
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics
Volume 1: Long Papers, pages 2616–2630

March 17-22, 2024 c©2024 Association for Computational Linguistics

Threat Behavior Textual Search by Attention Graph Isomorphism

Chanwoo Bae, Guanhong Tao, Zhuo Zhang, Xiangyu Zhang
Purdue University, USA

{bae68, taog, zhan3299}@purdue.edu, xyzhang@cs.purdue.edu

Abstract
Cyber attacks cause over $1 trillion loss ev-
ery year. An important task for cyber security
analysts is attack forensics. It entails under-
standing malware behaviors and attack origins.
However, existing automated or manual mal-
ware analysis can only disclose a subset of be-
haviors due to inherent difficulties (e.g., mal-
ware cloaking and obfuscation). As such, an-
alysts often resort to text search techniques to
identify existing malware reports based on the
symptoms they observe, exploiting the fact that
malware samples share a lot of similarity, espe-
cially those from the same origin. In this paper,
we propose a novel malware behavior search
technique that is based on graph isomorphism
at the attention layers of Transformer models.
We also compose a large dataset collected from
various agencies to facilitate such research. Our
technique outperforms state-of-the-art methods,
such as those based on sentence embeddings
and keywords by 6-14%. In the case study of
10 real-world malwares, our technique can cor-
rectly attribute 8 of them to their ground truth
origins while using Google only works for 3
cases.

1 Introduction

Cyber-attacks are a prominent threat to our daily
life, causing over $1 trillion loss every year. De-
fending and mitigating cyber-attacks are hence crit-
ical. An important task in the arms race is attack
forensics, which aims to determine malware be-
haviors, damages, and origins. It usually starts
with an attack instance, e.g., a malware sample
captured in the wild. The analysts use tools such
as IDA (Ferguson and Kaminsky, 2008) to inspect
its code body, and sand-boxing techniques such
as Cuckoo (Oktavianto and Muhardianto, 2013) to
execute it and observe its runtime behaviors. At-
tack forensics are important because the results
can be used to assess damages and prevent future
attacks. However, malware often employs sophisti-
cated self-protection such as obfuscation (You and

Yim, 2010) that changes code body to make it dif-
ficult to understand and/or masquerade a benign
application, and cloaking that conceals malicious
payload until certain (attack) conditions are satis-
fied. As a result, analysts usually can only disclose
a part of malware behaviors. They hence heavily
rely on text search to find existing related malware
reports. Such search is usually driven by the ob-
served behaviors such as sabotage, data exfiltration
(regarding how they are performed?). The rationale
is that cyber-attacks become increasingly organized
(e.g., sponsored at a state-level), showing a substan-
tial level of commonality in terms of the exploits
used (i.e., bugs in target systems that allow the
malware to penetrate), the payloads delivered, and
their objectives, especially for those launched by
a same threat actor (Malpedia) (i.e., an adversary
or an organization of adversaries). As such, one
can predict a new malware’s full behaviors from re-
ports of existing malware samples that share some
commonality with the new sample. In fact, major
security vendors have published a large volume
of malware analysis reports. While they have the
great potential to provide collective intelligence for
future analysis, there has been an intrinsic barrier
to fully leveraging such knowledge, namely, these
threat reports are written in unstructured and infor-
mal natural languages. Since anyone can contribute
such reports, it is difficult to standardize them.

Therefore, the key problem is a specialized text
search challenge, which is called cyber threat in-
telligence (CTI) search following the terminology
used in the domain. CTI search poses two main
challenges; (i) supervised-learning is hardly fea-
sible due to the lack of labeled datasets, and (ii)
existing pre-trained general-purpose language mod-
els cannot effectively capture domain specific se-
mantics. Sometimes, small changes for a general-
purpose language model denote substantial seman-
tic differences in CTI. For example, a "file" may
describe either information stealing ("file to leak

2616

the stolen data from the program") or program ex-
ploitation ("file to exploit the program for stealing
data").

The most popular search method directly uses
indicators of compromise (IoCs) of the malware
sample, e.g., malware file hash (Catakoglu et al.,
2016; Liao et al., 2016). It is the method used
in VirusTotal (VirusTotal), a widely used malware
analysis platform. Although using IoCs is precise
and free from false positives, it cannot deal with
the well known malware mutation problem (Liao
et al., 2016) in which malware frequently and con-
sistently changes its configurations, payloads, and
even attack steps, to evade detection or simply up-
date its functionalities. Another method is text simi-
larity based malware behavior search. Existing text
similarity methods largely fall into two categories,
keywords based methods (Corley and Mihalcea,
2005; Harispe et al., 2015) and sentence embed-
ding based methods (Le and Mikolov, 2014; Lau
and Baldwin, 2016; Devlin et al., 2018; Reimers
and Gurevych, 2019). The former focuses on do-
main specific keywords. It cannot effectively ex-
tract relations across keywords, which are critical
in CTI search. In the above example, the keyword
"file" needs to be analyzed with the relation of other
words (i.e., "leak" or "exploit") - keywords-based
search (i.e., "steal", "program", "data") will cause
misunderstanding. In contrast, directly using em-
beddings tends to be unnecessarily distracted by
the words that are not critical to CTI search.

We propose a novel CTI search technique. We
collect a large repository of CTI reports from mul-
tiple agencies such as Kaspersky, Symantec and
MacAfee. Specifically, Mitre ATT&CK (Mitre
ATTACK) is a widely-known knowledge base of
adversary techniques (i.e., behaviors) based on real-
world malware observations. The repo covers re-
ports in the past 20 years. We then use a masked-
language model (MLM) based on Transformer to
perform unsupervised learning on the dataset. We
observe that the language model can pay special at-
tention to IoC related words, and more importantly,
their correlations. After training, instead of using
the pre-trained embeddings, which are noisy due
to the large natural language vocabulary, we con-
struct a attention graph in which a node is a word
token and an edge is introduced between two nodes
when their attention is larger than a threshold. We
then use graph similarity to determine CTI report
similarity. We make the following contributions.

• We collect a large volume of existing CTI
reports from reputable sources which could
facilitate future research.

• We propose a novel attention graph based
search method for CTI reports. It is particu-
larly suitable in capturing the domain specific
semantics of these reports.

• We compare our method with doc2vec (Le
and Mikolov, 2014; Lau and Baldwin, 2016)
(a sentence embedding based technique), key-
word based text similarity methods (Corley
and Mihalcea, 2005; Harispe et al., 2015), and
a few state-of-the-art unsupervised learning
based methods (Reimers and Gurevych, 2019).
Our method consistently outperforms these
baselines.

• In a case study of 10 real-world malware at-
tacks, our search successfully finds the most
relevant reports (from the past) that allow us
to attribute 8 of these attacks to their true
origins. In contrast, using Google can only
correctly attributes 3 and a simple IoC-based
search correctly attributes 2. One of the gen-
erative LLMs, GPT-4 (Google Bing) correctly
answers 3.

2 Motivation

A real-world event in 2019 on a nuclear power
plant in India (INDIA TODAY, 2019) illustrates
how an information retrieval (i.e., our system) con-
tributes to cyberattack investigations. It is a multi-
stage attack that first penetrates some computers
on the power-plant’s network, leveraging a zero-
day code vulnerability (e.g., a bug in browser) and
then laid low and silently compromise more sys-
tems leveraging normal functionalities. The pro-
cess may take days or even weeks. The payload
was finally delivered, 3-5 days after the initial pen-
etration, accessing the nuclear plant’s confidential
data. Such complex and multi-staged attacks are
also called advanced persistent threat (APT) (Mi-
lajerdi et al., 2019). Assume a few days after the
attack was initiated, security analysts noticed some
system anomaly. Further assume they acquired an
attack artifact, which is the executable malware
file used in the first penetration step. From the
file, analysts acquired the hash of the malware
bfb39f486372a509...0364 and a few malware be-
haviors using a sandbox tool, namely, (B-1) "use a
dropper that has encrypted payload", (B-2) "list all

2617

(FALLCHILL)… collects basic system information:

OS version, … local IP address information, …

 [A-3] Nov. 2017, by US-CERT

2018
2019

operation “FALLCHILL”
observed

operation “RATAKBA”
observed

operation “AppleJues”
observed

Timeline

[File Hash] bfb39f486372a509...0364

[B-1] Use dropper that has encrypted payload

[B-2] List all running processes

[B-3] Collect the host’s IP address

1 Analysts gather attack artifacts (1 hash,
3 behaviors) from initial compromise

CTI Report of Lazarus Group 1

Compromise!Security Analyses on Day-0

Analyst

2
Use existing platforms to find
any information about but
fail to fetch any related articles

3
Anaylsts use CTI-Search w/
B-1, B-2, B-3 and fetch
articles of A-1, A-2, A-3

4
Analysts identify that
attack is origin from
Lazarus group

D-D
ay

Security Analysts’ Response5 Analysts collect
recent information
that let know DTrack
malware’s spread
and future behaviors

New North Korean malware targeting ATMs spotted in
India … DTrack malware spotted as recently as this
month … focuses on spying and data theft, rather
than financial crime … perform the following
operations: Keylogging, Retrieve browser history, List
files on all available disk [A-4] Sep. 2019, by ZDNet

2020

 Continuing

6 Prevention

1. Remove confidential files
2. Anti-keylogging program
3. Browser Inspection
4. Disk space isolation, …

News articles about this attack
case are later published

After-event new article

“What is DTrack: North Korean virus being
used to hack ATMs to nuclear power plant
in India” [A-5] 30 Oct. 2019

verifies analysts prediction v

CTI Report of Lazarus Group 2

(RATAKBA)… use microsoft wmi tool to list

compromised system’s running process …
 [A-2] Jan. 2018, by TrendMicro

CTI Report of Lazarus Group 3

(AppleJues) … that was encrypted payload and

obfuscated binary which eventually drops …
 [A-1] Aug. 2018, by Securelist

1

Figure 1: Motivation example: searching a real-world attack on an Indian nuclear plant. The arrow from left to right
denotes the timeline. The attack happened in 2019 (the right-most spot on the timeline with a bug symbol). A few
other attacks by the same threat actor were conducted before the 2019 attack and denoted by the blue, orange and
green durations along the timeline. The large box “Security Analyses on Day-0” in the middle denotes the
multiple methods the analyst could have used to analyze and search the attack. The boxes in the bottom show the
real analysis reports of the attack there were produced long after the attack in 2020. Most of the information in
those reports is covered by the past reports A-1, A-2, and A-3 retrieved by our method, illustrating that with our
method, the attack could have been easily analyzed and attributed.

running processes", and (B-3) "collect the host’s IP
address". This corresponds to step 1 in Figure 1).

However, from these symptoms, the analysts can
hardly determine the objective and scope of the at-
tack. Since the power plant is critical infrastructure,
they need answers to a number of questions, for ex-
ample, what is the attack origin (is it from a major
known threat actor)? and what are the attacker’s
ultimate interests (e.g., infrastructure sabotage and
confidential information leak)? Critical decisions
need to be made based on the answers to these
questions.

The collected evidence is insufficient to answer
these questions, which is very typical due to the
inherent difficulties in malware analysis. The ana-
lysts usually resort to CTI search In our case, as-
sume they first looked up the file hash on VirusTotal
to check if the same attack has been conducted in
the past. However, the attack was unique in 2019
and hence VirusTotal returned no match. In fact,

the malware was first submitted to VirusTotal on
October 28, 2019, one month after the initial at-
tack. Then in step 2 , the analysts tried to find
previous CTI reports using the behaviors, that is,
B-1, B-2, and B-3. As the behaviors were written
in natural language, they needed to rely on text
search methods. Assume they used Google and the
textual descriptions of the behaviors. However, the
search results were not informative. Observe most
of the retrieved items are not even semantically re-
lated. The semantically related items are in fact not
related to the attack at all (refer to Appendix A.4).

Our Method. Assume that analysts had our
search technique in 2019. Searching the three be-
haviors using our method, the analysts managed
to retrieve 3 malware reports (i.e., A-1, A-2 and
A-3) dated before the attack time which are all con-
ducted by Lazarus group within last 2 years (see
top three boxes in Figure 1). The analysts hence
suspected the origin of attack was the Lazarus

2618

group (step 4). More importantly, recent threat
intelligence article (A-4 (ZDNet, 2019)) says that
Lazarus groups recently perform the following at-
tacks: (i) browser history collection, (ii) keylogging
and (iii) disk-drive scrapping (step 5). Therefore,
the system administrator could employ the corre-
sponding countermeasures (step 6).

One month after the attack, real forensics reports
were produced for the attack, named Dtrack (Eco-
nomictimes, 2019). They indicated that the attack
mainly focused on stealing data from the keystroke
(i.e., keyboard), monitoring web-browsing history,
data dump from local disk. The information could
have been disclosed by our technique much earlier
if it was available at that time.

3 Related Work

Cyber Threat Intelligence Search. The most pop-
ular CTI search method uses IoC information (Liao
et al., 2016). Existing work usually formulates
the challenge as a named entity recognition (NER)
problem, aiming to identify malware artifacts (e.g.,
IP address and file hash) from natural language
documents (Liao et al., 2016; Zhu and Dumitras,
2018). Attack ontology was proposed in (Husari
et al., 2017), aiming to formalize malware behav-
iors. Researchers have proposed to extend the data-
sources of threat intelligence, such as Twitter or
Darkweb (Khandpur et al., 2017; Choshen et al.,
2019; Wang et al., 2020; Jin et al., 2022).
Text Similarity. Similarly analysis is the key tech-
nique behind text search, which has been well
studied (Corley and Mihalcea, 2005; Islam and
Inkpen, 2008; Budanitsky and Hirst, 2006; Mihal-
cea et al., 2006; Ramage et al., 2009; Croce et al.,
2011; Rahutomo et al., 2012; Kenter and De Ri-
jke, 2015; Harispe et al., 2015; Rao et al., 2019).
Basically, these approaches try to capture the com-
mon keywords between two texts. Some work
adopts several optimization techniques; using word-
weighting (Corley and Mihalcea, 2005; Kenter and
De Rijke, 2015; Lopez-Gazpio et al., 2019) with
IDF-score (Ramos et al., 2003), leveraging external
knowledge (Islam and Inkpen, 2008; Budanitsky
and Hirst, 2006) and use of word similarity meth-
ods (Corley and Mihalcea, 2005; Islam and Inkpen,
2008; Kenter and De Rijke, 2015; Harispe et al.,
2015). In the CTI search, a knowledge-based ap-
proach is limited due to absence of such resources
(e.g., Wordnet (Miller, 1995)). Meanwhile, word
similarity and weighting are limited to the corpus-

based approaches which are included as our base-
lines (Corley and Mihalcea, 2005; Harispe et al.,
2015).

Recently, with the advances in AI, deep learn-
ing based approaches become increasingly pop-
ular (Tai et al., 2015; He and Lin, 2016; Wang
et al., 2016; Devlin et al., 2018; Tien et al., 2019;
Reimers and Gurevych, 2019; Sun et al., 2020).
Specifically, embeddings are broadly in use with
a number of popular training schemes: continu-
ous bag of words (CBOW) based training (e.g.,
doc2vec (Le and Mikolov, 2014; Lau and Bald-
win, 2016)) and masked language models (MLM)
based training (Reimers and Gurevych, 2019; De-
vlin et al., 2018)

4 Design

CTI reports have domain specific semantics. For
example, ‘IP’ and ‘network’ have similar mean-
ings, ‘drop’ and ‘payload’ have strong correla-
tions. Such semantics can hardly be captured by
general-purpose language models. This challenge
can be overcome using domain specific corpus dur-
ing training. Therefore, a straightforward proposal
is to use masked language model to train on a large
corpus of CTI reports and then use sentence embed-
dings in CTI search. Specifically, a malware IoC
is described by some sentence(s). The search can
simply look for CTI reports that contain similar sen-
tence embeddings. However, such a proposal can
hardly work because distinct behaviors by small
nuance differences between B-1, i.e., “use a drop-
per that has encrypted payload” and an entirely
different behavior such as “drops an encrypted
payload” will not be captured by embedding tech-
niques. As of its ramifications, our later evaluation
shows lower precision (i.e., false positives) by em-
bedding techniques (Table 1). Furthermore, a CTI
report may also describes a behavior using differ-
ent sentence structures such that A-1 reads “The
malware is an encrypted and obfuscated binary,
..., it drops a piece of shell code ...” which is
more verbosely written. Although humans can
easily determine that the corresponding malware
has behavior B-1, the syntactic-based analysis (e.g.,
syntactic dependency analysis) can also fail.

We observe that the attention mechanism in
Transformer models can capture (domain specific)
semantic correlations between words. For example,
there are strong correlations between ‘dropper’ and
“encrypted payload” in B-1 and two strong corre-

2619

text:
use rc.common
automatically
executed boot
initialization to
establish persis-
tence

rc.common

initialization

persistenceestablish

hide

file

extensionchanging

collect find

groups

credential

storage settings

permission

[Self-attention maps]

extracted extractedtext:
can hide program’s
true filetype by
changing the
extension of file

text:
collect the keychain
storage data from
system to acquire
credentials

extracted extractedtext:
attempt to find
local system
groups and
permission
settings

[Extractions]

Keychain

Figure 2: Figures show self-attention maps on examples (top). Based on word-to-word correlations in attention map,
above examples show that we can extract the core representation of behaviors (bottom) from plain text.

lations in B-3: ‘collect’ - ‘host’ and ‘host’ - ‘IP
address’. These correlations are often not syntactic
like verb-object relations. We depict the detail on
how attention mechanism works with those exam-
ples (A1-A3 and B1-B3) in Appendix A.4.

?

?

[Broken correlation] [False incursion]

Figure 3: Inaccuracies in use of dependency trees (from
two sentences in Figure 2). A dependency tree shows
semantically correlated, but broken clauses (red boxes)
due to no syntactic relation (left). Also it may incur
false positive correlations (blue arrows) due to multiple
equivalent neighbors (right).

It is believed that self-attentions map the word-
to-word correlations in domain specific semantics.
In this regard, our idea is to extract semantically
structured graphs from text using self-attention
maps. To the best of our knowledge, it is novel
methodology to use attention mechanism for a se-
mantic dependency parsing. Here, the graph con-
struction is to traverse the sentence (i.e., set of
words), prioritized by higher attention scores. Fig-
ure 2 illustrates how graphs can be constructed
along with attention scores. Here, the key of seman-
tic graph extraction is to abstract the core behaviors
as a sub-graph form. All of above sentences are
achieved abstractions by the self-attention guided

exploration.
To compare attention maps with legacy (syntac-

tic) dependency trees, we revisit two of above sen-
tences with their parse trees (in Figure 3). It shows
that the parser fails to capture the long-distance cor-
relation in a lengthy text (i.e., broken correlation).
The ramification is that it may need to include un-
necessary words between two, i.e., incurring false
positives. Also, syntactic relations may cause to
explore the obsolete paths (i.e., false incursion).

Training and Use of Attentions. The benefit of
our method is that the model uses self-supervised
training. As myriad of security problems, the lack
of labeled dataset crucially harm the model per-
formances. Albeit it is feasible to collect a large
scale of CTI text corpus, we have no supervision
for training (i.e., no pairwise ground truth). In this
regard, our method fits our domain problem in that
it exploits the self-supervised learning. We hence
use masked language model with a BERT (Devlin
et al., 2018) architecture on the large-scale (8M
words) CTI corpus (refer to Table 2).

In
p

u
t

To
ke

n
iz

er
 (

B
P

E)

M
u

lt
i-

H
ea

d
 A

tt
en

ti
o

n

…

D
ro

p
o

u
t

(0
.1

)

M
u

lt
i-

H
ea

d
 A

tt
en

ti
o

n

D
ro

p
o

u
t

(0
.1

)

D
en

se

G
EL

U

8 x (Multi-Head Attention + Dropout)

Output Layer for Masked
Language Model Training

Self-Attention Based
Sentence Graph

Output Layer Utilization

Training Phrase

Model Use Phase

Figure 4: The utilization of self-attention for search.

The use of such model (i.e., pre-trained) is dif-
ferent from legacy that in LLMs (e.g., fine-tune)
in that we construct the graphs by exploring the at-
tention maps. We leverage the self-attention scores

2620

to prioritize edges with higher attentions. In such
method, it does not entail any supervised learning.

Sub-graph Matching and Similarity Score. After
graph constructions, we use the sub-graph match-
ing algorithm and the similarity score computation.
We consider two words w1 and w2 match if and
only if |e(w1) − e(w2)| < τ where e(w) denotes
the embedding of a word w and τ is a threshold.
With the definition of matching nodes, our chal-
lenge can hence be reduced to the subgraph iso-
morphism problem (Sys et al., 1982), which aims
to find the largest isomorphic sub-graph of two un-
directed graphs (Algorithm 1). The complexity of
the problem is NP. However, since the graph for
behavior description is small (10-15 nodes on av-
erage), the runtime is reasonable in practice, with
our optimization of filtering irrelevant articles men-
tioned in Appendix A.2.

The similarity score of two isomorphic sub-
graphs G1 and G2 is hence computed as follows.

sim(G1, G2) =
∏

w1,w2∈G1×G2

[
κ(1−|e(w1)−e(w2)|)

]

where κ is a constant larger than 1, e(w1), and
e(w2) the embeddings normalized to [0,1]. Note
that κ needs to be larger than 1 such that large iso-
morphic sub-graphs yield a larger similarity score.

Implementation. We use 8 layers of multi-head
attentions (of size 512) with a dropout on each
layer (0.1 probability). Preprocessing is largely
standard with some domain specific normalization
for IoC related artifacts, such as IP. Specifically,
we feed each CTI report under search to the model
and acquire the self-attentions at the last layer. For
each input text, we construct an attention graph,
in which each node denotes a token. An edge is
introduced between two nodes when their attention
exceeds a threshold of 0.15. In sub-graph matching,
we use 2.72, and 0.37 as κ and τ threshold each.

5 Evaluation

To train our models, we have collected 10,544
threat analysis articles from eight major security
vendors (refer to Table 2). The corpus contains
500K sentences and 8M words. For the input tok-
enizing for self-attention layers, we use byte-pair
encoding (Sennrich et al., 2015) and limit the num-
ber of tokens to 30,000 (originally, the dataset has
185K distinct words after lemmatization). We use
BERT for the self-attention layers (with 20% of
random masking and 2 epochs) and the Gensim

framework to train a word2vec model with output
vector size of 100 and 100 epochs for domain spe-
cific word embeddings.

Table 2: Pretraining Dataset

Vendor # of
Articles

of
Sents

of
Words

FireEye 843 50K 858K
Fortinet 541 49K 645K

IBM 926 43K 843K
Kaspersky 1,441 50K 858K

McAfee 626 38K 587K
Palo Alto 641 58K 897K
Symantec 177 16K 278K

ESET 5,349 149K 3M

Total 10.5K 0.5M 8M

Our evaluation answers follwing research ques-
tions: (R1) what is the effectiveness of the pro-
posed method compared to existing techniques;
(R2) how does the technique help real-world attack
investigation; and (R3) how efficient is the method.

5.1 Effectiveness
We devise a controlled experiment to compare the
precision and recall of different methods. We use
the SP-EVAL-SET-1 (Mitre ATTACK) and SP-
EVAL-SET-2 (CAPEC) datasets. Specifically, they
provide attack behavior dictionaries such that for
each threat behavior, they provide (i) a written de-
scription for the behavior and (ii) the associated
real-world malware cases’ descriptions. For each
behavior, we construct a dataset as follows. We
include all the malware cases associated with the
behavior (the true positives) and the same number
of random cases from other behaviors. In total,
we test 423 behaviors from SP-EVAL-SET-1, 262
behaviors from SP-EVAL-SET-2 and the aggre-
gated number of cases are 14,096 and 2,002 for
SP-EVAL-SET-1 and SP-EVAL-SET-2, respec-
tively.

We use the following baselines that are unsuper-
vised learning based.

• Word Matching: returning sentences based
on the common words.

• Doc2Vec: A sentence embedding technique
based on the CBOW model (Le and Mikolov,
2014). It returns sentences based on embed-
ding similarities.

• Transformer: Training a Transformer model
(Reimers and Gurevych, 2019) from scratch

2621

Table 1: Effectiveness Evaluation (P stands for precision and R for recall)

Type SP-EVAL-SET-1 SP-EVAL-SET-1
P. R. F1 P. R. F1

Simple Word Matching 0.59 0.97 0.73 0.60 0.98 0.75
Doc2Vec (Le and Mikolov, 2014) 0.69 0.77 0.73 0.66 0.81 0.73

Transformer (Reimers and Gurevych, 2019) 0.61 0.91 0.73 0.84 0.68 0.75
Transformer-Finetune (Turc et al., 2019) 0.62 0.89 0.73 0.65 0.91 0.76

Keyword Similarity 1 (Mihalcea et al., 2006) 0.73 0.90 0.80 0.73 0.88 0.79
Keyword Similarity 2 (Harispe et al., 2015) 0.60 0.95 0.74 0.55 0.98 0.71
Graph Isomorphism w/ Dependancy Parser 0.75 0.89 0.81 0.77 0.88 0.82

Attention Graph Isomorphism (Our) 0.82 0.93 0.87 0.81 0.89 0.85

and using sentence embedding similarity.

• Transformer-Finetune: Fine-tuning a pre-
trained BERT model (BERT) and using em-
bedding similarity.

• Keyword Similarity 1: A widely used text sim-
ilarity based method (Mihalcea et al., 2006)
using word weights.

• Keyword Similarity 2: A recent work prioritiz-
ing short texts, e.g., compact keywords (Ken-
ter and De Rijke, 2015).

• Graph Isomorphism: Our methodology.

All these results require a threshold to determine
the retrieved cases. We try many thresholds and re-
port the best results. The results are presented in Ta-
ble 1. Observe our method (the last row) achieves
the best performance. It has highest F1 score than
any other baselines. Also observe that directly
using sentence embeddings does not yield good
results, neither do the keyword similarity based
methods.
Analysis of Failing Cases. Table 3 shows a few
failing cases by the baselines. In the first case, the
embedding based methods yield the wrong results
as the sentence embeddings are dominated by the
verb such that the sentences with ‘display’, ‘find’
and ‘identify’ are matched with the query sentence
through the verb ‘get’. In comparison, the match-
ing attention graphs by our method better disclose
the essence. In the second case, the embedding
based methods focus too much on the verbs. The
keyword based methods report the wrong results
because they find three keyword matches. However,
these keywords do not have the semantic correla-
tions as those in the true positive. We can observe
the similar cases in the third.

5.2 Use in Real-world Attack Forensics

A critical task in forensics is to identify attack ori-
gins, that is, attributing attacks to their threat actors.
In this experiment, we randomly select a few recent
attacks and assume a subset of behaviors are known
beforehand. We then use them to search the cor-
responding CTI reports. We use Google and IoC
matching (similar to VirusTotal) as the baselines.

First, we collect additional CTI reports with ex-
plicit attack origin information and exclude all that
overlap with the training set. The collection con-
tains 258 articles with 12 major actors. The de-
tails are in Table 8 (Appendix). We then randomly
gather 10 real-world attacks in Mitre ATT&CK. We
use their behavior descriptions to search the article
pool. We consider the actor with the largest number
of matching as the attack actor.

Figure 5 represents the results. Our method suc-
cessfully identifies 8 correct origins out of 10 cases.
whereas Google identifies 3 correct answers.

To compare with IoC matching, we manually
extract all IoC artifacts from the threat reports. It
is common practice that authors attach such infor-
mation), including the following types: URL, IP,
Hash, CVE, Registry, File (IOC Parser). We ex-
clude trivial Windows executable file names (e.g.,
cmd.exe) which cause a high volume of false pos-
itives. We then use exact matches of IoCs in the
experiment. As a result, only two attacks (Winnti
and RDAT) can be attributed to their origins.

We also test the SOTA internet-connected LLM,
namely GPT-4 (i.e., Bing Chat) by prompting to
extract related articles. GPT-4 only answers for 5
origins. Among those 5, it can correctly attribute 3
(Dtrack, HotCroissant and KerrDown).

2622

Malware Origin
Winnti Axiom

MessageTap Axiom
DTrack Lazarus
Hot C. Lazarus
F. POS FIN6

KerrDown APT32
RDAT Chry.

comRAT Turla
RainyDay Naikon

ServHelper TA505

A
xi

om

La
za

ru
s

FI
N

6

A
PT

32

C
hr

ys
en

e

Tu
rla

N
ai

ko
n

TA
50

5

C
m

aj
or

Le
vi

at
ha

n

St
on

e
Pa

nd
a

G
or

go
n

Search Results

A
xi

om

La
za

ru
s

FI
N

6

A
PT

32

C
hr

ys
en

e

Tu
rla

N
ai

ko
n

TA
50

5

C
m

aj
or

Le
vi

at
ha

n

St
on

e
Pa

nd
a

G
or

go
n

Search Results (Google)

Figure 5: Search Result for Attack Origin Identification. In each figure, a red cross on the line (+—+—+) denotes
the target origin of a malware. In each row (i.e., a malware), the actor with the largest number of search results is
marked by a red square (□). Therefore, a co-location of the two symbols tells the success of origin identification (+).

5.3 Efficiency

We have implemented non-lossy search optimiza-
tions; (i) graph caching and (ii) sentences clustering
and evaluated the runtime efficiency of our method.
Our optimizations, evaluation and system specifi-
cation details can be found in Appendix A.2.

Table 4: Result on Efficiency Test

Type Search Space
20K 50K 100K

Baseline
(matching)

20s 53s 1m45s

Our System
(optimized)

09s 28s 57s

We compare our system (after fully optimized)
to the simplest word matching in efficiency. The
test performs the search query of 10 words by vary-
ing search space sizes. The baseline includes a
text preprocessing and word-to-word comparison
within a pair of two sentences.

Before any optimizations, a raw implementa-
tion of the graph isomorphism costs ∼17m with
20K search space, ∼4h with 100K (Table 6). How-
ever, our non-lossy optimization drastically reduces
search times as shown in Table 4 that become com-
parable to the baseline.

6 Discussion

Word Embedding. One can benefit from contex-
tualized word embedding. Also, the Transformer
model contains pre-trained token embedding that
can be used to measure word to word distance.
It is worth considering a use of such embedding
methodologies. In our study, we use word2vec in

that attack describing terms (e.g., exploit, encrypt)
tend to be absolute in different contexts.

Traversal with Self-Attentions. While we use
a threshold to construct graphs from text (Algo-
rithm 1), the methodology is not limited in general.
For example, one can use a traversal algorithm pri-
oritized by attention scores. Attention map may
also help to build syntax parsers as it retrieve se-
mantic correlations in sentences.

Dataset Release. We publish our dataest1. Any
following work must be only on research purposes.
It is worth noting that our dataset is a collection of
open articles from various vendors. As our dataset
is up to year of 2023, one may need to reproduce
the collection by following the instruction.

7 Conclusion

We propose a novel CTI search method using atten-
tion graph isomorphism. We have shown that our
method improves the effectiveness of CTI search
for comparative evaluations. Our case study also
shows that it drastically improves attack origin iden-
tification. Our technique can correctly attribute 8
of 10 recent attacks while Google only attributes 3.

8 Limitations

Since our system resorts to word-level embeddings,
it has difficulty handling cases in which a word is
equivalent to a phrase. For example, “obfuscate”
and “make it difficult to understand” are seman-
tically similar. But such similarity may not be
captured by our technique. We speculate with a
large corpus, the embeddings by transformer can
better consider the context and hence capture the
similarity.

1https://github.com/cwbae10-purdue/cti-eacl24.git

2623

https://github.com/cwbae10-purdue/CTI-EACL24.git

Table 3: Failing cases of baselines. Matching background colors denote matching words (based on embeddings).
The underlined words in the query and the sentence returned by our method form the matching attention graphs.
Our method returns the correct CTIs in all these cases.

[Query] get information about running processes on system

[D2V] Sykipot may use netstat to display active network connections

[Transformer] GravityRAT uses netstat to find open ports on victim’s machine
[Transformer] Get2 has ability to identify current username of infected host

[Our Search Result] PowerShower has ability to ... module to retrieve list of active processes

[Query] execute their own malicious payloads by hijacking library manifest used to load DLLs

[D2V, Transformer] APT28 has used tools to perform keylogging
[D2V] BADNEWS is capable of executing commands via cmd.exe

[Keyword Similarity] SeaDuke uses module to execute Mimikatz with PowerShell to
perform Pass Ticket
[Keyword Similarity] PowerSploit modules are written in and executed via PowerShell

[Our Search Result] HyperBro has used legitimate application to sideload DLL to decrypt
decompress and run payload.

[Query] with no prior knowledge of legitimate credentials within system or environment,
guess passwords to attempt access to accounts

[D2V, Transformer] Zeus Panda checks to see if anti virus anti spyware or firewall products
are installed in victim’s environment

[Keyword Similarity] Agent Tesla can collect system ’s computer name and also has capability to
collect information on processor memory and video card

[Our Search Result] SpeakUp can perform bruteforce using predefined list of usernames
and passwords in attempt to log-in to administrative panels

9 Ethnics Statements

Our system resorts to cyber threat intelligence
(CTI) dataset. This may impose the risk factors
as follows;

• Possible Exposure of Threat Knowledge: As
dataset comprise threat analysis articles, it
may contain potential risks to be abused.

• Adversarial Use of Knowledge: Attackers
may use the information retrieval system to
operate advanced attacks or avoid possible
defenses assisted by threat intelligence.

• Concerns on Privacy Information: Threat
knowledge contained in the dataset may hold
real cyberattack cases. It may contain state-
wide or private damages or loss which can
lead to violation of privacy.

We have only used the dataest for research pur-
poses (i.e., textual analysis). All reproduced work
from our dataset must be on same objectives. In
this regard, good practices as below need to be
observed;

• Avoiding Use of Recent Critical Knowledge:
One must refrain from the use of on-going (or
recent) threat information as it might aggra-
vate the circumstances.

• Avoiding Use of Effective Vulnerabilities: If
threat knowledge is still effective (e.g., before
patch), one must not include such information.

• Excluding Privacy Information on Damages:
One must refrain from including privacy dam-
ages (e.g., loss/damage of specific institutions)
to technical articles (e.g., case studies). It may
contain privacy information.

2624

References

BERT. https://github.com/
google-research/bert. Accessed: 2022-06-
20.

Alexander Budanitsky and Graeme Hirst. 2006.
Evaluating wordnet-based measures of lexical
semantic relatedness. Computational linguistics,
32(1):13–47.

CAPEC. https://capec.mitre.org/. Accessed:
2022-06-20.

Onur Catakoglu, Marco Balduzzi, and Davide
Balzarotti. 2016. Automatic extraction of in-
dicators of compromise for web applications. In
Proceedings of the 25th international conference
on world wide web, pages 333–343.

Danqi Chen and Christopher D Manning. 2014. A
fast and accurate dependency parser using neural
networks. In Proceedings of the 2014 conference
on empirical methods in natural language pro-
cessing (EMNLP), pages 740–750.

Leshem Choshen, Dan Eldad, Daniel Hershcovich,
Elior Sulem, and Omri Abend. 2019. The lan-
guage of legal and illegal activity on the darknet.
arXiv preprint arXiv:1905.05543.

Courtney D Corley and Rada Mihalcea. 2005. Mea-
suring the semantic similarity of texts. In Pro-
ceedings of the ACL workshop on empirical mod-
eling of semantic equivalence and entailment,
pages 13–18.

Danilo Croce, Alessandro Moschitti, and Roberto
Basili. 2011. Structured lexical similarity via
convolution kernels on dependency trees. In Pro-
ceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, pages
1034–1046.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805.

Economictimes. 2019. What is dtrack: North ko-
rean virus being used to hack atms to nuclear
power plant in india. Published: 2019-10-22.

Justin Ferguson and Dan Kaminsky. 2008. Reverse
engineering code with IDA Pro. Syngress.

Peng Gao, Fei Shao, Xiaoyuan Liu, Xusheng Xiao,
Zheng Qin, Fengyuan Xu, Prateek Mittal, San-
jeev R Kulkarni, and Dawn Song. 2021. En-
abling efficient cyber threat hunting with cyber
threat intelligence. In 2021 IEEE 37th Interna-
tional Conference on Data Engineering (ICDE),
pages 193–204. IEEE.

Sébastien Harispe, Sylvie Ranwez, Stefan Janaqi,
and Jacky Montmain. 2015. Semantic similar-
ity from natural language and ontology analysis.
Synthesis Lectures on Human Language Tech-
nologies, 8(1):1–254.

Hua He and Jimmy Lin. 2016. Pairwise word in-
teraction modeling with deep neural networks
for semantic similarity measurement. In Pro-
ceedings of the 2016 conference of the north
American chapter of the Association for Compu-
tational Linguistics: human language technolo-
gies, pages 937–948.

Ghaith Husari, Ehab Al-Shaer, Mohiuddin Ahmed,
Bill Chu, and Xi Niu. 2017. Ttpdrill: Automatic
and accurate extraction of threat actions from un-
structured text of cti sources. In Proceedings of
the 33rd Annual Computer Security Applications
Conference, pages 103–115.

IDA. https://hex-rays.com/. Accessed: 2022-
06-20.

INDIA TODAY. 2019. What is dtrack: North ko-
rean virus being used to hack atms to nuclear
power plant in india. Published: 2019-10-30.

IOC Parser. https://github.com/
PaloAltoNetworks/ioc-parser. Accessed:
2022-06-20.

Aminul Islam and Diana Inkpen. 2008. Semantic
text similarity using corpus-based word simi-
larity and string similarity. ACM Transactions
on Knowledge Discovery from Data (TKDD),
2(2):1–25.

Youngjin Jin, Eugene Jang, Yongjae Lee, Seung-
won Shin, and Jin-Woo Chung. 2022. Shedding
new light on the language of the dark web. arXiv
preprint arXiv:2204.06885.

Tom Kenter and Maarten De Rijke. 2015. Short
text similarity with word embeddings. In Pro-
ceedings of the 24th ACM international on con-
ference on information and knowledge manage-
ment, pages 1411–1420.

2625

https://github.com/google-research/bert
https://github.com/google-research/bert
https://capec.mitre.org/
https://economictimes.indiatimes.com/magazines/panache/what-is-dtrack-the-spytool-that-is-to-blame-for-attacks-on-indian-financial-institutions/articleshow/71706234.cms
https://economictimes.indiatimes.com/magazines/panache/what-is-dtrack-the-spytool-that-is-to-blame-for-attacks-on-indian-financial-institutions/articleshow/71706234.cms
https://economictimes.indiatimes.com/magazines/panache/what-is-dtrack-the-spytool-that-is-to-blame-for-attacks-on-indian-financial-institutions/articleshow/71706234.cms
https://hex-rays.com/
https://www.indiatoday.in/india/story/kudankulam-nuclear-power-plant-dtrack-north-korea-atms-1614200-2019-10-30/
https://www.indiatoday.in/india/story/kudankulam-nuclear-power-plant-dtrack-north-korea-atms-1614200-2019-10-30/
https://www.indiatoday.in/india/story/kudankulam-nuclear-power-plant-dtrack-north-korea-atms-1614200-2019-10-30/
https://github.com/PaloAltoNetworks/ioc-parser
https://github.com/PaloAltoNetworks/ioc-parser

Rupinder Paul Khandpur, Taoran Ji, Steve Jan,
Gang Wang, Chang-Tien Lu, and Naren Ramakr-
ishnan. 2017. Crowdsourcing cybersecurity: Cy-
ber attack detection using social media. In Pro-
ceedings of the 2017 ACM on Conference on
Information and Knowledge Management, pages
1049–1057.

Jey Han Lau and Timothy Baldwin. 2016. An
empirical evaluation of doc2vec with practical
insights into document embedding generation.
arXiv preprint arXiv:1607.05368.

Quoc Le and Tomas Mikolov. 2014. Distributed
representations of sentences and documents. In
International conference on machine learning,
pages 1188–1196. PMLR.

Xiaojing Liao, Kan Yuan, XiaoFeng Wang, Zhou
Li, Luyi Xing, and Raheem Beyah. 2016. Ac-
ing the ioc game: Toward automatic discovery
and analysis of open-source cyber threat intelli-
gence. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications
Security, pages 755–766.

Inigo Lopez-Gazpio, Montse Maritxalar, Mirella
Lapata, and Eneko Agirre. 2019. Word n-gram
attention models for sentence similarity and
inference. Expert Systems with Applications,
132:1–11.

Malpedia. https://malpedia.caad.fkie.
fraunhofer.de/. Accessed: 2022-06-20.

Oren Melamud, Jacob Goldberger, and Ido Dagan.
2016. context2vec: Learning generic context
embedding with bidirectional lstm. In Proceed-
ings of the 20th SIGNLL conference on computa-
tional natural language learning, pages 51–61.

Rada Mihalcea, Courtney Corley, Carlo Strappar-
ava, et al. 2006. Corpus-based and knowledge-
based measures of text semantic similarity. In
Aaai, volume 6, pages 775–780.

Sadegh M Milajerdi, Rigel Gjomemo, Birhanu Es-
hete, Ramachandran Sekar, and VN Venkatakr-
ishnan. 2019. Holmes: real-time apt detection
through correlation of suspicious information
flows. In 2019 IEEE Symposium on Security and
Privacy (SP), pages 1137–1152. IEEE.

George A Miller. 1995. Wordnet: a lexical database
for english. Communications of the ACM,
38(11):39–41.

Mitre ATTACK. https://attack.mitre.org/.
Accessed: 2022-06-20.

NLTK. https://www.nltk.org/. Accessed:
2022-06-20.

Digit Oktavianto and Iqbal Muhardianto. 2013.
Cuckoo malware analysis. Packt Publishing Ltd.

Faisal Rahutomo, Teruaki Kitasuka, and Masayoshi
Aritsugi. 2012. Semantic cosine similarity. In
The 7th international student conference on ad-
vanced science and technology ICAST, volume 4,
page 1.

Daniel Ramage, Anna N Rafferty, and Christo-
pher D Manning. 2009. Random walks for text
semantic similarity. In Proceedings of the 2009
workshop on graph-based methods for natural
language processing (TextGraphs-4), pages 23–
31.

Juan Ramos et al. 2003. Using tf-idf to determine
word relevance in document queries. In Proceed-
ings of the first instructional conference on ma-
chine learning, volume 242, pages 29–48. New
Jersey, USA.

Jinfeng Rao, Linqing Liu, Yi Tay, Wei Yang, Peng
Shi, and Jimmy Lin. 2019. Bridging the gap be-
tween relevance matching and semantic match-
ing for short text similarity modeling. In Pro-
ceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and
the 9th International Joint Conference on Nat-
ural Language Processing (EMNLP-IJCNLP),
pages 5370–5381.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084.

Securelist. 2018. Operation applejeus: Lazarus hits
cryptocurrency exchange with fake installer and
macos malware. Published: 2018-08-23.

Rico Sennrich, Barry Haddow, and Alexandra
Birch. 2015. Neural machine translation of
rare words with subword units. arXiv preprint
arXiv:1508.07909.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and
Tie-Yan Liu. 2019. Mass: Masked sequence to
sequence pre-training for language generation.
arXiv preprint arXiv:1905.02450.

2626

https://malpedia.caad.fkie.fraunhofer.de/
https://malpedia.caad.fkie.fraunhofer.de/
https://attack.mitre.org/
https://www.nltk.org/
https://securelist.com/operation-applejeus/87553/
https://securelist.com/operation-applejeus/87553/
https://securelist.com/operation-applejeus/87553/

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng,
Hao Tian, Hua Wu, and Haifeng Wang. 2020.
Ernie 2.0: A continual pre-training framework
for language understanding. In Proceedings of
the AAAI Conference on Artificial Intelligence,
volume 34, pages 8968–8975.

Maciej M Sys et al. 1982. The subgraph isomor-
phism problem for outerplanar graphs. Theoreti-
cal Computer Science, 17(1):91–97.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representa-
tions from tree-structured long short-term mem-
ory networks. arXiv preprint arXiv:1503.00075.

TechNadu. 2019. The lazarus group is using a new
banking malware against indian banks.

Nguyen Huy Tien, Nguyen Minh Le, Yamasaki
Tomohiro, and Izuha Tatsuya. 2019. Sentence
modeling via multiple word embeddings and
multi-level comparison for semantic textual sim-
ilarity. Information Processing & Management,
56(6):102090.

TrendMicro. 2018. Lazarus campaign uses remote
tools, ratankba, and more. Published: 2018-01-
24.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Well-read stu-
dents learn better: On the importance of
pre-training compact models. arXiv preprint
arXiv:1908.08962.

US-CERT. 2017. Hidden cobra – north korean
remote administration tool: Fallchill. Published:
2018-08-23.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. Advances in neural infor-
mation processing systems, 30.

VirusTotal. https://www.virustotal.com/. Ac-
cessed: 2022-06-20.

Peng Wang Wang, Xiaojing Liao Liao, Yue Qin,
and XiaoFeng Wang. 2020. Into the deep
web: Understanding e-commercefraud from au-
tonomous chat with cybercriminals. In Proceed-
ings of the ISOC Network and Distributed Sys-
tem Security Symposium (NDSS), 2020.

Zhiguo Wang, Haitao Mi, and Abraham Ittycheriah.
2016. Sentence similarity learning by lexical
decomposition and composition. arXiv preprint
arXiv:1602.07019.

David Yenicelik, Florian Schmidt, and Yannic
Kilcher. 2020. How does bert capture seman-
tics? a closer look at polysemous words. In Pro-
ceedings of the Third BlackboxNLP Workshop
on Analyzing and Interpreting Neural Networks
for NLP, pages 156–162.

Ilsun You and Kangbin Yim. 2010. Malware obfus-
cation techniques: A brief survey. In 2010 Inter-
national conference on broadband, wireless com-
puting, communication and applications, pages
297–300. IEEE.

ZDNet. 2019. New north korean malware targeting
atms spotted in india.

Eugenia Lostri James A. Lewis Zhanna
Malekos Smith. 2020. The hidden costs
of cybercrime. Accessed: 2017-11-14.

Ziyun Zhu and Tudor Dumitras. 2018. Chainsmith:
Automatically learning the semantics of mali-
cious campaigns by mining threat intelligence
reports. In 2018 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 458–
472. IEEE.

2627

https://www.technadu.com/lazarus-group-new-banking-malware-against-indian-banks/80747/
https://www.technadu.com/lazarus-group-new-banking-malware-against-indian-banks/80747/
https://www.trendmicro.com/en_us/research/18/a/lazarus-campaign-targeting-cryptocurrencies-reveals-remote-controller-tool-evolved-ratankba.html/
https://www.trendmicro.com/en_us/research/18/a/lazarus-campaign-targeting-cryptocurrencies-reveals-remote-controller-tool-evolved-ratankba.html/
https://www.cisa.gov/uscert/ncas/alerts/TA17-318A/
https://www.cisa.gov/uscert/ncas/alerts/TA17-318A/
https://www.virustotal.com/
https://www.zdnet.com/article/new-north-korean-malware-targeting-atms-spotted-in-india/
https://www.zdnet.com/article/new-north-korean-malware-targeting-atms-spotted-in-india/

A Appendix

A.1 Ablation Study

We conduct an ablation study in that;
(i) we first eliminate a self-attention based graph

builder and connect all possible pairs (make sen-
tence a fully-connected-graph) and run isomorphic
sub-graph discovery to get similarity score,

(ii) we do not use Word2Vec model so that iso-
morphic sub-graph cannot tolerate similar, but dif-
ferent words, therefore, it is only able to match
same words.

Table 5: Result on Ablation Study

Type P. R. F1 ∆ F1
w/o Self-Attention .75 .78 .76 -12.64%

w/o Word2Vec .82 .82 .82 -5.75%

Under this configuration, we revisit the search
performance evaluation on SP-EVAL-SET-1. For
each modification, we set the threshold value again
which maximizes the F1-score. Table 5 shows the
result of ablation test. The "Loss of F1" column
says the loss of F1 score in percentile from our
original result (note that our original method scores
87% of F1-score).

A.2 Search Query Time

Before we measure the query-time performance,
we introduce two optimization techniques; (i) graph
caching (GC) and (ii) sentences clustering (SC);

We notice that our self-attention based graph
builder is a bottleneck against time performance, in
average, costs 0.5s for a single sentence (while iso-
morphic sub-graph discovery module takes 5ms in
average which is almost zero relatively). However,
graph building for search space sentences does not
need to be processed on-the-fly. Therefore, we use
the graph caching (GC) optimization where we pre-
build graphs from the sentences and cache to the
database.

Also, we use a lossless optimization method,
namely, sentence clustering (SC) in that we fil-
ter our any of non-related sentences have no syn-
onym from the query sentence (recall that synonym
is defined as two words those embedding vectors
are within the constant τ -distance). For that, we
pre-build a map from every word in dictionary
(185K words) to sentences in search space (i.e.,
sentence clustering by word that includes all sen-
tences which hold at least one of its synonyms).

When a query sentence is given, we extract words
from it and load their sentence-clusters - therefore,
sentences belong to those clusters become the re-
duced search space.

Here, we measure searching time. We run our
system with an Intel Xeon 2.20GHz CPU and
196GB memory space. We pick 20K, 50K and
100K of random sentences from our threat report
corpus as for a search space, and randomly pick 5-
word, 10-word size query sentences (10 sentences
per each and measure their average/minimum/max-
imum). Then, we measure the results from origi-
nal search (w/o OPT), search with GC and both-
enabled, i.e., GC+SC.

Table 6: Query Time Measurement
(a.:average, m.:min, M.:max)

Type Search Space (# Sentences)
20K 50K 100K

Baseline
(matching)

a. 20s 53s 1m45s
m. 20s 52s 1m43s
M. 21s 54s 1m46s

w/o
OPT

a. 17m03s 43m49s 4h16m
m. 16m45s 42m57s 4h14m
M. 17m15s 17m15s 4h17m

w/
GC

a. 28s 24s 2m44s
m. 11s 32s 1m04s
M. 44s 41s 3m55s

w/
GC+SC

a. 05s 14s 34s
m. 00s 02s 05s
M. 14s 18s 1m19s

(a) query size: 5 words

Type Search Space (# Sentences)
20K 50K 100K

Baseline
(matching)

a. 20s 53s 1m45s
m. 20s 53s 1m44s
M. 21s 54s 1m47s

w/o
OPT

a. 17m58s 46m30s 4h21m
m. 17m27s 45m01s 4h18m
M. 2m46s 18m46s 4h25m

w/
GC

a. 1m23s 4m05s 8m03s
m. 53s 2m36s 5m03s
M. 2m12s 2m12s 12m41s

w/
GC+SC

a. 09s 28s 57s
m. 03s 11s 25s
M. 23s 23s 2m21s

(b) query size: 10 words

Without any optimizations, a query takes from 16m
up to 4h based on search space. However, this can
be drastically reduced by our optimization scheme.

2628

If we use the GC method, a query time becomes
less 10 minutes, and, with SC method enabled, it
is expected to be around a few minutes or less than
a minute. Note that 100K of search space is not
trivial. We also claim that our system is able to be
distributed to multiple machines by dividing the
search space.

A.3 Dataset Tables
This section holds additional tables for our dataset.

Table 7: Malware Bahaviors and IoCs Set (OI-EVAL-
SET-MALWARE). B. stands for Behaviors

Malware Actor # of
B.

of
IOCs

Winnti Axiom 3 123
MessageTap Axiom 7 3

DTrack Lazarus 15 25
HotCroissant Lazarus 15 14

FrameworkPOS FIN6 5 25
KerrDown APT32 7 49

rDAT Chrysene 16 6
comRAT Turla 16 16

RainyDay Naikon 16 10
ServHelper TA505 8 92

Total - 62 363

Table 8: Attack Origin Identifying Evaluation Set (OI-
EVAL-SET-ACTOR)

Actor # of
Articles

of
Sentences

of
Words

FIN6 17 1,280 21K
Leviathan 17 1,060 18K

Axiom 21 2,361 38K
Stone Panda 17 1,333 23K

Lazarus 29 2,338 37K
Gorgon 22 1,549 23K
Turla 24 1,646 28K
TA505 27 2,310 34K

Chrysene 21 1,400 25K
APT32 20 1,430 26K
Naikon 21 1,109 20K

C-Major 22 1,354 23K
Total 258 16K 227K

A.4 Continued from Motivation
How Our System Works. Figure 6 illustrates
how our method works on the motivation example.
For each behavior, the second, third, and fourth
columns show the attention graph for the IoC
description, the graph for the relevant sentence(s)

in the corresponding CTI report, and the matched
subgraphs. For example in B-1, our method
matches the subgraph including ‘dropper’, ‘en-
crypted’, and ‘payload’ in the IoC description to
that in the report including ‘drop’, ‘encrypted’,
and ‘binary’. Note that in the context of attack
forensics, ‘binary’ is a noun meaning a binary
executable file which may be a payload on it
own or include a payload. Therefore, our trained
language model produces close embeddings for
the two. There are similar sub-graph matches for
B-2 and B-3 as well. 2

Google Search. Assume the analyst searches B-1,
B-2 and B-3 on Google. Most of top search results
are not informative. It prioritizes instructional fo-
rums due to page ranking and does not bring A-1,
A-2 and A-3.
In fact, subtle query differences affect Google
search results. Our investigation shows that Google
fetches the articles (i.e., A-1, A-2, A-3) only if they
query “encrypted binary that eventually drops”,
“use wmi too binary list running processes” and
“collect infected machine IP addresses”, respec-
tively which require specific keywords overlapping
(words in bold) to retrieve corresponding articles.
It also requires tedious scrolling to find them. 2

2629

Algorithm 1 An algorithm to discover an isomorphic sub-graphs
// V1 and V2 have vector nodes (i.e., embedded).
G1 ← G(V1, E1), G2 ← G(V2, E2)
S ← ∅, τ > 0

for v ∈ V1 and w ∈ V2 s.t. |v − w| < τ do
match← false
while s ∈ S do

while (w′, v′) ∈ s do
if (w ∈ Neighbors(w′)) ∧ (v ∈ Neighbors(v′)) then

s.add((w, v))
match← true

end if
end while

end while
if match ̸= true then

S.add({(w, v)})
end if

end for

… … …

to …

…

Figure 6: Attention graphs for the motivation example

2630

