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Abstract

In Neural Machine Translation (NMT), models
will sometimes generate repetitive or fluent out-
put that is not grounded in the source sentence.
This phenomenon is known as hallucination and is
a problem even in large-scale multilingual transla-
tion models. We propose to use Contrastive Decod-
ing, an algorithm developed to improve generation
from unconditional language models, to mitigate
hallucinations in NMT. Specifically, we maximise
the log-likelihood difference between a model and
the same model with reduced contribution from the
encoder outputs. Additionally, we propose an al-
ternative implementation of Contrastive Decoding
that dynamically weights the difference based on
the maximum probability in the output distribution
to reduce the effect of CD when the model is con-
fident of its prediction. We evaluate our methods
using the Small (418M) and Medium (1.2B) M2M
models across 21 low and medium-resource lan-
guage pairs. Our results show a 14.6 ± 0.5 and
11.0± 0.6 maximal increase in the mean COMET
scores for the Small and Medium models (respec-
tively) on those sentences for which the M2M mod-
els initially generate a hallucination.

1 Introduction

Hallucinations are a rare but problematic phe-
nomenon in NMT (Neural Machine Translation)
whereby the target side output is repetitive or fluent
but not grounded in the source sentence (Ji et al.,
2023). Even though hallucinations are rare in NMT,
they are a significant problem as they undermine
trust in deployed NMT systems. Hallucinations
occur when the target side sentence is detached
from the source side sentence (Wang and Sennrich,
2020; Raunak et al., 2021; Dale et al., 2023), or in
other words, when there is a low contribution of

the source sentence to the generation of the target
sentence.

Previous work on mitigating hallucinations has
focused on sampling translations and reranking
them according to quality metrics (Dale et al., 2023;
Guerreiro et al., 2023b). Separate to this, Li et al.
(2022) proposed Contrastive Decoding (CD) as a
way of mitigating bad behaviour (such as excessive
repetition and low diversity) when generating from
unconditional language models. CD is a decoding
algorithm that maximises the difference between
the log probabilities of a strong expert and a weak
amateur model (equivalent to maximising the ratio
of probabilities). A threshold is applied so that
decoding follows the expert when it is more confi-
dent. The intuition behind CD is that the amateur
model is more prone to certain types of low-quality
generation, so by subtracting the log probabilities,
these are removed. We hypothesise that by using
CD with an amateur, which is prone to source de-
tachment, we can mitigate hallucinations in NMT.

In order to create an amateur with low source
attachment, we experiment with different strategies
for reducing the role of cross-attention. The sim-
plest is the NO ENCODER strategy, where the ama-
teur is a decoder-only version of the expert. In our
other strategies, we retain the encoder and cross-
attention but impose uniform attention, remove at-
tention from the most highly attended source posi-
tion, or scale down all cross-attention values.

In contrast to unconditional generation, NMT
should be more strictly grounded in the source sen-
tence. Additionally, hallucinations only account
for a small proportion of translations, and hence,
mitigation of hallucinations must not come at the
cost of reduced performance on other sentences.
As such, increasing the diversity of the translations
is less desirable than it is in unconditional gener-
ation. Ideally, CD would only take effect when a
model is hallucinating. To address this issue, we
experiment with a novel variant of CD that dynam-
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ically adjusts the subtraction’s magnitude based on
a distribution’s maximum value.

We evaluate our approach on large multilingual
models, which have recently been shown to be
prone to hallucinations (Guerreiro et al., 2023a).
Specifically, we use the M2M family of models
(Fan et al., 2020) and consider the 418M (Small)
and 1.2B (Medium) versions.

We summarise our contributions as follows:

• We show that using CD in conjunction with
amateur models that have reduced source con-
tributions mitigates hallucinations.

• We extend the CD algorithm, dynamically set-
ting the weight given to the amateur to limit
the effect of CD when the expert is confident.

• We evaluate across 21 language pairs using
the M2M family of models on the FLORES-
101 dataset, reporting a mean increase of
14.6 ± 0.5 and 11.0 ± 0.6 COMET on sen-
tences causing hallucinations for the Small
model and Medium models respectively.

2 Related Work

Hallucination Detection We discuss Hallucination
detection as it relates to our experimental setup.
Guerreiro et al. (2023b); Dale et al. (2023); Rau-
nak et al. (2021) all evaluate different methodolo-
gies for automatically identifying hallucinations
and demonstrate the effectiveness of ALTI+ as a
hallucination detection method.

Hallucination Mitigation Guerreiro et al.
(2023a) propose using a different fallback model
when a hallucination is detected. Other methods
rely on sampling and re-ranking translations, for
example, using COMET (Rei et al., 2022) to miti-
gate hallucinations (Guerreiro et al., 2023b; Dale
et al., 2023). Compared to our methodology, this
approach relies on an additional outside model to
rank sentences to achieve the best performance.
Additionally, both works only evaluate on a small
de→en model, whereas we evaluate on large-scale
multilingual models.

In contemporaneous work, Sennrich et al. (2023)
uses a similar CD approach to mitigate hallucina-
tions. Hallucinations are evaluated by counting
the proportion of segments with chrF2 <10 (Lee
et al., 2019; Müller and Sennrich, 2021). Unlike
our work, the authors use the same model as the
amateur but supply it with randomly selected in-
puts. In contrast, we use different models as the

amateur, supplied with the same inputs. Randomly
selecting another source segment is potentially less
stable than using a model as an amateur, as individ-
ual translations can depend on the selection of the
source segment. This work also compares different
amateurs and techniques for combining the expert
and amateur distributions, whereas Sennrich et al.
(2023) places additional focus on off-target transla-
tions. Our work can thus be seen as complementary
to theirs.

3 Methodology

We first describe CD as proposed by Li et al. (2022),
then discuss our proposed improvements (normal-
isation and dynamic weighting), and finally moti-
vate the amateur models that we use in our experi-
ments.

3.1 Contrastive Decoding
Equation 1 gives the ORIGINAL formulation of CD
in log space proposed by Li et al. (2022). Here
px(i) is the probability (post softmax) assigned to
token i in vocabulary V by the expert model, and
pa(i) is the probability assigned by the amateur
model.

CD(i) = log(px(i))− γ log(pa(i)) (1)

The subtraction results in a new set of scores
CD(i) that are used with beam-search in place
of the expert’s scores. γ is a hyperparameter that
weights the amateur subtraction. The equivalent
formulation in linear space equates to rescaling
the expert probabilities according to the amateur
probabilities.

Li et al. (2022) use a hyperparameter α (0 <
α<1) to threshold the expert probability distribu-
tion. As shown in Equation 2, only those tokens
with a probability greater than or equal to the max-
imum probability scaled by hyperparameter α are
considered for CD.

Vthresh = {i ∈ V : log(px(i))

≥ log(α) + max
j

log(px(j)} (2)

As stated by (Li et al., 2022) this thresholding
has two purposes. Firstly, preventing extremely
unlikely tokens under the expert being the highest
scoring under CD and secondly, if the expert is
significantly confident, to consider only one token
so that CD selects the same token as the expert.
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3.2 Contrastive Decoding for Hallucinations

Unlike Li et al. (2022) our aim is not to increase
the diversity of generations but rather to prevent
hallucinations in NMT. This presents two funda-
mental challenges. Firstly, hallucinations only rep-
resent a small proportion of translated sentences,
and secondly, compared to open-ended generation,
the output of NMT needs to be grounded in the
source sentence. As such CD when applied in our
context, should ideally only affect the output for
those few sentences where the model hallucinates
and only minimally change those outputs that are
not hallucinations. We address these issues through
normalisation and dynamic weighting.

3.3 Normalisation

The motivation of normalisation is both to stabilise
beam-search when decoding and also to help with
the dynamic weighting only approach introduced
subsequently. Without normalisation, the magni-
tudes of the CD scores at each time step are dif-
ferent, and as a result, time steps will contribute
differently to the hypotheses in the beam. Normali-
sation also helps in the case where a certain beam
has a much bigger CD score than other beams.

NCD =

∑Vthresh
i=1 px(i)/pa(i)

γ

∑Vthresh
i=1 px(i)

(3)

Equation 3 gives the value of the normalisation
constant, used to normalise the CD probabilities.
Dividing the contrastive scores by NCD normalises
the scores before scaling them to sum to the prob-
ability mass covered by Vthresh. The set of nor-
malised CD scores is combined with the set of
expert probabilities given by the complement of
Vthresh to obtain a probability distribution. We
refer to CD with normalisation as NORMALISED .

3.4 Dynamic Weight

The original CD algorithm is applied at each time
step with the same weight, and hence, all probabili-
ties are rescaled. Rather than varying the number
of candidates CD considers (as the threshold α
does), we propose to vary the degree to which CD
affects token generation by dynamically setting the
γ in Equation 1. Equation 4 gives the dynamic
weighting approach to setting the amateur weight
γ, where β is a hyperparameter.

γ = 1−max
i

px(i)
β (4)

When the expert distribution has a high max-
imum probability γ → 0, thereby reducing the
effect of CD when the expert model is confident.
Conversely, when the expert distribution has a low
maximum probability γ → 1 and, hence, the rescal-
ing due to the amateur probabilities is larger. We
experiment with both a combination of threshold-
ing and dynamic weighting (DYNAMIC); and solely
relying on dynamic weighting by setting the thresh-
old in Equation 2 so that the number of tokens
considered for CD is constant (DYNAMIC ONLY).

3.5 Amateur Models
In order to mitigate hallucinations, amateur models
are chosen to simulate detachment from the source,
thereby stimulating hallucinations or at least in-
creasing the probability mass assigned to halluci-
nated tokens while decreasing the probability mass
of "reasonable" tokens. Apart from the SMALL

amateur, the different approaches all try to reduce
the source contribution to the output:

NO ENCODER: The No Encoder approach calls
the decoder without the encoder inputs (bypassing
the entire cross-attention block), essentially acting
as a language model. Without the source sentence,
the amateur has to rely only on the target side prefix.
Unlike Language Model fusion (Stahlberg et al.,
2018), which interpolates the two distributions, CD
rescales the distributions, increasing scores that are
unlikely under the amateur and decreasing scores
that are likely under the amateur.

FLAT ATTENTION: An amateur where the cross-
attention scores are uniform, which equates to tak-
ing the unweighted mean of the encoder outputs.
In this approach, the amateur still has access to the
encoder information with only the attention infor-
mation removed, representing a softer detachment.

ZERO MAX ATTENTION: For this approach, we
set the maximum cross-attention score of the am-
ateur to zero, and hence, there is no contribution
from the most salient encoder output. When select-
ing the maximum, we disregard the last token to
account for punctuation at the end of a sentence.

ATTENTION SCALING: This approach is used
both independently and in combination with the
Flat Attention and Zero Max Attention approaches.
We directly reduce the contribution of the source
by scaling down all of the attention weights.

SMALL: Using a smaller model trained on the
same data (Li et al., 2022). We use the M2M Small
amateur as a comparison against the other amateurs
that explicitly reduce the source contribution.
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Language Pair ast-en en-ast oc-en en-oc ps-en en-ps sw-en en-sw bn-en en-bn fa-en en-fa tr-en en-tr zh-en en-zh be-ru fr-sw ar-fr el-tr hi-bn

Small (418M) 6 111 5 30 35 1465 2 195 6 169 3 2 1 3 1 5 190 514 3 5 117
Medium (1.2B) 33 29 2 92 11 1109 2 54 0 62 1 16 0 3 0 2 99 431 6 7 93

Table 1: Language pairs used for evaluation along with hallucination counts detected for the EXPERT models.

3.6 Beam-search

After calculating the CD scores, we use beam-
search to generate the translations. As all beams
are the same for the first time step, we ensure that
when not using normalisation, we set the threshold
probability to the probability of the tenth token.
Thereby ensuring that all beams have a valid score.
As the normalised scores include the output prob-
abilities of the expert, this is no longer necessary
for normalised CD.

4 Experimental Setup

4.1 Models and Datasets

We adopt the setup of Guerreiro et al. (2023a)
and use the M2M (Fan et al., 2020) models, eval-
uating on the FLORES-101 (Goyal et al., 2022)
dataset. The M2M models are strong multilin-
gual transformer (Vaswani et al., 2017) models that
are trained on 7.5B sentences, that have still been
shown to hallucinate for low and medium resource
languages (Guerreiro et al., 2023a), thus providing
a tested method to evaluate our approach. We only
evaluate on the Small (418M) and Medium (1.2B)
M2M models, as they produce more hallucinations
than the 12B parameter model. The language pairs
we evaluate on are given in Table 1 alongside the
number of detected hallucinations on the expert.
For evaluation, we combine the FLORES-101 dev
and devtest splits to increase the number of halluci-
nations. All our experiments are run using fairseq
(Ott et al., 2019)1.

4.2 Metrics

Hallucination Detection As both WMT and FLO-
RES-101 do not have gold standard labels for hallu-
cinations, we follow Guerreiro et al. (2023a) and
use a combination of ALTI+ (Ferrando et al., 2022)
and TNG (top n-gram count) (Raunak et al., 2021;
Guerreiro et al., 2023b) to detect hallucinations in
the expert translations. ALTI+ measures both the
source and the target contribution to generations
and can be used to identify detached sentences. We
use the same approach as Guerreiro et al. (2023a)
and obtain a threshold value for the ALTI+ score

1https://github.com/facebookresearch/fairseq

using en→de and en→ru WMT-19 (Barrault et al.,
2019) and en→fr WMT-14 data (Bojar et al., 2014)
data. TNG identifies sentences where the top tar-
get side n-gram count is at most t greater than the
top source side n-gram count, where n is set to 4
and t is set to 2. Additionally, reasonable quality
thresholds for spBLEU (Goyal et al., 2022), chrf++
(Popović, 2015), and COMET (Rei et al., 2022)
are used to filter out false positives. We report all
threshold values in Appendix A.

Evaluation Metrics: We report COMET (Rei
et al., 2022) scores as these have been shown to be
sensitive to hallucinations (Guerreiro et al., 2023b;
Dale et al., 2023) for our main results2. We evaluate
how CD affects hallucinations by splitting our test
sets into hallucinations and non-hallucinations and
report COMET for each separately. Additionally,
we report hallucination counts for our selected ap-
proaches using the hallucination detection pipeline
detailed above. As ALTI+ is a model-based metric,
we use the expert with forced decoding to generate
ALTI+ scores for translations generated with CD.

4.3 Hyperparameters

We decode using beam-search with a beam size
of 4. We tune the following hyperparameters: α,
γ and β. We determine hyperparameters for the
M2M experiments by performing a grid search us-
ing ha→en WMT-21 data (Akhbardeh et al., 2021)3

as it has a reasonable number of hallucinations. Hy-
perparameters were selected using the maximum
COMET score on EXPERT hallucinations. For the
DYNAMIC ONLY approach, we fix the number of
tokens used for CD to 25 for all experiments; the
Attention Scaling parameter is set to 0.01 when
used independently and 0.25 when combined with
other approaches. The complete set of hyperparam-
eters is given in Appendix A.

5 Results

First, we present results comparing our different
experimental setups by combining all language
pairings. We compare amateur models using the
ORIGINAL CD approach before reporting on the

2Specifically, we use wmt22-comet-da
3WMT data obtained using SACREBELU (Post, 2018)
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Small(418M) Medium(1.2B)

ORIGINAL NORMALISED DYNAMIC
DYNAMIC

ONLY
ORIGINAL NORMALISED DYNAMIC

DYNAMIC

ONLY

EXPERT 47.4±0.4 - - - 54.4±0.5 - - -
ATTENTION SCALING 62.0±0.3 59.5±0.3 60.8±0.4 60.7±0.4 65.4±0.4 61.6±0.5 62.2±0.5 61.3±0.5

FLAT ATTENTION 55.5±0.4 56.4±0.4 54.3±0.4 54.9±0.4 57.4±0.5 58.6±0.5 56.5±0.5 57.2±0.5

FLAT ATTENTION SCALING 61.9±0.3 60.1±0.4 60.8±0.4 61.3±0.4 64.2±0.4 61.6±0.5 62.3±0.5 62.8±0.5

NO ENCODER 62.0±0.3 61.1±0.3 61.7±0.4 61.6±0.4 64.9±0.4 62.3±0.5 62.1±0.5 62.8±0.5

SMALL - - - - 54.2±0.4 58.1±0.5 57.6±0.5 57.8±0.5

ZERO MAX ATTENTION 59.3±0.4 58.1±0.4 57.4±0.4 58.0±0.4 60.5±0.5 59.3±0.5 58.6±0.5 59.8±0.5

ZERO MAX ATTENTION SCALING 60.9±0.3 60.0±0.4 60.1±0.4 60.8±0.4 63.5±0.4 62.0±0.5 61.7±0.5 61.9±0.5

Table 2: Mean COMET scores for sentences with hallucinations for the two M2M models used (Small, Medium).
The mean is calculated over sentences in all translation directions (en→ps and ps→en are removed due to having
far more hallucinations than all other language pairs). Errors reported are SEM (Standard Error on the Mean). Bold
and underlined values highlight the maximum in each column and row.

effects of our additions to the CD algorithm. Next,
we compare the performance across languages by
looking at the distributions of COMET scores and
presenting qualitative examples. Finally, we use
the hallucination detection suite to report the num-
ber of detected hallucinations when using CD and
briefly compare our work to the contemporaneous
work of Sennrich et al. (2023). For completeness,
we also report spBLEU, chrF++ and COMET for
our selected approach in Appendix B.

5.1 Amateur Models and Dynamic Weighting
Contrastive Decoding Reduces Hallucinations
Evaluating on M2M models presents a robust multi-
lingual experimental setup that evaluates across 21
low and medium-resource language pairs. We com-
pare our experimental approaches by splitting the
test sets into hallucinations and non-hallucinations
and averaging the COMET scores across all lan-
guage pairs. Table 2 shows that all variants of
CD increase the mean COMET scores for both the
Small and Medium M2M models, confirming our
hypothesis that CD - when using an amateur de-
signed to hallucinate - generates improved transla-

tions of sentences for which the EXPERT generates
hallucinations. The results for the Medium model
show a maximal increase in the mean COMET
score of 11.0± 0.5. In contrast, the Small model
shows a maximal increase of 14.6± 0.6, suggest-
ing that either CD is better for the Small model or
more likely that the hallucinations for the Medium
model are less severe.

Amateurs that remove the most encoder in-
formation are better at reducing hallucinations
We first focus on evaluating the performance of
the amateur models in terms of mean COMET
scores for hallucinations with the ORIGINAL ap-
proach. NO ENCODER, ATTENTION SCALING,
FLAT ATTENTION SCALING, and ZERO MAX AT-
TENTION SCALING all achieve comparable results,
as shown in the first column of Table 2, when using
the ORIGINAL CD approach. We hypothesise that
the M2M models have a strong enough decoder
that FLAT ATTENTION and ZERO MAX ATTEN-
TION do not remove enough encoder information to
promote hallucinations compared to the other ama-
teurs. As FLAT ATTENTION SCALING and ZERO

Small(418M) Medium(1.2B)

ORIGINAL NORMALISED DYNAMIC
DYNAMIC

ONLY
ORIGINAL NORMALISED DYNAMIC

DYNAMIC

ONLY

EXPERT 77.4±0.1 - - - 80.8±0.1 - - -
ATTENTION SCALING 74.3±0.1 73.1±0.1 75.7±0.1 77.0±0.1 78.2±0.1 77.4±0.1 79.6±0.1 80.6±0.1

FLAT ATTENTION 74.9±0.1 75.3±0.1 74.7±0.1 75.0±0.1 78.0±0.1 78.9±0.1 78.5±0.1 78.7±0.1

FLAT ATTENTION SCALING 74.2±0.1 75.1±0.1 75.7±0.1 75.8±0.1 78.0±0.1 79.1±0.1 79.6±0.1 79.8±0.1

NO ENCODER 74.2±0.1 74.8±0.1 76.4±0.1 75.8±0.1 78.2±0.1 78.7±0.1 80.1±0.1 79.8±0.1

SMALL - - - - 71.8±0.1 77.1±0.1 78.7±0.1 80.1±0.1

ZERO MAX ATTENTION 73.7±0.1 75.2±0.1 74.9±0.1 75.1±0.1 77.5±0.1 79.0±0.1 78.9±0.1 79.0±0.1

ZERO MAX ATTENTION SCALING 73.5±0.1 74.9±0.1 75.7±0.1 75.9±0.1 77.7±0.1 79.0±0.1 79.7±0.1 79.8±0.1

Table 3: Mean COMET scores of non-hallucinations for the two M2M models used (Small, Medium). The mean
is calculated over sentences in all translation directions (en→ps and ps→en are removed due to having far more
hallucinations than all other language pairs). Errors reported are SEM (Standard Error on the Mean). Bold and
underlined values highlight the maximum in each column and row.
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Figure 1: COMET score distributions for hallucinations using the EXPERT and ATTENTION SCALING amateurs for
all language pairs with 10 or more hallucinations. Results are given for both the 418M and 1.2B parameter models.
The red line is the mean COMET of EXPERT non-hallucinations for a given language pair.

MAX ATTENTION SCALING both rely on being
combined with ATTENTION SCALING we prefer
the more straightforward approaches of removing
the encoder outputs or simply scaling the attention
weights as amateurs.

For the medium model, we also experiment with
using the Small 418M parameter model as an am-
ateur. Using the ORIGINAL approach, SMALL

does not improve mean COMET scores for sen-
tences with hallucinations compared to the EX-
PERT. Although smaller models tend to have lower
source contribution, the fact that SMALL does not
improve on the expert lends further credence to
our claim that actively restricting the source infor-
mation available to amateur models improves the
ability of CD to correct expert hallucinations.

Based on the FLAT ATTENTION, ZERO MAX

ATTENTION and SMALL results, we propose that
removing encoder information is important when
mitigating hallucinations using CD.

Dynamic Weighting mitigates the adverse ef-
fect of CD on non-hallucinations Looking at Ta-
ble 3, we see that the ORIGINAL implementation of
CD adversely affects sentences for which the EX-
PERT does not hallucinate. The results demonstrate
that our DYNAMIC weighting approaches counter-
act the adverse effects of CD on these sentences,
achieving comparable COMET scores to the EX-
PERT model. We underline this result by report-
ing the mean chrF++ scores for non-hallucinations
in Table 4 as COMET scores are robust against
paraphrasing. As chrF++ is a string-based metric,
the decreased results highlight that the ORIGINAL

CD approach generates translations which are less
similar to the reference than the EXPERT and the
DYNAMIC or DYNAMIC ONLY approaches. As
we define our task as mitigating hallucinations, we
argue that these decreases are undesirable.

Small(418M) Medium(1.2B)

ORIGINAL
DYNAMIC

ONLY
ORIGINAL

DYNAMIC

ONLY

EXPERT 45.0±0.1 - 50.3±0.1 -
ATTENTION SCALING 42.5±0.1 46.3±0.1 45.9±0.1 49.4±0.1

FLAT ATTENTION 43.4±0.1 43.9±0.1 45.6±0.1 47.3±0.1

FLAT ATTENTION SCALING 42.2±0.1 44.6±0.1 45.7±0.1 48.6±0.1

NO ENCODER 42.4±0.1 44.6±0.1 45.8±0.1 48.6±0.1

SMALL - - 38.5±0.1 49.4±0.1

ZERO MAX ATTENTION 43.0±0.1 44.6±0.1 46.2±0.1 48.4±0.1

ZERO MAX ATTENTION SCALING 41.9±0.1 45.0±0.1 45.6±0.1 49.0±0.1

Table 4: Mean chrF++ scores for non-hallucinations on
the two M2M models used (Small, Medium). The mean
is calculated over sentences in all translation directions
(en→ps and ps→en are removed due to having far more
hallucinations than all other language pairs). Errors
reported are SEM (Standard Error on the Mean).

The effects of DYNAMIC weighting are particu-
larly pronounced for SMALL for which the chrF++
score in Table 4 is 11.8± 0.1 less than the EXPERT

without DYNAMIC weighting. Looking at Table 2,
the COMET of SMALL DYNAMIC increases, in-
dicating that the SMALL with DYNAMIC weight
corrects some EXPERT hallucinations. Taken to-
gether, these results show that scaling the weight
by the maximum probability prevents CD from
making significant changes to EXPERT translations
whilst still mitigating hallucinations.
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Figure 2: Examples EXPERT hallucinations that are fixed by ORIGINAL CD with the ATTENTION SCALING
amateur.

5.2 Attention Scaling

Next, we explore how CD behaves across differ-
ent languages and present examples to showcase
how CD repairs EXPERT hallucinations. For this
we select the ATTENTION SCALING, ORIGINAL

and ATTENTION SCALING DYNAMIC ONLY ap-
proaches. Whilst, NO ENCODER has comparable
COMET scores, and if anything appears more ro-
bust, we select ATTENTION SCALING as it is more
flexible by allowing fine-grained selection of the
source contribution via a hyperparameter. How-
ever, we believe both amateurs would have been
viable choices. We report on DYNAMIC ONLY to
better understand how its behaviour contrasts with
the ORIGINAL approach.

Repaired hallucinations still have errors In
Figure 2 we provide examples of sentences for
which the expert generates hallucinations which
CD fixes. Compared to the EXPERT both sen-
tences generated with CD are not detached from
the source. The fixed detachment is especially ap-
parent in sentence 2, which contains the incorrect
segment ’ability to plague’ but recovers and cor-
rectly translates ’along the body’. Both sentences
still have errors, but we argue that these are transla-
tion errors rather than hallucinations, in line with
the typology proposed by Guerreiro et al. (2023b).
Another way of looking at these errors is that CD
highlights tokens that rely on the source, as these

should have a lower score in the amateur when the
source context is removed. However, the expert
still needs to assign enough probability to such to-
kens for them to be considered in the first place.
Hence, in such cases, CD still promotes the correct
tokens, but the model is not able to translate the
source sentence correctly.

Repairing hallucinations is dependent on the
quality of the expert model We analyse COMET
scores across languages by plotting the distribution
of COMET scores for EXPERT hallucinations in
Figure 1, along with the mean COMET for non-
hallucinations. The result shows that CD with AT-
TENTION SCALING increases the COMET of EX-
PERT hallucinations across all languages. Addi-
tionally, for all languages apart from ast-en with
the Medium model, CD improves the long tail
of comet scores observed for hallucinations. The
mean COMET scores for non-hallucinations show
that they act as a ceiling to the improvement of
hallucinated translations. For some language pairs,
such as hi-bn (Small), the entire COMET score
distribution improves as the EXPERT model has the
potential to generate better translations. In contrast,
for weaker translation directions such as en-ps and
en-sw, Figure 1 illustrates that most COMET scores
do not improve because the overall performance of
the model caps them; instead, only the long tail is
improved. We propose that the ability of CD to fix

Language Pair Experiment ast-en en-ast oc-en en-oc ps-en en-ps sw-en en-sw bn-en en-bn fa-en en-fa tr-en en-tr zh-en en-zh be-ru fr-sw ar-fr el-tr hi-bn

Small (418M)
EXPERT 6 111 5 30 35 1465 2 195 6 169 3 2 1 3 1 5 190 514 3 5 117
ATTENTION SCALING DYNAMIC ONLY 0 57 1 15 6 1238 1 90 5 47 1 0 0 1 1 5 93 358 3 0 40
ATTENTION SCALING 0 20 0 3 0 1111 0 41 2 4 0 1 0 0 0 1 70 171 0 0 5

Medium (1.2B)
EXPERT 33 29 2 92 11 1109 2 54 0 62 1 16 0 3 0 2 99 431 6 7 93
ATTENTION SCALING DYNAMIC ONLY 15 10 0 58 1 800 1 39 0 46 0 6 0 2 0 2 65 360 2 3 73
ATTENTION SCALING 15 0 0 34 2 508 0 13 0 15 0 0 0 2 0 2 57 162 1 1 27

Table 5: Hallucination counts for the EXPERT model and the ATTENTION SCALING ORIGINAL and ATTENTION
SCALING DYNAMIC ONLY approaches. Hallucination labels are obtained with the ALTI+ and TNG hallucination
detection methodology.
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hallucinations depends on the strength of the EX-
PERT model for a given language pair. We support
this claim by observing that, in Table 5, both en-ps
and en-sw have a high proportion of hallucinations
that CD does not repair.

CD with Attention Scaling fixes translations
In Table 5 we present the hallucination counts for
the ATTENTION SCALING and ATTENTION SCAL-
ING DYNAMIC ONLY approaches obtained using
the hallucination detection pipeline. As ALTI+ is a
model-based metric, we force decode the CD trans-
lations using the expert to obtain ALTI+ scores,
hypothesising that for expert hallucinations that are
repaired, the ALTI+ scores improve based on the
target prefix. The table shows that CD with AT-
TENTION SCALING reduces hallucinations for all
language pairs. Adding DYNAMIC ONLY decoding
reduces the efficacy of CD, with fewer hallucina-
tions being mitigated. However, we observe in
Figure 1 that the DYNAMIC ONLY approach has
higher peak COMET scores for the small model.
This leads us to speculate that when DYNAMIC

weighting fixes a hallucination, it may generate a
better translation.

The performance of CD depends on the ama-
teur temperature As Li et al. (2022) demonstrate
that the amateur temperature can affect CD perfor-
mance, we report the mean COMET scores for hal-
lucinations and non-hallucinations at different ama-
teur temperatures in Table 6. We can see that reduc-
ing the temperature to 0.5 and thereby increasing
the sharpness of the amateur distribution degrades
the COMET scores for non-hallucinations and hal-
lucinations. By contrast, increasing the amateur
temperature to 1.5 decreases the mean COMET for
hallucinations but slightly increases the COMET
for non-hallucinations. This result makes sense
as increasing the temperature leads to a smoother
distribution.

Model Small (418M) Medium (1.2B)
Hallucination Yes No Yes No
Amateur Temperature

0.5 58.5±0.4 71.9±0.1 61.3±0.5 76.0±0.1

1 62.0±0.3 74.3±0.1 65.4±0.4 78.2±0.1

1.5 61.4±0.5 75.2±0.1 63.0±0.6 79.1±0.1

Table 6: Mean COMET scores across all language pairs
for the ATTENTION SCALING amateur using different
Softmax temperatures for the amateur model.

5.3 Comparison with Source-Contrastive
Decoding

We briefly compare our approach, specifically AT-
TENTION SCALING ORIGINAL, to the contem-
poraneous work of Sennrich et al. (2023). Both
sets of results are for the 418M parameter M2M
model. However, the SOURCE-CONTRASTIVE re-
sults are generated using a different experimental
setup4. Hence, we compare each contrastive ap-
proach against a baseline generated from the Small
M2M model using beam-search and it’s respec-
tive setup. A final limitation of the comparison is
that we use hallucination labels generated using
our setup for the SOURCE-CONTRASTIVE setup.
As seen in Table 7 the BASELINE for SOURCE-
CONTRASTIVE has a mean COMET score that is
~2 higher. We propose that this is because a small
number of non-hallucinations end up being labeled
as hallucinations for the SOURCE-CONTRASTIVE

setup.

Hallucinations Non-Hallucinations

ATTENTION SCALING
BASELINE 47.4±0.4 77.4±0.1

CONTRASTIVE 62.0±0.3 74.3±0.1

SOURCE-CONTRASTIVE
BASELINE 50.0±0.5 77.3±0.1

CONTRASTIVE 63.8±0.4 77.5±0.1

Table 7: Mean COMET scores for the ATTENTION
SCALING ORIGINAL and SOURCE-CONTRASTIVE us-
ing the 418M parameter model compared to their respec-
tive baselines. SOURCE-CONTRASTIVE results use the
same model but are generated with a different codebase.
The mean is calculated over sentences in all transla-
tion directions (en→ps and ps→en are removed due to
having far more hallucinations than all other language
pairs). Errors reported are SEM (Standard Error on the
Mean).

Table 7 shows that comparing both approaches
show a similar increase in the mean COMET
scores of hallucinations (~14) when compared
to their respective baselines. Based on this re-
sult we suggest that both approaches are effective
at reducing hallucinations, but given, the differ-
ences in the experimental setups we cannot con-
clude if either approach is more effective. Un-
like our approach the results in Table 7 show that
SOURCE-CONTRASTIVE decoding does not lead
to a decrease in the mean COMET scores of non-
hallucinations when compared to it’s BASELINE.

4https://github.com/zurichnlp/contradecode
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6 Conclusions

This paper applies CD decoding to the task of mit-
igating hallucinations in NMT. We show that CD
improves the mean COMET scores of sentences for
which the M2M translation models generate hallu-
cinations. Our results also support our hypothesis
that a key part of effectively using CD to mitigate
hallucinations is restricting decoder access to the
encoder outputs in amateur models, simulating tar-
get detachment from the source.

Additionally, we experiment with decreasing the
adverse effect of CD on sentences for which the
M2M models already generate good translations by
dynamically changing the weight hyperparameter,
which scales the subtraction of the amateur proba-
bilities. We show that dynamic weighting decreases
the changes to translations generated compared to
the expert, but this comes at the cost of repairing
fewer hallucinations. Improvements to the dynamic
approach would require a model-based metric that
identifies hallucinations at the token level.

As such, we recommend the original approach
and either removing the encoder outputs or scaling
down the cross-attention weights. Our brief com-
parison with SOURCE-CONTRASTIVE decoding
suggests that it maybe a better candidate, assuming
the stochastic nature of the decoding process is ac-
ceptable for the application. In light of the adverse
effects on non-hallucinations, we also suggest us-
ing CD only when a hallucination is detected, for
example, with a hallucination detection pipeline.
Any ’fixed’ hallucinations should also be flagged if
CD is used in a deployed system. End users should
be made aware that the translation was originally
a hallucination and may still contain translation
errors.

7 Limitations

Whilst we evaluate across 21 language pairs, these
are all medium and low-resource languages. We
provided no results on how our method works
with high-resource languages. Our experimental
setup does not investigate out-of-domain transla-
tions where hallucinations are particularly frequent.
We also point out that we fix the number of to-
kens considered by the DYNAMIC ONLY approach
rather than trying different values. Finally, our im-
plementation for NO ENCODER skips the entire
cross-attention block. As such, the associated layer
normalisation is also skipped. Hence, the results
of NO ENCODER and ATTENTION SCALING with

the hyperparameter set to 0 do not lead to the same
translations, but we do not investigate this further.
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Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation,
pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on

2535

https://aclanthology.org/2021.wmt-1.1
https://aclanthology.org/2021.wmt-1.1
https://doi.org/10.18653/v1/W19-5301
https://doi.org/10.18653/v1/W19-5301
https://doi.org/10.3115/v1/W14-3302
https://doi.org/10.3115/v1/W14-3302
https://doi.org/10.18653/v1/2023.acl-long.3
https://doi.org/10.18653/v1/2023.acl-long.3
https://doi.org/10.18653/v1/2023.acl-long.3
https://doi.org/10.48550/arXiv.2010.11125
https://doi.org/10.48550/arXiv.2010.11125
https://doi.org/10.18653/v1/2022.emnlp-main.599
https://doi.org/10.18653/v1/2022.emnlp-main.599
https://doi.org/10.18653/v1/2022.emnlp-main.599
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.48550/arXiv.2303.16104
https://doi.org/10.48550/arXiv.2303.16104
https://aclanthology.org/2023.eacl-main.75
https://aclanthology.org/2023.eacl-main.75
https://aclanthology.org/2023.eacl-main.75
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://openreview.net/forum?id=SkxJ-309FQ
https://openreview.net/forum?id=SkxJ-309FQ
http://arxiv.org/abs/2210.15097
http://arxiv.org/abs/2210.15097
https://doi.org/10.18653/v1/2021.acl-long.22
https://doi.org/10.18653/v1/2021.acl-long.22
https://doi.org/10.18653/v1/2021.acl-long.22
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319


Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Vikas Raunak, Arul Menezes, and Marcin Junczys-
Dowmunt. 2021. The curious case of hallucinations
in neural machine translation. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1172–1183,
Online. Association for Computational Linguistics.

Ricardo Rei, José G. C. de Souza, Duarte Alves,
Chrysoula Zerva, Ana C Farinha, Taisiya Glushkova,
Alon Lavie, Luisa Coheur, and André F. T. Martins.
2022. COMET-22: Unbabel-IST 2022 submission
for the metrics shared task. In Proceedings of the
Seventh Conference on Machine Translation (WMT),
pages 578–585, Abu Dhabi, United Arab Emirates
(Hybrid). Association for Computational Linguistics.

Rico Sennrich, Jannis Vamvas, and Alireza Moham-
madshahi. 2023. Mitigating hallucinations and off-
target machine translation with source-contrastive
and language-contrastive decoding.

Felix Stahlberg, James Cross, and Veselin Stoyanov.
2018. Simple fusion: Return of the language model.
In Proceedings of the Third Conference on Machine
Translation: Research Papers, pages 204–211, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Chaojun Wang and Rico Sennrich. 2020. On exposure
bias, hallucination and domain shift in neural ma-
chine translation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3544–3552, Online. Association for
Computational Linguistics.

2536

https://doi.org/10.18653/v1/2021.naacl-main.92
https://doi.org/10.18653/v1/2021.naacl-main.92
https://aclanthology.org/2022.wmt-1.52
https://aclanthology.org/2022.wmt-1.52
http://arxiv.org/abs/2309.07098
http://arxiv.org/abs/2309.07098
http://arxiv.org/abs/2309.07098
https://doi.org/10.18653/v1/W18-6321
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.326


A Hyperparameters

We first use an en→de model that has a data set of human-annotated hallucinations (Guerreiro et al.,
2023b; Dale et al., 2023) in order to validate our approach, and explore different variants of our strategy.

Threshold Value

ALTI+ (Small) ALTI+ (Medium) spBLEU chrF++ COMET
0.32 0.38 18.7 45.6 76.6

Table 8: Threshold values for the Hallucination Detection pipeline.

Experiment Alpha(α) Weight(γ/β) Minimum Tokens Scaling

ATTENTION SCALING 0.15 0.5 1 0.01
ATTENTION SCALING NORMALISED 0.05 1.0 1 0.01
ATTENTION SCALING DYNAMIC 0.01 0.5 1 0.01
ATTENTION SCALING DYNAMIC ONLY - 0.2 25 0.01
FLAT ATTENTION 0.2 0.5 1 -
FLAT ATTENTION NORMALISED 0.01 0.5 1 -
FLAT ATTENTION DYNAMIC 0.01 0.7 1 -
FLAT ATTENTION DYNAMIC ONLY - 0.7 0.25 -
FLAT ATTENTION SCALING 0.1 0.5 1 0.25
FLAT ATTENTION SCALING NORMALISED 0.01 0.5 1 0.25
FLAT ATTENTION SCALING DYNAMIC 0.01 0.5 1 0.25
FLAT ATTENTION SCALING DYNAMIC ONLY - 0.5 25 0.25
NO ENCODER 0.15 1.0 1 -
NO ENCODER NORMALISED 0.1 1.0 1 -
NO ENCODER DYNAMIC 0.1 0.5 1 -
NO ENCODER DYNAMIC ONLY - 0.2 25 -
SMALL 0.25 0.75 1 -
SMALL NORMALISED 0.1 0.75 1 -
SMALL DYNAMIC 0.05 0.5 1 -
SMALL DYNAMIC ONLY - 0.2 25 -
ZERO MAX ATTENTION 0.1 0.5 1 -
ZERO MAX ATTENTION NORMALISED 0.01 0.5 1 -
ZERO MAX ATTENTION DYNAMIC 0.01 0.7 1 -
ZERO MAX ATTENTION DYNAMIC ONLY - 0.7 25 -
ZERO MAX ATTENTION SCALING 0.1 0.5 1 0.25
ZERO MAX ATTENTION SCALING NORMALISED 0.01 0.5 1 0.25
ZERO MAX ATTENTION SCALING DYNAMIC 0.01 0.5 1 0.25
ZERO MAX ATTENTION SCALING DYNAMIC ONLY - 0.5 25 0.25

Table 9: Hyperparameters used for all experiments. Alpha and weight were set using a grid search. We combine
weight and dynamic weight parameters in one column. Minimum tokens refers to the minimum number of tokens
for which CD is applied. Scaling refers to the magnitude of the ATTENTION SCALING used. Minimum tokens and
scaling were set to the given values for all experiments.
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Parameter Values

Alpha(α) 0.01, 0.05, 0.1, 0.15, 0.2, 0.25
Weight(γ) 0.25, 0.5, 0.75, 1.0
Weight Dynamic(β) 0.2, 0.5, 0.7

Table 10: All hyperparameters that were tried as part of the grid search.

B Additional Results

EXPERT ATTENTION SCALING
ATTENTION SCALING

DYNAMIC ONLY

Language Pair spBLEU chrF++ COMET spBLEU chrF++ COMET spBLEU chrF++ COMET

ast-en 30.3 54.2 73.9 26.2 51.0 71.8 30.8 54.5 74.1
en-ast 24.8 48.5 68.0 18.1 45.1 66.6 24.2 48.6 68.8
oc-en 37.7 61.2 73.3 32.4 56.5 70.6 38.6 61.3 72.8
en-oc 23.3 47.5 68.2 15.6 43.1 66.6 22.0 47.2 69.2
ps-en 12.6 38.0 64.5 9.8 35.0 62.1 12.7 37.5 64.1
en-ps 5.8 22.6 55.7 3.6 21.0 57.7 5.1 23.0 60.3
sw-en 27.7 50.5 72.8 22.8 46.9 71.1 27.3 50.3 73.1
en-sw 21.4 46.3 72.9 16.3 42.9 70.3 20.8 46.2 73.3
be-ru 15.6 39.1 78.6 14.7 38.7 76.5 16.6 40.4 80.2
fr-sw 15.6 39.7 67.9 12.4 38.6 68.1 15.6 40.4 69.8

Mean Low-Resource 21.5 44.8 69.6 17.2 41.9 68.1 21.4 44.9 70.6

bn-en 25.6 51.3 82.7 19.8 47.2 80.9 24.9 50.9 82.6
en-bn 16.5 33.0 71.1 8.7 25.6 66.0 12.7 28.8 68.9
fa-en 28.2 53.9 82.3 22.0 49.4 80.4 27.7 53.6 82.5
en-fa 27.5 45.6 81.3 22.1 41.9 77.6 27.1 45.5 81.1
tr-en 31.4 55.7 84.7 24.9 51.0 82.9 30.9 55.4 84.8
en-tr 28.9 50.5 83.9 22.4 46.3 80.0 28.7 50.8 83.8
zh-en 21.7 48.4 81.8 17.0 44.5 80.1 21.7 48.1 81.9
en-zh 19.1 20.7 78.5 13.4 17.7 75.3 18.5 20.3 78.2
ar-fr 27.8 50.7 76.5 20.1 46.0 73.3 27.2 50.5 76.7
el-tr 19.8 42.5 79.5 15.0 39.4 76.2 19.8 42.8 79.7
hi-bn 16.2 32.7 71.9 8.8 25.3 68.2 13.6 29.8 71.3

Mean Medium-resource 23.9 44.1 79.5 17.7 39.5 76.4 23.0 43.3 79.2

Table 11: spBLEU, chrF++, COMET across all language pairs for the EXPERT, ATTENTION SCALING, and
ATTENTION SCALING DYNAMIC ONLYexperiments with the Small(418M) model.
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EXPERT ATTENTION SCALING
ATTENTION SCALING

DYNAMIC ONLY

Language Pair spBLEU chrF++ COMET spBLEU chrF++ COMET spBLEU chrF++ COMET

ast-en 36.8 58.7 79.2 30.7 54.6 77.5 36.5 58.6 79.4
en-ast 33.0 54.0 70.1 26.7 50.4 68.7 32.9 54.2 70.5
oc-en 46.4 66.9 79.1 39.7 62.0 77.1 46.9 66.7 79.0
en-oc 30.1 52.3 70.6 20.6 47.0 68.3 28.8 52.0 71.1
ps-en 17.9 43.4 71.2 14.0 39.8 68.4 17.4 42.5 70.5
en-ps 9.3 27.4 62.6 5.6 23.9 61.0 8.3 26.4 64.0
sw-en 35.2 57.0 79.7 29.4 52.9 78.1 34.6 56.6 79.7
en-sw 30.3 53.5 80.2 24.0 49.1 76.3 29.6 53.1 79.5
be-ru 19.3 42.5 84.8 17.7 41.3 82.9 19.4 42.8 85.2
fr-sw 21.5 44.5 74.0 18.5 43.6 74.3 21.3 44.6 74.4

Mean Low-resource 28.0 50.0 75.1 22.7 46.5 73.3 27.6 49.8 75.3

bn-en 28.4 53.1 83.9 22.2 48.9 82.4 28.0 53.0 83.9
en-bn 25.5 40.8 81.8 18.8 36.1 78.4 24.6 40.1 81.3
fa-en 30.0 54.5 82.8 23.3 49.8 81.0 29.2 54.0 82.8
en-fa 22.7 42.4 78.4 16.7 38.2 74.6 21.5 41.4 77.9
tr-en 35.7 58.7 86.7 28.7 53.8 85.4 34.8 58.1 86.7
en-tr 30.6 52.1 86.2 22.3 46.7 82.3 30.2 52.0 86.0
zh-en 27.1 52.2 84.6 21.0 47.7 83.0 26.4 51.7 84.6
en-zh 23.1 22.4 82.9 17.1 19.8 80.3 22.8 22.6 82.7
ar-fr 28.4 50.4 76.2 21.6 46.1 73.4 27.7 50.1 76.2
el-tr 21.7 44.1 82.0 15.7 40.1 79.0 21.5 44.3 82.2
hi-bn 23.6 38.4 79.5 18.1 35.0 77.3 23.4 38.5 79.6

Mean Medium-resource 27.0 46.3 82.3 20.5 42.0 79.7 26.4 46.0 82.2

Table 12: spBLEU, chrF++, COMET across all language pairs for the EXPERT, ATTENTION SCALING, and
ATTENTION SCALING DYNAMIC ONLYexperiments with the Medium(1.2B) model.

C GPU Hours

All experiments where run on GTX 3090 GPUs. While we did not keep track of the GPU utilization we
note that we only ran decoding experiments in this work. As an estimate of GPU hours both the parameter
grid search and evaluation took 3 days running on 4 GPUs.
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