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Abstract
Few-shot text classification systems have im-
pressive capabilities but are infeasible to de-
ploy and use reliably due to their dependence
on prompting and billion-parameter language
models. SetFit (Tunstall et al., 2022) is a re-
cent, practical approach that fine-tunes a Sen-
tence Transformer under a contrastive learn-
ing paradigm and achieves similar results to
more unwieldy systems. Inexpensive text clas-
sification is important for addressing the prob-
lem of domain drift in all classification tasks,
and especially in detecting harmful content,
which plagues social media platforms. Here,
we propose Like a Good Nearest Neighbor
(LAGONN), a modification to SetFit that intro-
duces no learnable parameters but alters input
text with information from its nearest neigh-
bor, for example, the label and text, in the
training data, making novel data appear sim-
ilar to an instance on which the model was
optimized. LAGONN is effective at flagging
undesirable content and text classification, and
improves SetFit’s performance. To demon-
strate LAGONN’s value, we conduct a thor-
ough study of text classification systems in the
context of content moderation under four label
distributions, and in general and multilingual
classification settings.1

1 Introduction

Text classification is the most important tool for
NLP practitioners, and there has been substan-
tial progress in advancing the state-of-the-art, es-
pecially with the advent of large, pretrained lan-
guage models (PLM) (Devlin et al., 2019). Modern
research focuses on in-context learning (Brown
et al., 2020), pattern exploiting training (Schick
and Schütze, 2021a,b, 2022), adapter-based fine-
tuning with learned label embeddings (Karimi Ma-
habadi et al., 2022), and parameter efficient fine-
tuning (Liu et al., 2022a). These methods have

1Our code and data are available at https://github.
com/UKPLab/lagonn.

achieved impressive results on the SuperGLUE
(Wang et al., 2019) and RAFT (Alex et al., 2021)
few-shot benchmarks, but most are difficult to
use because of their reliance on billion-parameter
PLMs, pay-to-use APIs, and/or prompting. Con-
structing prompts is not trivial and may require
domain expertise.

One exception to these cumbersome systems
is SetFit. SetFit does not rely on prompting or
billion-parameter PLMs, and instead fine-tunes a
pretrained Sentence Transformer (ST) (Reimers
and Gurevych, 2019) under a contrastive learning
paradigm. SetFit has comparable performance to
more unwieldy systems while being one to two or-
ders of magnitude faster to train and run inference.

An important application of text classification
is aiding or automating content moderation, which
is the task of determining the appropriateness of
user-generated content on the Internet (Roberts,
2017). From fake news to toxic comments to hate
speech, it is difficult to browse social media without
being exposed to potentially dangerous posts that
may have an effect on our ability to reason (Ecker
et al., 2022). Misinformation spreads at alarming
rates (Vosoughi et al., 2018), and an ML system
should be able to quickly aid human moderators.
While there is work in NLP with this goal (Markov
et al., 2022; Shido et al., 2022; Ye et al., 2023), a
general, practical, and open-sourced method that
is effective across multiple domains remains an
open challenge. Novel fake news topics or racial
slurs emerge and change constantly. Retraining of
ML-based systems is required to adapt this concept
drift, but this is expensive, not only in terms of
computation, but also in terms of the human effort
needed to collect and label data.

SetFit’s performance, speed, and low cost would
make it ideal for effective content moderation, how-
ever, this type of text classification proves difficult
for even state-of-the-art approaches. For exam-
ple, detecting hate speech on Twitter (Basile et al.,
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2019), a subtask on the RAFT few-shot benchmark,
appears to be the most difficult dataset; at time of
writing, it is the only task where the human base-
line has not been surpassed, yet SetFit is among
the top ten most performant systems.2

Here, we propose a modification to SetFit,
called Like a Good Nearest Neighbor (LAGONN).
LAGONN introduces no learnable parameters and
instead modifies input text by retrieving informa-
tion from its nearest neighbors (NN) seen during
optimization. Specifically, we append the label,
distance, and text of the NNs in the training data
to a new instance and encode this modified version
with an ST (see Figure 1 and Table 1). By making
input data appear more similar to instances seen
during training, we inexpensively exploit the ST’s
pretrained or fine-tuned knowledge when consid-
ering a novel example. Our method can also be
applied to the linear probing of an ST, requiring
no expensive fine-tuning of the large embedding
model. Finally, we propose a simple alteration to
the SetFit training procedure, where we fine-tune
the ST on a subset of the training data. This results
in a more efficient and performant text classifier
that can be used with LAGONN. We summarize
our contributions as follows:

1. We propose LAGONN, an inexpensive mod-
ification to Sentence Transformer- or SetFit-
based text classification.

2. We suggest an alternative training procedure
to the standard fine-tuning of SetFit, that can
be used with or without LAGONN, and results
in a cheaper system with similar or improved
performance to the more expensive SetFit.

3. We perform an extensive study of LAGONN,
SetFit, and standard transformer fine-tuning
in the context of content moderation under
different label distributions, and in general
and multilingual text classification settings.

2 Related Work

There is little work on using sentence embeddings
as features for classification despite the pioneering
work being five years old (Perone et al., 2018). STs
are pretrained with the objective of maximizing
the distance between semantically distinct text and
minimizing the distance between text that is seman-
tically similar in feature space. They are composed

2https://huggingface.co/spaces/ought/
raft-leaderboard (see "Tweet Eval Hate").

of a Siamese and triplet architecture that encodes
text into dense vectors which can be used as fea-
tures for ML. STs were first used to embed text
for classification by Piao (2021), however, only
pretrained representations were examined.

SetFit uses a contrastive learning paradigm
(Koch et al., 2015; Dong et al., 2022) to optimize
the ST embedding model. The ST is fine-tuned
with a distance-based loss function, like cosine
similarity, such that examples with different labels
are separated in feature space. Input text is then en-
coded with the fine-tuned ST and a classifier, such
as logistic regression, is trained. This approach
creates a strong, few-shot text classification system,
transforming the ST from a sentence encoder to a
topic encoder.

Work done by Xu et al. (2021) showed that re-
trieving and concatenating text from training data
and external sources, such as ConceptNet (Speer
et al., 2017) and the Wiktionary3 definition, can be
viewed as a type of external attention that does not
alter the architecture of the Transformer in ques-
tion answering. Liu et al. (2022b) used PLMs and
k-NN lookup to prepend examples that are similar
to a GPT-3 query, aiding in prompt engineering
for in-context learning. Wang et al. (2022) demon-
strated that prepending and appending training data
helps PLMs in summarization, language modelling,
machine translation, and question answering, us-
ing BM25 as their retrieval model (Manning et al.,
2008; Robertson and Zaragoza, 2009).

We alter the SetFit training procedure by using
fewer examples to adapt the embedding model for
many-shot learning. LAGONN decorates input text
with its NN’s gold label, Euclidean distance, and
text from the training data to exploit both the ST’s
distance-based pretraining and SetFit’s distance-
based fine-tuning objective. Compared to retrieval-
based methods, LAGONN uses the same model for
both retrieval and encoding, retrieving only infor-
mation from the training data for classification.

3 Like a Good Nearest Neighbor

Xu et al. (2021) formulate a type of external atten-
tion, where textual information is retrieved from
multiple sources and added to text input to give
the model stronger reasoning ability without al-
tering the internal architecture. Inspired by this
approach, LAGONN exploits pretrained and fine-
tuned knowledge through external attention, but the

3https://www.wiktionary.org/
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Training Data Test Data
"I love this." [positive 0.0] (0) "So good!" [?] (?)

"This is great!" [positive 0.5] (0) "Just terrible!" [?] (?)
"I hate this." [negative 0.7] (1) "Never again." [?] (?)

"This is awful!" [negative 1.2] (1) "This rocks!" [?] (?)

LAGONN Configuration Train Modified

LABEL "I love this. [SEP] [positive]" (0)
DISTANCE "I love this. [SEP] [0.5]" (0)

LABDIST "I love this. [SEP] [positive 0.5]" (0)
TEXT "I love this. [SEP] [positive 0.5] This is great!" (0)
ALL "I love this. [SEP] [positive 0.5] This is great! [SEP] [negative 0.7] I hate this." (0)

Test Modified
LABEL "So good! [SEP] [positive]" (?)

DISTANCE "So good! [SEP] [1.5]" (?)
LABDIST "So good! [SEP] [positive 1.5]

TEXT "So good! [SEP] [positive 1.5] I love this." (?)
ALL "So good! [SEP] [positive 1.5] I love this. [SEP] [negative 2.7] This is awful!" (?)

Table 1: Toy training and test data and different LAGONN configurations considering the first training example.
Text is in quotation marks and the integer label is in parenthesis. In brackets are the gold label or distance from the
NN or both. Train and Test Modified are altered instances that are input into the final embedding model for training
and inference, respectively. The input format is "original text [SEP] [(NN gold) (label distance)] NN training
instance text".

"I love this" [positive] (0)

"This is great" [positive] (0)

"I hate this" [negative] (1)

"This is awful" [negative] (1)

Sentence
Transformer 

NN Selection
on X Train 

"I love this [SEP] [positive 0.3]" (0)

"This is great [SEP] [positive 0.3]" (0)
 
"I hate this [SEP] [negative 0.5]" (1)

"This is awful [SEP] [negative 0.5]" (1)

Se
tF

it

Classifier 

0 1

Positive Negative

"This rocks" [?] (?)

"This stinks" [?] (?) "This rocks [SEP] [positive 1.5]" (?)

"This stinks [SEP] [negative 1.7]" (?)

NN Selection from
X train on X Test

X Train X Trainmod

X Test

X Testmod
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Sentence
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Figure 1: LAGONN LABDIST uses an ST to encode training data, performs NN lookup, appends the NN’s gold
label and distance, and optionally SetFit to fine-tune the embedding model. We then embed this new instance and
train a classifier. During inference, we use the embedding model to modify the test data with its NN’s gold label and
distance from the training data, compute the final representation, and call the classifier. Input text is in quotation
marks, the NN’s gold label and distance are in brackets, and the integer label is in parenthesis.

information we retrieve comes only from data used
during optimization. We consider an embedding
function, f , that encodes both training and test data,
f(Xtrain) and f(Xtest). Considering its success
on realistic, few-shot data and our goal of practical
content moderation, we choose an ST that can be
fine-tuned with SetFit as our embedding function.

Encoding and nearest neighbors LAGONN
first uses a pretrained Sentence Transformer to em-
bed training text in feature space, f(Xtrain), and
NN lookup with scikit-learn (Buitinck et al., 2013)
on the resulting embeddings.

Nearest neighbor information We extract
text from the nearest neighbors and use it to deco-
rate the original example. We experimented with
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different text that LAGONN could use. The first
configuration we consider is the gold label of the
NN, which we call LABEL. We then consider the
Euclidean distance of the NN, which we call DIS-
TANCE, giving the model access to a continuous
measure of similarity. We then combine these two
configurations, appending both the NN’s gold label
and Euclidean distance, referring to this as LAB-
DIST. Next, we consider the gold label, distance,
and the text of the NN, which we refer to as TEXT.
Finally, we tried the same format as TEXT but
for all possible labels, which we call ALL (see
Table 1 and Figure 1). Information from the NN
is appended to the text following a separator token
to indicate this instance is composed of multiple
sequences. If we consider multiple neighbors, we
append the information we consider sequentially
based on the Euclidean distance from the input text
separated by a separator token. That is, the first
NN’s information is followed by "[SEP]" and the
second NN’s information which is then followed
by "[SEP]" and the third NN’s information, etc.

Training LAGONN encodes the modified
training data, optionally fine-tunes the embed-
ding model via SetFit, and trains a classifier,
CLF (f(Xtrainmod)).

Inference LAGONN uses information from
the nearest neighbor in the training data to modify
input text. We compute the embeddings of the test
data, f(Xtest), and select and extract information
from the NN’s training text, decorating the input
instance with this information. Finally, we encode
the modified data with the embedding model and
call the classifier, CLF (f(Xtestmod)).

Intuition The ST’s pretraining and SetFit’s
fine-tuning objective both rely on distance, cre-
ating a feature space appropriate for distance-based
algorithms, such as our NN-lookup. We hypoth-
esize that LAGONN’s modifications make novel
data appear semantically similar to their NNs in the
training data, that is, more akin to an instance on
which the encoder and classifier were optimized.
LAGONN’s utilization of distance and clear dis-
tinctions between classes inspired our use case of
content moderation, where it is realistic to have few
labels, harmful or neutral, for example. However,
this work demonstrates that LAGONN is useful for
general and multilingual text classification as well.

4 Experiments

We first study LAGONN’s performance on four
binary and one ternary classification dataset related
to the task of content moderation. Each dataset is
composed of a training, validation, and test split
(see Appendix A.1 for details).

We study our system by simulating growing
training data over ten discrete steps sampled un-
der four different label distributions: extreme, im-
balanced, moderate, and balanced (see Table 4).
On each step we add 100 examples (100 on the
first, 200 on the second, etc.) from the training
split sampled under one of the four ratios. On each
step, we train our method with the sampled data
and evaluate on the test split. Considering growing
training data has two benefits: 1) We can simu-
late a streaming data scenario, where new data are
labeled and added for training and 2) We can inves-
tigate each method’s sensitivity to the number of
training examples.

This experimental setup is reflective of a prac-
tical setting, where we might construct a content
flagging or text classification system with a rela-
tively small number (100) of labeled examples for
training. As time goes on, however, more samples
are added and we must then determine whether or
not it is worth the resources to retrain our system.
We sampled over five seeds, reporting the mean
and standard deviation.

4.1 Baselines
We compare LAGONN against a number of strong
baselines, detailed below. We used default hyper-
parameters in all cases unless stated otherwise.

RoBERTa RoBERTa-base is a pretrained lan-
guage model (Liu et al., 2019) that we fine-tuned
with the transformers library (Wolf et al., 2020).
We select two versions of RoBERTa-base: an ex-
pensive version, where we perform standard fine-
tuning on each step (RoBERTafull) and a cheaper
version, where we freeze the model body after step
one and update the classification head on subse-
quent steps (RoBERTafreeze). We set the learning
rate to 1e−5, train for a maximum of 70 epochs,
and use early stopping, selecting the best model
after training. We consider RoBERTafull an upper
bound as it has the most trainable parameters and
requires the most time to train of all our methods.

Linear probe We perform linear probing of a
pretrained Sentence Transformer by fitting logis-
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Figure 2: First row: performance for all LAGONN configurations and balance regimes for the Hate Speech Offensive
dataset. Second row: LAGONN performance for one to five neighbors for all balance regimes on a collapsed version
of the LIAR dataset. We use the LAGONNlite fine-tuning strategy (see Section 5.1).

tic regression with default hyperparameters on the
training embeddings on each step. We choose this
baseline because LAGONN can be applied as a
modification in this scenario. We select MPNET
(Song et al., 2020) as the ST, for SetFit, and for
LAGONN.4 We refer to this method as Probe.

SetFit Here, we perform standard fine-tuning
with SetFit on the first step, and then on subsequent
steps, freeze the embedding model and retrain only
the classification head. We choose this baseline as
LAGONN relies on ST/SetFit for its modifications.

k-nearest neighbors Similar to the above
baseline, we fine-tune the embedding model via
SetFit, but swap out the classification head for a
kNN classifier, where k = 3. We select this base-
line as LAGONN also relies on an NN lookup.
k = 3 was chosen during our development stage as
it yielded the strongest performance. We refer to
this method as kNN.

SetFit expensive For this baseline we perform
standard fine-tuning with SetFit on each step. On
the first step, this method is equivalent to SetFit.
We refer to this as SetFitexp.

LAGONN cheap This method modifies data
via LAGONN before fitting logistic regression.
Even without adapting the embedding model, as
the training data grow, modifications made to the
test data may change. Only the classification head

4https://huggingface.co/sentence-transformers/
paraphrase-mpnet-base-v2

is fit on each step. We refer to this method as
LAGONNcheap and it is comparable to Probe.

LAGONN On the first step, we use LAGONN
to modify our data and perform standard fine-
tuning with SetFit. On subsequent steps, we freeze
the embedding model but continue to use it to mod-
ify our data. We only fit logistic regression on later
steps, referring to this method as LAGONN. It is
comparable to SetFit.

LAGONN expensive Here we modify our
data and fine-tune the embedding model on each
step. We refer to this method as LAGONNexp and
it is comparable to SetFitexp. On the first step, this
method is equivalent to LAGONN.

Model choices We again choose these sys-
tems to reflect different practical settings, where
we might not have the resources to fine-tune our
model (Probe/LAGONNcheap), we might be able to
perform limited fine-tuning (RoBERTafreeze, Set-
Fit, kNN, LAGONN), or we may be able to fine-
tune as much as we like (RoBERTafull, SetFitexp,
LAGONNexp).

4.2 LAGONN configurations
We perform extensive experiments over the differ-
ent LAGONN configurations. We note that while
DISTANCE and LABEL show similar perfor-
mance, LABDIST in general is the most performant
and consistent classifier. We base this assertion on
the fact that across all of our experiments, LAB-
DIST is generally in the top three most-performant
configurations and is easily the stablest, based on
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Method InsincereQs AmazonCF
Extreme 1st 5th 10th Average 1st 5th 10th Average

RoBERTafull 19.98.4 30.97.9 42.07.4 33.56.7 21.86.6 63.910.2 72.33.0 59.616.8
SetFitexp 24.16.3 29.26.7 36.77.3 31.73.4 22.38.8 64.23.3 68.64.6 56.814.9
LAGONNexp 30.78.9 37.66.1 39.06.1 36.12.3 26.117.5 68.44.4 74.92.9 63.216.7
RoBERTafreeze 19.98.4 34.15.4 37.95.9 32.55.5 21.86.6 41.012.7 51.310.7 40.68.9
kNN 6.80.42 15.93.4 16.94.3 14.43.0 10.30.2 15.34.2 18.43.7 15.62.4
SetFit 24.16.3 31.74.9 36.15.4 31.83.6 22.38.8 32.411.5 42.38.8 34.55.9
LAGONN 30.78.9 39.34.9 41.24.7 38.43.0 26.117.5 31.119.4 33.019.1 30.92.3

Probe 24.38.4 39.85.6 44.84.2 38.36.2 24.29.0 46.34.4 54.62.0 45.110.3
LAGONNcheap 23.67.8 40.75.9 45.34.4 38.66.6 20.16.9 38.34.9 47.83.4 38.29.5

Balanced
RoBERTafull 47.14.2 52.13.6 55.72.6 52.52.9 73.62.1 78.63.9 82.41.1 78.92.2
SetFitexp 43.54.2 47.14.6 48.53.9 48.01.7 73.84.4 69.84.0 64.14.6 69.63.6
LAGONNexp 42.85.3 47.62.9 47.01.7 46.22.0 76.03.0 73.42.6 72.32.9 72.53.4

RoBERTafreeze 47.14.2 52.10.4 53.31.7 51.52.1 73.62.1 76.81.6 77.91.0 76.51.3
kNN 22.32.3 30.22.3 30.91.8 29.52.5 41.73.4 57.93.3 58.33.3 56.85.1
SetFit 43.54.2 53.82.2 55.51.6 52.83.5 73.84.4 79.21.9 80.11.0 78.61.8
LAGONN 42.85.3 54.12.9 56.31.3 53.43.7 76.03.0 80.12.0 81.41.1 79.81.4
Probe 47.51.6 52.41.7 55.31.1 52.22.5 52.43.4 64.72.5 67.50.4 63.44.4
LAGONNcheap 49.32.6 54.41.4 57.60.7 54.22.7 48.13.4 62.02.0 65.30.8 60.55.0

Table 2: Average performance (average precision × 100) on Insincere Questions and Amazon Counterfactual. The
first, fifth, and tenth step are followed by the average over all ten steps. The average gives insight into the overall
strongest performer by aggregating all steps. We group methods with a comparable number of trainable parameters
together. The extreme label distribution results are followed by balanced (see Appendix A.4 for additional results).

the standard deviation over five seeds, where DIS-
TANCE and LABEL are less reliable and show
greater oscillation. These observations are sup-
ported by Figure 2. TEXT and ALL are arguably
the most interesting LAGONN configurations, but
are often unstable, low-performing classifiers. In
Figure 2, we provide a comparison between the
different configurations on the Hate Speech Offen-
sive dataset. As LABDIST is the most performant
configuration, it is the version of our method about
which we report results hereafter, and we consider
it the default configuration of LAGONN. However,
this is a hyperparameter that can be easily experi-
mented with and tuned.

4.3 LAGONN k nearest neighbors
To determine how many neighbors we should con-
sider for LAGONN, we perform thorough exper-
iments for one to five neighbors over all datasets,
LAGONN configurations, and balance regimes un-
der the LAGONNlite fine-tuning strategy (see Sec-
tion 5.1). We find that one to three neighbors tends
to result in the strongest classifier, but this varies
and is a hyperparameter that can be searched over.

In Figure 2, we provide a representative example
of our NN results for the LABDIST configuration
for the LIAR dataset.

5 Content Moderation Results

Table 2 and Figure 5 show our results. In the
cases of the extreme and imbalanced regimes, the
performance of SetFitexp steadily increases with
the number of training examples. As the label
distribution shifts to the balanced regime, how-
ever, the performance quickly saturates or even
degrades as the number of training examples grows.
LAGONN, RoBERTafull, and SetFit, other fine-
tuned PLM classifiers, do not exhibit this behavior.
LAGONNexp, being based on SetFitexp, exhibits a
similar trend, but the performance degradation is
mitigated; on the 10th step of Amazon Counterfac-
tual in Table 2 SetFitexp’s performance decreased
by 9.7, while LAGONNexp only fell by 3.7. Note
that we only consider the first NN here.

LAGONN and LAGONNexp generally outper-
form SetFit and SetFitexp, respectively, often re-
sulting in a more stable model, as reflected in the
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Figure 3: Average performance for all sampling regimes on Toxic Conversations. More expensive models,
such as LAGONNexp, SetFitexp, and RoBERTafull perform best when the label distribution is imbalanced. As
the distribution becomes more balanced, inexpensive models, such as LAGONNlite, show similar or improved
performance. The measure is average precision and we only consider one neighbor for the LAGONN-based methods
(see Appendix A.4 for additional results).

standard deviation. We find that LAGONN and
LAGONNexp exhibit stronger predictive power
with fewer examples than RoBERTafull despite
having fewer trainable parameters. On the first step
of Insincere Questions under the extreme setting,
LAGONN’s performance is more than 10 points
higher.

LAGONNcheap outperforms all other methods
on the Insincere Questions dataset for all balance
regimes, despite being the third fastest (see Table
6) and having the second fewest trainable param-
eters. We attribute this result to the fact that this
dataset is composed of questions from Quora5 and
our ST backbone was pretrained on similar data.
This intuition is supported by Probe, the cheapest
method, which despite having the fewest trainable
parameters, shows comparable performance.

5.1 SetFit for efficient many-shot learning
Respectively comparing SetFit to SetFitexp and
LAGONN to LAGONNexp suggests that fine-
tuning the ST embedding model on moderate or bal-
anced data hurts model performance as the number
of training samples grows. We therefore hypoth-
esize that randomly sampling a subset of training
data to fine-tune the encoder, freezing, embedding
the remaining data, and training the classifier will
result in a stronger model.

To test our hypothesis, we add two models to our
experimental setup: SetFitlite and LAGONNlite.
SetFitlite and LAGONNlite are respectively equiva-
lent to SetFitexp and LAGONNexp, except after the
fourth step (400 samples), we freeze the encoder
and only retrain the classifier on subsequent steps,
similar to SetFit and LAGONN.

Figures 3 and 6 show our results with these
two new models. As expected, in the cases of ex-

5https://www.quora.com/

treme and imbalanced distributions, LAGONNexp,
SetFitexp, and RoBERTafull, are the strongest
performers. We note very different results for
both LAGONNlite and SetFitlite compared to
LAGONNexp and SetFitexp on Toxic Conversa-
tions under the moderate and balanced label dis-
tributions. As their expensive counterparts start to
plateau or degrade on the fourth step, these two new
models dramatically increase, showing improved
or comparable performance to RoBERTafull, de-
spite being optimized on less data; for example,
LAGONNlite reaches an average precision of ap-
proximately 55 after being optimized on only 500
examples. RoBERTafull does not exhibit similar
performance until the tenth step. Finally, we point
out that LAGONN-based methods generally pro-
vide a performance boost for SetFit-based methods.

6 LAGONN as a General Classifier

LAGONN is effective for general text classification.
Thus far, we have focused on the important topic
of content moderation, but here we turn our atten-
tion to general text classification, conducting ex-
periments on 12 additional datasets (see Appendix
A.2 for details and Appendix A.6 for multilingual
experiments). Our experimental setup remains
largely the same, but here we restrict ourselves
to the balanced sampling regime as it is nontriv-
ial to design sampling strategies for datasets with
more than three labels. We respectively compare
LAGONNlite against SetFitlite and LAGONNexp

against SetFitexp, showing results for one to five
neighbors with LAGONN.

In Figure 4, we demonstrate that LAGONN con-
tinues to stabilize and improve SetFit, regardless
of the number of neighbors we consider. This
is especially clear for IMDB, where in the case
of LAGONNlite vs SetFitlite, all versions of our
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Figure 4: Average performance on four datasets in the balanced sampling regime; the measure is average precision
for IMDB, macro-f1 elsewhere. First row: SetFitlite compared to LAGONNexp LABDIST with modifications for
one to five neighbors. Second row: SetFitexp compared to LAGONNexp. See Appendix A.5 for additional results.

method saturate to an average precision of 98
with 300 fewer training samples. If we consider
SetFitexp vs LAGONNexp, consistent with our anal-
ysis of other binary datasets, classifier performance
begins to degrade if we continue to fine-tune the
ST, but LAGONN mitigates this performance drop.

Continuing to fine-tune the embedding model is
beneficial when we have many labels. For 20 News-
groups and Emotion, which have 20 and 28 labels
respectively, LAGONNexp is the strongest model
and shows no indication of plateauing or degrading,
even with 1,000 samples. We attribute this to the
relatively high number of labels present in both of
these datasets. Our findings related to SST-5 and
our multilingual experiments (see Appendix A.6)
support this; in intermediate cases when we have
five labels, all models saturate quickly and there
are minimal gains with continued fine-tuning.

7 Discussion

Flagging potentially dangerous text presents a chal-
lenge even for state-of-the-art approaches. The con-
tent moderation datasets we consider proved more
difficult than our general text classification datasets
for all models, despite typically having fewer labels.
It is imperative that we develop reliable and prac-
tical text classifiers for content moderation, such
that we can inexpensively re-tune them for novel
forms of hate speech, toxicity, and fake news.

Our results suggest that LAGONNexp, a rela-
tively expensive technique, can detect harmful con-
tent when dealing with imbalanced label distribu-
tions, as is common with realistic datasets. This

is intuitive from the perspective that less common
instances are more difficult to learn and require
more effort. An exception would be our examina-
tion of Insincere Questions, where LAGONNcheap

excelled in the extreme and balanced settings. This
demonstrates that if we choose our PLM with care
for related downstream tasks, LAGONN can in-
expensively extract pretrained knowledge and im-
prove performance without the need for costly fine-
tuning. Indeed, considering the performance of Set-
Fit suggests that, in this case, fine-tuning hurts per-
formance and we actually overfit. However, even
here, our proposed modifications with LAGONN
increase model robustness and lessen the effects of
overfitting.

Fine-tuning with SetFit hurts performance on
more balanced datasets that are not few-shot. We
have observed that SetFit should not be applied
"out of the box" to balanced, non-few-shot data.
This can be detrimental to performance, directly
affecting our own approach. However, LAGONN
can stabilize SetFit’s predictions and reduce its per-
formance drop in many cases. Figures 5, 3, and
4 show that when the label distribution is moder-
ate or balanced (see Table 4), SetFitexp plateaus,
yet cheaper systems, such as LAGONN, continue
to learn. This is likely due to SetFit’s fine-tuning
objective, which optimizes an ST using cosine sim-
ilarity loss to separate examples belonging to dif-
ferent labels in feature space, assuming indepen-
dence between labels. This may be too strong an
assumption as we fine-tune with more data, which
is counter-intuitive for data-hungry transformers;
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RoBERTafull, optimized with cross-entropy loss,
showed improved performance as we added train-
ing data data.

For balanced data, it is sufficient to fine-tune the
Sentence Transformer via SetFit with 50 to 100 ex-
amples per label, while 150 to 200 instances appear
to be sufficient when the training data are moder-
ately balanced. The encoder can then be frozen
and all available data embedded to train a classi-
fier. This is more performant and efficient than
full-model fine-tuning. LAGONN is applicable to
this case, inexpensively boosting and stabilizing
SetFit’s performance. All models fine-tuned on
Hate Speech Offensive exhibited similar, upward-
trending learning curves, but we note the speed
of LAGONN relative to RoBERTafull or SetFitexp
(see Figure 3 and Table 6).

8 Conclusion

We have proposed LAGONN, an inexpensive mod-
ification to SetFit. LAGONN improves SetFit’s
performance by modifying text with the nearest
neighbors in the training data. To demonstrate the
merit of LAGONN, we examined text classifica-
tion systems for content moderation with different
label distributions and for general and multilingual
classification. We studied 17 datasets with growing
training data. When the training labels are imbal-
anced, expensive systems, such as LAGONNexp

are performant. LAGONNexp also excels on bal-
anced datasets with many labels. However, when
the labels are binary or ternary, typical for con-
tent moderation, and the distribution is balanced,
fine-tuning with SetFit yields minimal gains. We
therefore proposed an alternative but strong train-
ing procedure. LAGONN is a practical method for
detecting harmful content and text classification.
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10 Limitations

In the current work, we have only considered text
data, but social media content can of course consist
of text, images, and videos. As LAGONN depends
only on an embedding model, an obvious extension
to our approach would be examining the modifi-
cations we suggest, but on multimodal data. This
is an interesting direction that we leave for future
research. We did not study our method when there
are fewer than 100 training examples, and inves-
tigating LAGONN in a few-shot learning setting
is fascinating topic for future study. Finally, we
note that our system could be misused to detect
undesirable content that is not necessarily harmful.
For example, a social media website could detect
and silence users who complain about the platform.
This is not our intended use case, but could result
from any classifier, and potential misuse is an un-
fortunate drawback of all technology.

11 Ethics Statement

It is our sincere goal that our work contributes to
the social good in multiple ways. We first hope to
have furthered research on text classification that
can be feasibly applied to combat undesirable con-
tent, such as misinformation, on the Internet, which
could potentially cause someone harm. To this end,
we have tried to describe our approach as accurately
as possible and released our code and data, such
that our work is transparent and can be easily repro-
duced and expanded upon. We hope that we have
also created a useful but efficient system which
reduces the need to expend energy in the form ex-
pensive computation. For example, LAGONN does
not rely on billion-parameter language models that
demand thousand-dollar GPUs to use. LAGONN
makes use of GPUs no more than SetFit, despite
being more computationally expensive. We have
additionally proposed a simple method to make
SetFit, an already relatively inexpensive method,
even more efficient.
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A Appendix

A.1 Content moderation data and balance
regimes

In this Appendix section, we provide a background
on the datasets we studied in our experiments and
summarize the label distribution (see Table 3) of
our content moderation datasets and the different
sampling regimes (see Table 4) we studied in our
content moderation experiments. LIAR was cre-
ated from Politifact6 for fake news detection and is
composed of the data fields context, speaker, and
statement, which are labeled with varying levels of
truthfulness (Wang, 2017). We used a collapsed
version of this dataset where a statement can only
be true or false. We did not use speaker, but did
use context and statement, separated by a separator
token. Quora Insincere Questions7 is composed of

6https://www.politifact.com/
7https://www.kaggle.com/c/

quora-insincere-questions-classification

neutral and toxic questions, where the author is not
asking in good faith. Hate Speech Offensive8 has
three labels and is composed of tweets that can con-
tain either neutral text, offensive language, or hate
speech (Davidson et al., 2017).9 Amazon Counter-
factual10 contains sentences from product reviews,
and the labels can be "factual" or "counterfactual"
(O’Neill et al., 2021). "Counterfactual" indicates
that the customer said something that cannot be
true. Finally, Toxic Conversations11 is a dataset of
comments where the author wrote with unintended
bias12 (see Table 3).

Dataset (and Detection Task) Number of Labels

LIAR (Fake News) 2
Insincere Questions (Toxicity) 2

Hate Speech Offensive 3
Amazon Counterfactual (English) 2

Toxic Conversations 2

Table 3: Summary of content moderation datasets and
number of labels. We provide the type of task in paren-
thesis in unclear cases.

Regime Binary Ternary

Extreme 0: 98% 1: 2% 0: 95%, 1: 2%, 2: 3%
Imbalanced 0: 90% 1: 10% 0: 80%, 1: 5%, 2: 15%
Moderate 0: 75% 1: 25% 0: 65%, 1: 10%, 2: 25%
Balanced 0: 50% 1: 50% 0: 33%, 1: 33%, 2: 33%

Table 4: Label distributions for sampling training data.
0 represents neutral while 1 and 2 represent different
types of undesirable text.

A.2 General text classification data
In this Appendix section, we provide additional in-
formation on the datasets we examined in our gen-
eral text classification experiments. The Internet
Movie Database (IMDB) dataset (Maas et al., 2011)
is composed of movie reviews that are classified
as either positive or negative.13 Student Question
Categories contains questions from qualifying ex-

8https://huggingface.co/datasets/hate_speech_
offensive

9For Hate Speech Offensive, 0 and 2 denote undesirable
text and 1 denotes neither.

10https://huggingface.co/datasets/SetFit/
amazon_counterfactual_en

11https://huggingface.co/datasets/SetFit/toxic_
conversations

12https://www.kaggle.com/c/
jigsaw-unintended-bias-in-toxicity-classification

13https://huggingface.co/datasets/SetFit/imdb
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aminations in India,14 where the label is the subject
the question appeared in and can be from Physics,
Chemistry, Biology, or Mathematics.15 SST5 is
an alternative version of the Stanford Sentiment
Treebank (Socher et al., 2013) that has five labels,
ranging from very positive to very negative.16 We
also include the original version of LIAR, which
has six labels of varying levels of truthfulness.17

We also used 20 Newsgroups18 (Mitchell, 1999)
which contains newspaper articles labeled with the
topic they cover.19 And finally, we ran experiments
on GoEmotions (Demszky et al., 2020), a dataset
of Reddit comments labeled with 28 classes based
on the emotional charge of the post.20

The evaluation measure was average precision
in the case of IMDB, macro F1 elsewhere. In
cases where the a validation split was not avail-
able, we created one by sampling 30% of the test
split. Please see Table 5 for a summary regarding
the datasets and label information.

Dataset (and Detection Task) Number of Labels

IMDB (Sentiment Analysis) 2
Student Questions (Question Type) 4

SST5 (Sentiment Analysis) 5
LIAR (Fake News) 6

20 Newsgroups (Topic) 20
GoEmotions (Emotion) 28

Table 5: Summary of datasets and number of labels
used in the general text classification experiments. We
provide the type of task in parenthesis in unclear cases.

A.3 LAGONN’s computational expense
In this Appendix section we discuss and provide re-
sults for LAGONN’s computation time. LAGONN
is more computationally expensive than Sentence
Transformer- or SetFit-based text classification.
LAGONN introduces additional inference with the
encoder, NN-lookup, and string modification. As

14https://www.kaggle.com/
datasets/mrutyunjaybiswal/
iitjee-neet-aims-students-questions-data

15https://huggingface.co/datasets/SetFit/
student-question-categories

16https://huggingface.co/datasets/SetFit/sst5
17https://huggingface.co/datasets/LIAR
18https://scikit-learn.org/0.19/

datasets/twenty_newsgroups.html#
the-20-newsgroups-text-dataset

19https://huggingface.co/datasets/SetFit/20_
newsgroups

20https://huggingface.co/datasets/SetFit/go_
emotions

the computational complexity of transformers in-
creases with sequence length (Vaswani et al., 2017),
additional expense is created when LAGONN ap-
pends textual information before inference with the
ST. In Table 6, we provide a speed comparison of
comparable methods computed on the same hard-
ware.21 On average, LAGONN introduced 24.2
additional seconds of computation compared to its
relative counterpart.

Method Time in seconds

Probe 22.9
LAGONNcheap 44.2

SetFit 42.9
LAGONN 63.4
SetFitexp 207.3

LAGONNexp 238.0

RoBERTafull 446.9

Table 6: Speed comparison between LAGONN LAB-
DIST with one neighbor and comparable methods. Time
includes training on 1, 000 examples and inference on
51, 000 examples.

21We used a 40 GB NVIDIA A100 Tensor Core GPU.
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A.4 Additional results: content moderation
Here, we provide additional results from content
moderation experiments that, due to space limita-
tions, could not be included in the main text. We
note that a version of LAGONN outperforms or
has the same performance of all methods, includ-
ing our upper bound RoBERTafull, on 60% of all
displayed results, and is the best performer rela-
tive to Sentence Transformer-based methods on
65%. This excludes LAGONNcheap. This method
showed strong performance on the Insincere Ques-
tions dataset, but hurts performance in other cases.

In cases when SetFit-based methods do outper-
form our system, the performances are comparable,
usually within one point, yet they can be quite
different when LAGONN-based methods are the
strongest. Below, we report the mean average pre-
cision ×100 for all methods over five seeds with
the standard deviation, except in the case of Hate
Speech Offensive, where the evaluation measure
is the macro-F1. Each table shows the results for
a given dataset and a given label-balance distribu-
tion on the first, fifth, and tenth step followed by
the average for all ten steps. In the table caption
we provide a summary/interpretation of the results
for a given setting. LIAR appears to be the most
difficult dataset for all methods. This is expected
because it likely does not include enough context
to determine the truth of a statement.

Method Insincere Questions
Extreme 1st 5th 10th Average

RoBERTafull 19.98.4 30.97.9 42.07.4 33.56.7
SetFitexp 24.16.3 29.26.7 36.77.3 31.73.4
LAGONNexp 30.78.9 37.66.1 39.06.1 36.12.3

SetFitlite 24.16.3 38.16.3 41.16.5 35.65.5
LAGONNlite 30.78.9 41.88.3 43.48.5 39.34.4
RoBERTafreeze 19.98.4 34.15.4 37.95.2 32.55.4
kNN 6.80.4 15.93.4 16.94.3 14.43.0
SetFit 24.16.3 31.74.9 36.15.4 31.83.6
LAGONN 30.78.9 39.34.9 41.24.7 38.43.0

Probe 24.38.4 39.85.6 44.84.2 38.36.2
LAGONNcheap 23.67.8 40.75.9 45.34.4 38.66.6

Table 7: LAGONN, LAGONNlite, and LAGONNexp

start out as the strongest models, but LAGONNlite re-
mains the most performant by the 10th step. It is also
the overall strongest performer based on the average.
We note the strength of LAGONNcheap relative to far
more expensive methods.

Method Insincere Questions
Imbalanced 1st 5th 10th Average

RoBERTafull 39.85.5 53.14.6 55.71.2 50.64.4
SetFitexp 43.72.7 52.21.9 53.80.9 51.42.9
LAGONNexp 44.54.5 52.72.4 55.42.0 51.83.0

SetFitlite 43.72.7 52.92.6 55.81.8 52.23.4
LAGONNlite 44.54.5 53.52.7 55.92.4 52.63.5
RoBERTafreeze 39.85.5 44.13.6 46.32.4 44.02.0
kNN 23.92.2 30.33.0 31.62.4 30.02.1
SetFit 43.72.7 47.61.6 50.12.1 47.61.8
LAGONN 44.54.5 48.12.2 50.31.7 48.11.9

Probe 40.44.2 49.42.3 52.31.7 49.03.3
LAGONNcheap 40.84.3 51.12.4 54.51.4 50.44.0

Table 8: LAGONN, LAGONNlite, and LAGONNexp

start out as the strongest models, but LAGONNlite re-
mains the most performant by the 10th step. It is also
the overall strongest performer based on the average.
We note the strength of LAGONNcheap relative to far
more expensive methods.

Method Insincere Questions
Moderate 1st 5th 10th Average

RoBERTafull 48.12.3 54.71.9 57.51.5 53.92.9
SetFitexp 48.91.7 53.90.7 54.21.5 52.31.6
LAGONNexp 49.81.6 52.21.9 53.23.3 52.01.4

SetFitlite 48.91.7 56.51.4 58.70.6 55.03.5
LAGONNlite 49.81.6 56.12.8 58.31.5 54.63.5

RoBERTafreeze 48.12.3 50.22.2 52.01.4 50.21.4
kNN 28.02.4 33.92.8 33.62.0 33.51.9
SetFit 48.91.7 53.61.9 55.81.7 53.32.2
LAGONN 49.81.6 54.41.3 56.90.5 54.22.2

Probe 45.72.1 52.31.8 54.41.1 51.42.5
LAGONNcheap 45.72.2 54.41.6 56.40.6 53.23.2

Table 9: LAGONN, LAGONNlite, and LAGONNexp

start out as the strongest models, but SetFitlite overtakes
the other methods by the 5th step and is the strongest
performer based on the average. We note the strength of
LAGONNcheap relative to far more expensive methods.

Method Insincere Questions
Balanced 1st 5th 10th Average

RoBERTafull 47.14.2 52.13.6 55.72.6 52.52.9
SetFitexp 43.54.2 47.14.6 48.53.9 48.01.7
LAGONNexp 42.85.3 47.62.9 47.01.7 46.22.0

SetFitlite 43.54.2 54.62.4 59.60.9 53.65.8
LAGONNlite 42.85.3 53.53.7 58.62.5 52.26.4

RoBERTafreeze 47.14.2 52.10.4 53.31.1 51.52.1
kNN 22.32.3 30.22.3 30.91.8 29.52.5
SetFit 43.54.2 53.82.2 55.51.6 52.83.5
LAGONN 42.85.3 54.12.9 56.31.3 53.43.7

Probe 47.51.6 52.41.7 55.31.1 52.22.5
LAGONNcheap 49.32.6 54.41.4 57.60.7 54.22.7

Table 10: LAGONNcheap, starts out as the strongest
model, but SetFitlite overtakes the other methods on
the 5th and 10th step. Overall LAGONNcheap is the
strongest model despite being one of the least expensive.
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Figure 5: Average performance in the imbalanced and balanced regimes relative to comparable methods. We
include RoBERTafull results for reference. The measure is macro-F1 for Hate Speech Offensive, average precision
elsewhere.

Figure 6: Average performance for all the moderate and balanced sampling regimes on Amazon Counterfactual and
Hate Speech Offensive. More expensive models, such as LAGONNexp, SetFitexp, and RoBERTafull perform best
when the label distribution is imbalanced. As the distribution becomes more balanced, inexpensive models, such as
LAGONNlite, show similar or improved performance. The measure is average precision for Amazon Counterfactual
and the macro F1 for Hate Speech Offensive. We only consider one neighbor for the LAGONN-based methods.

Method Amazon Counterfactual
Extreme 1st 5th 10th Average

RoBERTafull 21.86.6 63.910.2 72.33.0 59.616.8
SetFitexp 22.38.8 64.23.3 68.64.6 56.814.9
LAGONNexp 26.117.5 68.44.4 74.92.9 63.216.7
SetFitlite 22.38.8 62.45.1 67.55.2 56.514.7
LAGONNlite 26.117.5 68.34.3 68.94.3 60.615.1

RoBERTafreeze 21.86.6 41.012.7 51.310.7 40.68.9
kNN 10.30.2 15.34.2 18.43.7 15.62.4
SetFit 22.38.8 32.411.5 42.38.8 34.55.9
LAGONN 26.117.5 31.119.4 33.019.1 30.92.3

Probe 24.29.0 46.34.4 54.62.0 45.110.3
LAGONNcheap 20.16.9 38.34.9 47.83.4 38.29.5

Table 11: LAGONN, LAGONNlite, and LAGONNexp

are the most performant models on the first step, but
only LAGONNexp remains the most performant on sub-
sequent steps, also being the strongest overall method
based on the average over all steps.

Method Amazon Counterfactual
Imbalanced 1st 5th 10th Average

RoBERTafull 68.24.5 81.01.7 82.21.0 79.23.9
SetFitexp 72.02.1 78.42.8 78.81.2 78.02.1
LAGONNexp 74.33.8 80.11.4 79.01.6 79.51.9

SetFitlite 72.02.1 79.11.4 81.61.3 79.12.7
LAGONNlite 74.33.8 79.21.7 81.91.1 80.22.2
RoBERTafreeze 68.24.5 75.02.2 77.02.4 74.22.6
kNN 51.04.1 60.03.1 61.32.1 59.73.0
SetFit 72.02.1 74.42.3 76.71.8 74.81.4
LAGONN 74.33.8 76.13.6 77.33.2 76.11.0

Probe 46.62.8 60.31.4 64.21.2 59.25.2
LAGONNcheap 38.23.2 55.31.8 61.01.2 54.46.7

Table 12: On the first step, LAGONN, LAGONNlite,
and LAGONNexp start out the strongest but
LAGONNlite performs slightly worse than
RoBERTafull on the 5th and 10th step. How-
ever, LAGONNlite is the best overall method based on
the average.
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Method Amazon Counterfactual
Moderate 1st 5th 10th Average

RoBERTafull 73.92.5 80.01.0 80.12.3 79.12.1
SetFitexp 76.51.6 77.02.4 74.70.5 76.51.0
LAGONNexp 78.62.2 78.02.1 76.34.9 78.21.0

SetFitlite 76.51.6 80.43.8 83.50.8 80.32.8
LAGONNlite 78.62.2 80.81.9 83.10.7 81.01.7
RoBERTafreeze 73.92.5 76.61.4 78.50.7 76.41.7
kNN 54.53.1 64.21.9 66.61.3 64.73.5
SetFit 76.51.6 80.60.5 81.20.3 80.01.4
LAGONN 78.62.2 81.21.4 81.61.1 80.80.9

Probe 52.32.0 64.11.8 67.21.4 63.14.3
LAGONNcheap 47.33.4 60.71.5 65.21.4 59.55.2

Table 13: On the first step, LAGONN, LAGONNlite,
and LAGONNexp start out the strongest. On the 5th

step, LAGONN is the most performant method while
on the 10th step it is SetFitlite. However, LAGONNlite

is the best overall method based on the average.

Method Amazon Counterfactual
Balanced 1st 5th 10th Average

RoBERTafull 73.62.1 78.63.9 82.41.1 78.92.2
SetFitexp 73.84.4 69.84.0 64.14.6 69.63.6
LAGONNexp 76.03.0 73.42.6 72.32.9 72.53.4

SetFitlite 73.84.4 80.41.8 82.40.8 78.34.3
LAGONNlite 76.03.0 80.01.3 82.50.9 79.23.2

RoBERTafreeze 73.62.1 76.81.6 77.91.0 76.51.3
kNN 41.73.4 57.93.3 58.33.3 56.85.1
SetFit 73.84.4 79.21.9 80.11.0 78.61.8
LAGONN 76.03.0 80.12.0 81.41.1 79.81.4
Probe 52.43.4 64.72.5 67.50.4 63.44.4
LAGONNcheap 48.13.4 62.02.0 65.30.8 60.55.0

Table 14: On the first step, LAGONN, LAGONNlite,
and LAGONNexp start out the strongest. On the 5th

step, SetFitlite pulls ahead slightly, yet on the 10th step
LAGONNlite is the best performer. Overall, LAGONN
is the best method based on the average.

Method Toxic Conversations
Extreme 1st 5th 10th Average

RoBERTafull 7.90.5 21.23.7 33.85.5 21.99.3
SetFitexp 8.81.2 18.13.4 24.74.1 17.65.5
LAGONNexp 8.91.7 17.46.6 26.45.2 17.96.0

SetFitlite 8.81.2 15.94.8 18.03.9 14.93.2
LAGONNlite 8.91.7 16.15.9 19.86.0 15.53.7

RoBERTafreeze 7.90.5 12.82.4 19.13.2 13.53.5
kNN 7.90.0 8.70.4 8.70.2 8.50.3
SetFit 8.81.2 13.12.5 16.33.0 13.02.6
LAGONN 8.91.7 13.83.9 17.14.8 13.42.6

Probe 13.12.8 24.62.6 30.12.1 23.95.6
LAGONNcheap 11.32.2 21.72.7 27.42.3 21.35.3

Table 15: Probe is most performant method on all steps
and the overall strongest performer. We note, however,
that LAGONN-based methods tend to outperform their
SetFit-based counterparts.

Method Toxic Conversations
Imbalanced 1st 5th 10th Average

RoBERTafull 24.15.6 43.13.4 52.12.5 42.48.2
SetFitexp 21.86.6 44.54.1 51.41.9 42.19.3
LAGONNexp 22.79.8 49.15.6 53.42.3 45.69.8
SetFitlite 21.86.6 41.44.4 44.83.1 39.07.0
LAGONNlite 22.79.8 47.06.3 50.25.4 43.78.6

RoBERTafreeze 24.15.6 31.24.4 34.04.0 30.53.1
kNN 11.52.5 14.74.0 15.33.2 14.61.1
SetFit 21.86.6 26.75.3 30.24.0 26.62.7
LAGONN 22.79.8 27.68.9 30.38.7 27.42.4

Probe 23.32.7 33.02.8 37.11.8 32.54.2
LAGONNcheap 20.53.2 31.13.2 35.61.8 30.54.6

Table 16: RoBERTafull and RoBERTafreeze start out
as the strongest classifiers on the first step, but are over-
taken on subsequent steps by LAGONNexp, which ends
up as strongest method overall.

Method Toxic Conversations
Moderate 1st 5th 10th Average

RoBERTafull 34.23.4 45.51.9 52.43.3 45.75.6
SetFitexp 33.62.9 47.22.2 46.63.3 44.34.3
LAGONNexp 36.64.2 48.22.7 49.93.7 48.04.4

SetFitlite 33.62.9 52.62.0 55.11.6 48.87.3
LAGONNlite 36.64.2 56.11.5 57.71.4 52.36.8
RoBERTafreeze 34.23.4 38.42.1 39.51.8 38.01.5
kNN 19.41.9 21.53.4 22.42.9 21.60.8
SetFit 33.62.9 39.22.9 41.62.7 38.62.4
LAGONN 36.64.2 42.73.7 45.03.5 42.02.5

Probe 29.02.7 36.11.2 39.11.5 35.53.3
LAGONNcheap 26.12.7 34.31.3 37.51.8 33.63.6

Table 17: On the first step, LAGONN, LAGONNlite,
and LAGONNexp start out the strongest, but it is
LAGONNlite that remains performant for all other steps.
LAGONNlite is also the strongest overall method based
on the average.

Method Toxic Conversations
Balanced 1st 5th 10th Average

RoBERTafull 32.31.1 42.71.8 54.13.4 43.86.3
SetFitexp 35.73.4 32.66.2 37.42.7 36.51.9
LAGONNexp 40.44.4 40.26.6 39.87.5 40.01.2

SetFitlite 35.73.4 52.72.5 53.92.2 46.87.8
LAGONNlite 40.44.4 52.92.6 54.02.3 48.36.4
RoBERTafreeze 32.31.1 39.21.5 41.00.6 38.52.4
kNN 17.40.8 23.72.6 24.32.7 23.12.0
SetFit 35.73.4 44.52.9 46.12.8 43.62.9
LAGONN 40.44.4 46.62.7 48.12.2 46.12.2

Probe 29.52.4 35.90.9 40.20.9 36.13.5
LAGONNcheap 26.82.7 34.51.3 38.50.8 34.43.7

Table 18: On the first step, LAGONN, LAGONNlite,
and LAGONNexp start out the strongest, but it is
LAGONNlite that remains performant for all other steps.
LAGONNlite is also the strongest overall method based
on the average.
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Method Hate Speech Offensive
Extreme 1st 5th 10th Average

RoBERTafull 30.21.4 43.52.5 51.22.2 44.37.4
SetFitexp 30.30.8 44.01.3 51.12.0 43.86.5
LAGONNexp 30.30.7 40.72.9 49.14.4 42.26.2

SetFitlite 30.30.8 43.42.5 45.53.4 41.64.6
LAGONNlite 30.30.7 40.93.4 41.54.8 39.13.6

RoBERTafreeze 30.21.4 33.53.1 34.43.4 33.11.4
kNN 31.51.2 35.92.7 37.42.0 35.81.7
SetFit 30.30.8 38.42.5 41.11.5 37.83.3
LAGONN 30.30.7 35.72.6 39.12.4 35.62.7

Probe 29.00.2 34.71.5 40.12.1 35.13.8
LAGONNcheap 29.00.1 36.91.8 40.52.1 36.23.7

Table 19: kNN is the strongest method at first, but
is overtaken by SetFitexp on the 5th step, which is
then overtaken by RoBERTafull on the 10th step.
RoBERTafull is overall most performant system based
on the average.

Method Hate Speech Offensive
Imbalanced 1st 5th 10th Average

RoBERTafull 50.63.0 65.23.9 70.31.2 64.25.3
SetFitexp 54.44.3 66.31.8 68.92.0 64.34.5
LAGONNexp 57.05.2 67.04.4 69.82.1 64.94.6
SetFitlite 54.44.3 65.53.0 65.93.5 63.53.9
LAGONNlite 57.05.2 66.62.6 66.61.9 64.34.1

RoBERTafreeze 50.63.0 54.11.6 55.32.3 54.11.3
kNN 55.64.8 57.32.3 58.83.6 57.41.1
SetFit 54.44.3 57.03.9 58.23.8 57.21.1
LAGONN 57.05.2 58.24.1 58.33.4 58.30.6

Probe 46.52.2 57.81.7 60.31.2 56.54.5
LAGONNcheap 47.11.3 56.52.2 59.52.5 55.63.8

Table 20: On the first step, LAGONN, LAGONNlite,
and LAGONNexp start out the strongest, and
LAGONNexp continues to be performant, but is over-
taken on the 10th step by RoBERTafull. LAGONNexp

is the strongest overall method based on the average.

Method Hate Speech Offensive
Moderate 1st 5th 10th Average

RoBERTafull 61.93.4 70.81.0 72.51.4 69.93.2
SetFitexp 64.34.2 70.62.4 72.40.5 69.82.8
LAGONNexp 63.84.9 71.02.1 72.31.0 70.03.0
SetFitlite 64.34.2 70.32.2 71.22.1 69.32.3
LAGONNlite 63.84.9 70.71.4 71.41.0 69.42.5

RoBERTafreeze 61.93.4 63.24.1 64.14.5 63.20.6
kNN 64.34.0 63.32.9 63.92.5 63.70.4
SetFit 64.34.2 67.33.2 67.62.3 66.91.1
LAGONN 63.84.9 65.05.3 66.75.9 65.30.9

Probe 55.61.7 63.80.8 66.10.3 63.23.0
LAGONNcheap 56.03.6 62.21.4 66.00.9 62.32.9

Table 21: Similar to the imbalanced setting, on the
first step, LAGONN, LAGONNlite, and LAGONNexp

start out the strongest, and LAGONNexp continues to
be performant, but is overtaken on the 10th step by
RoBERTafull. LAGONNexp is the strongest overall
method based on the average.

Method Hate Speech Offensive
Balanced 1st 5th 10th Average

RoBERTafull 59.73.5 66.91.2 69.21.8 66.42.7
SetFitexp 60.71.3 66.31.6 67.50.9 65.92.2
LAGONNexp 61.51.7 66.41.4 67.70.9 66.11.8

SetFitlite 60.71.3 66.32.0 66.50.9 65.11.7
LAGONNlite 61.51.7 67.11.1 67.30.8 66.01.7

RoBERTafreeze 59.73.5 60.42.7 63.12.3 61.01.3
kNN 60.71.3 59.62.8 59.52.5 59.50.5
SetFit 60.71.3 62.50.7 63.41.0 62.31.0
LAGONN 61.51.7 62.81.5 64.21.0 63.00.9

Probe 54.91.4 58.50.9 60.90.4 58.71.7
LAGONNcheap 54.22.3 58.60.6 60.60.5 58.51.8

Table 22: Similar to the moderate setting, on the
first step, LAGONN, LAGONNlite, and LAGONNexp

start out the strongest, but RoBERTafull overtakes
LAGONNlite by the 10th step. RoBERTafull slightly
outperforms LAGONNlite and LAGONNexp as the
overall strongest method based on the average.
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Method LIAR
Extreme 1st 5th 10th Average

RoBERTafull 32.02.7 34.72.9 35.14.3 33.71.0
SetFitexp 31.23.8 30.43.1 31.82.9 31.50.7
LAGONNexp 30.64.7 30.32.0 31.32.0 31.10.6

SetFitlite 31.23.8 32.73.8 33.54.2 32.70.8
LAGONNlite 30.64.7 31.83.9 32.42.7 31.60.6

RoBERTafreeze 32.02.7 32.84.5 34.25.0 33.20.7
kNN 27.00.5 27.30.8 27.90.8 27.40.3
SetFit 31.23.8 33.75.1 35.75.1 34.31.6
LAGONN 30.64.7 32.04.6 33.75.4 32.60.9

Probe 30.72.0 30.63.9 31.72.9 31.10.4
LAGONNcheap 30.72.0 30.53.8 31.42.6 31.00.4

Table 23: RoBERTafreeze and RoBERTafull start out
performant and RoBERTafull continues to be until the
10th step where it is overtaken by SetFit, which ends up
being the strongest overall method.

Method LIAR
Imbalanced 1st 5th 10th Average

RoBERTafull 31.43.2 35.82.6 40.04.3 36.22.4
SetFitexp 32.34.5 35.93.1 36.42.2 35.21.1
LAGONNexp 32.34.6 35.73.4 36.52.3 35.71.4

SetFitlite 32.34.5 35.62.7 37.42.6 35.81.6
LAGONNlite 32.34.6 35.22.4 36.62.7 35.51.3

RoBERTafreeze 31.43.2 34.12.6 35.63.2 34.01.4
kNN 27.00.2 28.51.0 29.01.0 28.70.7
SetFit 32.34.5 36.53.1 38.53.4 36.32.0
LAGONN 32.34.6 34.92.2 36.92.5 35.31.4

Probe 30.73.0 32.81.8 35.01.6 33.51.5
LAGONNcheap 30.43.0 32.91.8 35.41.7 33.51.7

Table 24: LAGONN, LAGONNlite, LAGONNexp, Set-
Fit, SetFitlite, and SetFitexp start out as the most per-
formant, but SetFit is the strongest on the 5th step and
RoBERTafull on the 10th. Overall, SetFit is strongest
method based on the average over all steps.

Method LIAR
Moderate 1st 5th 10th Average

RoBERTafull 33.93.1 38.42.7 43.92.2 39.53.0
SetFitexp 33.02.6 37.21.8 38.71.5 37.41.6
LAGONNexp 34.13.4 38.72.3 39.01.8 37.81.5

SetFitlite 33.02.6 38.51.3 40.42.0 38.22.1
LAGONNlite 34.13.4 38.42.0 39.61.5 37.91.6

RoBERTafreeze 33.93.1 35.32.6 36.82.2 35.41.0
kNN 29.20.8 29.71.5 30.00.6 29.80.3
SetFit 33.02.6 37.23.9 39.43.5 37.01.8
LAGONN 34.13.4 37.03.1 38.63.0 36.81.3

Probe 31.61.1 34.72.5 37.02.5 34.91.7
LAGONNcheap 31.40.9 35.32.3 37.62.0 35.31.9

Table 25: LAGONN, LAGONNlite, and LAGONNexp

are the most performant classifiers on the first step,
while LAGONNexp remains strong until the 10th step
where it is overtaken by RoBERTafull. RoBERTafull is
the overally strongest method if we aggregate over all
steps.

Method LIAR
Balanced 1st 5th 10th Average

RoBERTafull 33.82.1 39.42.4 43.51.7 40.23.2
SetFitexp 34.42.3 36.71.7 37.01.3 36.51.1
LAGONNexp 33.81.8 34.22.7 37.21.9 36.21.4

SetFitlite 34.42.3 38.72.3 40.32.8 38.02.1
LAGONNlite 33.81.8 37.62.0 39.42.8 37.21.9

RoBERTafreeze 33.82.1 36.61.6 38.61.5 36.71.5
kNN 30.10.4 31.32.1 30.61.1 30.90.4
SetFit 34.42.3 38.32.5 40.02.0 37.91.6
LAGONN 33.81.8 38.31.3 40.60.6 38.12.0

Probe 32.11.9 35.21.4 37.22.5 35.21.7
LAGONNcheap 31.91.9 36.01.0 37.52.5 35.71.8

Table 26: SetFit, SetFitlite, and SetFitexp start out
the strongest on the first step, but are overtaken by
RoBERTafull on the 5th which remains the most per-
formant on the 10th step and if we consider the average
over all steps.
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A.5 Additional results: general text
classification

In this Appendix section, we provide additional
results from our general text classification experi-
ments in the main text, Section 6. Here we show
results comparing LAGONNlite against SetFitlite
and LAGONNexp against SetFitexp, but we include
results for one to five neighbors with LAGONN
LABDIST, Figures 7 and 8, respectively. The mea-
sure is average precision for IMDB, macro-F1 else-
where.

In general, the number of neighbors we con-
sider does not appear to have a large impact on
LAGONN ’s predictive power and our method con-
tinues to be a more stable classifier than SetFit and
can generally be expected to improve SetFit’s per-
formance. We also see that continued fine-tuning
with the embedding model is only helpful for cases
when the dataset has a relatively large number of
labels. One exception to this is the case of Student
Question Categories, where there are four labels.
While it is clear that SetFitlite is a stronger model
than LAGONN lite, if we consider the more expen-
sive alternatives, the story changes; if we continue
to fine-tune, the prediction curves are essentially
the same, and LAGONNexp seems to have a slight
edge on SetFitexp as we add training data.

LIAR, both the collapsed version we consid-
ered in our content moderation experiments and
the original version (Orig Liar) we examine in our
general text classification experiments here, seems
to be a very difficult dataset. Adding examples
or increased fine-tuning does not appear to consis-
tently increase model performance. We observed
this across all experimental settings and balanced
regimes and is a sensible finding, as it should be
very difficult to determine the truth of a specific
statement without additional context.
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Figure 7: SetFitlite performance compared against one to five neighbors for LAGONNlite LABDIST. The measure
is average precision for IMDB, macro-F1 elsewhere.

Figure 8: SetFitexp performance compared against one to five neighbors for LAGONNexp LABDIST. The measure
is average precision for IMDB, macro-F1 elsewhere.
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A.6 Additional results: multilingual text
classification

In this Appendix section, we provide multilin-
gual text classification results from experiments
where we compare SetFitexp and SetFitlite against
LAGONNexp and LAGONNlite respectively. For
these experiments, we used the Multilingual Ama-
zon Reviews Corpus (Keung et al., 2020), which
has five labels, where each label is a star rating in
Chinese, English, French, German, Japanese, or
Spanish.22 To create the mapping from label to
text, we used code from the ADAPET (Tam et al.,
2021) port in the official SetFit repository.23 In
these experiments, we used the same multilingual
pretrained Sentence Transformer for all models un-
der the balanced sampling regime.24 In the case of
LAGONNexp and LAGONNlite, we use LABDIST

and search over one to five neighbors, reporting all
results.

Figure 9 shows our results for expensive and in-
expensive models. We note in all cases all models
perform similarly. This supports our assertion in
Section 6 that when the training data is balanced
and we have only a handful of labels or less, it is
sufficient to fine-tune the Sentence Transformer on
only a subset of available training data. A classi-
fier can then be fit on all available data, encoded
with the fine-tuned ST. We observed this for SST-5
and observe it again here, especially clearly on the
Chinese subset of this dataset. SetFitexp plateaus
on the fifth step and stops learning, with different
versions of LAGONNexp outperforming it on later
steps. However, if we move down on row, we see
that all cheaper models continue to learn on all
steps.

22https://huggingface.co/datasets/amazon_
reviews_multi

23https://github.com/huggingface/setfit/blob/
main/scripts/adapet/ADAPET/utilcode.py

24https://huggingface.co/sentence-transformers/
paraphrase-multilingual-mpnet-base-v2
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Figure 9: Multilingual classification experiments. In the first row, we display results from expensive models on
German, English, Spanish data, with their cheaper counterparts in the following row. In the third and fourth row, we
do the same but for French, Japanese, and Chinese. The measure is macro-F1 in all cases.
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