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Abstract

Despite the impressive performance of large
language models (LLMs), they often lag behind
specialized models in various tasks. LLMs only
use a fraction of the existing training data for
in-context learning, while task-specific models
harness the full dataset for fine-tuning. In this
work, we tackle the problem of leveraging train-
ing data to improve the performance of LLMs
without fine-tuning. Our approach directly tar-
gets LLM predictions without requiring access
to their weights. We create a pool of candi-
dates from the LLM through few-shot prompt-
ing and we employ a compact model, the LM-
corrector (LMCOR), specifically trained to
merge these candidates to produce an enhanced
output. Our experiments on four natural lan-
guage generation tasks demonstrate that even
a small LMCOR model (250M) substantially
improves the few-shot performance of LLMs
(62B), matching and even outperforming stan-
dard fine-tuning. Furthermore, we illustrate
the robustness of LMCOR against different
prompts, thereby minimizing the need for ex-
tensive prompt engineering. Finally, we show
that LMCOR can be seamlessly integrated with
different LLMs at inference, serving as a plug-
and-play module to improve their performance.

1 Introduction

Large language models have recently demonstrated
near state-of-the-art performance on various tasks
via in-context learning, which enables them to gen-
erate outputs based on instructions and a handful
of examples, without task-specific training (Brown
et al., 2020b,a; Chowdhery et al., 2022). However,
the effectiveness of this paradigm can vary sig-
nificantly depending on the task instruction (Shin
et al., 2020; Jiang et al., 2021; Schick and Schütze,
2021), the quantity, relevance and even the order of
the in-context examples (Brown et al., 2020a; Gao
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Correct the grammatical
errors in the following

sentence:

Dylan which won a Nobel
prize is

an Americna musician.

The Nobel prize was
awarded to the

Americna musician
Bob Dylan.

Dylan is a musician
from the US who
won the Nobel

Prize.

Dylan who won the Nobel prize is an American musician.

Dylan which won a
Nobel price is an

American musician.

Output 1

LLM
API

Output 2 Output 3

Small LM-Corrector
(LMCor)

Input Task Description

Figure 1: An illustration of our approach for grammati-
cal error correction. We first prompt an LLM to generate
multiple outputs via an API (dotted lines). Then we feed
the generated candidates to the LM-corrector, a small
model that is trained to rewrite them in order to generate
the target sentence (solid lines).

et al., 2021; Liu et al., 2022; Zhang et al., 2023a;
Lu et al., 2022). As a result, in-context learning
often requires labour-intensive prompt engineering
which does not always guarantee improved perfor-
mance (Jiang et al., 2021).

Fine-tuning, on the other hand, has been proven
highly effective when task-specific datasets are
available, with smaller, fine-tuned models out-
performing few-shot-prompted LLMs on various
tasks (Lester et al., 2021; Chowdhery et al., 2022;
Xu et al., 2023). While LLMs can also be fine-
tuned to enhance their performance in specific
tasks, there are several limitations. Firstly, the fine-
tuning process can negatively impact the few-shot
performance of LLMs on other tasks, leading to a
trade-off between versatility and performance (Fu
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et al., 2023). Secondly, the increasing scale of
LLMs makes fine-tuning on standard hardware
computationally infeasible. To address these issues,
parameter-efficient fine-tuning methods have been
proposed (Houlsby et al., 2019; Lester et al., 2021;
Li and Liang, 2021; Hu et al., 2022). Although
these methods are more computationally efficient,
they still require access to the model weights and
substantial computational resources for loading and
updating the model. Furthermore, due to the com-
mercialization of LLMs, they are often available
only through restricted inference APIs.

In light of these challenges, we propose a method
that leverages only the outputs of LLMs to enhance
their performance. Our work targets scenarios
where training data is available, but extreme com-
putational resources are not. To this end, we intro-
duce LM-Corrector (LMCOR), a compact model
that corrects the predictions produced by the LLM.
Unlike fine-tuning methods, our approach operates
directly on the LLM outputs, bypassing the need
for access to their weights.

LMCOR capitalizes on the observation that
LLMs can generate a diverse array of candidates
for a single input which are often complimentary.
Thus, it is possible to produce a superior output
by optimally combining spans from different can-
didates (see Figure 2). LMCOR receives multiple
candidates for a single input and learns to optimally
rank, combine, and edit them, ultimately yielding
more precise and higher-quality outputs. Figure 1
illustrates our approach, where LMCOR rewrites
the first output of the LLM while incorporating cor-
rect spans from the second (American) and the third
outputs (the Nobel) to produce the final, corrected
output.

Our contributions can be summarized as follows.
(1) We introduce LMCOR, a method to improve the
performance of LLMs in the presence of training
data without access to the model weights. (2) We
conduct experiments on four natural language gen-
eration tasks where LLMs underperform special-
ized models. We demonstrate that a small LMCOR

model with only 250 million parameters improves
the performance of an LLM with 62 billion parame-
ters, matching or even outperforming task-specific
models. (3) We showcase that the corrector is ro-
bust to different prompts, alleviating the need for
extensive prompt engineering. (4) We demonstrate
the versatility of our approach showing that a sin-
gle corrector can be effortlessly applied to different
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Figure 2: Potential of ranking (oracle-rank) and combin-
ing (oracle-combine) sampled candidates (k=10) from
PaLM models of different scales for GEC.

LMs as a plug-and-play module during inference.
We make our code publicly available1.

2 Correcting the Outputs of LLMs

In this section we present our computationally effi-
cient approach that utilizes a small model, LMCOR,
to correct the predictions of an LLM for a specific
task. Unlike traditional fine-tuning methods, our
approach does not require access to the weights of
the LLM. Instead, as seen in Figure 1, we interact
with the LLM only through an API, as is the case
for some state-of-the-art commercial LLMs.

Headroom analysis Our approach is based on
the insight that LLMs can generate a diverse pool
of candidates for each input, with complementary
strengths and weaknesses. Thus, an improved out-
put can be produced by combining the correct
parts of the corresponding candidates. To illustrate
this, we experiment on the task of grammatical
error correction (GEC) (Ng et al., 2014) using
PaLM models (Chowdhery et al., 2022) of vary-
ing size, depicted in Figure 2. First, we observe
that the few-shot PaLM models underperform fine-
tuned 11B-parameter state-of-the-art (sota) GEC
model (Rothe et al., 2021). However, by sampling
10 times from the LLM and employing an oracle to
rank the samples (oracle-rank) or to combine cor-
rect spans (oracle-combine2), we obtain significant
improvements, surpassing state-of-the-art.

This finding highlights the potential of leverag-
ing multiple generations through ranking or com-

1https://github.com/GeorgeVern/lmcor
2For the oracle-combine we compute the differing spans

between the candidates and for each span we choose the one
that has the smallest edit distance with the target.
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binations to enhance the performance of the LLM
via task-specific training. Motivated by this, we
employ a smaller model, LMCOR, to predict the
target given the original input and multiple candi-
dates provided by the LLM.

Generating the candidates To start our pipeline,
we first generate predictions from the LLM via
in-context learning. Specifically, we prompt the
model with a source sequence x, a verbal descrip-
tion of the task d, and a handful of demonstrations
e, depicted as dashed lines in Figure 1. By sam-
pling from the LLM with a temperature we obtain
a diverse set of k candidates, C = {c1, ..., ck}:

ci ∼ pLLM (c|x, d, e) ∀i = 1, 2, .., k. (1)

Correcting the candidates Next, we feed the set
of candidates along with the input sequence x to
the corrector3 to generate the final, refined output.

ŷ = argmax
y

pLMCOR(y|x,C) (2)

In order to train the corrector we fine-tune a small
LM on the task-specific dataset augmented with
candidates sampled from the LLM. Through this
process, LMCOR learns to select the most promis-
ing among the generated outputs, combine different
candidates and even make necessary edits to com-
pose the desired target sentence. As we show in
the following sections, even a small corrector can
substantially improve the quality of LLM outputs,
outperform standard fine-tuning, and reduce LLM
sensitivity to different prompts.

3 Experiments & Results

3.1 Datasets and Models
We evaluate LMCOR on four natural language
generation tasks: grammatical error correction on
CoNLL-14 (Ng et al., 2014), data-to-text gener-
ation on E2E NLG (Novikova et al., 2017), sum-
marization on XSum (Narayan et al., 2018) and
machine translation on the English to German trans-
lation task from WMT22 (Kocmi et al., 2022).

In most of our experiments, we use the 62B ver-
sion of PaLM (Chowdhery et al., 2022) as our large
LM except for Section 4.2 where we vary the size
of the LLM up to 540B parameters. For the ma-
chine translation task we use the 2.9B version of
XGLM (Lin et al., 2022) as our LLM, since at the

3To indicate end-of-sequence boundaries for the input and
the candidates, we use a sentinel token: x[s]c1[s]c2[s]...[s]ck.

time of running this experiment, it was more easily
accessible to the first author. We prompt the LLM
with a task description and a number of demonstra-
tions randomly selected from the respective valida-
tion set. We sample k = 4 times from the LLM with
a temperature of 0.7 for PaLM and employ nucleus
sampling (Holtzman et al., 2020) with p = 0.6
and a temperature of 0.6 for XGLM. Additionally,
we include the greedy-decoded output as a candi-
date since initial results showed that it improves
performance. We use T5.1.14 base (Raffel et al.,
2020) (250M parameters) as our model both for the
LMCOR and the standard fine-tuning baseline. We
choose the model based on the performance on the
validation set. The outputs of the corrector and the
T5 baseline are generated via beam search with a
beam of size 5.

We compare our approach, LMCOR, with the
following baselines: 1) in-context learning using
the LLM (ICL), prompted with the same number
of demonstrations, and 2) standard fine-tuning with
a T5-base and PaLM. We also provide scores for
3) the reranking approach of Suzgun et al. (2022a)
where they use Minimum Bayes Risk Decoding
(MBRD) combined with an alignment function
combined to select one among the candidates pro-
duced from the LLM. We use the same pool of
candidates that are used as input to the corrector
and employ Sim-LCS, a lexical similarity func-
tion based on longest common subsequence which
achieved the best results across tasks among the
alignment functions. We additionally provide the
scores of an oracle reranker that selects the candi-
date with the smallest edit distance compared to
the target as an upper-bound of reranking meth-
ods. Finally, we provide the results for a version of
our approach that feeds the corrector with only the
greedy-decoded candidate (single).

3.2 Grammatical Error Correction

Grammatical Error Correction (GEC) is a text-to-
text task that requires correcting the grammatical
errors while applying minimal changes to the orig-
inal input sentence. Despite being trained on vast
amounts of text, LLMs have been demonstrated to
underperform task-specific models in this task (Ya-
sunaga et al., 2021; Suzgun et al., 2022b).

We use the CoNLL-14 (Ng et al., 2014)
dataset as our testset. Following previous

4https://github.com/google-research/text-to-text-transfer-
transformer/blob/main/released_checkpoints.md
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Model F0.5
T5-base 59.38
PaLM-62B (ICL) 59.92
+ MBRD-Sim-LCS 58.87
+ Oracle Reranker 63.88
+ LMCOR (single) 62.47
+ LMCOR (mult.) 62.48

Table 1: Results of our approach in GEC (CoNLL-14).
The first group indicates fine-tuned models, the second
group in-context learning with reranking and the final
group provides the scores for LMCOR. The best scores
are in bold and the second best ones are underlined.
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Figure 3: The effect of dataset size for standard fine-
tuning and LMCOR. Results are reported on GEC.

work (Rothe et al., 2021), we use the combina-
tion of the FCE (Yannakoudakis et al., 2011) and
W&I (Bryant et al., 2019) datasets (60k examples)
for training and validation. We report F0.5 scores
obtained with the MaxMatch scorer (Dahlmeier
and Ng, 2012)5. We use 5 demonstrations in the
LLM prompt in order to generate the candidates
during training and inference.

The results presented in Table 1 show that stan-
dard fine-tuning and in-context learning exhibit
comparable performance in GEC while our ap-
proach significantly outperforms both, by 3 and
2.5 F0.5 points respectively. It is worth noting that
MBRD does not yield any improvement over stan-
dard few-shot prompting. However, as expected the
use of an oracle to rank the produced hypotheses
results in a considerable performance boost. Al-
though LMCOR does not surpass the performance
of the oracle it manages to significantly close the
gap, demonstrating the ability of the corrector to
identify high-quality candidates from the model.

Additionally, we compare the performance of
standard fine-tuning and LMCOR across varying
numbers of training instances. As illustrated in

5https://www.comp.nus.edu.sg/ nlp/conll14st.html

Model R-2 R-L
T5-base 45.3 52.8
PaLM-62B* (FT) 45.2 –
PaLM-540B* (FT) 45.3 52.3
PaLM-62B (ICL) 35.1 45.6
+ MBRD-Sim-LCS 35.7 46.2
+ Oracle Reranker 37.1 50.4
+ LMCOR (single) 44.8 52.8
+ LMCOR (mult.) 45.6 53.4

Table 2: Results of our approach in E2E NLG (cleaned).
Results with * are reported from the original pa-
per (Chowdhery et al., 2022). The first group indicates
fine-tuned models, the second group in-context learning
with reranking and the final group provides the scores
for LMCOR. The best scores are in bold and the second
best ones are underlined.

Figure 3 our approach consistently outperforms
the baseline for all dataset sizes. The gap is par-
ticularly pronounced when the training dataset is
limited, consisting of only 1k examples, resulting
in a substantial difference of 15 points in F0.5.
The sample efficiency of LMCOR can be attributed
to its ability to leverage the candidates generated
by the LLM to produce more accurate outputs. We
note that in this low-resource scenario, both trained
models perform worse than few-shot prompting.
This outcome is expected as the extensive pretrain-
ing of LLMs on language generation enables them
to perform grammatical error correction out of the
box. As the dataset increases to 10k examples we
observe that LMCOR performs on par with the
LLM while the baseline continues to underperform.
Beyond this threshold, LMCOR surpasses both in-
context learning and fine-tuning by utilizing both
the training data and the candidates.

3.3 Data-to-text

The next task we evaluate on is E2E
NLG (Novikova et al., 2017), a data-to-text
task where the input is a number of key-value
pairs about a restaurant and the output is a short
description of the restaurant in natural language.
We use the cleaned version of the dataset, E2E
NLG (cleaned) (Dušek et al., 2019) and the default
splits for training (35k examples), validation and
testing. We use 5 demonstrations to produce
the candidates for the corrector both during
training and inference. We report ROUGE-2 and
ROUGE-L (Lin, 2004) scores.

Table 2 presents a comparison between standard
fine-tuning with a T5-base model, in-context learn-
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ing, and fine-tuning using PaLM models. Notably,
standard fine-tuning with a T5-base significantly
outperforms in-context learning and achieves re-
sults comparable to fine-tuning with the much
larger PaLM models6. While reranking techniques
improve the performance of few-shot prompting,
even the oracle approach falls short of the perfor-
mance achieved by the fine-tuned T5-base model.
This highlights the primary limitation of reranking
approaches, particularly for challenging tasks for
LLMs, where their upper bound solely depends on
the quality of candidates.

In contrast, the performance of LMCOR does
not exclusively rely on the quality of the candi-
dates. The corrector module has the ability to edit
the LLM-generated candidates, leading to more ac-
curate outputs. As a result, LMCOR demonstrates
the best overall performance for the E2E task, sur-
passing even the fine-tuned PaLM-540B model by
1 point in ROUGE-L. An important characteristic
of our approach is the ability of the corrector to
observe multiple candidates for a single input. This
enables LMCOR to combine candidates in order
to compose a more refined answer. This is sup-
ported by the performance discrepancy between
LMCOR (single) and LMCOR (mult.) highlighting
the effectiveness of leveraging multiple candidates.

3.4 Summarization
The third task that we consider is abstractive sum-
marization. Specifically, we use XSum (Narayan
et al., 2018) with the default train (204k exam-
ples), validation and test splits. Due to the length
of the articles we truncate the inputs and only use
1 demonstration to prompt the LLM. To handle
the increased sequence length in the input of the
corrector we again truncate the articles and use a
maximum sequence length of 2048 tokens. We re-
port ROUGE-1, ROUGE-2 and ROUGE-L scores.

The results of Table 3 reveal that standard fine-
tuning outperforms in-context learning for the
XSum dataset. Specifically, the fine-tuned T5 and
PaLM-62B models outperform in-context learning
by 15 and 18 points in ROUGE-2 respectively. The
difficulty of the task, which involves summarizing
an article into a single sentence, poses challenges
for in-context learning, while the substantial dataset
size of 204k examples favors fine-tuning. However,
the use of a corrector module leads to singificant

6Chowdhery et al. (2022) attribute the mediocre perfor-
mance of the fine-tuned PaLM models to the small dataset size
and the ‘significant mismatch with the pre-training corpus’.

Model R-1 R-2 R-L
T5-base 38.64 16.98 31.41
PaLM-62B* (FT) – 18.5 –
PaLM-540B* (FT) – 21.2 36.5
PaLM-62B (ICL) 28.18 10.50 22.38
PaLM-540B (ICL) 29.88 11.75 23.83
+ LMCOR (single) 36.98 16.41 30.20
+ LMCOR (mult.) 37.62 16.50 30.67

Table 3: Results of our approach on XSum. Results with
* are reported from the original paper (Chowdhery et al.,
2022). The first group indicates fine-tuned models, the
second group in-context learning and the final group
provides the scores for LMCOR. The best scores are in
bold and the second best ones are underlined.

improvements over in-context learning with the
62B PaLM model, resulting in performance gains
of 6 points in ROUGE-2 and 8 points in ROUGE-L.
Notably, LMCOR outperforms few-shot learning
with the largest 540B PaLM model. Again, the
use of multiple candidates by the corrector further
enhances the performance of LMCOR confirming
our hypothesis regarding the complementarity of
the outputs generated by the LLM.

On the other hand, the LMCOR performs slightly
worse than standard fine-tuning. This result is
somewhat unexpected since the input for the cor-
rector is a strict superset of the model input in the
fine-tuning setting. We attribute the slight drop in
performance to the poor quality of the provided can-
didates, which introduces undesirable noise to the
corrector’s input, a hypothesis that we test in Sec-
tion 4.3. Additionally, the long-range dependencies
that are introduced by simultaneously processing
the article and the generated summaries might also
contribute to the performance gap between LM-
COR and standard fine-tuning.

3.5 Machine Translation

The final task in our evaluation is machine trans-
lation (MT). For this task we use the English to
German language pair from WMT22 (Kocmi et al.,
2022) as our test set and the corresponding pair
from WMT21 (Akhbardeh et al., 2021) as our val-
idation set. Our training data consists of 200k ex-
amples sampled from the News Commentary v16
corpus7. During both training and inference, we
prompt the LLM with 5 demonstrations to gener-
ate the candidates. We report scores using tradi-
tional surface-based MT evaluation metrics like

7https://www.statmt.org/wmt22/
translation-task.html
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Model BLEU COMET BLEURT
T5-base 23.32 75.22 64.57
XGLM-2.9B (ICL) 17.32 74.54 66.47
+ MBRD-Sim-CLS 18.01 74.82 66.73
+ Oracle Reranker 21.21 75.55 66.90
+ LMCOR (single) 24.51 76.81 67.23
+ LMCOR (mult.) 25.15 77.45 68.41

Table 4: Results of our approach on WMT22 En->De.
The first group indicates fine-tuned models, the second
group in-context learning and the final group provides
the scores for LMCOR. The best scores are in bold and
the second best ones are underlined.

BLEU (Papineni et al., 2002), as well as more re-
cent neural-based metrics such as COMET-22 (Rei
et al., 2022) and BLEURT (Sellam et al., 2020).

The findings presented in Table 4 indicate that,
similar to previous tasks, standard fine-tuning out-
performs in-context learning for MT across two
of the three considered metrics. While the mini-
mum Bayes risk reranking approach shows some
improvements, it fails to significantly narrow the
gap with the fine-tuned baseline. Notably, the or-
acle reranker manages to surpass T5 in terms of
COMET scores, although T5 still outperforms in
terms of BLEU.

Our proposed approach achieves substantial
gains, surpassing both fine-tuning and in-context
learning, as well as the reranking approaches, in-
cluding the oracle. This observation once again
highlights the limitations of reranking approaches,
especially when dealing with low-quality candi-
dates. Specifically, the version of LMCOR using a
single candidate demonstrates improvements of 4.5
BLEU points, 2 points in terms of COMET, and 0.5
points in terms of BLEURT compared to the best
scores achieved either by fine-tuning or reranking.
The inclusion of multiple candidates yields further
gains ranging from 0.6 to 1.2 points, depending on
the metric, underscoring the benefits of a diverse
candidate pool.

4 Robustness Analysis

4.1 Different prompts

We have demonstrated that LMCOR enhances the
performance of LLMs by refining their generated
predictions. However, the few-shot paradigm re-
mains appealing since it does not require training
or access to a dataset, except for a handful of exam-
ples used in the prompt. While prompt construction
is not computationally intensive, there is no con-
sensus on the optimal selection, number and even

Model set 1 set 2 set 3 mean std
PaLM-62B 59.9 58.9 56.2 58.6 1.9
+ LMCOR 62.5 62.3 62.9 62.6 0.3

Table 5: Mean F0.5 score and standard deviation (std)
using different sets of demonstrations for in-context
learning vs. our approach for GEC.

order of examples in the prompt which can lead to
variations in predictions and significantly impact
LLM performance (Lu et al., 2022). To investi-
gate whether LMCOR is similarly affected by this
variability we use three different sets of 5 demon-
strations to prompt the LLM for the task of GEC.
We then feed the generated predictions as input to
the corrector. It is important to note that we trained
LMCOR only once using the candidates generated
with the original set of demonstrations (set 1) and
simply swapped candidates during inference.

Table 5 highlights the significant variance in
LLM performance depending on the selection of
demonstrations with a difference of 3.7 between the
highest and the lowest F0.5 score. In contrast, LM-
COR remains unaffected and achieves competitive
performance even when the quality of candidates
significantly deteriorates (set 3). This demonstrates
the capability of LMCOR to compensate for candi-
dates of poor quality by performing edits on them.
The robustness of the corrector against prompts of
varying quality (with a variance of 0.3 compared
to 1.9 for the LLM) suggests that it can mitigate
the need for extensive prompt engineering.

4.2 Different LLMs

In the previous experiment we demonstrated the ro-
bustness of the corrector against candidates of vary-
ing quality. In this set of experiments we further
examine the robustness of our approach by testing
whether a corrector can be used interchangeably
with different LMs without retraining. It is impor-
tant to note that we only trained the corrector once
and performed inference by swapping the LLM
responsible for generating the candidates.

Initially, we focus on LMs from the same family
of models, namely PaLM (Chowdhery et al., 2022),
which share similar architectures and training data
but differ in the number of parameters. Table 6
presents the results of applying the corrector to dif-
ferent PaLM models than the one it was originally
trained on (62B). Across all scales, the LMCOR

consistently outperforms standard fine-tuning and
in-context learning, with the exception of the 540B
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T5-base 59.38

PaLM (ICL)
8B 62B 540B

48.62 59.92 65.37
+ LMCOR (single) 61.40 62.48 63.55
+ LMCOR (mult.) 61.89 62.47 65.16

Table 6: Results (F0.5) of applying the corrector to LMs
of different scale during inference for GEC.

Model R-2 R-L
GPT3-Codex (ICL)* 34.2 44.4
+ MBRD-BLEURT* 36.4 46.5
+ LMCOR (mult.) 44.8 53.0

Table 7: Applying the corrector to different family of
LMs during inference for E2E NLG. *: the results as
reported in the original paper.

model where the performance is comparable. The
corrector achieves significant gains when applied to
the 8B PaLM model, with an improvement of +13
points in F0.5. This further highlights the ability of
LMCOR to compensate for low-quality candidates
by merging and correcting them in order to achieve
competitive performance. Furthermore, we observe
that using a single candidate for LMCOR leads to
inferior performance in all cases, except for the
62B PaLM model. This finding suggests that the
existence of diverse candidates prevents the model
from overfitting to the outputs of a specific LLM,
thereby enhancing its generalization capabilities.

As a next step, we explore the application of LM-
COR to an LLM from a distinct family of models,
specifically Codex8 which is a GPT3-like model
trained on code (Chen et al., 2021). To compare the
effectiveness of LMCOR with MRBD reranking we
utilize BLEURT (Sellam et al., 2020) as the align-
ment function, as it has been reported to achieve
the highest scores for the E2E NLG task (Suzgun
et al., 2022b). It is important to note that while the
reranking approach samples 16 outputs from the
LLM, we only use 5 for the corrector. The results
in Table 7 demonstrate the superior performance of
LMCOR over reranking. In particular we observe a
performance boost of 10 points in ROUGE-2 when
compared to in-context learning, whereas MBRD
achieves a mere 2-point improvement.

The previous findings highlight the remarkable
out-of-domain robustness of LMCOR and its ability
to seamlessly integrate with various LLMs, as a
versatile solution for enhancing their performance.

8We use the outputs of code-davinci-002 provided by
Suzgun et al. (2022a).

Model R-1 R-2 R-L BLEU
Pegasus (FT) 45.48 23.88 38.18 16.72
+ LMCOR 45.76 23.78 38.28 17.00

Table 8: Applying the corrector to state-of-the-art sum-
marization model. Results are reported on XSum.

This versatility not only holds promise for applying
a single corrector to multiple LLMs but also for
training correctors with future, more capable LLMs

4.3 Task-specific models

To further assess the versatility of LMCOR we
extend our investigation to specialized models.
Specifically, we train a corrector using candidates
produced by Pegasus (Zhang et al., 2020), a state-
of-the-art summarization model, via beam search.
The results of Table 8 reveal that LMCOR pro-
vides gains even for models that have undergone
pre-training and fine-tuning tailored to the task. Al-
though the gains are relatively modest compared to
PaLM, this discrepancy can be attributed to the al-
ready high performance of Pegasus and the lack of
diversity of the beam-generated candidates, which
is essential for the corrector. The increased per-
formance of the corrector when applied to Pegasus
compared to PaLM supports our intuition regarding
the noise introduced by low-quality candidates.

5 Analysis

5.1 Importance of the source

The input of the corrector consists of the source sen-
tence and a number of candidates generated by the
LLM (Equation 2). In previous sections we demon-
strated that the use of multiple candidates improves
in-domain performance and out-of-domain robust-
ness. In this experiment, we focus on the impor-
tance of the source sentence to LMCOR. To exam-
ine this, we train a corrector that receives only the
candidates as input, without access to the source.
The results for E2E NLG, presented in Table 9 re-
veal a noticeable decline in performance when the
source sentence is removed. This decrease can be
attributed to the inability of the corrector to pro-
duce outputs that are faithful to the input in the
absence of the source sentence.

5.2 Scaling the Corrector

We showed that a corrector with 250M parameters,
can effectively refine the predictions of LLMs for
specific tasks. This raises the question: is training
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Model R-2 R-L
PaLM-62B (ICL) 35.1 45.6
+ LMCOR 45.6 53.4
- source sentence 44.5 53.1

Table 9: The importance of the source sentence for the
corrector. Results are reported on E2E NLG (clean).

250M 11B
T5 model size

60

62

64

66

68

F0
.5

59.38

67.37

62.48

68.15

59.92

fine-tuning
LMCor
few-shot

Figure 4: The effect of scaling for LMCOR and fine-
tuning. Results are reported on GEC.

a corrector still valuable if we have the computa-
tional resources to train a very large model? To
investigate this we train the largest version of T5,
T5-xxl with 11B parameters, both through stan-
dard fine-tuning and as a corrector for GEC. We
note that, in this scenario, the sizes of the fine-tuned
model and the LLM are comparable (11B vs. 62B).

As shown in Figure 4 both LMCOR and the fine-
tuned T5 benefit from scaling, exhibiting higher
F0.5 scores as their parameter count increases
from 250 million to 11 billion. At the 11 bil-
lion scale, both models significantly outperfrom
in-context learning with the 62B PaLM model. The
corrector continues to outperform the baseline as
model scale increases, although the gap in perfor-
mance narrows from 3 to 0.5 points in F0.5. We
attribute this reduction to the enhanced competence
of the larger T5 model. At the scale of 11 billion
parameters, the scores obtained by the T5 model
alone surpass those obtained by the LLM, indicat-
ing that the LLM-generated outputs are of lower
quality compared to the ones that the model would
produce independently. Therefore, while the ad-
ditional input to the model remains beneficial, its
impact diminishes to some extent, considering the
performance disparity between T5 and PaLM.

6 Related Work

Since the introduction of in-context learning, prior
research has primarily focused on improving the

few-shot performance of LLMs. One approach
suggests prompting the model to generate ratio-
nales or chain-of-thoughts (Nye et al., 2021; Wei
et al., 2022; Kojima et al., 2022) or to decompose
the problem into simpler ones (Press et al., 2022;
Zhou et al., 2023; Pilault et al., 2023), simulating
a reasoning process prior to generating the answer.
These prompting techniques are complementary to
our approach and can provide improved candidates
for the corrector.

Another strategy to improve the performance of
LLMs without training is reranking, i.e. selecting
the most promising from a pool of candidates ob-
tained by sampling from the model. Reranking
approaches include training different models as
the ranker (Cobbe et al., 2021), using task-specific
ranking functions (Suzgun et al., 2022b; Fernandes
et al., 2022), majority voting (Wang et al., 2023) or
minimum Bayes risk decoding (MBRD) (Suzgun
et al., 2022a; Freitag et al., 2022). Although these
approaches can improve the few-shot performance
of an LLM, they are upper-bounded by the quality
of the generated candidates.

While fine-tuning large LLMs can enhance
performance, the substantial computational re-
quirements have prompted the development of
parameter-efficient fine-tuning methods (PEFT)
(He et al., 2022). These approaches introduce a
small number of additional parameters (relative
to the full model) to be trained while the rest of
the model is frozen. The newly-added parame-
ters can come in the form of embeddings that
are appended to the encoded sequence (Li and
Liang, 2021; Lester et al., 2021), MLPs that are
added in-between layers, namely adapters (Houlsby
et al., 2019; Karimi Mahabadi et al., 2021) or rank-
decomposition matrices that are added in parallel
to the existing layers (Hu et al., 2022; Zhang et al.,
2023b). Although these works decrease the compu-
tational load of fine-tuning they still require load-
ing and backpropagating through the model, which
can be prohibitive for LLMs. Our work shares
the same motivation with PEFT methods, with the
introduced parameters being essentially another,
smaller model. However, our method does not
have the memory requirements of PEFT since the
corrector operates directly on the model’s outputs
and does not require access to the model’s weights.

An alternative line of work proposes providing
feedback to the LLM in order to revise and en-
hance its predictions. The feedback can be obtained
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from external models such as Google Search, doc-
ument retrievers, compilers (Gao et al., 2021; Yao
et al., 2023; Peng et al., 2023; Gou et al., 2023), or
from a separate model trained to provide feedback
on LLM outputs with additional supervision (Paul
et al., 2023; Peng et al., 2023; Akyürek et al., 2023).
While leveraging the LLM itself to generate feed-
back has been explored (Madaan et al., 2023; Shinn
et al., 2023), it tends to yield lower-quality feed-
back (Akyürek et al., 2023; Gou et al., 2023; Huang
et al., 2023) and involves multiple passes and exten-
sive prompt engineering for each LLM operation.
In contrast, our approach is task-agnostic and re-
quires a single pass from the LLM, with little to no
prompt engineering, offering an efficient solution
for enhancing LLM outputs.

Recently, studies have highlighted the potential
of smaller, task-specific models to complement the
predictions of an LLM. Xu et al. (2023) explore
a framework where candidates produced by task-
specific models are fed to an LLM, primarily tar-
geting classification task while LMCOR is better-
suited for open-ended generation tasks. Welleck
et al. (2023) train a smaller model to iteratively
improve sequences generated by LLMs. In con-
trast to our method, they rely on unlabeled data
and sample extensively from the LLM to obtain a
large pool of candidates. They assume the availabil-
ity of a value function that assigns scores to each
candidate and create input-output pairs by sorting
candidates based on their scores. Unlike their ap-
proach, we demonstrate that a compact corrector
can perform effectively across various tasks. Ad-
ditionally, our approach is more efficient during
inference, since the ability of LMCOR to process
multiple candidates simultaneously eliminates the
need for multiple passes.

Concurrently, researchers have begun to lever-
age the complementary nature of LLM-generated
outputs during inference. Farinhas et al. (2023)
use an LLM to combine its generated outputs for
machine translation, although they find that rerank-
ing methods incorporating external modules, such
as quality estimation metrics (Zerva et al., 2022),
prove to be more efficient. Meanwhile, Vernikos
and Popescu-Belis (2024) propose an approach that
uses a quality estimation metric to combine the
outputs of LLMs or MT models. Similar to our
method, they exploit the diversity of LLM outputs
by identifying divergent spans among candidates
and merging them based on the metric.

Most relevant to our approach is the work by
Jiang et al. (2023) where they propose a method
to ensemble LLMs. Their pipeline consists of i)
sampling a large pool of candidates, ii) selecting
top candidates via multiple pairwise comparisons
through a trained reranker and iii) fusing them us-
ing a similar technique as LMCOR. While our
approach could be extended to multiple LLMs
we demonstrate improvements with a single LLM,
leveraging the complimentarity of the generations.
In addition, our approach is more efficient since we
use a much smaller model as the corrector (3B vs
250M) and do not introduce additional training and
inference steps for ranking the outputs.

7 Conclusion

In this work, we introduce LMCOR, a novel ap-
proach that leverages a small corrector module to
enhance the performance of LLMs in the presence
of training data. LMCOR leverages the diversity of
the LLM generations to rank, edit and combine the
candidates. Unlike parameter-efficient fine-tuning
methods, our approach does not require access to
the model or substantial computational resources.
Our experiments demonstrate that even a relatively
small corrector (250M) can improve the perfor-
mance of a much larger LM (62B), while exhibiting
robustness against different prompts. Furthermore,
we showcase that the corrector can be successfully
applied to models of different scale or architec-
ture without any retraining. These findings offer
a promising solution for improving LLM perfor-
mance in a practical and resource-efficient manner
and open up new possibilities for the utilization
and deployment of LLMs in real-world applica-
tions alongside smaller task-specific models.
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Limitations

Additional latency While our approach en-
hances the performance of LLMs on the considered
tasks, it also introduces additional latency. Instead
of a single pass from the LLM our pipeline involves
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sampling multiple candidates in parallel and per-
forming an additional inference step using a much
smaller model. Although the additional latency is
small, it could be critical for low-latency applica-
tions that require real-time responses.

Strong fine-tuned models While our approach
demonstrates gains over in-context learning and
reranking it may not always achieve the same level
of performance as fine-tuning approaches. Our re-
sults in XSum and Figure 3 indicate that fine-tuning
remains a powerful method for smaller models
when ample data is available. Additionally, scaling
fine-tuned models instead of using an off-the-shelf
LLM might be a better alternative in certain cases,
as discussed in Section 5.2.

Additional tasks and models Due to time and
budget limit our experiments cover 4 natural lan-
guage generation tasks and they could be extended
to other kinds of tasks such as reasoning. Addition-
ally while LMCOR shows promising results when
combined with different LLMs, even during infer-
ence, it would be interesting to apply our approach
to a broader selection of LLMs that are currently
available.

Human evaluation We agree that automatic met-
rics have limitations. While the selection of metrics
aligns with prior work, human evaluation could
provide us with more reliable and comprehensive
evaluation results. However, due to the number of
models and the amount of generation candidates,
we could not afford large-scale human evaluation.

Broader Impact

Given that the proposed approach combines LLMs
and small corrector models for improved perfor-
mance, it is important to acknowledge that it shares
the potential social biases associated with LLMs.
While our work focuses on improving the pre-
dictions of LLMs on specific datasets rather than
open-ended generation, it is improbable that our
approach amplifies these biases to a greater extent
than other methods. Nonetheless, it is important
to investigate whether LMCOR has any impact on
either amplifying or mitigating these biases.
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A Prompts

We present the few-shot prompts used for all tasks.
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Rewrite the input sentence so that it is grammatically accurate.

Source: Yesterday as I was arriving home I saw him in your yard Mack, he looked very satisfied, Curly
was laying on the grass and ... "" Yes, Oh Lord he did it because we won his team at football "Nick
said."
Target: Yesterday, as I was arriving home, I saw him in your yard, Mack. He looked very satisfied,
Curly was lying on the grass and ... "" Yes, oh Lord he did it because we beat his team at football
", Nick said."

Source: According to UNESCO literacy is at the heart of basic education for all and that creating
literate environments andsocieties is essential for achieving the goals of eradicating poverty,
reducing child mortality, curbing population growth, achieving gender equality and achieve
sustainable development, peace and democracy.
Target: According to UNESCO, literacy is at the heart of basic education for all and creating
literate environments and societies is essential for achieving the goals of eradicating poverty,
reducing child mortality, curbing population growth, achieving gender equality and achieving
sustainable development, peace and democracy.

Source: As you can see I had a very disappointing evening - the worst one during my week's holiday in
London.
Target: As you can see I had a very disappointing evening - the worst one of my week's holiday in
London.

Source: Anyway, to tell you the truth I'd rather take a train, for instance, it means travelling in a
relaxing way, not running risks of accidents, having the chance to read or play "travelling" chess,
meeting new people, as in a stage coach but moving faster
Target: Anyway, to tell you the truth, I'd rather take a train. For instance, it means travelling in
a relaxing way, not running risks of accidents, having the chance to read or play "travel" chess,
meeting new people, like on a stage coach but moving faster.

Source: With the advertisement, you mentioned Mr. Danny Brook and Ms. Tina Truelove were going to
play but actually different people were playing, whom I have never seen before.
Target: In the advertisement, you mentioned Mr. Danny Brook and Ms. Tina Truelove were going to
perform but actually different people were performing, whom I had never seen before.

Figure 5: LLM prompt for GEC.

Convert the set of key-value attribute pairs in the restaurant domain to a simple English-language
text.

Source: name[The Eagle], eatType[coffee shop], food[English], priceRange[high], customer rating[
average], area[riverside], familyFriendly[no], near[Burger King]
Target: The Eagle is near Burger King in riverside. It serves expensive English food in a coffee shop
setting. It's not child friendly, but has average ratings.

Source: name[Clowns], eatType[coffee shop], food[English], customer rating[5 out of 5], area[
riverside], near[Clare Hall]
Target: Clowns is a coffee shop that serves English food and is near Clare Hall. It is located
riverside and has a 5 out of 5 customer rating.

Source: name[The Golden Palace], priceRange[more than Âč30], customer rating[high], area[city centre]
Target: The Golden Palace has a high customer rating, with meals costing more than Âč30. It is
located in the city center.

Source: name[Wildwood], eatType[coffee shop], food[English], customer rating[1 out of 5], near[Ranch]
Target: Wildwood, English coffee shop, is situated near Ranch and has moderate pricing. It received 1
out of 5 star rating.

Source: name[Taste of Cambridge], eatType[coffee shop], food[English], area[city center],
familyFriendly[yes], near[Crowne Plaza Hotel]
Target: Taste of Cambridge is a family-friendly coffee shop that serves English cuisine. It is
located in the city center near Crowne Plaza Hotel.

Figure 6: LLM prompt for E2E.
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Write a short summary of the article in one sentence.

Source: Many more are feared trapped under rubble after hundreds of buildings collapsed. Thousands of
people have been forced to take refuge in temporary shelters and mosques. Some have been left
homeless after their houses were destroyed, others have fled their homes amid fears of aftershocks
and a possible tsunami. Rescue workers used diggers to remove rubble in their search efforts
overnight on Wednesday. Others used their bare hands and shovels to find people. A one survivors were
pulled out alive on Wednesday. More than 200 buildings were either seriously damaged or toppled in
the earthquake. The Pidie Jaya region, on the north Aceh coast, was the hardest hit. The tremor hit
just offshore early on Wednesday morning. Many of the homes in the area have corrugated tin roofs
which collapsed. Hundreds have also been rushed to the sole functioning hospital, which has been
overwhelmed by patients. Banda Aceh, the provincial capital, was one of the worst hit areas by the
2004 tsunami, caused by acaused by a massive earthquake.
Target: A 6.5-magnitude earthquake struck Aceh province in Indonesia on Wednesday, killing at least
97 people.

Figure 7: LLM prompt for XSum.

The disease has killed nearly 50 people and infected more than 1,400 in Tunisia. = Die Krankheit hat
beinahe 50 Menschen getÃűtet und mehr als 1400 Menschen in Tunesien infiziert.

Landray said this failure was particularly exasperating when it came to the use of convalescent
plasma, which many doctors believe could have a key role to play in treating seriously ill Covid-19
patients. = Landray beklagt dieses Versagen besonders, wenn es um die Verwendung von rekonvaleszentem
Plasma geht, dem laut Meinung vieler Mediziner eine wichtige Rolle bei der Behandlung ernsthaft
kranker Covid-19-Patienten zukomme.

Daily cases that numbered in the hundreds dropped to low double digits. = Die tÃďglichen FÃďlle, die
sich auf hunderte beliefen, sanken auf zweistellige Zahlen ab.

However, a recent poll put West at two percent nationwide, neck and neck with the Libertarian Party's
Jo Jorgensen and a point ahead of the Green Party's Howie Hawkins. = Jedoch lag West bei einer
kÃrzlich erfolgten Befragung landesweit bei zwei Prozent, Kopf an Kopf mit Jo Jorgensen von der
Libertarian Party und einen Punkt vor Howie Hawkins von der Green Party

Scotland's festival scene and sporting events such as the Highland games have been among those
affected by restrictions brought in to prevent the spread of Covid-19 = Schottlands Festival- und
Sporteventszene, wie die Highland Games, waren unter jenen die von den EinschrÃďnkungen, welche
eingefÃhrt worden sind um die Ausbreitung von Covid-19 zu verhindern, betroffen waren.

Figure 8: LLM prompt for MT.
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