STable framework demonstrates its
high practical value by yielding state-of-the-art
results on PWC⋆ and outperforming linearized
models on CORD and Rotowire Team datasets, as
well as outperforming reference models on several
confidential datasets. The highest gains due to the
permutative training were accomplished on the
PWC⋆ dataset, where 4.0 points (26.8 → 30.8)
amounts to 14.9% relative improvement, while the
8.8 point gain on Bank Statements (61.1→ 69.9)
exceeds 14.4% relative improvement.

Acknowledgments

The Smart Growth Operational Programme par-
tially supported this research under projects no.
POIR.01.01.01-00-0877/19-00 (A universal plat-
form for robotic automation of processes re-
quiring text comprehension, with a unique level
of implementation and service automation) and
POIR.01.01.01-00-1624/20 (Hiper-OCR - an in-
novative solution for information extraction from
scanned documents).

References
Łukasz Borchmann, Michał Pietruszka, Tomasz Stanis-

lawek, Dawid Jurkiewicz, Michał Turski, Karolina
Szyndler, and Filip Graliński. 2021. DUE: End-to-
end document understanding benchmark. In Proceed-
ings of the Neural Information Processing Systems
Track on Datasets and Benchmarks, volume 1.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,

2462

https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/069059b7ef840f0c74a814ec9237b6ec-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/file/069059b7ef840f0c74a814ec9237b6ec-Paper-round2.pdf

Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. CoRR,
abs/2107.03374.

Tomasz Dwojak, Michał Pietruszka, Łukasz Borch-
mann, Jakub Chłędowski, and Filip Graliński. 2020.
From dataset recycling to multi-property extraction
and beyond. In Proceedings of the 24th Confer-
ence on Computational Natural Language Learning,
pages 641–651, Online. Association for Computa-
tional Linguistics.

Marcin Kardas, Piotr Czapla, Pontus Stenetorp, Sebas-
tian Ruder, Sebastian Riedel, Ross Taylor, and Robert
Stojnic. 2020. AxCell: Automatic extraction of re-
sults from machine learning papers. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 8580–
8594, Online. Association for Computational Lin-
guistics.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish
Sabharwal, Oyvind Tafjord, Peter Clark, and Han-
naneh Hajishirzi. 2020. UNIFIEDQA: Crossing for-
mat boundaries with a single QA system. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 1896–1907, Online. Association
for Computational Linguistics.

Geewook Kim, Teakgyu Hong, Moonbin Yim,
JeongYeon Nam, Jinyoung Park, Jinyeong Yim, Won-
seok Hwang, Sangdoo Yun, Dongyoon Han, and Se-
unghyun Park. 2022. Ocr-free document understand-
ing transformer. In Computer Vision – ECCV 2022,
pages 498–517, Cham. Springer Nature Switzerland.

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer,
James Bradbury, Ishaan Gulrajani, Victor Zhong, Ro-
main Paulus, and Richard Socher. 2016. Ask me
anything: Dynamic memory networks for natural
language processing. In Proceedings of The 33rd
International Conference on Machine Learning, vol-
ume 48 of Proceedings of Machine Learning Re-
search, pages 1378–1387, New York, New York,
USA. PMLR.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Matthew Kelcey,

Jacob Devlin, Kenton Lee, Kristina N. Toutanova,
Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Transactions of the Association of Compu-
tational Linguistics.

Yaojie Lu, Hongyu Lin, Jin Xu, Xianpei Han, Jialong
Tang, Annan Li, Le Sun, Meng Liao, and Shaoyi
Chen. 2021. Text2Event: Controllable sequence-to-
structure generation for end-to-end event extraction.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
2795–2806, Online. Association for Computational
Linguistics.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong,
and Richard Socher. 2018. The natural language
decathlon: Multitask learning as question answering.
CoRR, abs/1806.08730.

Seunghyun Park, Seung Shin, Bado Lee, Junyeop Lee,
Jaeheung Surh, Minjoon Seo, and Hwalsuk Lee.
2019. CORD: A consolidated receipt dataset for post-
ocr parsing. In Document Intelligence Workshop at
NeurIPS.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems
32, pages 8024–8035. Curran Associates, Inc.

Rafał Powalski, Łukasz Borchmann, Dawid Jurkiewicz,
Tomasz Dwojak, Michał Pietruszka, and Gabriela
Pałka. 2021. Going full-TILT boogie on document
understanding with text-image-layout transformer.
In Document Analysis and Recognition – ICDAR
2021, pages 732–747, Cham. Springer International
Publishing.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. JMLR, 21(1).

Kaiqiang Song, Bingqing Wang, Zhe Feng, and Fei Liu.
2021. A new approach to overgenerating and scoring
abstractive summaries.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob
Uszkoreit. 2019. Insertion transformer: Flexible se-
quence generation via insertion operations. In Pro-
ceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pages 5976–5985. PMLR.

2463

http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://www.aclweb.org/anthology/2020.conll-1.52
https://www.aclweb.org/anthology/2020.conll-1.52
https://doi.org/10.18653/v1/2020.emnlp-main.692
https://doi.org/10.18653/v1/2020.emnlp-main.692
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://proceedings.mlr.press/v48/kumar16.html
https://proceedings.mlr.press/v48/kumar16.html
https://proceedings.mlr.press/v48/kumar16.html
https://doi.org/10.18653/v1/2021.acl-long.217
https://doi.org/10.18653/v1/2021.acl-long.217
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1007/978-3-030-86331-9_47
https://doi.org/10.1007/978-3-030-86331-9_47
https://doi.org/10.48550/ARXIV.2104.01726
https://doi.org/10.48550/ARXIV.2104.01726
https://proceedings.mlr.press/v97/stern19a.html
https://proceedings.mlr.press/v97/stern19a.html

Benjamin Townsend, Eamon Ito-Fisher, Lily Zhang,
and Madison May. 2021. Doc2dict: Information
extraction as text generation. CoRR, abs/2105.07510.

Severine Verlinden, Klim Zaporojets, Johannes Deleu,
Thomas Demeester, and Chris Develder. 2021. In-
jecting knowledge base information into end-to-end
joint entity and relation extraction and coreference
resolution. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
1952–1957, Online. Association for Computational
Linguistics.

Fei Wang, Zhewei Xu, Pedro Szekely, and Muhao Chen.
2022. Robust (controlled) table-to-text generation
with structure-aware equivariance learning.

Xing Wang, Zhaopeng Tu, Longyue Wang, and Shum-
ing Shi. 2019. Self-attention with structural position
representations. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 1403–1409, Hong Kong, China. Association
for Computational Linguistics.

Sam Wiseman, Stuart Shieber, and Alexander Rush.
2017. Challenges in data-to-document generation.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2253–2263, Copenhagen, Denmark. Association for
Computational Linguistics.

Lijun Wu, Xu Tan, Di He, Fei Tian, Tao Qin, Jianhuang
Lai, and Tie-Yan Liu. 2018. Beyond error propaga-
tion in neural machine translation: Characteristics of
language also matter.

Xueqing Wu, Jiacheng Zhang, and Hang Li. 2022. Text-
to-Table: A new way of information extraction. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2518–2533, Dublin, Ireland. As-
sociation for Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
XLNet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural In-
formation Processing Systems, volume 32. Curran
Associates, Inc.

Klim Zaporojets, Johannes Deleu, Chris Develder, and
Thomas Demeester. 2021. DWIE: An entity-centric
dataset for multi-task document-level information
extraction. Information Processing & Management,
58(4):102563.

Xu Zhong, Elaheh ShafieiBavani, and Antonio Ji-
meno Yepes. 2020. Image-based table recognition:
Data, model, and evaluation. In Computer Vision –
ECCV 2020, pages 564–580, Cham. Springer Inter-
national Publishing.

2464

http://arxiv.org/abs/2105.07510
http://arxiv.org/abs/2105.07510
https://doi.org/10.18653/v1/2021.findings-acl.171
https://doi.org/10.18653/v1/2021.findings-acl.171
https://doi.org/10.18653/v1/2021.findings-acl.171
https://doi.org/10.18653/v1/2021.findings-acl.171
https://doi.org/10.48550/ARXIV.2205.03972
https://doi.org/10.48550/ARXIV.2205.03972
https://doi.org/10.18653/v1/D19-1145
https://doi.org/10.18653/v1/D19-1145
https://doi.org/10.18653/v1/D17-1239
https://doi.org/10.48550/ARXIV.1809.00120
https://doi.org/10.48550/ARXIV.1809.00120
https://doi.org/10.48550/ARXIV.1809.00120
https://doi.org/10.18653/v1/2022.acl-long.180
https://doi.org/10.18653/v1/2022.acl-long.180
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.ipm.2021.102563
https://doi.org/https://doi.org/10.1016/j.ipm.2021.102563
https://doi.org/https://doi.org/10.1016/j.ipm.2021.102563

A Table Decoding Algorithm

The algorithm presented above operates on the out-
put of the encoder model and reuses the cached
encoded representations that are considered to be a
part of the DECODERMODEL for brevity. Another
important characteristic of the DECODERMODEL

introduced for conciseness of the pseudocode is
that it produces all cell tokens and handles the se-
quential text decoding on its own.

The decoding employs an OUTERLOOP,
parametrized by the k parameter (denoting the par-
allelization of cell decoding) that progresses cell-
by-cell, the INNERLOOP function that generates
each cell that is yet to render, and OUTERCRITE-
RION — a selection heuristics that determine which
cell, from all the finalized in the inner loop, should
be added to the outer loop. The INNERCRITERION

is a heuristic we utilize that selects the cell with the
maximum probability for its tokens’ predictions
(Figure 5).

In the INNERLOOP, each cell is decoded until
the special token determining the end of cell gen-
eration is placed. As the INNERLOOP generates
each cell autoregressively and independently from
other cells, the process can be treated as generating
multiple concurrent threads of an answer and is
well parallelizable. In the worst case, it takes as
many steps as the number of tokens in the most
extended cell.

After the selection by the OUTERCRITERION

heuristic, the cell from the inner loop is inserted
into the outer loop, and made visible to all other
cells, while the cells that were not selected are to be
reset and continuously generated in the future steps
until they are chosen by the OUTERCRITERION

heuristics.

B Negative Result: Prevention of Column
Order Leakage

In the approach outlined in Section 2, the sequence
of column labels c, on which the likelihoods are
conditioned, may leak additional unwanted infor-
mation to the decoder. If the data in the document
are indeed formatted as a table, and the order of
labels in c matches the column order, the model
might learn to extract cells by location, instead of
using the actual semantics of the cell label. How-
ever, during inference, while we know which enti-
ties we want to extract from the document, we are
not given the order in which they appear, which

can be perceived as a serious train-inference dis-
crepancy.

To remedy this problem, we tried to further mod-
ify the training objective (See Figure 7). Denote
by C the set of all non-empty sequences of distinct
column labels. Instead of all the cells v, we can pre-
dict only the cells vc corresponding to a sequence
c ∈ C of columns, in the order defined by the order
of columns in c. The expected log-likelihood over
all c ∈ C can be then expressed as

log pθ(v|h) =
1

|C|
∑

c∈C
log pθ(vc|r, c), (5)

where pθ(vc|r, c) decomposes according to the dis-
cussion in Section 2.

In practice, we found it to have no relevant im-
pact on the training process. It did not lead to
significant changes in evaluation scores when used
in the supervised pretraining stage or on a down-
stream task. Consequently, we abandoned the idea
and did not use it for any of the models reported in
the paper. This study helps us state that the model
learns the semantics of the cell labels without a
need for regularization.

C Inner/Outer Loop Decision Criteria

The heuristic we test selects the cell in the outer
loop based on the minimal or maximal inner score.
Such inner score is calculated in three different
ways: by taking the minimal, maximal, and mean
of the token’s logits score. The results, presented in
Table 3, point to the lesser importance of choosing
the inner scoring method, while the choice of
the outer loop heuristics impacts results more
significantly. The former is the desired behavior
since the algorithm we proposed in Section 2.4
is based on the assumption that it is beneficial to
decode cells starting from those with the model’s
highest confidence. On the other hand, as there
is a significant variance depending on the dataset
chosen (see Appendix D), these and other infer-
ence parameters can be subject to cost-efficient,
task-specific hyperparameter optimization.

D Details of Experiments and Ablation
Studies

All models were trained three times with different
random seeds. We relied on large variants of the
models for experiments in Table 1, and on base
variants for the ablation studies. These are ana-

2465

Algorithm 1 Table Decoding Algorithm of our proposal.

1: procedure OUTERLOOP(k)
2: T ← 0n,m,l ▷ n×m table with l padding tokens per cell
3: C ← 0n,m ▷ current cell status (decoded or not)
4: while SUM(C) < nm do ▷ while there is a cell to decode
5: T ′, L← INNERLOOP(T,C) ▷ create complete table candidate T ′ and cell scores
6: B ← OUTERCRITERION(L) ▷ sequence of coordinates sorted according to scores
7: for c← 1, k do ▷ for k best cells from T’
8: i, j ← Bc ▷ get coordinates
9: Ti,j ← T ′

i,j ▷ ...copy values to table T accordingly
10: Ci,j ← 1 ▷ ...and mark the appropriate cell as already decoded
11: end for
12: end while
13: return T
14: end procedure
15:

16: procedure INNERLOOP(T,C)
17: L← 0n,m ▷ scores for each cell in n×m table
18: T ′ ← T ▷ inner loop’s table copy
19: parfor i← 1, n do ▷ for each table row
20: parfor j ← 1,m do ▷ ...and each table cell processed in parallel
21: if Ci,j = 0 then ▷ ...if it was not decoded yet
22: s, t← DECODERMODEL(T, i, j) ▷ produce cell tokens t and their scores s
23: Li,j ← INNERCRITERION(s) ▷ aggregate per-token scores into cell score
24: T ′

i,j ← t ▷ update table copy
25: end if
26: end parfor
27: end parfor
28: return (T ′, L)
29: end procedure
30:

31: procedure INNERCRITERION(s)
32: /* Any Rn → R function. STable assumes max, but we test other in the ablation studies. */
33: end procedure
34:

35: procedure OUTERCRITERION(L)
36: /* Some Rm×n → (N× N)mn function returning a permutation of indices of the input
37: matrix L. STable assumes sort of matrix coordinates according to descending values of its
38: elements, but we test other functions in the ablation studies. */
39: end procedure
40:

2466

Original

1

2

A

1

2

B

1

2

C

1

2

A

1

2

C 1

2

B

Table with n columns

Tables with c sampled columns, c ∈ [1, n]

1

2

A

Augmented

1

2

A

1

2

B

1

2

C

Figure 7: Change in training illustrated as augmentation of permuted sub-tables from the original table.

Table 3: Results of studies on decision criteria. Modified
models in relation to complete STable. See Appendix D
for per-dataset results.

Model Score Change

Complete STable 62.9± 1.0 —

Criteria (inner, outer)
min max 61.7± 0.7 −1.2
mean max 62.7± 0.7 −0.2
mean min 60.8± 0.7 −2.1
min min 62.1± 0.4 −0.8
max min 61.2± 0.2 −1.7

lyzed in Table 3 given the average results over Ro-
towire, PWC⋆, and DWIE datasets (see Table 4
for detailed scores).

Hyperparameters. We use task-independent hy-
perparameters that roughly follow these proposed
by the authors of the T5 model for its finetuning,
as during our initial experiments, they turned out
to be a robust default (see Table 5).

Maximal input sequence lengths were chosen
in such a way a fair comparison with reference
models was ensured. In particular, we use T5+2D’s
limit despite the fact one can achieve better results
when consuming a more significant part of the input
document. Similarly, the max number of updates
follows the limit in reference models except for the
DWIE dataset, where the state-of-the-art solution
is based on the incomparable multi-step pipeline.
See Table 6 for these task-specific details.

Software and hardware. All experiments and
benchmarks were performed on DGX-A100
servers equipped with eight A100-SXM4-80GB
GPUs that feature automatic mixed precision. Our
models and references were implemented in Py-
Torch 1.8.0a0 (Paszke et al., 2019) with CUDA
11.4 and NVIDIA drivers 470.82.01.

E Business Datasets

Due to the sparsity of public benchmarks for com-
plex information extraction, we decided to provide
results on three confidential datasets. They assume,
respectively, (1) the extraction of payments’ de-
tails from Payment Stubs, (2) Recipe Composition
from documents provided by multinational snack
and beverage corporation, as well as (3) account
balances from Bank Statements. Their details are
covered in the present section and Table 8.

Recipe Composition. The problem faced is ex-
tracting proprieties of food ingredients from confi-
dential food manufacturer’s documentation. This
dataset contains 165 annotated fragments from 55
documents, three pieces for each document, with
annotations sourced from the corporation’s CRM
system.

For each file, there are five tables to be extracted.
The first one describes the ingredient’s physical and
chemical parameters (i.e., parameter name, testing
method, range of allowed values, unit of measure-
ment, and testing method details). The second one
describes sub-components of the ingredient (i.e.,
its quantity, name, allergens, ingredient function,
and country of origin). The third table informs
about the presence of allergens (e.g., their names
and binary information about their presence). The
last two tables contain a quantity of the allergens
(e.g., names and their qualities) as sub-components
and caused by contamination retrospectively.

The first table needs to be extracted from the first
document fragment, the second table – from the
second fragment, and the three last tables – from
the third document fragment. Input documents
feature tables and fulfilled forms, where properties
are presented in the form of text or check-boxes.

The analysis of expected outputs shows a high
level of variability concerning the factors of table
length (1 to 60 rows) and answer type (either a

2467

Table 4: Per-dataset results of studies (1), (2), (3), and (4). Modified models in relation to Complete STable.

Model RW Player RW Team PWC⋆ DWIE

Complete STable (reference) 82.7± 0.3 84.1± 0.7 27.5± 2.2 56.0± 1.4

Semi-templated expansion 80.4± 0.5 84.1± 0.5 25.0± 0.8 56.1± 1.0 (1)

Fixed causal order 83.2± 0.4 84.3± 0.3 26.3± 1.6 46.5± 0.5 (2)

Decoding constraint (3)
Column-by-column 82.5± 0.4 84.0± 0.5 28.4± 1.5 54.8± 0.8
Row-by-row 80.2± 0.4 83.8± 0.4 27.6± 1.6 56.8± 0.8
L→R and T→B 83.1± 0.5 84.1± 0.7 27.7± 1.8 53.2± 0.5
No distant rows 82.7± 0.5 83.8± 0.6 28.1± 1.0 54.2± 1.2

Decision criteria (inner × outer) (4)
min max 81.9± 0.4 83.7± 0.5 26.5± 2.0 54.2± 0.8
mean max 83.0± 0.3 83.8± 0.8 27.8± 1.4 56.1± 1.1
mean min 81.2± 1.1 83.7± 0.6 26.4± 1.9 51.9± 0.5
min min 82.8± 0.6 83.8± 0.5 27.6± 1.3 54.0± 0.5
max min 82.3± 0.3 84.5± 1.0 20.7± 1.6 52.7± 0.4

Sequential decoder bias only 0.3± 0.1 0.6± 0.3 14.1± 0.3 0.6± 0.1 (5)
Sequential and header bias 16.0± 0.4 45.1± 0.4 27.7± 2.0 44.2± 1.2

Table 5: Task-independent hyperparameters used across all experiments.

Hparam Dropout Batch Learning rate Weight decay Label smoothing Optimizer
Value .1 64 1e-3 1e-5 .1 AdamW

Table 6: Task-dependent hyperparameters and training
details. (∗) Length equal to the one consumed by the
baseline model.

Dataset Max steps Max input
Ablation Final length

PWC⋆ 500 1,000 6,144∗

Rotowire 3,000 8,000 1,024
CORD — 36,000 1,024
DWIE 4,000 8,000 2,048

Recipe Composition — 400 2600
Payment Stubs —
Bank Statements — 200 7000

binary value, number, complex chemical name, or
a more extended description).

Payment Stubs. The second of our private
datasets consists of 110 American payment stubs,
i.e., documents obtained by an employee regarding
the salary received.

We aim to extract employee and employer
names, dates, and payment tables, where each row
consists of payment type, hours worked, and pay-
ment amount. Since documents come from differ-
ent companies, their layouts differ significantly.

Due to the straightforward form of information
to be extracted, a single annotator annotated each
document. We state these were annotated ethically
by our paid co-workers.

Bank Statements. The last dataset consists of
131 annotated bank statements. The goal here is to
extract bank and customer name, date of issue, and
table of account balances (e.g., account number,
balance at the beginning of the period, and balance
at the end).

Data to be comprehended is partially presented
in the document’s header and partially in multiple
forms (each for one account).

Similar to the Payment Stubs dataset, documents
here were issued by different banks and represent a
broad spectrum of layouts. The annotation process
was the same as for the Payment Stubs dataset.

F Adaptation to Table Structure
Recognition Task

Our method by design does not generate the table
header since we assume that the names of the dat-
apoints to infer are given in advance. To tackle
problems such as table structure recognition where
the set of possible header values is not limited,
one needs to slightly modify the proposed solution.
However, we do not consider it a serious limitation
as the required modification is relatively straightfor-
ward, and for the sake of completeness, we describe
it below.

To adjust the proposed method to be applicable
to the task of Table Structure Recognition, one must

2468

Table 7: Detailed results of experiments on reversed Rotowire dataset. See Wu et al. (2022) for metrics’ specification.

Row header F1 Column header F1 Non-header F1
Exact Chrf BERT Exact Chrf BERT Exact Chrf BERT

Team 94.9 95.2 97.8 88.9 85.8 88.7 84.7 85.6 90.3
Player 93.5 95.3 95.1 88.1 91.2 94.5 84.5 86.8 90.4

Table 8: Summary of the confidential datasets.

Recipe Composition Payment Stubs Bank Statements

train documents 119 80 111
val documents 16 10 10
test documents 30 20 10

avg doc len (words) 0.6k 0.3k 1.3k
max doc len (words) 1.6k 2k 4, 9k
avg doc len (characters) 3.3k 2k 8.3k
max doc len (characters) 10k 14.2k 37.9k

properties total 64 11 10
properties in tables (tables columns) 64 4 4
properties outside of tables 0 7 6
mean number of table rows 12 5 2
max number of rows 60 15 5

mean length of cell (characters) 12 8 9
max length of cell (characters) 308 44 36

understand the differences in framing the problem
between the tasks here.

Table Structure Recognition or Table Extrac-
tion aims to generate headers and the table content
based on the document with the table provided ex-
plicitly. STable described in the main part of this
paper can generate the table given any text and its
position on pages. This capacity generalizes well
to any input, including when the table is provided
on the input. The difference is that the output form
in STable assumes the headers are known upfront,
while for Table Structure Recognition, inferring
them is a part of the task. STable can achieve such
capabilities to solve the Table Structure Recogni-
tion task by (1) adding a linear layer to predict the
number of columns, (2) treating headers as the val-
ues to be inferred in the first row, (3) using dummy
names of the columns, e.g., "first column," "second
column," and (4) increasing the predicted number
of rows by 1.

In this setup, the model will predict the num-
ber of columns and the number of rows, while the
first row will represent the values of header names.
The dummy headers will have to be removed dur-
ing postprocessing, and the values in the first row
should be treated as valid headers.

G Sample Input-Output Pairs

PWC⋆ (Borchmann et al., 2021). Input in the
PWC⋆ consists of born-digital, multipage PDF
files containing an article from the machine learn-
ing field. The expected output is a list of tuples
describing achieved results on arbitrary datasets
(see Figure 8).

CORD (Park et al., 2019). Input in the dataset is
a single scanned or photographed receipt. From our
point of view, the output here is twofold — there
are simple data points that can be considered key-
value pairs and data points that take the structured
form of line items. We approach the problem as
the generation of two tables from the document —
one for each data kind (see Figure 9).

DWIE (Zaporojets et al., 2021). Input in the
dataset is a plain-text article. The final goal is to
extract the normed object, relation, and subject
triples (though the original formulation assumes
several intermediate stages). Triples are always
complete (i.e., there are no NULL values, as we
understand them (see Figure 10 for an example).

Reversed Rotowire (Wu et al., 2022). Input in
the reversed Rotowire dataset, as reformulated by
(Wu et al., 2022), is a plain-text sport news arti-
cle. The task is to generate tables with team and

2469

player statistics. The number of rows in the Team
table is from zero (if no team is mentioned in the
text) to two, whereas the number of rows in the
Player is highly variable and content-dependent.
Figure 11 present sample pair of document and
tables to generate.

Input

Output

Multipage scientific article, e.g.:

Reported results

Leaderboard entries

Task Dataset Metric Model

Document Classification Reuters En-De Accuracy BilBOWA

Document Classification Reuters De-En Accuracy BilBOWA

Value

86.5

75.0

Figure 8: An example from PWC⋆ dataset considered in the document-to-table paradigm.

Input OutputPhotographed receipt, e.g.: Content of receipt casted as two tables

Simple key-value pairs

Property Value

total.cashprice 100,000

total.changeprice 51,000

total.total_price 49,000

menu.nm menu.cnt menu.price

REDBEAN BREAD 1 10,000

[MD] MINI CASTELLA ORIGIN 1 10,000

Line items

[MD] SOFT STEAMED CHEESEC 1 11,000

[MD] SOFT STEAMED CHOCOCA 2 18,000

Figure 9: Sample document from CORD dataset and its expected output as interpreted in our approach.

2470

Input Plain-text article, e.g.:

Relations

Final four square off in German Cup semifinals. Bremen's
unprecedented four-match battle with Hamburg gets
underway with the Cup semifinal on Wednesday. But
before that Leverkusen try to seize their last chance for
some silverware against Mainz.
.

(...)

The visitors will be bolstered by the return of superstar
playmaker Diego who was rested with a perhaps fictional
injury in the league last weekend. Hamburg, meanwhile,
are third in the league and have an outside shot at winning
a triple. But they should beware, if they think they're bound
to be victorious in something. As recently as 2002,
Leverkusen had a chance to win the Bundesliga, the Cup
and the Champions League -- only to emerge, in the end,
empty-handed.

Output Relations between normalized entities

Object Relation Subject

Germany event in0 German Cup

German Cup appears in Bremen

UEFA Cup appears in Bremen

Bundesliga appears in Bremen

Bremen member of, player of Diego

...

Figure 10: Sample input-output pair from the DWIE dataset. The table was shortened and consisted of 29 rows
in our approach. Suppose multiple relations appear in the same direction between the pair of object-subject. In
that case, we predict a list of them in a single cell, reducing the number of rows generated (see the example of the
Bremen-Diego pair).

Input

Output

Plain-text sport-related article, e.g.:

Statistics of teams and players performance

Team statistics (for values that were not present there is a NULL variable in the column)

Team Losses Total points Wins

Bucks 3

Bulls

The Milwaukee Bucks (1 - 3) defeated the Chicago Bulls (3 - 1), 92 - 90, on a buzzer beating shot
Saturday in Game 4 of their Opening Round Series. In a potential close - out game for Chicago, it
was Milwaukee who did the closing Saturday at the BMO Harris Bradley Center. The Bucks were able
to put Thursday's gutting double overtime defeat behind them with a thrilling win at the buzzer to
extend the series for at least one more game. When O.J Mayo canned a three pointer to put the
Bucks up six with 1:44 remaining, it looked as though the Bucks were on their way to a victory in front
of the home crowd.

(...)

O.J Mayo led the Bucks in scoring with 18 points in 24 minutes and John Henson had a huge impact
on the defensive end with four blocks and a steal. Henson also pulled down three offensive rebounds
and five boards overall. Three of Milwaukee's bench players scored as many or more points than all
of its starters individually. The Bucks will look to use the momentum from Saturday's victory to stay
alive in the series Monday.

1

92

90

1

3

Points in 1st quarter

NULL

NULL

No. of team assists

NULL

NULL

...

Player statistics (for values that were not present there is a NULL variable in the column)

Player Assists Blocks

Jimmy Butler

 Derrick Rose

NULL

6

NULL

NULL

3-pointers attempted

NULL

NULL

Turnovers

NULL

8...Nikola Mirotic NULL NULL NULL NULL

John Henson NULL 4 NULL NULL

O.J. Mayo NULL NULL 6 NULL

Points

33

5

NULL

NULL

18

Figure 11: Input-output example from the reversed Rotowire dataset. We present shortened forms of tables than in
real have 13 columns for Team and 20 columns for Player tables. Note that there is a NULL value in the column for
values not present in the input text.

2471

The horse face emoji we feature is a part of Noto Emoji distributed under the Apache License 2.0.
Copyright by Google Inc. No animals were harmed in the making of this article.

2472

