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Abstract

NLP research has explored different neural
model architectures and sizes, datasets, train-
ing objectives, and transfer learning techniques.
However, the choice of optimizer during train-
ing has not been explored as extensively. Typi-
cally, some variant of Stochastic Gradient De-
scent (SGD) is employed, selected among nu-
merous variants, using unclear criteria, often
with minimal or no tuning of the optimizer’s hy-
perparameters. Experimenting with five GLUE
datasets, two models (DistilBERT and Dis-
tilRoBERTa), and seven popular optimizers
(SGD, SGD with Momentum, Adam, AdaMax,
Nadam, AdamW, and AdaBound), we find that
when the hyperparameters of the optimizers
are tuned, there is no substantial difference in
test performance across the five more elabo-
rate (adaptive) optimizers, despite differences
in training loss. Furthermore, tuning just the
learning rate is in most cases as good as tun-
ing all the hyperparameters. Hence, we recom-
mend picking any of the best-behaved adaptive
optimizers (e.g., Adam) and tuning only its
learning rate. When no hyperparameter can be
tuned, SGD with Momentum is the best choice.

1 Introduction

NLP research has investigated how different neural
model architectures (e.g., RNNs, CNNs, Trans-
formers), model sizes, datasets, training (or pre-
training) objectives, and transfer-learning tech-
niques (e.g., pre-training and fine-tuning) affect
performance and efficiency. However, the effects of
using different optimizers to minimize the training
loss have not been explored as extensively. Adam
(Kingma and Ba, 2014) is a popular choice, but
there are dozens of alternatives, mostly variants
of Stochastic Gradient Descent (SGD) (Robbins

and Monro, 1951; Kiefer and Wolfowitz, 1952).1

Optimizer selection seems to be based on unclear
criteria and anecdotal information. Furthermore,
most optimizers have several hyperparameters, of-
ten minimally tuned (e.g., only the learning rate is
tuned) or left to their default values. Hence, when
models need to be trained (e.g., pre-trained or fine-
tuned), it is unclear if the available computing re-
sources should be used to try multiple optimizers,
tune their hyperparameters, both, or none.

Our work is inspired by Schmidt et al. (2021),
who experimented with 15 optimizers and 8 tasks
from DeepOBS (Schneider et al., 2019). Their
most striking finding was that trying several opti-
mizers with default hyperparameters was almost as
beneficial as (and cheaper than) picking any single
(competent) optimizer and tuning its hyperparame-
ters. Hence, practitioners would be advised to try
multiple optimizers with defaults, rather than select-
ing a single optimizer (e.g., based on anecdotal evi-
dence) and tuning its hyperparameters, when they
cannot tune both the choice of optimizer and hy-
perparameters (which is expensive). In fact, tuning
the hyperparameters of a single optimizer was only
slightly better than using its defaults, which also
advocates against hyperparameter tuning. How-
ever, Schmidt et al. (2021) considered only one
NLP task (character-level language modeling) with
an RNN, acknowledging that their findings may
not hold with more complicated models, such as
Transformers. They also found indications that the
best optimizer may depend on the model and task.

We complement the work of Schmidt et al.
(2021) from an NLP perspective by investigating
empirically if it is worth (a) trying multiple optimiz-

1Schmidt et al. (2021) list more than a hundred optimizers
that have been used in deep learning.
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ers and/or (b) tuning their hyperparameters (and
which ones), when fine-tuning pre-trained Trans-
former encoders. We experiment with five tasks
from GLUE (Wang et al., 2018), using seven pop-
ular optimizers, namely SGD, SGD with Momen-
tum (SGDM) (Qian, 1999), Adam and AdaMax
(Kingma and Ba, 2014), Nadam (Dozat, 2016),
AdamW (Loshchilov and Hutter, 2019), and Ad-
aBound (Luo et al., 2019). For each task and opti-
mizer, we fine-tune DistilBERT (Sanh et al., 2019)
and DistilRoBERTa,2 two efficient pre-trained
Transformers that allow us to complete the many
experiments of this work with our limited budget.
We consider three cases: using the default hyperpa-
rameters of the optimizers, tuning all their hyper-
parameters, or tuning only their learning rates.

With the exception of the two non-adaptive op-
timizers considered, i.e., plain SGD and SGDM,
which are largely unaffected by hyperparameter
tuning, the test performance of the other five (adap-
tive) optimizers improves substantially when their
hyperparameters are tuned, unlike smaller overall
improvements reported by Schmidt et al. (2021).
Interestingly, in most cases tuning only the learning
rate is as good as (and much cheaper than) tuning
all the hyperparameters. Furthermore, when hyper-
parameters (or just the learning rate) are tuned, the
adaptive optimizers have very similar test scores in
most cases, unlike plain SGD and SGDM, which
are clearly the worst and second worst, respectively.
This parity of test performance of the adaptive op-
timizers is obtained despite occasional differences
in the training loss they reach. When no hyperpa-
rameter can be tuned (e.g., due to limited budget),
SGDM is the best choice and AdaBound occasion-
ally works relatively well, but the other optimiz-
ers considered are much worse. Trying multiple
optimizers with defaults (Schmidt et al., 2021) is
reasonably good too, because of the good untuned
performance of SGDM and AdaBound. However,
our experiments suggest that picking just one of the
best-behaved adaptive optimizers i.e., with consis-
tent top-performance across datasets, e.g., Adam,
and tuning only its learning rate is the best strategy.

2 Optimizers Considered

All the optimizers we consider aim at tuning the
weights vector θ of a model, so that a loss function
f(θ) = 1

K

∑K
k=1 fk(θ) is minimized, where fk(θ)

is the loss of the k-th training example, and K the

2https://huggingface.co/distilroberta-base

Algorithm 1 Gradient Descent (GD)

Stochastic GD (SGD) SGD with Momentum (SGDM)

1: Input:
• initial time step t← 0; initial weight vector θ0

• learning rate ϵ > 0

• momentum parameter α ∈ [0, 1)

• initial velocity v0 ← 0

2: while stopping criterion not met do
3: select all examples (m← K)

sample mini-batch of m≪ K examples

sample mini-batch of m≪ K examples
4: gt ← 1

m

∑m
k=1∇fk(θt)

5: θt+1 ← θt − ϵgt +αvt

6: vt+1 ← αvt − ϵgt ; t← t+ 1

size of the training set. The gradient of f(θ),

g(θ) ≜ ∇f(θ) =
1

K

K∑

k=1

∇fk(θ), (1)

is of special interest as it points to the direction
along which f(θ) increases the fastest. The opti-
mizers we consider are iterative, i.e., they create a
sequence of points {θt, t = 0, 1, . . . }, such that
each θt+1 is selected by taking a step away from
the previous point θt in an attempt to decrease f(θ).
The step could be towards the opposite direction
of g(θ). However, exactly computing g(θ) at each
step is too costly for large training set sizes K.

2.1 Non-adaptive Optimizers

The simplest optimizer is pure Gradient Descent
(GD) (Algorithm 1). At each iteration the gradient
g(θ) is computed exactly (line 4, as in Eq. 1), then
the next point θt+1 is selected to be towards the
opposite direction. The learning rate ϵ > 0 is
a hyperparameter that affects the size of the steps.
Computing the exact gradient at each step, however,
is too costly for large training sets (i.e., large K).

Stochastic Gradient Descent (SGD) (Algo-
rithm 1) estimates the gradient at each step, by
using a sample (mini-batch) of m ≪ K examples
(line 4); the next point is selected as in GD (line 5).

Stochastic Gradient Descent with Momentum
(SGDM) (Polyak, 1964) (Algorithm 1) aims to ac-
celerate learning by suppressing oscillations in the
created sequence of points. It maintains an expo-
nentially weighted moving average of past gradi-
ents, termed the velocity, vt (line 6). The direction
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and size of the next step (line 5) are now deter-
mined by a linear combination of the latest gradient
estimate gt and the velocity (vt). Intuitively, the
sequence of points {θt, t = 0, 1, . . . } resembles
the movement of a ball traveling (in the space of
weight vectors) towards points of lower altitude
(loss), but also subject to its own momentum.

The optimizers above are called non-adaptive, be-
cause their learning rate ϵ is fixed. The optimizers
we discuss next modify ϵ while creating the se-
quence of points and are, hence, called adaptive.

2.2 Adaptive Optimizers
The loss function f(θ) of large neural models cor-
responds to a complicated hyper-surface. In some
directions, the loss may change rapidly, in other di-
rections slowly. This makes choosing the learning
rate ϵ difficult: if ϵ is too large, the minimum along
the chosen direction of a step may be overshot; if,
however, ϵ is too small, progress towards smaller
values of the loss function will be slow. This diffi-
culty of choosing a good, uniform, ϵ a priori is one
of the reasons adaptive optimizers are so useful.

Adaptive Moments (Adam) (Kingma and Ba,
2014) follows Algorithm 2. Like SGDM, it uses the
concept of momentum by maintaining a velocity-
type vector st (line 6), termed the first moment. It
also adapts the learning rate by scaling it (line 10)
roughly inversely proportionally to the square root
of an exponentially weighed average rt (line 7) of
the component-wise squared gradient estimate, g2

t ,
termed the second moment. Lines 8 and 9 normal-
ize the two moments to take into account biases
due to their initial values 0 (Kingma and Ba, 2014).

Nadam (Dozat, 2016) is identical to Adam, except
that it uses Nesterov momentum (Nesterov, 1983),
which has been shown to be somewhat superior to
plain momentum (Sutskever et al., 2013). The only
difference is in lines 8, 9 in Algorithm 2, which
ensure that the momentum step incorporates the
estimated gradient at the location where it is used.

AdamW (Loshchilov and Hutter, 2019) (Algo-
rithm 2) is based on the empirical observation that
smaller weights tend to overfit less. Hence, it adds
(in line 10) a term −λθt−1, where λ ∈ (0, 1), to
decay the weight vector towards the origin.

AdaMax (Kingma and Ba, 2014) is identical to
Adam, except that the two moments st and rt are
not normalized, and the second moment (rt) is
computed using line 7 in Algorithm 3, thus it is

Algorithm 2 Adaptive Moment Optimization (Adam)

Nesterov-Accelerated Adam (Nadam)

Adam with decoupled weight decay (AdamW)
(all vector operations are elementwise)
1: Input:

• initial time step t← 0; initial weight vector θ0

• learning rate ϵ > 0; decay rates ρ1, ρ2 ∈ [0, 1)

• small constant δ > 0

• first moment s0 ← 0; second moment r0 ← 0

• regularization factor λ ∈ (0, 1)

2: while stopping criterion not met do
3: t← t+ 1
4: sample mini-batch of m examples
5: gt ← 1

m

∑m
i=1∇fi(θt−1)

6: st ← ρ1st−1 + (1− ρ1)gt

7: rt ← ρ2rt−1 + (1− ρ2)g
2
t

8: ŝt ← st
1−ρ1t

st
1−ρ1t

ρ1st
1−ρ1t+1 + (1−ρ1)gt

1−ρ1t

9: r̂t ← ρ2· rt
1−ρ2t

10: θt ← θt−1 − ϵ ŝt
δ+

√
r̂t
−λθt−1

no longer an exponentially weighed average. This
variation of Adam was proposed in the same paper
that introduced Adam, as a more stable variant.

AdaBound (Luo et al., 2019) (Algorithm 3) en-
sures that extreme values for the learning rate are
avoided, by bounding it by both a dynamic up-
per bound ηut and a dynamic lower bound ηlt that
start from infinity and zero, respectively, and then
converge to a finite common value ϵ as the time
step t increases. The operation [x]ul in line 8 clips
the vector x elementwise so that the output lies in
the interval [l, u]. AdaBound initially behaves like
Adam, and gradually transforms to SGD.

The optimizers we consider include simple non-
adaptive baselines (SGD, SGDM), the most com-
monly used adaptive optimizer (Adam), its sibling
AdaMax, as well as adaptive optimizers that in-
corporate influential ideas, in particular Nesterov
momentum (Nadam), weight decay (AdamW), and
dynamic bounds (AdaBound). AdamW and Ad-
aBound are also two of the most recent optimizers.

3 Experiments

3.1 Datasets and Evaluation Measures
We experiment with five GLUE tasks (Wang et al.,
2018).3 The datasets of all tasks are in English.
Each experiment is repeated with five random train-
ing/development/test splits, and we report average

3To speed up our experiments, we do not use the other four
GLUE tasks (QQP, QNLI, RTE, WNLI), which are all textual
inference/paraphrasing tasks, like MRPC and MNLI.
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Algorithm 3 AdaMax AdaBound
(all vector operations are elementwise)
1: Input:

• initial time step t← 0; initial weight vector θ0

• learning rate ϵ > 0; decay rates ρ1, ρ2 ∈ [0, 1)

• small constant δ > 0

• first moment s0 ← 0; second moment r0 ← 0

• lower bound function ηl
t

• upper bound function ηu
t

2: while stopping criterion not met do
3: t← t+ 1
4: sample mini-batch of m examples
5: gt ← 1

m

∑m
i=1∇fi(θt−1)

6: st ← ρ1st−1 + (1− ρ1)gt

7: rt ← max{ρ2rt−1, |gt|} ρ2rt−1 + (1− ρ2)g
2
t

8: ηt ←
[

ϵ√
r

]ηu
t

ηl
t

9: θt ← θt−1 − ϵ
1−ρt1

· st
rt

θt−1 − ηt · st

scores and standard deviations over the repetitions.
SST-2 (Socher et al., 2013) is a binary sentiment
classification dataset with 68.8k sentences from
movie reviews (one label per sentence). To speed
up our experiments, we sample 18k (from the
68.8k) sentences anew in each of the five repe-
titions and split them into training (15k), devel-
opment (1.5k) and test (1.5k) subsets. The class
distribution of the 68.8k sentences (55% positive
sentiment) is preserved in all subsets of every split.

MRPC (Dolan and Brockett, 2005) contains 5.8k
sentence pairs from online news. Each pair is clas-
sified as containing paraphrases (sentences with
the same meaning) or not. We use 80% of the
5.8k pairs for training, 10% for development, 10%
for testing, preserving the class distribution (67%
paraphrases).

CoLA (Warstadt et al., 2019) contains 9.6k word
sequences labeled to indicate if each sequence is
a grammatically correct sentence or not. We use
80% of the sequences for training, 10% for devel-
opment and 10% for testing, preserving the class
distribution (70% acceptable).

STS-B (Cer et al., 2017) contains 7.2k sentence
pairs from news headlines, video/image captions,
and natural language inference data. Each pair is
annotated with a similarity score from 1 to 5. In
each repetition, we sample 80% of the 7.2k pairs
for training, 10% for development, 10% for testing.

MNLI (Williams et al., 2018) contains 393k
premise-hypothesis pairs for training, and 19.6k

pairs for development. The task is to predict if the
premise entails, contradicts, or is neutral to the hy-
pothesis. To speed up the experiments, in each rep-
etition we sample (anew) 50k from the 393k pairs
for training, 9.8k from the 19.6k for development,
and the remaining 9.8k for testing, preserving the
original class distribution (balanced).4

Evaluation measures: We use the measures
adopted by GLUE (Wang et al., 2018), i.e., Ac-
curacy for SST-2 and MNLI, Macro-F1 for MRPC,
Matthews correlation (Matthews, 1975) for CoLA,
and Pearson correlation (Kirch, 2008) for STS-B.

3.2 Experimental Setup

Transformer models: Given the volume of the
experiments and our limited resources, we fine-
tune: (i) DistilBERT (Sanh et al., 2019), a distilled
BERT-base (Devlin et al., 2019) with 40% fewer
parameters that runs 60% faster, but retains 95% of
BERT-base’s performance on GLUE, according to
its creators; and (ii) DistilRoBERTa, a similarly dis-
tilled version of RoBERTa-base (Liu et al., 2019).

Hyperparameter tuning: For each optimizer,
model, task, and data split (Section 3.1), we try
30 different combinations (trials) of hyperparam-
eter values, as selected by Optuna (Akiba et al.,
2019), seeking to maximize the evaluation measure
of the task on the development subset.5 In each
trial, we retain the weights from the epoch with
the best development score. The hyperparameter
search space of each optimizer includes the default
values proposed by its creators, with the exception
of the learning rate ϵ of adaptive optimizers, since it
is standard practice when fine-tuning Transformers
with adaptive optimizers to use much smaller ϵ.6

We repeat the experiments, tuning only ϵ. We also
report results with default hyperparameter values.

Loss functions: We minimize cross-entropy for
the classification tasks (SST-2, MRPC, CoLA, and
MNLI), and mean squared error for STS-B.

3.3 Experimental Results

We include in the main paper only results using
DistilBERT. DistilRoBERTa results are reported in
Appendix B, and lead to the same conclusions.

4We also ensure that development and test sets contain
50% ‘in-domain’ (matched) pairs and 50% ‘out-of-domain’.

5In Optuna, we use Tree-Structured Parzen Estimation
(Bergstra et al., 2011, 2013) and median-based pruning.

6More details on the hyperparameter search space and the
selected values are provided in Appendix A.
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(a) SST-2 (a) SST-2

(b) MRPC (b) MRPC

(c) CoLA (c) CoLA

(d) STS-B (d) STS-B

(e) MNLI (e) MNLI

Figure 1: Training loss (left) and evaluation score on development data (right) with all hyperparameters of
the optimizers tuned, as a function of training steps, using DistilBERT. For each dataset, we use five random
data splits, and plot the average and standard deviation (shadow) over the five splits. Plain SGD is clearly the
worst, but adding Momentum (SGDM) turns it to a competent optimizer in terms of development scores, except
for CoLA. The five adaptive optimizers (Adam, Nadam, AdamW, AdaMax, AdaBound) have almost identical
development score curves across the tasks, despite occasional differences in the training losses they reach.
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SST-2 MRPC CoLA STS-B MNLI
Optimizer Accuracy Macro-F1 Matthews Pearson Accuracy
AdaBound 91.61 (1.05) 81.34 (1.17) 0.53 (0.03) 0.87 (0.01) 72.33 (0.35)
AdamW 91.93 (0.73) 81.01 (1.09) 0.51 (0.05) 0.87 (0.01) 72.17 (0.38)
AdaMax 91.73 (1.10) 80.88 (0.68) 0.51 (0.07) 0.86 (0.01) 70.44 (0.70)
Nadam 91.76 (0.97) 81.85 (3.75) 0.53 (0.03) 0.86 (0.01) 72.04 (0.36)
Adam 91.63 (0.75) 80.81 (1.83) 0.52 (0.03) 0.87 (0.01) 72.08 (0.37)
SGDM 90.53 (1.78) 79.51 (1.58) 0.22 (0.26) 0.87 (0.01) 68.84 (1.62)
SGD 86.17 (1.16) 65.45 (9.94) 0.09 (0.14) 0.74 (0.03) 43.64 (0.65)

Table 1: Evaluation scores on test data with all hyperparameters of the optimizers tuned, using DistilBERT. For
each dataset, we use five random splits of training/development/test data (the same for all optimizers) and report
the average test score and the standard deviation over the five splits. Plain SGD is clearly the worst, but SGDM
is competitive, except for CoLA. The five adaptive optimizers (top five) all perform very similarly.

SST-2 MRPC CoLA STS-B MNLI
Optimizer Accuracy Macro-F1 Matthews Pearson Accuracy
AdaBound 91.40 (1.16) 81.59 (1.98) 0.49 (0.06) 0.87 (0.01) 72.74 (0.85)
AdamW 91.87 (0.88) 81.32 (1.75) 0.54 (0.03) 0.87 (0.01) 72.20 (0.28)
AdaMax 89.52 (1.16) 81.12 (0.59) 0.48 (0.07) 0.84 (0.01) 66.80 (0.28)
Nadam 92.79 (0.37) 80.91 (1.69) 0.55 (0.04) 0.87 (0.01) 72.36 (0.37)
Adam 91.75 (0.91) 80.81 (1.83) 0.52 (0.02) 0.86 (0.01) 72.19 (0.27)
SGDM 89.79 (1.23) 80.79 (0.79) 0.46 (0.10) 0.85 (0.01) 67.31 (0.61)
SGD 86.17 (1.16) 65.45 (9.94) 0.09 (0.14) 0.74 (0.03) 43.64 (0.65)

Table 2: Evaluation scores on test data, having tuned only the learning rate, with all other hyperparameters of
the optimizers set to their defaults, using DistilBERT. Again, we use five random splits and report the average
and standard deviation. In most cases, tuning only the learning rate leads to very similar results as tuning all
the hyperparameters (cf. Table 1). Exceptions include AdaMax, which now lags behind on CoLA and (more
noticeably) on MNLI, as well as AdaBound, whose performance deteriorates on CoLA (comparing to Table 1).
Interestingly, SGDM is now competitive to the five adaptive optimizers on CoLA (where it lagged behind in Table 1).

Figure 1 shows the training loss for each task and
optimizer (left column) and the corresponding eval-
uation score on development data (right column),
as a function of training steps, using DistilBERT,
when all the hyperparameters of the optimizers are
tuned. For each curve, we plot the average and stan-
dard deviation (shadow) over the five data splits
(Section 3.1). SGD clearly struggles to learn the
training data in all five tasks (left), which is also re-
flected in its development scores (right). However,
adding Momentum turns it to a competent opti-
mizer (SGDM) in terms of development scores. An
exception is CoLA, where SGDM is clearly worse
in development score than the five more elabo-
rate (adaptive) optimizers (Adam, Nadam, AdamW,
AdaMax, and AdaBound), in accordance with its
poor training loss, though it still outpeforms SGD.
The adaptive optimizers have almost identical de-
velopment score curves across the tasks, with some
minor differences in CoLA where AdaMax and
AdamW are slightly worse, again reflecting their
inferior training losses. Otherwise, differences in
the training losses reached by the five adaptive op-
timizers (when there are any) do not lead to visible

differences in development scores.7

Table 1 tells a similar story, now evaluating on
test data, again using DistilBERT. Again, SGD is
clearly the worst, but SGDM is competitive, except
for CoLA. The five adaptive optimizers all perform
very similarly. Interestingly, in most cases tuning
only the learning rate (Table 2) leads to very similar
results as (and is much cheaper than) tuning all the
hyperparameters (Table 1). Some exceptions are
reported in the caption of Table 2.

Table 3 shows test results with default hyperpa-
rameter values, again using DistilBERT. SGDM is
not affected by the lack of hyperparameter tuning
(cf. Table 2) and is now the best overall. Plain SGD
is also not particularly affected, and actually per-
forms much better on MRPC and CoLA untuned
(cf. Table 2). Overall, it seems that the defaults of
the two non-adaptive optimizers are good global
choices; tuning their hyperparameters occasionally
overfits the development data. By contrast, the
adaptive optimizers are negatively affected by the
lack of tuning. AdaBound is the least affected and
is now (Table 3) overall the second best and clearly

7Curves for the cases where we tune only the learning rate
or use the defaults can be found in Appendix B.
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SST-2 MRPC CoLA STS-B MNLI
Optimizer Accuracy Macro-F1 Matthews Pearson Accuracy
AdaBound 90.88 (1.41) 76.14 (2.63) 0.19 (0.26) 0.86 (0.01) 65.58 (8.48)
AdamW 55.83 (0.06) 62.57 (0.00) 0.00 (0.00) 0.23 (0.22) 35.34 (0.01)
AdaMax 59.49 (7.35) 62.57 (0.00) 0.00 (0.00) 0.50 (0.15) 35.34 (0.01)
Nadam 55.80 (0.00) 62.57 (0.00) 0.00 (0.00) 0.14 (0.11) 35.34 (0.01)
Adam 55.83 (0.06) 62.57 (0.00) 0.00 (0.00) 0.27 (0.17) 35.34 (0.01)
SGDM 89.89 (1.13) 80.00 (0.51) 0.49 (0.03) 0.86 (0.01) 67.56 (0.24)
SGD 86.35 (0.96) 70.90 (1.59) 0.33 (0.04) 0.74 (0.03) 44.65 (0.20)

Table 3: Evaluation scores on test data, with all hyperparameters of the optimizers set to defaults, using
DistilBERT. Again, we use five random splits and report the average and standard deviation. SGDM is not affected
by the lack of hyperparameter tuning (cf. Table 2) and is now the best overall. Plain SGD is also not particularly
affected, and actually performs much better on MRPC and CoLA untuned (cf. Table 2). Although negatively
affected by the use of defaults, AdaBound is now the best optimizer on SST-2 and STS-B, and much better than the
other four adaptive optimizers (but worse than SGDM) on the other datasets.

better than the other adaptive optimizers. This may
be related to the fact that AdaBound behaves simi-
larly to SGD at the end of training (Section 2). All
seven optimizers have very similar default learning
rates (Appendix A), hence the superior out-of-the-
box performance of SGDM and AdaBound is not
due to different default learning rates.

Trying multiple optimizers with defaults
(Schmidt et al., 2021) is competitive too. Based on
development scores (Fig. 3), one would select the
same optimizers (per task) whose (test) scores are
shown in bold in Table 3. The resulting test scores
are competitive, but worse than the best scores of
Tables 1–2. Also, the competitive scores of trying
multiple optimizers with defaults are due only to
the good out-of-the-box performance of SGDM
and (to a lesser extent) AdaBound; the other opti-
mizers perform much worse with defaults, hence
trying them would have been a waste of resources.

Therefore, based on our experiments, we rec-
ommend picking just one adaptive optimizer and
tuning only its learning rate. Among the adaptive
optimizers we considered, we recommend picking
AdamW, Nadam, or Adam, since AdaBound and
AdaMax were not top performers across all datasets
when tuning only the learning rate (Tables 2, 14).

4 Related Work

DeepOBS (Schneider et al., 2019) is an optimizer
benchmarking suite that includes several classical
datasets, models (e.g., CNNs, RNNs), optimizer
implementations (currently SGD, SGDM, Adam),
and facilities to compare optimizers. However, it
includes only one NLP task (character-level lan-
guage modeling with an RNN) and no Transformer
models. A similar observation can be made for
the more recent AlgoPerf benchmark (Dahl et al.,

2023), which includes Transformers, but only one
NLP task (machine translation). MultiTask (Metz
et al., 2020) also considers only three NLP tasks
(language modelling with characters or words/sub-
words, text classification), all with RNNs.

As already noted, we were inspired by Schmidt
et al. (2021), who experimented with 15 optimizers
and 8 tasks (from DeepOBS), but only one NLP
task (the only one of DeepOBS), without consider-
ing Transformers. They found that Adam remained
a strong contender, with more recent variants fail-
ing to consistently outperform it. Tuning the hyper-
parameters of a single optimizer was overall only
slightly better than using its default hyperparameter
values (median improvement 3.4% for a tuning bud-
get of 50 trials and diminishing returns for larger
budgets). Trying several optimizers with defaults
was almost as beneficial as (and cheaper than) pick-
ing any single (competent) optimizer and tuning
it. Schmidt et al. acknowledged, however, that
their findings may not hold with more complicated
models, such as Transformers. They also found
indications that the best optimizer may depend on
the model and task. They employed random search
for hyperparameter tuning, whereas we used Op-
tuna (Section 3.2). They also experimented with
four update schedules for the learning rate (con-
stant, cosine decay, cosine with warm restarts, and
trapezoidal) on top of the tuned rate, with results
indicating that non-constant schedules add small
gains; we considered only a constant schedule.

Wilson et al. (2017) reported that adaptive opti-
mizers may lead to worse development or test per-
formance than SGD, even in cases where the adap-
tive optimizers reach lower training losses. They
considered artificial datasets, an image classifica-
tion task (using a CNN), character-level language
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modelling, and two parsing tasks, the latter three
tasks using LSTM-based models. However, they
only tuned the learning rate and the learning rate
decay scheme, as pointed out by Choi et al. (2019).

Choi et al. (2019) introduced the notion of inclu-
sion between optimizers. For example, SGD is a
special case of (is included by) SGDM for α = 0
(Algorithm 1). With an exhaustive hyperparameter
search, an optimizer should never perform worse
than an optimizer it includes. Indeed, Choi et al.
show that with extensive hyperparameter tuning, in-
clusion relationships reflect end-task performance,
and they criticize previous work by Wilson et al.
(2017) and Schneider et al. (2019) for not having
tuned all hyperparameters. We tuned all hyperpa-
rameters, but found that tuning only the learning
rate was equally good. We also note that exten-
sive tuning of the kind recommended by Choi et al.
(e.g., with coarser to finer swaps to explore and
define the search space anew per task) is computa-
tionally very expensive. Finally, we note that Choi
et al. (2019) considered only image classification
and language modelling, the latter with an LSTM
and a (not pre-trained) Transformer.

Sivaprasad et al. (2020) pointed out that when
comparing optimizers, it is important to consider
how easy it is to reach reasonable performance
with a limited budget (number of trials), rather
than comparing performance scores obtained with
very extensive (and costly) hyperparameter tun-
ing, unlike the setting of Choi et al. (2019). They
experimented with SGDM, Adagrad (Duchi et al.,
2011), Adam, and AdamW, with a range of budgets,
in nine tasks, of which only two were NLP tasks
(sentiment analysis, news classification), without
considering Transformers. They recommended us-
ing Adam and tuning only its learning rate, espe-
cially with low budgets, which agrees with our
conclusions. Although we experimented with a
single, relatively small budget (30 trials), we used
the same budget for all optimizers, like Sivaprasad
et al. (2020) Their evaluation protocol, which effi-
ciently simulates multiple budgets, could be used
in future extensions of our work, though it is in-
compatible with our use of Optuna, as it requires
random search.

A particularly interesting research direction is
to semi-automatically discover new optimization
algorithms via evolutionary program searchs and
manual intervention. Chen et al. (2023) recently
used this approach to produce Lion, an optimizer
that, among other experiments, was reported to

be overall slightly better than AdamW on GLUE,
when using the T5 model (Raffel et al., 2020), but
tuning only the learning rates and decoupled weight
decay hyperparameters of the two optimizers.

The optimizers we considered are first-order, i.e.,
they compute only the gradient of the loss function
and not its Hessian (second-order partial deriva-
tives), which would be prohibitively costly (M2

second-order derivatives at each step, for a model
with M weights). Interestingly, Liu et al. (2023)
investigate an approximate second-order optimizer
for use in language model pretraining.

Furthermore, the optimizers we considered use a
single value of the learning rate at each step. Back-
tracking methods consider multiple learning rate
values at each step, computing the loss for each
one. Although backtracking is very common in tra-
ditional optimization, apparently it has not received
sufficient attention in machine learning; an excep-
tion is the work of Truong and Nguyen (2021).

5 Conclusions

We investigated if it is worth (a) trying multiple
optimizers and/or (b) tuning their hyperparameters
(and which ones), when fine-tuning a pre-trained
Transformer. We experimented with five GLUE
datasets, two efficient pre-trained Transformer en-
coders (DistilBERT, DistilRoBERTa), and seven
popular optimizers (SGD, SGDM, Adam, AdaMax,
Nadam, AdamW, and AdaBound). With the ex-
ception of the two non-adaptive optimizers (SGD,
SGDM), which were largely unaffected by hyper-
parameter tuning, the test performance of the other
five (adaptive) optimizers improved substantially
when they were tuned, unlike previously reported
smaller overall gains (Schmidt et al., 2021). In
most cases, tuning only the learning rate was as
good as (and cheaper than) tuning all the hyper-
parameters. Furthermore, when hyperparameters
(or just the learning rate) were tuned, all the adap-
tive optimizers had very similar test scores, unlike
SGD and SGDM, which were clearly the worst
and second worst, respectively. This parity of test
performance of the adaptive optimizers was ob-
tained despite occasional differences in the training
loss they reached. When no hyperparameter was
tuned (which might be the case with a low bud-
get), SGDM was the best choice and AdaBound
the second best; the other optimizers were much
worse. Trying multiple optimizers with defaults
(Schmidt et al., 2021) worked reasonably well too,
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but only because of the good untuned performance
of SGDM and (to a lesser extent) AdaBound; try-
ing the other optimizers untuned would have been a
waste of resources. Hence, we suggest picking just
one adaptive optimizer and tuning only its learning
rate; we recommend AdamW, Nadam, or Adam,
which were consistently top performers when tun-
ing only the learning rate.

Our work can help save substantial effort, com-
putational resources, and energy, by reducing the
number of hyperparameter tuning experiments
practitioners perform. However, our findings need
to be complemented by future additional experi-
ments with more models, more NLP tasks (includ-
ing pre-training tasks), and different tuning budgets
(i.e., different maximum number of trials); see also
Section 6. This is a computationally very expensive
exploration that might be best handled by multiple
groups performing and reporting similar studies.
Towards this direction, we make all the code, data,
and results of our experiments publicly available.8

6 Limitations

We examined different optimizers when fine-tuning
pre-trained Transformers for NLP downstream
tasks. Given our limited resources, we did not con-
sider pre-training and we experimented only with
two lightweight encoder-only models, i.e., Distil-
BERT and DistilRoBERTa. Thus, we limited our-
selves to five classification datasets for single word
sequences or pairs of sequences (Section 3.1), and
did not consider sequence-to-sequence or sequence
generation tasks, which would require encoder-
decoder or decoder-only models. Also, given our
limited resources, we considered seven popular op-
timizers (Section 2), among many more available.

During hyperparameter tuning, we restricted our-
selves to the direct hyperparameters of the optimiz-
ers. Thus, we did not consider tuning the batch
size, although it often affects the choice of learning
rate.9 Also, given that the effect of a non-constant
learning rate may vary substantially with respect to
the optimizer and task (Schmidt et al., 2021), we
experimented with a constant (but tuned) learning
rate only, leaving the investigation of other update
schedules (e.g., cosine decay) for future work.

Finally, we did not measure how the training
speed is affected by the choice of optimizer and
hyperparameter tuning (Schneider et al., 2019). In

8https://github.com/nlpaueb/nlp-optimizers
9We used a fixed batch size of 4 in all experiments.

our work, the training speed can only be indirectly
inferred from the learning curves (Fig. 1–6) and
depends on the size of each dataset. We also did
not vary the tuning budget; we used a fixed budget
of 30 trials in all experiments, which is close to the
‘small’ budget (25 trials) of Schmidt et al. (2021).

7 Ethical considerations

Selecting the best optimization scheme, which in-
cludes the choice of optimizer and tuning its hyper-
parameters, is much more expensive than training
the final model with tuned hyperparameters (Metz
et al., 2020). Thus, selecting the best optimization
scheme has a large economic and environmental
impact, which could be greatly reduced with the
help of proper guidelines to narrow the search space
without compromising performance. Of course, the
effort to develop such guidelines (which includes
our work) also requires substantial resources. How-
ever, by making code, data, and results publicly
available (as we do), we believe that this effort will
help save significant resources in the long run.
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Appendix

A Hyperparameter Tuning

Tables 4–12 show the search space, default values,
and tuned values (averaged over the five random
splits) of the hyperparameters across the optimiz-
ers and datasets, when using DistilBERT.11 In most
cases, the tuned hyperparameter values are differ-
ent than the defaults. Regarding the learning rate
(ϵ), as already noted in Section 3.2, the search space
we use for adaptive optimizers does not include the
default values (see Tables 4–6), because it is stan-
dard practice when fine-tuning Transformers with
adaptive optimizers to use much smaller learning
rates. Nevertheless, we observe (Tables 6, 12) that
the tuned learning rates of SGDM and SGD are
closer to the default, compared to the other opti-
mizers, which may explain why SGDM is the best
optimizer overall when using the defaults.

B Additional Results

Figure 2 shows the training loss per task and opti-
mizer (left) and the corresponding evaluation score
on development data (right), as a function of train-
ing steps, when only the learning rate of each
optimizer is tuned, using DistilBERT. For each
curve, we plot the average and standard deviation
(shadow) over the five data splits (Section 3.1). As
when tuning all hyperparameters (Fig. 1), SGD
struggles to learn the training data in all five tasks
(left), which is also reflected in its development
scores (right). Again, adding Momentum to SGD
turns it to a competent optimizer (SGDM) in terms
of development scores, now even on CoLA (cf.
Fig. 1). The five adaptive optimizers perform simi-
larly overall in terms of development scores, except
for AdaMax, which is visibly worse (along with
SGDM) on CoLA and (to a larger extent) MNLI.
Differences (when there are any) in the training
loss of different optimizers do not always lead to
substantial differences in development scores.

Figure 3 shows the corresponding curves when
all hyperparameters are set to their defaults, again

11The tuned hyperparameter values for DistilRoBERTa will
be available in our code repo and lead to similar conclusions.
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using DistilBERT. SGDM is not affected by the
lack of tuning and is now the best overall, improv-
ing upon plain SGD, which is now overall a strong
contender in terms of development scores (in agree-
ment with the test scores of Table 3). Although neg-
atively affected by the use of defaults, AdaBound
is now overall the second best in terms of devel-
opment scores (again, as in Table 3); it matches
SGDM’s development scores on SST-2 and STS-B,
but does not perform as well on the other datasets,
although it is still better than the other adaptive
optimizers. Again, differences in training loss are
not always reflected to differences in development
scores. In SST-2 and MRPC, for example, Ad-
aBound reaches a much lower training loss than
SGDM, but the development curve of AdaBound
is almost identical (in SST-2) or worse (in MRPC)
than the corresponding curve of SGDM.

Figure 4 shows the training losses and develop-
ment scores when all hyperparameters are tuned,
as in Fig. 1, but now using DistilRoBERTa instead
of DistilBERT. The results are similar to those of
Fig. 1, except that SGDM now performs better
in terms of development scores on CoLA (where
it lagged behind the other adaptive optimizers in
Fig. 1) and it now performs poorly on STS-B and
MNLI (where it was competent). Hence, these ex-
periments confirm that SGDM is overall clearly
better than SGD, but still worse than the adaptive
optimizers, when all hyperparameters are tuned.
Again, the five adaptive optimizers have very simi-
lar development scores, despite occasional larger
differences in the training losses they reach.

Figure 5 shows the training losses and develop-
ment scores when only the learning rate is tuned, as
in Fig. 2, but now using DistilRoBERTa instead of
DistilBERT. As in Fig. 2, AdaMax lags behind (but
now only slightly) on CoLA and (more clearly)
on MNLI in terms of development scores. The
only important difference compared to Fig. 2 is
that AdaBound is now also clearly worse than the
other adaptive optimizers in development scores on
CoLA and MNLI, where it is outperformed even
by SGDM. Hence, these experiments confirm that
tuning only the learning rate of adaptive optimiz-
ers is in most cases (but not always, AdaMax and
AdaBound being exceptions on CoLA and MNLI)
as good as tuning all their hyperparameters.

Figure 6 shows the training losses and develop-
ment scores when using defaults, as in Fig. 3, but
now using DistilRoBERTa instead of DistilBERT.
As in Fig. 3, SGDM is now the best in terms of

development scores, and AdaBound is overall the
second best. Again AdaBound eventually matches
the development scores of SGDM on SST-2 and
STSB, but not on the other datasets. The other
adaptive optimizers perform overall poorly.

Tables 13–15 show results on test data, now
using DistilRoBERTa. The best results are now
slightly improved in most cases, as one might ex-
pect, compared to Tables 1–3 where DistilBERT
was used. Otherwise the conclusions are very simi-
lar to those of Tables 1–3, they are summarized in
the captions of Tables 13–15, and they are aligned
with the findings of Fig. 4–6.
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AdamW AdaMax Nadam AdaBound Adam SGDM SGD
ϵ [1e−7, 1e−5] [1e−7, 1e−5] [1e−7, 1e−5] [1e−7, 1e−5] [1e−7, 1e−5] [1e−7, 1e−3] [1e−7, 1e−3]
ρ1 [0.8, 0.95] [0.8, 0.95] [0.8, 0.95] [0.8, 0.95] [0.8, 0.95] – –
ρ2 [0.9, 0.99999] [0.9, 0.99999] [0.9, 0.99999] [0.9, 0.99999] [0.9, 0.99999] – –
δ [1e−9, 1e−7] [1e−9, 1e−7] [1e−9, 1e−7] [1e−9, 1e−7] [1e−9, 1e−7] – –
α – – [1e−4, 1e−2] – – [0.7, 0.9999] –
ϵ∗ – – – [1e−2, 1e−1] – – –
γ – – – [1e−4, 2e−3] – – –

Table 4: Hyperparameter search space for all the optimization algorithms. ϵ∗ and γ (not shown in Algorith 3) are
used by AdaBound’s lower and upper bound functions (ηlt, η

u
t ); γ controls the convergence speed of these functions,

and ϵ∗ is the learning rate used in the final training stages, where AdaBound transforms to SGD.

AdamW AdaMax Nadam AdaBound Adam SGDM SGD
ϵ 1e−3 2e−3 2e−3 1e−3 1e−3 1e−3 1e−3
ρ1 0.9 0.9 0.9 0.9 0.9 – –
ρ2 0.999 0.999 0.999 0.999 0.999 – –
δ 1e−8 1e−8 1e−8 1e−8 1e−8 – –
α – – 4e−3 – – 0.9 –
ϵ∗ – – – 0.1 – – –
γ – – – 1e−3 – – –

Table 5: Default hyperparameter values per optimizer. The search space for the learning rate (ϵ) does not include
the defaults for adaptive optimizers, because it is standard practice when fine-tuning Transformers with adaptive
optimizers to use much smaller learning rates.

SST-2 MRPC CoLA MNLI STSB Default Search Space
AdaBound 8.17e−6 4.51e−6 8.27e−6 1.26e−6 2.06e−6 1e−3 [1e−7, 1e−5]
AdamW 9.80e−6 6.97e−6 5.59e−6 9.50e−6 7.99e−6 1e−3 [1e−7, 1e−5]
AdaMax 8.78e−6 8.44e−6 6.59e−6 9.19e−6 7.58e−6 2e−3 [1e−7, 1e−5]
Nadam 9.74e−6 6.46e−6 6.22e−6 9.58e−6 6.89e−6 2e−3 [1e−7, 1e−5]
Adam 9.61e−6 6.54e−6 7.09e−6 9.47e−6 9.13e−6 1e−3 [1e−7, 1e−5]
SGDM 8.03e−4 3.81e−4 3.41e−4 3.54e−4 6.49e−4 1e−3 [1e−7, 1e−3]
SGD 9.66e−4 7.69e−4 1.68e−4 9.58e−4 9.77e−4 1e−3 [1e−7, 1e−3]

Table 6: Tuned learning rate (ϵ) per optimizer and dataset, averaged over the five random splits, when tuning all
hyperparameters, using DistilBERT. Default ϵ and search space also shown. All the tuned values are far from the
defaults. The tuned learning rate of SGDM (and SGD) is closer to the default, comparing to the other optimizers,
which may explain why SGDM is the best optimizer overall when using the optimizers with defaults.

SST-2 MRPC CoLA MNLI STSB Default Search Space
AdaBound 0.87 0.90 0.86 0.86 0.88 0.90 [0.80, 0.95]
AdamW 0.92 0.85 0.88 0.88 0.88 0.90 [0.80, 0.95]
AdaMax 0.90 0.88 0.87 0.86 0.86 0.90 [0.80, 0.95]
Nadam 0.93 0.85 0.82 0.86 0.88 0.90 [0.80, 0.95]
Adam 0.89 0.86 0.88 0.88 0.87 0.90 [0.80, 0.95]

Table 7: Tuned 1st momentum decay rate (ρ1) per optimizer (when applicable) and dataset, averaged over the
five random splits, when tuning all hyperparameters, using DistilBERT. Default ρ1 and search space also shown.

SST-2 MRPC CoLA MNLI STSB Default Search Space
AdaBound 0.93 0.94 0.95 0.93 0.96 0.999 [0.9, 0.99999]
AdamW 0.92 0.96 0.95 0.98 0.94 0.999 [0.9, 0.99999]
AdaMax 0.92 0.97 0.94 0.93 0.91 0.999 [0.9, 0.99999]
Nadam 0.93 0.96 0.94 0.95 0.96 0.999 [0.9, 0.99999]
Adam 0.96 0.95 0.95 0.95 0.93 0.999 [0.9, 0.99999]

Table 8: Tuned 2nd momentum decay rate (ρ2) per optimizer (when applicable) and dataset, averaged over the
five random splits, when tuning all hyperparameters, using DistilBERT. Default ρ2 and search space also shown.
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SST-2 MRPC CoLA MNLI STSB Default Search Space
AdaBound 3.31e−08 2.09e−08 2.88e−08 4.18e−08 2.36e−08 1e−8 [1e−9, 1e−7]
AdamW 6.44e−08 3.37e−08 2.92e−09 3.53e−08 2.77e−08 1e−8 [1e−9, 1e−7]
AdaMax 2.18e−08 4.71e−08 5.59e−09 2.95e−08 2.97e−08 1e−8 [1e−9, 1e−7]
Nadam 1.22e−08 1.78e−08 6.24e−08 7.29e−09 3.46e−08 1e−8 [1e−9, 1e−7]
Adam 2.49e−08 2.67e−08 1.45e−08 4.23e−08 2.19e−08 1e−8 [1e−9, 1e−7]

Table 9: Tuned small constant δ for each optimizer (when applicable) and dataset, averaged over the five random
splits, when tuning all hyperparameters, using DistilBERT. Default δ and search space also shown.

SST-2 MRPC CoLA MNLI STSB Default Search Space
Nadam 1.69e−3 3.21e−3 3.73e−3 1.01e−4 4.35e−3 4e−3 [1e−4, 1e−2]
SGDM 0.93 0.97 0.86 0.99 0.98 0.9 [0.7, 0.9999]

Table 10: Tuned momentum strength (α) per optimizer (when applicable) and dataset, averaged over the five
random splits, when tuning all hyperparameters, using DistilBERT. Default α and search space also shown.

AdaBound SST-2 MRPC CoLA MNLI STSB Default Search Space
ϵ∗ 7e− 2 7.19e−2 6.35e−2 1.22e−1 1.1e−1 4e−3 [1e−2, 1e−1]
γ 3.03e− 4 7.21e−4 2.04e−4 9.92e−4 8.46e−4 0.9 [1e−4, 2e−3]

Table 11: Tuned AdaBound-specific hyperparameters (ϵ∗ and γ) per dataset, averaged over the five random
splits, when tuning all hyperparameters, using DistilBERT. ϵ∗ and γ are used by AdaBound’s lower and upper
bound functions (ηlt, η

u
t ), γ controls the convergence speed of these functions, and ϵ∗ is the learning rate used in the

final training stages, where AdaBound transforms to SGD. Default values and search space are also shown.

SST-2 MRPC CoLA MNLI STSB Default Search Space
AdaBound 2.43e−6 1.87e−6 1.58e−6 5.42e−6 1.72e−7 1e−3 [1e−7, 1e−5]
AdamW 9.20e−6 7.57e−6 7.63e−6 9.66e−6 8.68e−6 1e−3 [1e−7, 1e−5]
AdaMax 9.67e−6 8.46e−6 8.04e−6 9.74e−6 8.80e−6 2e−3 [1e−7, 1e−5]
Nadam 9.63e−6 8.16e−6 7.83e−6 9.68e−6 8.53e−6 2e−3 [1e−7, 1e−5]
Adam 9.11e−6 7.99e−6 5.49e−6 9.58e−6 7.42e−6 1e−3 [1e−7, 1e−5]
SGDM 9.56e−4 8.35e−4 7.43e−4 9.35e−4 9.42e−4 1e−3 [1e−7, 1e−3]
SGD 9.66e−4 7.69e−4 1.68e−4 9.58e−4 9.77e−4 1e−3 [1e−7, 1e−3]

Table 12: Tuned learning rate (ϵ) per optimizer and dataset, averaged over the five random splits, when tuning
only the learning rate, using DistilBERT. Default ϵ and search space also shown. As in Table 6, the tuned learning
rate of SGDM (and SGD) is closer to the default, comparing to the other optimizers, which may explain why
SGDM is the best optimizer overall when using the optimizers with defaults.
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(a) SST-2 (a) SST-2

(b) MRPC (b) MRPC

(c) CoLA (c) CoLA

(d) STS-B (d) STS-B

(e) MNLI (e) MNLI

Figure 2: Training loss (left) and evaluation score on development data (right) having tuned only the learning
rate of the optimizers, as a function of training steps, using DistilBERT. For each dataset, we use five random
data splits, and plot the average and standard deviation (shadow). As when tuning all the hyperparameters
(Fig. 1), SGD is clearly the worst, but adding Momentum (SGDM) turns it to a competent optimizer in terms
of development scores. The five adaptive optimizers (Adam, Nadam, AdamW, AdaMax, AdaBound) perform
similarly overall in terms of development scores, except for AdaMax which lags behind on CoLA and (more) on
MNLI . Differences in training loss do not necessarily give rise to substantial differences in development scores.
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(a) SST-2 (a) SST-2

(b) MRPC (b) MRPC

(c) CoLA (c) CoLA

(d) STS-B (d) STS-B

(e) MNLI (e) MNLI

Figure 3: Training loss (left) and evaluation score on development data (right) with all hyperparameters of the
optimizers set to their defaults, as a function of training steps, using DistilBERT. Again, we use five random data
splits, and plot the average and standard deviation (shadow). SGDM is not affected by the lack of hyperparameter
tuning and is now the best overall, improving upon plain SGD. AdaBound matches SGDM in performance on
SST-2 and STS-B, but does not perform as well on the other datasets, although it is still better than the other
adaptive optimizers. Differences in training loss are not always reflected to differences in development scores.
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(a) SST-2 (a) SST-2

(b) MRPC (b) MRPC

(c) CoLA (c) CoLA

(d) STS-B (d) STS-B

(e) MNLI (e) MNLI

Figure 4: Training loss (left) and evaluation score on development data (right) with all hyperparameters of the
optimizers tuned, using DistilRoBERTa. For each dataset, we use five random data splits, and plot the average
and standard deviation (shadow). The results are similar to those of the the experiments with DistilBERT (cf.
Fig. 1), except that SGDM now performs better in development score on CoLA (where it lagged behind the other
adaptive optimizers in Fig. 1) and it now performs poorly on STS-B and MNLI (where it was competent). Hence,
these experiments confirm that SGDM is overall clearly better than SGD, but still worse than the adaptive
optimizers, when all hyperparameters are tuned. Again, the five adaptive optimizers perform very similarly.
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(a) SST-2 (a) SST-2

(b) MRPC (b) MRPC

(c) CoLA (c) CoLA

(d) STS-B (d) STS-B

(e) MNLI (e) MNLI

Figure 5: Training loss (left) and evaluation score on development data (right) having tuned only the learning
rate, using DistilRoBERTa. For each dataset, we use five random data splits, and plot the average and standard
deviation (shadow). As in the corresponding DistilBERT experiments (Fig. 2), AdaMax lags (now slightly) behind
on CoLA and (more clearly) on MNLI in terms of development scores. The only important difference from Fig. 2 is
that AdaBound is now also clearly worse than the other adaptive optimizers in development scores on CoLA and
MNLI, where it is outperformed even by SGDM. Hence, these experiment confirm that tuning only the learning
rate of adaptive optimizers is in most cases (not always) as good as tuning all their hyperparameters.
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(a) SST-2 (a) SST-2

(b) MRPC (b) MRPC

(c) CoLA (c) CoLA

(d) STS-B (d) STS-B

(e) MNLI (e) MNLI

Figure 6: Training loss (left) and evaluation score on development data (right) with all hyperparameters of
the optimizers set to their defaults, using DistilRoBERTa. Again, we use five random data splits, and plot the
average and standard deviation (shadow). As in the corresponding experiments with DistilBERT (Fig. 3), SGDM
is now the best in terms of development scores; again AdaBound eventually reaches almost the same performance
as SGDM on SST-2 and STS-B, but not on the other datasets; the other adaptive optimizers perform overall poorly.
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SST-2 MRPC CoLA STS-B MNLI
Optimizer Accuracy Macro-F1 Matthews Pearson Accuracy
AdaBound 89.91 (0.47) 81.47 (2.21) 0.57 (0.03) 0.88 (0.01) 75.52 (1.08)
AdamW 91.39 (0.70) 81.88 (1.56) 0.58 (0.05) 0.88 (0.01) 76.74 (0.44)
AdaMax 91.94 (2.84) 82.33 (1.82) 0.56 (0.03) 0.88 (0.01) 75.40 (0.38)
Nadam 91.35 (0.87) 82.27 (1.83) 0.57 (0.02) 0.88 (0.00) 76.88 (0.49)
Adam 91.17 (0.65) 83.08 (1.34) 0.58 (0.03) 0.88 (0.00) 76.89 (0.47)
SGDM 89.45 (0.79) 80.70 (1.51) 0.52 (0.04) 0.71 (0.34) 65.37 (13.46)
SGD 86.08 (0.32) 65.30 (5.62) 0.27 (0.17) 0.74 (0.03) 35.86 (0.52)

Table 13: Evaluation scores on test data with all hyperparameters tuned, using DistilRoBERTa. For each dataset,
we use five random splits and report the average test score and the standard deviation. As one would expect,
the best scores (bold) are now slightly better than those of DistilBERT (cf. Table 1). Otherwise, the findings
are similar to those of the experiments with DistilBERT (Table 1), except that SGDM now performs better on
CoLA (where it lagged behind the other adaptive optimizers in Table 1) and it now performs poorly on STS-B and
MNLI (where it was competent). Hence, these experiments confirm that SGDM is overall clearly better than
SGD, but still worse than the adaptive optimizers, when all hyperparameters are tuned. Again, the five adaptive
optimizers perform very similarly. These findings are also aligned with those of Fig. 4.

SST-2 MRPC CoLA STS-B MNLI
Optimizer Accuracy Macro-F1 Matthews Pearson Accuracy
AdaBound 90.17 (0.93) 80.84 (1.72) 0.43 (0.15) 0.88 (0.00) 56.92 (19.86)
AdamW 91.08 (1.09) 81.15 (1.76) 0.59 (0.04) 0.88 (0.00) 76.86 (0.48)
AdaMax 89.17 (0.26) 80.96 (1.74) 0.53 (0.03) 0.87 (0.01) 72.34 (0.39)
Nadam 91.08 (0.91) 81.81 (1.85) 0.57 (0.03) 0.88 (0.00) 76.97 (0.37)
Adam 91.45 (0.95) 81.47 (2.05) 0.56 (0.05) 0.88 (0.00) 76.73 (0.59)
SGDM 89.11 (0.33) 81.68 (1.39) 0.53 (0.03) 0.87 (0.01) 69.67 (0.88)
SGD 86.08 (0.32) 65.30 (5.62) 0.27 (0.17) 0.74 (0.03) 35.86 (0.52)

Table 14: Evaluation scores on test data, having tuned only the learning rate, using DistilRoBERTa. Again,
we use five random splits and report the average and standard deviation. As in the corresponding DistilBERT
experiments (Table 2), AdaMax lags behind on CoLA and (more) on MNLI. The only important difference
compared to Table 2 is that AdaBound is now also clearly worse than the other adaptive optimizers on CoLA
and MNLI, where it is outperformed even by SGDM (but not plain SGD). Hence, these experiments confirm the
conclusion that tuning only the learning rate of adaptive optimizers is in most cases (but not always) as good as
tuning all their hyperparameters. These findings are aligned with those of Fig. 5. Again, the best scores (bold)
are better than those of DistilBERT (Table 2), except for SST-2.

SST-2 MRPC CoLA STS-B MNLI
Optimizer Accuracy Macro-F1 Matthews Pearson Accuracy
AdaBound 88.36 (0.62) 76.48 (2.54) 0.00 (0.00) 0.86 (0.00) 35.34 (0.01)
AdamW 55.79 (0.01) 62.57 (0.00) 0.00 (0.00) 0.14 (0.11) 35.33 (0.01)
AdaMax 55.80 (0.00) 62.57 (0.00) 0.00 (0.00) 0.30 (0.10) 35.33 (0.01)
Nadam 55.80 (0.01) 62.57 (0.00) 0.00 (0.00) 0.17 (0.03) 35.34 (0.01)
Adam 55.80 (0.00) 62.57 (0.00) 0.00 (0.00) 0.14 (0.11) 35.34 (0.01)
SGDM 89.20 (0.62) 82.28 (1.66) 0.54 (0.04) 0.87 (0.01) 70.14 (0.81)
SGD 86.29 (0.34) 69.14 (3.30) 0.36 (0.03) 0.78 (0.02) 35.90 (0.49)

Table 15: Evaluation scores on test data, with all hyperparameters of the optimizers set to their defaults, using
DistilRoBERTa. Again, we use five random splits and report the average and standard deviation. As in the
corresponding experiments with DistilBERT (Table 3), SGDM is now the best optimizer; again AdaBound
performs well on SST-2 and STSB, now also relatively well on MRPC, but not on the other two datasets; the other
adaptive optimizers perform much worse. These findings are alinged with those of Fig. 6. Again, the best scores
(bold) are better than those of DistilBERT (Table 2), except for SST-2.
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