
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics
Volume 1: Long Papers, pages 2773–2789

March 17-22, 2024 c©2024 Association for Computational Linguistics

System-Level Natural Language Feedback

Weizhe Yuan
New York University
wy885@nyu.edu

Kyunghyun Cho
New York University

Prescient Design, Genentech

Jason Weston
New York University

Abstract

Natural language (NL) feedback offers rich in-
sights into user experience. While existing stud-
ies focus on an instance-level approach, where
feedback is used to refine specific examples,
we introduce a framework for system-level use
of NL feedback. We show how to use feedback
to formalize system-level design decisions in
a human-in-the-loop-process – in order to pro-
duce better models. In particular this is done
through: (i) metric design for tasks; and (ii) lan-
guage model prompt design for refining model
responses. We conduct two case studies of this
approach for improving search query and dia-
log response generation, demonstrating the ef-
fectiveness of system-level feedback. We show
the combination of system-level and instance-
level feedback brings further gains, and that
human written instance-level feedback results
in more grounded refinements than GPT-3.5
written ones, underlying the importance of hu-
man feedback for building systems. We release
our code and data at https://github.com/
yyy-Apple/Sys-NL-Feedback.

1 Introduction

Users interacting with a machine learning system
offer feedback, either actively or passively. The
feedback can be binary ratings (Arora et al., 2022),
preference feedback (Stiennon et al., 2020) and
natural language (NL) feedback (Hancock et al.,
2019; Scheurer et al., 2022a). Among them, NL
feedback is the most general due to its free-form
nature, as opposed to the limited choices in other
feedback forms. Hence, it is crucial to harness the
potential of NL feedback to improve a system.

Existing research on NL feedback typically
adopts one of two strategies. The first uses feed-
back as an auxiliary target in addition to the orig-
inal task, just like in multitask learning (Hancock
et al., 2019; Xu et al., 2022b). The second modifies
the original output based on per-instance feedback.
The system can either be fine-tuned with the new

output (Tandon et al., 2022; Scheurer et al., 2022b)
or iteratively self-critique and self-refine at infer-
ence time (Madaan et al., 2023; Chen et al., 2023b).
One common limitation of these studies is that
they only focus on instance-level learning, where
each feedback only serves the instance for which it
was received. Furthermore, they often assume the
availability of feedback for each and every exam-
ple, which is not practical in real-world scenarios,
where feedback is often sparse.

This paper asks the following question: Can
we aggregate instance-level NL feedback to make
system-level design decisions that improve lan-
guage generation systems? We answer this ques-
tion by proposing a general framework for aggre-
gating instance-level NL feedback. A set of cri-
teria (i.e., system-level feedback) are first derived
from instance-level feedback through a human-in-
the-loop process involving clustering and summa-
rization. Those criteria then guide the design of
instruction-following language model prompts to
refine (i.e., correct) examples, and the development
of metrics that align with users’ needs. We con-
duct two case studies of the proposed framework
on information-seeking dialog tasks where we im-
prove both the query generator and the response
generator of an Internet-augmented dialog system.
The experimental results point to the effectiveness
of system-level feedback. Our contributions are:

• We propose a new method that derives system-
level feedback from instance-level feedback,
which can guide text generation refinement.

• We show how human experts can use system-
level feedback to design metrics for evaluating
information-seeking dialog systems.

• We demonstrate that combining system-level
and instance-level feedback for prompt design
yields more helpful refinements for system
training w.r.t. the designed metrics above.

2773

https://github.com/yyy-Apple/Sys-NL-Feedback
https://github.com/yyy-Apple/Sys-NL-Feedback

• We show the importance of human NL feed-
back by comparing it to GPT-3.5-generated
feedback in response refinement. We find that
human feedback leads to more grounded re-
finements that can better guide system learn-
ing.

2 Related Work

Dialog Systems The rapid development of large
language models (LLMs) (Brown et al., 2020;
Zhang et al., 2022) has advanced dialog systems, in-
corporating techniques like multi-session memory
(Xu et al., 2022a), search engine support (Komeili
et al., 2022), etc. Recently, ChatGPT’s rise has
captivated both the NLP community and the pub-
lic at large. Nowadays, intelligent dialog agents
have become an essential part of people’s produc-
tivity, such as brainstorming (Zhang et al., 2023b),
essay polishing (Buruk, 2023), code writing (Haen-
sch et al., 2023), etc. However, LLMs also carry
potential risks including misinformation (Chern
et al., 2023), sycophancy (Sharma et al., 2023),
etc., which calls for more thorough evaluations.

Learning from Human Feedback As language
models increasingly integrate into people’s daily
life, aligning them with human needs becomes es-
sential (Askell et al., 2021). As a result, researchers
have been working on utilizing various human
feedback, including preference feedback (Stien-
non et al., 2020; Ouyang et al., 2022), binary feed-
back (Li et al., 2019; Arora et al., 2022; Adolphs
et al., 2022), NL feedback (Weston, 2016; Li et al.,
2017; Hancock et al., 2019; Saunders et al., 2022;
Scheurer et al., 2022a), and so on. So far, the use of
NL feedback is relatively less explored, with most
studies focusing on instance-level feedback where
each instance receives its own feedback (Scheurer
et al., 2022a, 2023). In this work, we propose a
general framework for deriving system-level feed-
back from instance-level feedback, and show the
effectiveness of system-level feedback alone and
its complementarity with instance-level feedback.

3 Methodology

3.1 Problem Formulation
Assume we have (1) a text generator Pθ(r|q) that
generates a response r to a query q, (2) a text re-
finer Pϕ(r

′|r, q, c) that generates a refinement r′

given the original response r, the query q, and cri-
teria c that explains what makes a good response,

(3) a quality checker Q(q, r) that decides whether
r is a satisfactory response given q. When de-
ploying Pθ(r|q), for some unsatisfied responses
Rn = {r1, · · · , rn}, we collect NL feedback for
each of them Fn = {f1, · · · , fn}. We aim to use
Fn to improve Pθ(r|q) by updating its parameters
θ. In our setting, we take the text refiner and qual-
ity checker as given. They can either be based on
large models like GPT-3 (Scheurer et al., 2022a) or
specialized fine-tuned models (Shi et al., 2022).

3.2 Proposed Framework

Our proposed framework is shown in Figure 1.
There are four steps within this framework.

Derive criteria from feedback When deploying
the text generator Pθ(r|q), we collect feedback Fn

for some responses Rn. A clustering algorithm is
then run (e.g., k-means clustering (Hartigan and
Wong, 1979)) to identify common issues that can be
potentially rectified. Next, a human-in-the-loop ap-
proach is used, where human experts derive a set of
criteria c for what constitutes a good response from
those clusters. These criteria, articulated in natural
language, serve as part of the input (prompt) for
the text refiner. This process relates to prompt engi-
neering in large language models (Liu et al., 2023),
where the NL feedback is used to help formalize
the prompt engineering process. With these crite-
ria, experts also design metrics m1(·), · · · ,mk(·)
to evaluate aspects of user interest.

Construct refinement training data To improve
the text generator, we create a training dataset, D,
that reinforces positive behaviors and rectifies neg-
ative ones. If a sample (qi, ri) meets Q(qi, ri) = 1,
it is added to D to reinforce good model behav-
ior. Otherwise, the text refiner Pϕ(r

′|r, q, c) refines
ri to r′i using prompts based on criteria c. If this
refined sample (qi, r

′
i) passes Q(qi, r

′
i) = 1, it is

added to D to modify bad behavior.

Fine-tune the model After collecting supervised
data D, we fine-tune the text generator Pθ(r|q).
This data can be combined with existing data that
was used to build the baseline deployed system
(that did not use feedback).

Evaluate using designed metrics Finally, we use
our designed metrics to assess system performance
against user requirements. If successful, the up-
dated system will exhibit improved metrics m1(·),
· · · , mk(·) compared to the baseline system.

2774

D: Evaluate using designed metrics

Supervised Fine-tune

DesignMetrics
1. m1(q, r)
2. m2(q, r)

Evaluate Text

C: Fine-tune the model

Te
xt

 G
en

er
at

orq1
q2
q3
q4
q5

f1
f2
f3

Users
Cluster

Criteria ()c
1.
2.

A: Derive criteria from feedback

Unsatisfied
Samples

Text Refiner

Quality
Checker

r′ 1 r′ 2 r′ 3

r1 r2 r3

Satisfied Samples
(q4, r4) (q5, r5)

Supervised
Data 𝒟

(q4, r4)
(q5, r5)

(q1, r′ 1)
(q2, r′ 2)

B: Construct refinement training data

c

Experts

Metrics
1. m1(q, r)
2. m2(q, r)Q

ua
lit

y
C

he
ck

er

Derive

Experts

Provide

m1 m2

S1 S2 S3 S4 S5
Results

r1
r2
r3
r4
r5 Generator

Text
GeneratorData 𝒟

Figure 1: Our framework for incorporating NL feedback into system-level model design. Using a human-in-the-loop
approach, criteria derived from NL feedback guide the creation of prompts for refining responses and metric design
to evaluate the improvements. Notation: q: query, r: response, f : feedback, r′: refinement, m(·): metric function.
S1 · · ·S5 represent different systems one can compare using this framework.

4 Experimental Setup: Dialog Systems

We study our framework within dialogue system de-
ployment, a context where users naturally offer NL
feedback, such as “that’s not correct” for incorrect
responses (Shi et al., 2022). Our case studies fo-
cus on information-seeking dialogues, where users
interact with dialog agents to obtain answers or
relevant information (Glaese et al., 2022).

Dialog System Selection We choose the Blender-
bot2 (BB2) dialog system (Komeili et al., 2022; Xu
et al., 2022a) comprised of two modules: (1) Query
Generator (QG) that generates an Internet search
query from dialogue history. (2) Response Genera-
tor (RG) that generates a response using dialogue
history and retrieved web documents.1 We select
BB2 because it allows us to study two scenarios:
query generation and response generation.

Deployment Data We use the FITS dataset (Xu
et al., 2022b) for experiments, which collects di-
verse feedback from user interactions with Internet-
augmented dialogue systems like BB2 and SeeKeR
(Shuster et al., 2022). Though the dataset includes
binary, NL feedback, and gold corrections, we only
use binary and NL feedback, given users are less
inclined to provide gold corrections for mistakes.

Text Refiner Given no gold corrections, we turn
to model-based refinement techniques. In this
work, we use GPT-3.52 as the text refiner and apply
greedy decoding during inference.

Quality Checker We train quality checkers for
queries and final responses using collected binary
feedback. Our classifier is based on FLAN-T53

1We use Google search (https://www.google.com/) to
retrieve the top five relevant documents given a search query.

2We use the model gpt-3.5-turbo for our experiments.
3We use the flan-t5-large model.

(Chung et al., 2022) trained on 20% training data,
using binary feedback following Shi et al. (2022).
We select a threshold to ensure 80% precision for
labels it predicts as positive on the validation set.

5 Case Study 1: Query Generation

5.1 Derive Criteria from Feedback

We collect all NL feedback from the FITS training
split to understand human preferences and derive
criteria. We first use SimCSE encoder4 (Gao et al.,
2021) to encode each feedback. Then, we use k-
means clustering to group feedback related to query
generation into five clusters. From inspecting these
(see Appendix A.1 for detailed manual efforts),
we summarize them into four groups (see Table 1)
and derive that a successful search query should (i)
rephrase the user’s question while keeping impor-
tant keywords, (ii) be relevant and specific, (iii) use
common words for better search coverage, (iv) be
concise. The criteria text for crafting the prompt c
for the text refiner Pϕ(r

′|r, q, c) is in Table 2.

5.1.1 Criteria-guided Metric Design
Using feedback-derived criteria, we design metrics
to mirror users’ preferences.5 Ideally, an effective
query should score high across all these metrics.

Non-copy rate measures how much a search query
rephrases the user’s utterance by examining n-gram
matching. We define it in Equation 1 based on
BLEU-4 (Papineni et al., 2002) where s is the

4We use the sup-simcse-roberta-large model.
5When evaluating a set of queries, for a metric defined

as a fraction with a constant numerator, we take the average
of the denominators of all queries on that metric and take its
reciprocal to multiply the numerator.

2775

https://www.google.com/

Group Feedback type Num. %

1 User suggests a search query for Internet search directly. 2715 52.87%

2 Suggests specific edits, such as shortening the query or using common words, and so on. 996 19.40%

3 Points out that the search query should use keywords instead of copying the original question
and should be specific.

995 19.38%

4 Points out that the search query is not relevant to the problem. 429 8.35%

Table 1: Case study 1 (query generation): 4 groups of system-level feedback derived from automatic clustering.

Type Criteria (Abbreviated) NCR Spec. Read. Con. Cov. Sat.

(1): Baseline None 4.06 79.40 19.46 14.87 29.80 61.50
(2): (1)+Rephrase Rephrase the user’s question and keep keywords. 4.98 83.20 19.54 15.04 26.50 62.10
(3): (2)+Specificity Above + Be accurate and specific for user needs. 5.00 84.20 18.77 14.50 28.80 63.30
(4): (3)+Readability Above + Use simple and common words for better results. 5.08 80.80 19.53 15.97 29.40 62.40
(5): (4)+Conciseness Above + Be concise; focus on user’s first question. 4.81 80.00 19.70 16.63 35.30 62.70

Table 2: Case study 1 (query generation): refinement quality via designed metrics when using different criteria to
prompt GPT-3.5 for query refinement. Metrics measured: NCR: non-copy rate, Spec.: specificity, Read.: readability,
Con.: conciseness, Cov.: coverage. Sat.: satisfaction. The full criteria texts can be found in the Appendix A.2.

search query and u is the user question.

Non-copy Rate =
1

BLEU-4(s, u)
(1)

Specificity measures whether the search query suf-
ficiently captures the necessary information to re-
trieve relevant documents. We use GPT-3.5 as the
evaluator (Fu et al., 2023). Details are in the Ap-
pendix A.3.

Readability measures a search query’s clarity
based on the word frequency rank (WFR)6 of its
terms, as defined in Equation 2, where w is a word
in s and C is a scaling constant. Ideally, a query
should use common words to improve readability.

Readability =
C

AVGw∈s(WFR(w))
(2)

Conciseness measures the query’s brevity by its
word count, with its value being the query length’s
reciprocal, scaled by a constant 100.

Coverage measures how specific vs. general a
search query is by counting the number of Google
search result pages. Considering the wide variation
in page count, we employ a relative metric. For
refined queries obtained using Table 2 with the
same dialog context, the query with the most results
gets a “Coverage” score of 1, and others receive 0.

Satisfaction measures whether the search query
will satisfy the user. It is an overall metric, and we

6We use the Kaggle dataset for WFR: https://www.
kaggle.com/rtatman/english-word-frequency

use our trained satisfaction classifier to determine
the percentage of satisfied refinements.

5.2 Construct refinement training data
We sample 1,000 satisfied queries from the FITS
training set along with their contexts to add to our
supervised training data D. Then, based on Fig-
ure 1-(B), for each unsatisfied query r, we (1) use
GPT-3.5 and criteria c derived from §5.1 to get a re-
finement r′. (2) Use a quality checker to check r′’s
satisfaction. (3) Add (q, r′) to D if r′ is satisfactory.
We elaborate on step (1) in the next section.

5.2.1 Refinement Generation
We use GPT-3.5 with criteria-based prompts to re-
fine 1,000 randomly sampled unsatisfied queries
(details in Appendix A.2). To demonstrate the ef-
fectiveness of Figure 1-(A), we conduct ablation
studies with different criteria for query refinement.
Given our computational budget, for metrics rely-
ing on GPT-3.5, we sample 500 dialog contexts
and compare the queries resulting from different
criteria.

The results are in Table 2. Adding criteria in
the prompt will shift GPT-3.5’s generation, and the
performance differences are interpretable using our
designed metrics. Specifically, (i) The rephrase
criterion increases the non-copy rate. (ii) The rele-
vance criterion increases the relevance metric. (iii)
The readability criterion increases the readability
and coverage metrics. (iv) Using all the criteria, the
refinements achieve reasonably good performance

2776

https://www.kaggle.com/rtatman/english-word-frequency
https://www.kaggle.com/rtatman/english-word-frequency

Valid Test Test Unseen

NCR Spec. Read. Con. Cov. Sat. NCR Spec. Read. Con. Cov. Sat. NCR Spec. Read. Con. Cov. Sat.

BB2(QG) 32.8 40.5 22.4 32.3 50.6 4.8 18.8 34.9 14.0 34.3 50.9 8.8 22.7 37.7 15.4 32.9 50.3 3.2
SLT(QG()) 2.6 60.4 19.8 21.0 30.1 9.2 2.8 58.0 17.4 22.9 30.5 12.9 3.0 55.4 18.3 22.9 31.7 7.4
SLT(QG(+)) 4.8 73.5 22.0 18.3 19.3 29.6 3.8 74.5 21.7 18.0 18.6 29.0 3.6 73.5 19.4 17.8 18.0 17.2

Table 3: Evaluate query generators on FITS using designed metrics. See Table 2 caption for abbreviation meanings.

Valid Test Test Unseen

F1 PPL F1 PPL F1 PPL

BB2(QG) 9.74 16.09 14.28 9.61 16.09 10.15
SLT(QG()) 48.63 12.83 50.51 7.64 51.75 7.84
SLT(QG(+)) 51.19 10.34 52.99 7.23 52.21 7.73

Table 4: Evaluate query generators on FITS using F1
and perplexity (PPL).

in all our designed perspectives and overall satisfac-
tion. Thus, when collecting training data, we use
the four criteria augmented prompt for refinement.

5.3 Fine-tuning the Model

We start from the 400M BB2 query generator and
consider two fine-tuning settings: (1) using the
satisfied data; and (2) using satisfied and refinement
data. During training, we use the Adam optimizer
(Kingma and Ba, 2015) with a batch size of 8 and
learning rate of 7 × 10−6 for three epochs. The
best checkpoint is chosen based on validation loss.

5.4 Evaluation using designed metrics

We evaluate the following query generators.

• BB2(QG) The original BB2 query generator.
• SLT(QG()) System-level trained query gener-

ator using only satisfied data.
• SLT(QG(+)) System-level trained query

generator using satisfied and refinement data.

Results on Standard Metrics Table 4 presents
the results using standard metrics, as per Shi et al.
(2022). Compared to the original BB2 query gener-
ator, training with domain-specific data (2nd row)
significantly improves F1 word overlap and per-
plexity metrics. Adding refinement data (3rd row)
further enhances these metrics.

Results on Our Designed Metrics We also report
results on our designed metrics for different query
generators in Table 3. It is clear that training on sat-
isfied data produces more specific and satisfactory

queries, with further improvements when incorpo-
rating refinement data. The original BB2 query
generator often generates overly concise queries,
hindering the retrieval of the most relevant docu-
ments. In other words, although it generates queries
that perform well in terms of readability or cover-
age, it is still an inadequate query generator, as
evidenced by the poor satisfaction of the queries
it generates. Later, when we refer to “our trained
query generator”, we mean the one trained using
both satisfied data and refinement data.

6 Case Study 2: Response Generation

6.1 Derive criteria from feedback
Following the approach in §5.1, we group all feed-
back related to response generation into ten clusters.
Then, we summarize the following eight groups
(see Table 5) of feedback types by merging some
clusters. From Table 5, we derive that an improved
response as indicated by users should (i) ground its
answer on relevant search results, (ii) be concise
and targeted, (iii) be confident in its answer. The
criteria text for crafting the prompts c for the text
refiner Pϕ(r

′|r, q, c) is given in Table 6.

6.1.1 Criteria-guided Metric Design
After deriving criteria for response generation from
feedback, we design the following metrics to mea-
sure the quality of a response as indicated by users.7

Groundedness measures how much the response
utilizes the search results by examining n-gram
matching. We define it in Equation 3 based on
ROUGE-2 (Lin, 2004). Here, r is the response, d
is a document from the relevant search set S.

Groundedness = max
d∈S

ROUGE-2(r, d) (3)

Factuality checks whether the information in the
response is backed by search documents. We use

7When evaluating a set of responses using one of the fol-
lowing metrics, we take the average of all responses’ scores
on that metric.

2777

Group Feedback type Num. %

1 Clarify his/her demand again. 3702 26.54%

2 Complain that the bot (1) does not answer the question or (2) gives irrelevant information
or (3) asks the user to find out the answer on his or her own.

2260 16.20%

3 Point out specific search results that can answer the question. 2255 16.17%

4 Suggest that the bot should use the search results. 2130 15.27%

5 States that the answer is (1) factually incorrect, or (2) not grounded on the search results. 1572 11.27%

6 Point out that the bot’s answer is not specific/accurate/complete/detailed. 1309 9.39 %

7 Point out that the bot is not confident in its answers and always begins its responses with
“I am not sure” or “I don’t know”.

582 4.17%

8 Complain about repetition/rudeness in bot responses. 137 0.99%

Table 5: Case study 2 (response generation): 8 groups of system-level feedback derived from automatic clustering.

Type Criteria (Abbreviated) GRD Fact. Help. Rel. Conf. Sat.

(1): Baseline Use a conversational tone; no more than 20 words. 34.68 86.60 81.40 89.40 99.60 74.10
(2): (1)+Groundedness Above + Use search results to give answers. 36.81 86.60 85.00 89.00 99.90 75.80
(3): (2)+Relevance Above + Be concise and targeted, no irrelevant information. 36.77 88.80 85.60 89.40 99.90 74.90
(4): (3)+Confidence Above + Don’t start with “I’m not sure” or “I don’t know”. 39.02 87.20 86.60 90.60 99.90 77.00

Table 6: Case study 2 (response generation): refinement quality via designed metrics when using different criteria
to prompt GPT-3.5 for response refinement. Metrics measured: GRD: groundedness, Fact.: factuality, Help.:
helpfulness, Rel.: relevance, Conf.: confidence. Sat.: satisfaction. The full criteria texts can be found in the
Appendix A.2.

GPT-3.5 with chain-of-thought to measure factual-
ity (Luo et al., 2023). See Appendix A.3 for details.

Helpfulness measures whether the response di-
rectly answers the user’s question. We use GPT-3.5
to measure helpfulness. See Appendix A.3 for de-
tails.

Relevance measures whether the response remains
on topic and offers pertinent information. We
again use GPT-3.5, with further details in the Ap-
pendix A.3.

Confidence measures whether the response is in a
certain and confident tone. We use simple heuris-
tics to gauge confidence, counting the occurrences
of “I’m not sure” and “I don’t know.” If either
phrase appears, we consider the response unconfi-
dent; otherwise, it’s considered confident.

Satisfaction measures whether the response satis-
fies the user, similar to “satisfaction” in §5.1.1.

6.2 Construct refinement training data

As in §5.2, we first randomly sample 1,000 satisfied
responses together with their contexts to add to our
training data D. Then, we go through the following
three steps: (1) refinement generation, (2) quality

check and (3) collection of filtered data. We will
describe (1) in detail in the following section.

6.2.1 Refinement Generation

We use GPT-3.5 with criteria-based prompts to re-
fine 1,000 sampled unsatisfied responses (details
in Appendix A.2). As in §5.2.1, we conduct ab-
lation studies to demonstrate the effectiveness of
derived criteria. The results in Table 6 highlight:
(i) Adding the groundedness criterion improves the
groundedness metric. (ii) Adding the relevance
criterion increases helpfulness and relevance. (iii)
GPT-3.5 refinements are confident and rarely in-
clude phrases like “I’m not sure” or “I don’t know”.
(iv) In terms of satisfaction, the best performance
is achieved by the prompt with all criteria added.
Therefore, when collecting training data, we use
the three criteria-augmented prompt for response
refinement.

6.3 Fine-tuning the Model

We use the 400M BB2 main model as the baseline
response generator and consider two fine-tuning
settings: (1) using only satisfied data; and (2) using
both satisfied and refinement data, following §5.3.

2778

Valid Test Test Unseen

GRD Fact. Help. Rel. Conf. Sat. GRD Fact. Help. Rel. Conf. Sat. GRD Fact. Help. Rel. Conf. Sat.

BB2(QG+RG) 34.1 50.0 19.0 68.2 66.8 27.1 32.4 58.3 22.0 67.8 73.7 34.9 32.9 58.4 21.8 69.0 65.7 32.1
SLT(QG)+BB2(RG) 39.0 66.4 26.8 74.2 80.6 33.3 35.2 58.4 29.8 71.4 83.4 40.9 37.5 59.1 30.2 73.8 77.5 37.8
SLT(QG+RG()) 30.6 59.1 29.2 75.6 76.4 35.3 27.8 53.7 31.5 69.6 80.6 41.7 29.7 60.5 31.3 73.4 72.6 39.3
SLT(QG+RG(+)) 48.2 69.1 41.3 81.6 81.1 50.7 43.2 66.7 44.5 76.4 83.6 55.7 45.3 71.6 43.9 79.6 76.3 51.4

Table 7: Evaluate dialog systems on FITS using designed metrics. See Table 6 caption for abbreviation meanings.

Valid Test Test Unseen

F1 PPL F1 PPL F1 PPL

BB2(QG+RG) 25.78 9.40 28.30 7.41 22.99 7.75
SLT(QG)+BB2(RG) 26.69 8.24 28.66 6.66 24.88 7.03
SLT(QG+RG()) 28.20 7.41 29.73 6.04 25.54 6.43
SLT(QG+RG(+)) 25.57 7.62 26.90 6.15 24.34 6.58

Table 8: Evaluate dialog systems on FITS via F1 & PPL.

6.4 Evaluation using designed metrics
We evaluate the following systems:

• BB2(QG+RG) Original BB2 response generator
paired with the original BB2 query generator.

• SLT(QG)+BB2(RG) Original BB2 response
model paired with our system level trained query
generator.

• SLT(QG+RG()) Our system-level trained re-
sponse generator using satisfied data only, paired
with our system level trained query generator.

• SLT(QG+RG(+)) Our system-level trained
response generator using satisfied and refinement
data, paired with our system level trained query
generator.

Results on Standard Metrics Standard metrics
are shown in Table 8. Key takeaways include:
(i) When using the BB2 response generator, our
trained query generator improves the final response
quality compared to the BB2 query generator. (ii)
Training the response generator on satisfied data
leads to further improvements when using our best
query generator. (iii) However, training with addi-
tional refinement data does not surpass using satis-
fied data alone. The reason behind (iii) relates to
FITS’s gold response collection. Often, the gold re-
sponse is a user-guided, BB2-generated reply. This
biases reference-based metrics towards the origi-
nal BB2 outputs. Moreover, low-quality references
may underestimate model performance when us-
ing reference-based metrics (Zhang et al., 2023a)

and we confirmed this with a human evaluation of
response quality (see Appendix A.4 for details).

Results on Our Designed Metrics Table 7 shows
the results when using our designed metrics. No-
tably, (i) when using the BB2 response genera-
tor, our trained query generator improves the final
response quality from all perspectives compared
to the BB2 query generator. (ii) When equipped
with our trained query generator, training the re-
sponse generator on satisfied data leads to consis-
tent improvements in helpfulness compared to the
BB2 response generator, indicating the importance
of domain-adapted training. (iii) Training the re-
sponse generator on both satisfied and refinement
data improves the final response quality from all
perspectives compared to training on satisfied data
only, highlighting refinement data’s utility in rec-
tifying model errors. (iv) In terms of satisfaction,
the best-performing system employs our query and
response generators, both trained on satisfied and
refinement data. Additionally, as a further base-
line, we gathered the first 200 unsatisfied responses
into a sparse refinement training set, refined via
instance-level feedback. A model trained on this set
alongside satisfied data, fell short compared to our
system-level trained response generator, as mea-
sured by our designed metrics, see Appendix A.5
for details.

7 Combining System-level Feedback and
Instance-level Feedback

Previous studies (Scheurer et al., 2022b; Shi et al.,
2022; Chen et al., 2023a) have shown the effective-
ness of instance-level feedback in the refinement
process. To take a step further, we explore the syn-
ergy of system-level and instance-level feedback
on dialogue systems. Using response generation as
a case study, we collect both human and GPT-3.5
feedback (prompt in Appendix A.6) for the 1,000
unsatisfied responses from §6.2.1. We then design
a refinement prompt integrating both system-level

2779

Valid Test Test Unseen

GRD Fact. Help. Rel. Conf. Sat. GRD Fact. Help. Rel. Conf. Sat. GRD Fact. Help. Rel. Conf. Sat.

SLT(QG+RG(+)) 48.2 69.1 41.3 81.6 81.1 50.7 43.2 66.7 44.5 76.4 83.6 55.7 45.3 71.6 43.9 79.6 76.3 51.4

SLT(QG+RG(+HFB)) 48.8 68.1 43.3 81.4 91.9 57.3 43.8 68.5 47.8 79.4 93.5 61.2 45.0 72.2 45.4 81.2 88.0 57.5

SLT(QG+RG(+GPT3.5FB)) 44.0 66.3 39.4 78.6 80.2 49.4 38.9 66.7 45.6 78.6 81.7 54.7 40.9 69.9 45.2 80.6 75.3 53.1

Table 9: Case study for combining system-level and instance-level feedback: performance of different dialog
systems on FITS datasets, evaluated using our designed metrics. See Table 6 for the meaning of the abbreviations.

and instance-level feedback, i.e. both the desired
criteria and the specific example-based feedback
(see Appendix A.2). We introduce three systems
for comparison.

• SLT(QG+RG(+)) Our system-level trained
response generator using satisfied and refinement
data, paired with our trained query generator.
The system does not use instance-level feedback.

• SLT(QG+RG(+HFB)) Our system-level
trained response generator paired with trained
query generator. The response generator is
trained on satisfied and refinement data (where
we incorporate human-written instance-level
feedback (HFB) into the response refinement
prompt).

• SLT(QG+RG(+GPT3.5FB)) Our system-
level trained response and query generators,
where the response generator is trained on satis-
fied and refinement data. We incorporate GPT-
3.5, rather than human, generated instance-level
feedback (GPT3.5FB) into the response refine-
ment prompt.

7.1 Results of Adding Instance-level Feedback
Results using our designed metrics are in Table 9.
We observe that adding human-written feedback to
the response refinement part brings improvements
in the five criteria-based metrics most of the time,
and increases the overall satisfaction consistently.
However, adding GPT-3.5 feedback results in de-
graded performance in groundedness, factuality
and confidence. Those observations raise two ques-
tions: (1) How does GPT-3.5 feedback differ from
human feedback? (2) How does human/GPT-3.5
feedback impact response refinement? We address
these questions in subsequent sections.

7.2 Human vs. GPT-3.5 Feedback Metrics
To understand why adding human feedback is more
beneficial than GPT-3.5 feedback, we analyze their
differences through the following perspectives. (1)

Help.

Det.

Div.

Lang.
25
50
75
100

Div.

Lang.

Help.

Det.
25
50
75
100

Help.

Div.

Lang. Det.Lang.

Help.

Det.

Div.

Help.

Verb.

Div.

Lang.
25
50
75

100
Help.

Verb.

Div.

Lang.
25
50
75

100

0

50

100

Success Rate Verbosity Diversity Grammar

0

50

100

Success Rate Verbosity Diversity Grammar

Human Feedback GPT-3.5 Feedback

Figure 2: Comparison of human and GPT-3.5 feedback.

Refinement GRD Fact. Help. Rel. Conf. Sat.

No feedback 39.16 90.35 83.48 98.10 100.00 76.50
Human FB 40.11 87.50 81.10 97.80 99.84 74.60
GPT-3.5 FB 32.77 81.50 90.20 98.40 99.84 79.50

Table 10: Quality of refinements with no/human/GPT-
3.5 feedback. See Table 6 for abbreviation meanings.

Refinement Success Rate: Percentage of satisfac-
tory feedback-driven refinements. (2) Verbosity:
Average word count of feedback. (3) Diversity:
Percentage of unique words. (4) Grammar: Per-
centage of grammatical feedback sentences.8

In Figure 2, we show characteristics of human
and GPT-3.5 feedback. Though GPT-3.5 feedback
is lengthier and grammatically sound, it lacks the
language diversity of human feedback. Upon man-
ual examination, GPT-3.5 feedback is often general,
whereas human feedback is direct and specific. See
the Appendix A.7 for feedback examples.

7.3 Feedback Impact on Refinements

While GPT-3.5 feedback leads to a higher refine-
ment success rate (see Figure 2), the performance
of the resulting dialog system trained with these
refinements falls short w.r.t. all our designed met-
rics compared to the system trained using human
feedback-driven refinements as shown in Table 9.
Therefore, to understand this further we also eval-
uate the refinement quality via designed metrics
from §6.1.1, with results in Table 10. Refinements
obtained using human feedback mainly stand out

8We use Gramformer for grammar error checking: https:
//github.com/PrithivirajDamodaran/Gramformer.

2780

https://github.com/PrithivirajDamodaran/Gramformer
https://github.com/PrithivirajDamodaran/Gramformer

in groundedness and factuality. This aligns with
the feedback clusters in Table 5 where over 40%
of the feedback suggests the bot focus more on the
search results; that is, focusing more on the search
results will make the refinements more grounded,
leading to a more grounded final system (see Ta-
ble 9). Since language models are known to hal-
lucinate regardless of their size (Ji et al., 2023; Li
et al., 2023), grounding their generations to the
documents is important to ensure factuality. Hence,
groundedness of refinements plays an essential role
in the performance of trained models.

7.4 Advantages of Human Feedback

We find that human feedback pinpoints issues more
effectively than GPT-3.5 feedback. For example,
when a response does not answer a question, GPT-
3.5 will say that the response is unhelpful because it
does not contain the information the user wants. In
contrast, human feedback often provides specific
hints from the search results, guiding the model
towards a better response. Thus, despite GPT-3.5
producing seemingly informative feedback, it cur-
rently can’t match the nuance of human annotators.

8 Conclusion

In this paper, we present a framework that har-
nesses system-level NL feedback. By using a
set of instance-level feedback, we derive system-
level feedback for refinement prompt engineering
and metric design. We show the effectiveness of
system-level feedback through two case studies:
generating queries and formulating dialogue re-
sponses. We further combine system-level and
instance-level feedback in the refinement data con-
struction process, and observe that the resulting
trained response generator makes considerable im-
provements versus either alone. Finally, we explore
the possibility of substituting instance-level human
feedback with GPT-3.5 feedback. We find that
human feedback stands out in capturing main is-
sues, while GPT-3.5 feedback is lengthy and less
focused.

9 Limitations

Due to the lack of publicly available natural lan-
guage feedback datasets, our experiments were lim-
ited to the small-scale dialog system BB2, which
does not represent the current state-of-the-art. We
recognize that integrating more advanced models
such as ChatGPT could yield further insights, pre-

senting a promising direction for future research.
As relevant datasets become more accessible, we
look forward to exploring these possibilities.

10 Acknowledgement

The work was done as part of the Meta–NYU
mentorship program and partly supported by the
National Science Foundation (under NSF Award
1922658). Kyunghyun Cho is supported by the
Samsung Advanced Institute of Technology (under
the project Next Generation Deep Learning: From
Pattern Recognition to AI).

References
Leonard Adolphs, Tianyu Gao, Jing Xu, Kurt Shuster,

Sainbayar Sukhbaatar, and Jason Weston. 2022. The
cringe loss: Learning what language not to model.
arXiv preprint arXiv:2211.05826.

Kushal Arora, Kurt Shuster, Sainbayar Sukhbaatar, and
Jason Weston. 2022. Director: Generator-classifiers
for supervised language modeling.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain,
Deep Ganguli, Tom Henighan, Andy Jones, Nicholas
Joseph, Ben Mann, Nova DasSarma, Nelson El-
hage, Zac Hatfield-Dodds, Danny Hernandez, Jack-
son Kernion, Kamal Ndousse, Catherine Olsson,
Dario Amodei, Tom Brown, Jack Clark, Sam Mc-
Candlish, Chris Olah, and Jared Kaplan. 2021. A
general language assistant as a laboratory for align-
ment.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan,
Nicholas Joseph, Saurav Kadavath, Jackson Kernion,
Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac
Hatfield-Dodds, Danny Hernandez, Tristan Hume,
Scott Johnston, Shauna Kravec, Liane Lovitt, Neel
Nanda, Catherine Olsson, Dario Amodei, Tom
Brown, Jack Clark, Sam McCandlish, Chris Olah,
Ben Mann, and Jared Kaplan. 2022. Training a help-
ful and harmless assistant with reinforcement learn-
ing from human feedback.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:

2781

http://arxiv.org/abs/2206.07694
http://arxiv.org/abs/2206.07694
http://arxiv.org/abs/2112.00861
http://arxiv.org/abs/2112.00861
http://arxiv.org/abs/2112.00861
http://arxiv.org/abs/2204.05862
http://arxiv.org/abs/2204.05862
http://arxiv.org/abs/2204.05862
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Oğuz ’Oz’ Buruk. 2023. Academic writing with gpt-3.5:
Reflections on practices, efficacy and transparency.

Angelica Chen, Jérémy Scheurer, Tomasz Korbak,
Jon Ander Campos, Jun Shern Chan, Samuel R. Bow-
man, Kyunghyun Cho, and Ethan Perez. 2023a. Im-
proving code generation by training with natural lan-
guage feedback.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023b. Teaching large language mod-
els to self-debug.

I-Chun Chern, Steffi Chern, Shiqi Chen, Weizhe Yuan,
Kehua Feng, Chunting Zhou, Junxian He, Graham
Neubig, Pengfei Liu, et al. 2023. Factool: Factu-
ality detection in generative ai–a tool augmented
framework for multi-task and multi-domain scenar-
ios. arXiv preprint arXiv:2307.13528.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Al-
bert Webson, Shixiang Shane Gu, Zhuyun Dai,
Mirac Suzgun, Xinyun Chen, Aakanksha Chowdh-
ery, Alex Castro-Ros, Marie Pellat, Kevin Robinson,
Dasha Valter, Sharan Narang, Gaurav Mishra, Adams
Yu, Vincent Zhao, Yanping Huang, Andrew Dai,
Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Ja-
cob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le,
and Jason Wei. 2022. Scaling instruction-finetuned
language models.

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei
Liu. 2023. Gptscore: Evaluate as you desire.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence
embeddings. In Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Amelia Glaese, Nat McAleese, Maja Trębacz, John
Aslanides, Vlad Firoiu, Timo Ewalds, Maribeth Rauh,
Laura Weidinger, Martin Chadwick, Phoebe Thacker,
Lucy Campbell-Gillingham, Jonathan Uesato, Po-
Sen Huang, Ramona Comanescu, Fan Yang, Abigail
See, Sumanth Dathathri, Rory Greig, Charlie Chen,
Doug Fritz, Jaume Sanchez Elias, Richard Green,
Soňa Mokrá, Nicholas Fernando, Boxi Wu, Rachel
Foley, Susannah Young, Iason Gabriel, William Isaac,
John Mellor, Demis Hassabis, Koray Kavukcuoglu,
Lisa Anne Hendricks, and Geoffrey Irving. 2022.
Improving alignment of dialogue agents via targeted
human judgements.

Anna-Carolina Haensch, Sarah Ball, Markus Herklotz,
and Frauke Kreuter. 2023. Seeing chatgpt through
students’ eyes: An analysis of tiktok data.

Braden Hancock, Antoine Bordes, Pierre-Emmanuel
Mazare, and Jason Weston. 2019. Learning from
dialogue after deployment: Feed yourself, chatbot!

In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 3667–
3684, Florence, Italy. Association for Computational
Linguistics.

J. A. Hartigan and M. A. Wong. 1979. A k-means
clustering algorithm. JSTOR: Applied Statistics,
28(1):100–108.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu,
Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput.
Surv., 55(12):248:1–248:38.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Mojtaba Komeili, Kurt Shuster, and Jason Weston. 2022.
Internet-augmented dialogue generation. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 8460–8478, Dublin, Ireland. Association
for Computational Linguistics.

Jiwei Li, Alexander H. Miller, Sumit Chopra,
Marc’Aurelio Ranzato, and Jason Weston. 2017. Di-
alogue learning with human-in-the-loop.

Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun
Nie, and Ji-Rong Wen. 2023. Halueval: A large-
scale hallucination evaluation benchmark for large
language models.

Margaret Li, Stephen Roller, Ilia Kulikov, Sean Welleck,
Y-Lan Boureau, Kyunghyun Cho, and Jason Weston.
2019. Don’t say that! making inconsistent dialogue
unlikely with unlikelihood training. arXiv preprint
arXiv:1911.03860.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Comput. Surv., 55(9):195:1–195:35.

Zheheng Luo, Qianqian Xie, and Sophia Ananiadou.
2023. Chatgpt as a factual inconsistency evaluator
for text summarization.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Sean Welleck, Bodhisattwa Prasad Majumder,
Shashank Gupta, Amir Yazdanbakhsh, and Peter
Clark. 2023. Self-refine: Iterative refinement with
self-feedback.

2782

http://arxiv.org/abs/2304.11079
http://arxiv.org/abs/2304.11079
http://arxiv.org/abs/2303.16749
http://arxiv.org/abs/2303.16749
http://arxiv.org/abs/2303.16749
http://arxiv.org/abs/2304.05128
http://arxiv.org/abs/2304.05128
https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.48550/ARXIV.2210.11416
http://arxiv.org/abs/2302.04166
http://arxiv.org/abs/2209.14375
http://arxiv.org/abs/2209.14375
http://arxiv.org/abs/2303.05349
http://arxiv.org/abs/2303.05349
https://doi.org/10.18653/v1/P19-1358
https://doi.org/10.18653/v1/P19-1358
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2022.acl-long.579
http://arxiv.org/abs/1611.09823
http://arxiv.org/abs/1611.09823
http://arxiv.org/abs/2305.11747
http://arxiv.org/abs/2305.11747
http://arxiv.org/abs/2305.11747
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
http://arxiv.org/abs/2303.15621
http://arxiv.org/abs/2303.15621
http://arxiv.org/abs/2303.17651
http://arxiv.org/abs/2303.17651

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow in-
structions with human feedback. arXiv preprint
arXiv:2203.02155.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills,
Long Ouyang, Jonathan Ward, and Jan Leike. 2022.
Self-critiquing models for assisting human evalua-
tors.

Jérémy Scheurer, Jon Ander Campos, Jun Shern Chan,
Angelica Chen, Kyunghyun Cho, and Ethan Perez.
2022a. Training language models with language feed-
back.

Jérémy Scheurer, Jon Ander Campos, Jun Shern Chan,
Angelica Chen, Kyunghyun Cho, and Ethan Perez.
2022b. Training language models with language
feedback.

Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak,
Jun Shern Chan, Angelica Chen, Kyunghyun Cho,
and Ethan Perez. 2023. Training language models
with language feedback at scale.

Mrinank Sharma, Meg Tong, Tomasz Korbak, David
Duvenaud, Amanda Askell, Samuel R. Bowman,
Newton Cheng, Esin Durmus, Zac Hatfield-Dodds,
Scott R. Johnston, Shauna Kravec, Timothy Maxwell,
Sam McCandlish, Kamal Ndousse, Oliver Rausch,
Nicholas Schiefer, Da Yan, Miranda Zhang, and
Ethan Perez. 2023. Towards understanding syco-
phancy in language models.

Weiyan Shi, Emily Dinan, Kurt Shuster, Jason Weston,
and Jing Xu. 2022. When life gives you lemons,
make cherryade: Converting feedback from bad re-
sponses into good labels.

Kurt Shuster, Mojtaba Komeili, Leonard Adolphs,
Stephen Roller, Arthur Szlam, and Jason Weston.
2022. Language models that seek for knowledge:
Modular search & generation for dialogue and
prompt completion. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
373–393, Abu Dhabi, United Arab Emirates. Associ-
ation for Computational Linguistics.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 3008–3021. Curran Associates,
Inc.

Niket Tandon, Aman Madaan, Peter Clark, and Yiming
Yang. 2022. Learning to repair: Repairing model out-
put errors after deployment using a dynamic memory
of feedback. In Findings of the Association for Com-
putational Linguistics: NAACL 2022, pages 339–352,
Seattle, United States. Association for Computational
Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates,
Inc.

Jason E Weston. 2016. Dialog-based language learn-
ing. In Advances in Neural Information Processing
Systems, volume 29. Curran Associates, Inc.

Jing Xu, Arthur Szlam, and Jason Weston. 2022a. Be-
yond goldfish memory: Long-term open-domain con-
versation. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5180–5197, Dublin,
Ireland. Association for Computational Linguistics.

Jing Xu, Megan Ung, Mojtaba Komeili, Kushal Arora,
Y-Lan Boureau, and Jason Weston. 2022b. Learning
new skills after deployment: Improving open-domain
internet-driven dialogue with human feedback.

Weizhe Yuan, Ethan Chern, Steffi Chern, Chunting
Zhou, Chunpu Xu, Binjie Wang, and Pengfei Liu.
2023. chateval.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open pre-
trained transformer language models.

Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang,
Kathleen McKeown, and Tatsunori B. Hashimoto.
2023a. Benchmarking large language models for
news summarization.

Zheng Zhang, Jie Gao, Ranjodh Singh Dhaliwal, and
Toby Jia-Jun Li. 2023b. Visar: A human-ai argumen-
tative writing assistant with visual programming and
rapid draft prototyping.

A Appendix

A.1 Manual Efforts Required to Derive
System-level Criteria

In our approach, the feedback grouping was a
semi-automated process. Initially, we employed
k-means clustering, utilizing the SimCSE encoder
to categorize the feedback sentences. This cluster-
ing process was conducted once without human

2783

https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/2206.05802
http://arxiv.org/abs/2206.05802
http://arxiv.org/abs/2204.14146
http://arxiv.org/abs/2204.14146
https://doi.org/10.48550/ARXIV.2204.14146
https://doi.org/10.48550/ARXIV.2204.14146
http://arxiv.org/abs/2303.16755
http://arxiv.org/abs/2303.16755
http://arxiv.org/abs/2310.13548
http://arxiv.org/abs/2310.13548
https://doi.org/10.48550/ARXIV.2210.15893
https://doi.org/10.48550/ARXIV.2210.15893
https://doi.org/10.48550/ARXIV.2210.15893
https://doi.org/10.18653/v1/2022.findings-emnlp.27
https://doi.org/10.18653/v1/2022.findings-emnlp.27
https://doi.org/10.18653/v1/2022.findings-emnlp.27
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://doi.org/10.18653/v1/2022.findings-naacl.26
https://doi.org/10.18653/v1/2022.findings-naacl.26
https://doi.org/10.18653/v1/2022.findings-naacl.26
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper/2016/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf
https://doi.org/10.18653/v1/2022.acl-long.356
https://doi.org/10.18653/v1/2022.acl-long.356
https://doi.org/10.18653/v1/2022.acl-long.356
https://doi.org/10.48550/ARXIV.2208.03270
https://doi.org/10.48550/ARXIV.2208.03270
https://doi.org/10.48550/ARXIV.2208.03270
https://doi.org/10.5281/zenodo.1234
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2301.13848
http://arxiv.org/abs/2301.13848
http://arxiv.org/abs/2304.07810
http://arxiv.org/abs/2304.07810
http://arxiv.org/abs/2304.07810

intervention. Then we employed a streamlined,
non-iterative manual approach for cluster curation.
Specifically, two domain experts independently
reviewed 50 samples (each requires around 30s
to read) from each of the 15 clusters (including
clusters for queries and responses), requiring ap-
proximately 375 minutes per person for this phase.
This was followed by a collaborative discussion
to merge insights and remove duplicate clusters,
amounting to an additional 60 minutes per expert.
Thus, the total human effort amounted to approxi-
mately 14.5 person-hours.

A.2 Refinement with GPT-3.5
We instruct GPT-3.5 to generate query refinements
and response refinements using carefully crafted
prompts, as shown in Table 11 and Table 12. The
corresponding ablation studies with full criteria
text for query refinement and response refinement
are shown in Table 13 and Table 14. The prompt
for using both system-level feedback and instance-
level feedback for response refinement is shown in
Table 15.

A.3 Evaluation with GPT-3.5
Since previous studies have demonstrated GPT-3’s
capability in the evaluation of aspects such as fac-
tuality (Luo et al., 2023), helpfulness (Fu et al.,
2023), relevance (Fu et al., 2023), etc. We use GPT-
3.5 to evaluate the following perspectives with the
help of ChatEval (Yuan et al., 2023).

Query Specificity We use GPT-3.5 to measure
specificity (Fu et al., 2023) where we concatenate
the dialog context and search query together and
ask GPT-3.5 to judge whether the search query is
specific using the chain-of-thought technique (Wei
et al., 2022). In particular, we use the prompt as
shown in Table 16. Before applying it to measure
the quality of query refinements. We manually
labeled 50 search queries from the FITS training
split, and each one’s specificity label was decided
by three annotators through majority vote. We cal-
culate the agreement between GPT-3.5 and human
annotators, and the result is 80%.

Response Factuality We concatenate the search
documents and response, and ask GPT-3.5 to judge
if all information in the response is supported by
the search documents. The prompt we use is shown
in Table 17. We conducted a meta-evaluation where
we asked three NLP PhD students at the same uni-
versity as the first author to manually label 50 re-

sponses from the FITS training split. The anno-
tation guideline we showed them is the same as
the prompt designed for GPT-3.5 evaluation. Then,
the three annotators decided on each one’s factual-
ity label through a majority vote. The agreement
between GPT-3.5 and human annotators is 88%.

Response Helpfulness The prompt we use is
shown in Table 18. We conducted a meta-
evaluation where we manually labeled 30 responses
from the FITS training split and 20 responses from
the Red Team dataset (Bai et al., 2022). Three anno-
tators decided on each response’s helpfulness label
through majority vote. The agreement between
GPT-3.5 and human annotators is 84%.

Response Relevance The prompt we use is
shown in Table 19. We conducted a meta-
evaluation where we manually labeled 30 responses
from the FITS training split and 20 responses from
the Red Team dataset (Bai et al., 2022). Three
annotators decided on each response’s relevance la-
bel through majority vote. The agreement between
GPT-3.5 and human annotators is 84%.

A.4 Human Evaluation on Response Outputs
In §6.4, our analysis revealed that training the re-
sponse generator with both satisfied data and re-
finement data does not yield superior performance
over using satisfied data alone, as evidenced by the
F1 score and Perplexity (PPL) metrics. We hypoth-
esized that this outcome might be attributed to a
data bias in the FITS dataset, wherein the gold stan-
dard references are frequently produced by the BB2
model. Consequently, standard reference-based
metrics, such as F1, tend to favor responses that
closely resemble BB2 outputs. This bias poten-
tially results in the underestimation of performance
for models generating responses deviating from the
BB2 distribution.

To address this limitation, we expanded our
evaluation methodology beyond model-based met-
rics. We conducted an additional human eval-
uation to compare 100 responses generated
by SLT(QG+RG()) and SLT(QG+RG(+))
against the same queries. In this evaluation, two
human annotators were asked to select their pre-
ferred response from the two provided, with the
options including a “tie”. If both annotators agreed
that one response was superior, the correspond-
ing model was awarded a “win”. In cases of
disagreement or agreement on ties, the outcome
was recorded as a tie. The results of this human

2784

Prompt for query refinement with GPT-3.5

Given the dialog history, your task is to refine the original search query used to search the Internet so that the modified search
query will search for documents that better match the user’s needs. You should follow the following requirements:
[Criteria]
Below is the dialog context.
[Dialog Context]
Below is the bot’s unsatisfactory query.
[Original Query]
You should modify the original search query into the following:

Table 11: Case study 1: prompt for query refinement with GPT-3.5. [Criteria], [Dialog Context] and
[Original Query] are placeholders to be filled. The underlined sentence is removed when [Criteria] is None.

Prompt for response refinement with GPT-3.5

Given the dialog history and the unsatisfactory last response the bot gave, your task is to modify the response appropriately to
keep the conversation fluent and consistent. You should follow the following requirements:
[Criteria]
Below is the dialog context.
[Dialog Context]
Below is the bot’s unsatisfactory response.
[Original Response]
Below are some useful search results that you could use.
[Search Documents]
You should modify the original response into the following:

Table 12: Case study 2: prompt for response refinement with GPT-3.5. [Criteria], [Dialog Context],
[Original Response] and [Search Documents] are placeholders to be filled.

0 20 40 60 80 100

35% 44% 21%

SLT(QG+RG(+)) wins
SLT(QG+RG()) wins

Tie

Figure 3: Win rates for system trained with both satisfied
and refinement data and system trained with satisfied
data only.

evaluation, presented in Figure 3, indicate that
SLT(QG+RG(+)) achieved a higher win rate
compared to SLT(QG+RG()). This finding con-
firms our hypothesis that reference-based metrics
alone are insufficient for evaluating this task, high-
lighting the need for more robust metrics in system
assessment.

A.5 Instance-level Feedback vs. System-level
Feedback

We argue that one of the drawbacks of instance-
level approaches that utilize NL feedback is that
they typically assume that every instance receives
a feedback text, which is not practical in the real
world where feedback tends to be sparse. There-
fore, we also conducted a comparison experi-
ment that assumes sparse instance-level feedback.
Specifically, we collected the first 200 unsatisfied

responses into a sparse refinement training set, re-
fined via instance-level feedback only. We then
train the response generator on this set alongside
the satisfied data and compare its performance to
our system-level trained model. Table 20 shows
the performance of the two models as measured
by our designed metrics. The system-level trained
response generator outperforms the sparse instance-
level trained response generator by a large margin
on all metrics, demonstrating the importance of
system-level feedback in a sparse instance-level
feedback setting.

A.6 Feedback Generation with GPT-3.5
Previous studies have demonstrated the capability
of large language models to generate informative
and useful feedback (Madaan et al., 2023; Chen
et al., 2023b). Therefore, we also investigate using
GPT-3.5 to generate instance-level feedback for
each unsatisfied response. The prompt we use for
feedback generation is in Table 21.

A.7 Examples of GPT-3.5 and Human
Instance-level Feedback

We list examples of instance-level feedback written
by humans and GPT-3.5 in Table 22.

2785

Type Criteria No
n-

co
py

Sp
ec

ifi
cit

y
Re

ad
ab

ili
ty

Co
nc

ise
ne

ss
Co

ve
ra

ge
Sa

tis
fa

ct
io

n

Baseline None 4.06 79.40 19.46 14.87 29.80 61.50

Baseline
+Rephrase

(1) To better adapt to search engines, it is best not to copy the user’s original
words directly. You can rephrase the user’s question, use some keywords for the
search, and if the user mentions some abbreviations, restore them to their full
names.

4.98 83.20 19.54 15.04 26.50 62.10

Baseline
+Rephrase
+Specificity

(1) To better adapt to search engines, it is best not to copy the user’s original
words directly. You can rephrase the user’s question, use some keywords for the
search, and if the user mentions some abbreviations, restore them to their full
names. (2) Be accurate and specific enough to reflect the user’s needs.

5.00 84.20 18.77 14.50 28.80 63.30

Baseline
+Rephrase
+Specificity
+Readability

(1) To better adapt to search engines, it is best not to copy the user’s original
words directly. You can rephrase the user’s question, use some keywords for the
search, and if the user mentions some abbreviations, restore them to their full
names. (2) Be accurate and specific enough to reflect the user’s needs. (3) To
be able to search for more results, you should use more simple and commonly
used words.

5.08 80.80 19.53 15.97 29.40 62.40

Baseline
+Rephrase
+Specificity
+Readability
+Conciseness

(1) To better adapt to search engines, it is best not to copy the user’s original
words directly. You can rephrase the user’s question, use some keywords for the
search, and if the user mentions some abbreviations, restore them to their full
names. (2) Be accurate and specific enough to reflect the user’s needs. (3) To
be able to search for more results, you should use more simple and commonly
used words. (4) Your search query should be concise. If the user asks multiple
questions, you should focus on his/her first question.

4.81 80.00 19.70 16.63 35.30 62.70

Table 13: Case study 1 (query generation): refinement quality via designed metrics when using different criteria to
prompt GPT-3.5 for query refinement.

Type Criteria G
ro

un
de

dn
es

s
Fa

ct
ua

lit
y

H
el

pf
ul

ne
ss

R
el

ev
an

ce
C

on
fid

en
ce

Sa
tis

fa
ct

io
n

Baseline (1) The modified response should be conversational in tone and no more than
twenty words.

34.68 86.60 81.40 89.40 99.60 74.10

Baseline
+Groundedness

(1) The modified response should be conversational in tone and no more than
twenty words. (2) If the user asks a question, you should use relevant search
results to answer the user’s question correctly. Please do not let the user check
out some resources on his or her own.

36.81 86.60 85.00 89.00 99.90 75.80

Baseline
+Groundedness
+Relevance

(1) The modified response should be conversational in tone and no more than
twenty words. (2) If the user asks a question, you should use relevant search
results to answer the user’s question correctly. Please do not let the user check
out some resources on his or her own. (3) Your modified response should be
as concise and targeted as possible, and not include additional information the
user has not asked for.

36.77 88.80 85.60 89.40 99.90 74.90

Baseline
+Groundedness
+Relevance
+Confidence

(1) The modified response should be conversational in tone and no more than
twenty words. (2) If the user asks a question, you should use relevant search
results to answer the user’s question correctly. Please do not let the user check
out some resources on his or her own. (3) Your modified response should be
as concise and targeted as possible, and not include additional information the
user has not asked for. (4) Please be confident in your response, and don’t start
your response with “I’m not sure” or “I don’t know”.

39.02 87.20 86.60 90.60 99.90 77.00

Table 14: Case study 2 (response generation): refinement quality via designed metrics when using different criteria
to prompt GPT-3.5 for response refinement.

2786

Prompt for response refinement with GPT-3.5 (with instance-level feedback)

Given the dialog history and the unsatisfactory last response the bot gave, your task is to modify the response appropriately to
keep the conversation fluent and consistent. You should follow the following requirements:
[Criteria]
Below is the dialog context.
[Dialog Context]
Below is the bot’s unsatisfactory response.
[Original Response]
Below is the feedback for the bot’s unsatisfactory response.
[Feedback]
Below are some useful search results that you could use.
[Search Documents]
You should modify the original response into the following:

Table 15: Prompt for response refinement with GPT-3.5 (with instance-level feedback). [Criteria], [Dialog
Context], [Original Response], [Feedback] and [Search Documents] are placeholders to be filled.

Prompt for query specificity evaluation with GPT-3.5

You are evaluating a search query for a dialog using a specific set of standards. Below is the dialog context.
[Dialog Context]
Below is the search query.
[Query]
Below are the criteria.
Decide whether the search query is accurate and specific enough to enable retrieval of the most relevant documents on the
Internet that are sufficient to answer the user’s question.

Does the search query meet the criterion? First, write out in a step-by-step manner your reasoning about the criterion to be sure
that your conclusion is correct. Avoid simply stating the correct answers at the outset. Then print only the single character "Y" or
"N" (without quotes or punctuation) on its own line corresponding to the correct answer. At the end, repeat just the letter again
by itself on a new line.
Reasoning:

Table 16: Prompt used to let GPT-3.5 evaluate query specificity. [Dialog Context] and [Query] are placeholders
to be filled.

Prompt for response factuality evaluation with GPT-3.5

You are evaluating a response for a dialog using a specific set of standards. Below is the dialog context.
[Dialog Context]
Below are some search documents that may help continue this dialog.
[Search Documents]
Below is the response.
[Response]
Below is the criteria.
Determine if the information in the response can be found in one or more search documents.

Does the response meet the criterion? First, write out in a step-by-step manner your reasoning about the criterion to be sure that
your conclusion is correct. Avoid simply stating the correct answers at the outset. Then print only the single character "Y" or "N"
(without quotes or punctuation) on its own line corresponding to the correct answer. In the end, repeat just the letter again by
itself on a new line.
Reasoning:

Table 17: Prompt used to let GPT-3.5 evaluate response factuality. [Dialog Context], [Search Documents] and
[Reponse] are placeholders to be filled.

2787

Prompt for response helpfulness evaluation with GPT-3.5

You are evaluating a response for a dialog using a specific set of standards. Below is the dialog context.
[Dialog Context]
Below is the response.
[Response]
Below are the criteria.
Does the answer directly solve the question?

Does the response meet the criterion? First, write out in a step-by-step manner your reasoning about the criterion to be sure that
your conclusion is correct. Avoid simply stating the correct answers at the outset. Then print only the single character "Y" or "N"
(without quotes or punctuation) on its own line corresponding to the correct answer. In the end, repeat just the letter again by
itself on a new line.
Reasoning:

Table 18: Prompt used to let GPT-3.5 evaluate response helpfulness. [Dialog Context] and [Reponse] are
placeholders to be filled.

Prompt for response relevance evaluation with GPT-3.5

You are evaluating a response for a dialog using a specific set of standards. Below is the dialog context.
[Dialog Context]
Below is the response.
[Response]
Below are the criteria.
Is the response relevant to the topic at hand? It’s essential to recognize that the response does not need to be highly specific to the
preceding question. As long as it remains focused on the topic at hand, it is considered relevant.

Does the response meet the criterion? First, write out in a step-by-step manner your reasoning about the criterion to be sure that
your conclusion is correct. Avoid simply stating the correct answers at the outset. Then print only the single character "Y" or "N"
(without quotes or punctuation) on its own line corresponding to the correct answer. In the end, repeat just the letter again by
itself on a new line.
Reasoning:

Table 19: Prompt used to let GPT-3.5 evaluate response relevance. [Dialog Context] and [Response] are
placeholders to be filled.

Valid Test Test Unseen

GRD Fact. Help. Rel. Conf. Sat. GRD Fact. Help. Rel. Conf. Sat. GRD Fact. Help. Rel. Conf. Sat.

SLT(QG+RG(+)) 48.2 69.1 41.3 81.6 81.1 50.7 43.2 66.7 44.5 76.4 83.6 55.7 45.3 71.6 43.9 79.6 76.3 51.4
ILT(QG+RG(+)) 35.5 59.9 30.2 76.2 69.1 38.2 32.4 53.2 36.2 73.2 74.4 44.5 34.7 57.9 35.0 76.2 66.6 42.4

Table 20: Evaluate dialog systems on FITS using designed metrics. SLT(QG+RG(+)): Our system-level trained
response generator using satisfied and refinement data, paired with our trained query generator. ILT(QG+RG(
+)): Our instance-level trained response generator using satisfied and sparse refinement data, paired with our
trained query generator.

Prompt for feedback generation with GPT-3.5

Given the dialog history, the unsatisfactory last response the bot gave, and the requirements for a good response, your task is to
write detailed and constructive feedback to improve the unsatisfactory response. The requirements for a good response include
the following:
(1) The response should be conversational in tone and no more than twenty words.
(2) If the user asks a question, the response should use relevant search results to answer the user’s question correctly. It should
not leave the user to check out some resources on his or her own.
(3) The response should be as concise and targeted as possible, and not include additional information the user has not asked for.
(4) The response should be in a confident tone and not start with “I’m not sure” or “I don’t know”.

Below is the dialog context.
[Dialog Context]
Below is the bot’s unsatisfactory response.
[Original Response]
The feedback for the unsatisfactory response is the following:

Table 21: Prompt for feedback generation with GPT-3.5. [Dialog Context] and [Original Response] are
placeholders to be filled.

2788

Human written instance-level feedback GPT-3.5 written instance-level feedback

Good. You just need to include the reason and his age at the
time of his death in addition to this for a complete answer.

The response is not relevant to the user’s question and in-
cludes additional information that the user did not ask for.
A good response should focus on answering the user’s ques-
tion about how Fitzgerald died, using relevant search results.
It should be concise, confident, and conversational in tone.

You could tell me to take my cat to the vet when they get
sick.

The response is not helpful. Please provide information on
treatment options for cat rhinovirus. Use relevant search
results to answer the user’s question correctly and be concise
in your response. Avoid providing additional information
the user has not asked for.

The bot did not list Azerbaijan or Estonia, which were in-
cluded in the search results. The bot should include these
two other Soviet Republics in the response.

The response is informative but could be improved. Instead
of listing the republics in a long sentence, try breaking them
down into bullet points for easier reading. Also, it would be
helpful to mention that there were 15 republics in total, as
the user requested.

Again, the bot’s "answer" doesn’t really make sense. It
claims that a character, not an actor, played the part of Celie.

The response is confusing and irrelevant. Please provide a
clear and concise answer to the user’s question using rele-
vant search results. Avoid adding unnecessary information
or asking unrelated questions.

The answer is right there in the results, and Charles de
Gaulle isn’t correct.

The response is good, but it could be improved by being
more conversational and concise. Instead of just stating the
answer, try something like "Charles de Gaulle was the first
French president in 1848. Is there anything else I can help
you with?" This makes the response more engaging and
shows confidence in the answer.

Interesting. We need to know which premier specifically,
with data to back up the claim. Can we be more specific?

The response is not helpful as it does not answer the user’s
question. Please provide a specific answer with relevant
search results to support it. Avoid guessing or providing
irrelevant information. Be confident and concise in your
response.

Search about living creatures specifically. The response is not relevant to the user’s question. Please
provide a direct answer to the user’s question using relevant
search results. Avoid providing additional information that
the user has not asked for. Be confident in your response
and avoid starting with "I’m not sure" or "I don’t know".

Actually it looks like that happened way later. Let’s go back
to the Revolutionary War and how that affected Britain.

The response is not helpful as it does not answer the user’s
question. A better response would be to use relevant search
results to explain the reasons for the decline of the British
empire, such as economic challenges, decolonization move-
ments, and global power shifts. The response should be
confident and concise, and not include additional informa-
tion the user has not asked for.

Use the search results provided to formulate some answer.
Mention how there are wave patterns that one meteorologist
uses and got 2/3 correct, mention a tool that they use like the
doppler radar which looks for things like airborne tornado
debris.

The response is too general and does not answer the user’s
question. Instead, use relevant search results to provide
specific weather conditions that meteorologists look for to
predict tornado formation. Keep the response concise and
confident in tone.

One of the search results specifies that Paul Tillich was
Rollo May’s mentor and friend, confirming that they did
know each other.

The response should have used relevant search results to
answer the user’s question. It should have been more tar-
geted and concise, and not included additional information
the user did not ask for. A better response would have been:
"I’m not sure if they knew each other, but according to my
search results, Tillich was a major influence on Rollo May’s
work."

Why didn’t you mention CrossFit or Tabata? The response should have used relevant search results to
answer the user’s question correctly. Instead of saying "I’m
not sure," the bot should have confidently provided the cor-
rect answer. Additionally, the response should have been
more concise and targeted, only providing the specific exer-
cise type that burns the most calories.

Table 22: Examples of human written and GPT-3.5 written instance-level feedback. For each row, both human
feedback and GPT-3.5 feedback are written to the same unsatisfied response.

2789

