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Abstract

Backward compatibility of model predictions
is a desired property when updating a machine
learning driven application. It allows to seam-
lessly improve the underlying model without
introducing regression bugs. In classification
tasks these bugs occur in the form of negative
flips. This means an instance that was correctly
classified by the old model is now classified
incorrectly by the updated model. This has
direct negative impact on the user experience
of such systems e.g. a frequently used voice
assistant query is suddenly misclassified. A
common reason to update the model is when
new training data becomes available and needs
to be incorporated. Simply retraining the model
with the updated data introduces the unwanted
negative flips. We study the problem of regres-
sion during data updates and propose Backward
Compatible Weight Interpolation (BCWI). This
method interpolates between the weights of the
old and new model and we show in extensive
experiments that it reduces negative flips with-
out sacrificing the improved accuracy of the
new model. BCWI is straight forward to imple-
ment and does not increase inference cost. We
also explore the use of importance weighting
during interpolation and averaging the weights
of multiple new models in order to further re-
duce negative flips.

1 Introduction

In conventional software development it is an es-
tablished routine to identify and fix regression bugs
before deploying a new version. Regression bugs
describe defects in already existing features and are
particularly sensible for end users because accus-
tomed workflows are affected. In machine learning
driven applications however the main focus usu-
ally lies on improving the underlying model and
regression is rarely measured, let alone actively
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Figure 1: The left column shows the common workflow
of finetuning a pretrained model on a given dataset in
order to learn a classifier. A data update occurs when
new data becomes available and is added to the existing
data. The right column depicts the finetuning of the
pretrained model on the updated (old and new) data.
After expanding the training set, the new model makes
more correct predictions compared to the old model.
Despite this, the prediction of some instances are flipped
from the correct label to an incorrect one. These so
called regression errors hinder the adoption of the new
model. Our work proposes to interpolate weights of old
and new model in order to reduce those negative flips
during data updates.

mitigated. This prevents backward compatibility
of e.g. visual search systems (Shen et al., 2020) or
virtual voice assistants (Cai et al., 2022) and leads
to humans loosing trust in AI systems (Bansal et al.,
2019; Srivastava et al., 2020). Previous work on
mitigating regression in machine learning models
focuses on cases where the model architecture (Yan
et al., 2021; Cai et al., 2022) or pretraining proce-
dure (Xie et al., 2021) is updated. For example,
updating a finetuned BERT model (Devlin et al.,
2019) to a RoBERTa based model (Liu et al., 2019)
which is finetuned on the same task specific data.
Such fundamental modifications are done rather
infrequently and it is more common to update the
training data of a model in order to improve a de-
ployed system. One such type of machine learning
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based system that undergoes frequent data updates
are virtual assistants and chatbots. A data update
consists of additional labeled utterances and com-
monly aims to improve classification performance
or to support new classes. Training a new model
on the updated data introduces regression in the
form of negative flips. As depicted in Figure 1,
a negative flip is a data point that was correctly
classified by the old model and is now classified
incorrectly by the new model. This happens de-
spite the overall better accuracy of the new model.
From a user’s perspective it seems as if the vir-
tual assistant or chatbot got worse because familiar
utterances are suddenly misinterpreted. On the
other hand, the overall better accuracy is only per-
ceived over time. The negative user impact of re-
gression and abundance of data updates motivates
us to study the mitigation of regression during data
updates in multi-class text classification. The out-
lined data update setting can be categorized as a
continual learning problem. But in two key aspects
it is distinct from the commonly studied contin-
ual learning setting (Parisi et al., 2019). (i) We
assume full access to the old training data. As such,
catastrophic forgetting in terms of accuracy drop is
avoided by joint training. (ii) We instead measure
forgetting/interference by number of negative flips
between old model and new model.

To reduce negative flips during data updates, we
propose Backward Compatible Weight Interpola-
tion (BCWI) in this paper. BCWI describes the
interpolation between the weights of the old model
and the weights of the new model. The interpo-
lation largely recovers the prediction pattern of
the old model without hurting the improved accu-
racy of the new model. The method is informed
by recent success of weight interpolation for ro-
bust finetuning (Wortsman et al., 2022b) and model
patching (Ilharco et al., 2022). While these works
focus on avoiding catastrophic forgetting in terms
of task accuracy, we are interested in reducing neg-
ative flips while maintaining high accuracy. We fur-
ther introduce FisherBCWI which uses the Fisher
information matrix as importance weighting (Kirk-
patrick et al., 2017; Matena and Raffel, 2021) and
SoupBCWI which employs soup ensembles (Worts-
man et al., 2022a) to further reduce negative flips.
The proposed methods do not modify the training
process and do not increase inference cost. We
describe BCWI and its variants in detail and empir-
ically show on three datasets and two update sce-
narios (adding i.i.d. data and adding new classes)

that they reduce negative flips by up to three times
while maintaining the improved accuracy of the
new model. This property of weight interpolation
has not been explored before and constitutes a sub-
stantial step towards regression free data updates.

2 Related Work

Mitigating Regression Previous work focuses
mainly on reducing negative flips when updating
the model architecture or the pretraining procedure.
In these settings the available data is static and not
affected by the update as in our work. Negative
flips are either minimized by training with distilla-
tion loss while using the old model as teacher (Yan
et al., 2021; Xie et al., 2021; Jiang et al., 2022;
Hidey et al., 2022) or ensembling techniques (Yan
et al., 2021; Xie et al., 2021; Zhao et al., 2022;
Deng et al., 2022; Liu et al., 2022b). Cai et al.
(2022) introduces a method specifically for struc-
tured prediction that uses the old model to rerank
the output beams of the new model. Model regres-
sion is also known as prediction churn or jitter (Mi-
lani Fard et al., 2016; Toneva et al., 2018; Liu et al.,
2022b). Our proposed method uses weight interpo-
lation in order to move the new model closer to the
old model post training.

Weight Interpolation Weight interpolation and
weight averaging are known to improve classifica-
tion performance in different settings. Averaging
the weights of multiple model checkpoints along a
cyclic learning rate schedule leads to better classifi-
cation generalization (Izmailov et al., 2018). Aver-
aging the weights of multiple models, initialized by
the same pretrained model and finetuned with dif-
ferent hyperparameter, improves accuracy in clas-
sification tasks (Wortsman et al., 2022a) and out-
of-distribution generalization (Rame et al., 2022).
Weight interpolation is also used to merge the task
specific accuracy of a finetuned model with the
zero-shot capability of its ancestor model (Worts-
man et al., 2022b; Ilharco et al., 2022). Looking be-
yond simple averaging, Matena and Raffel (2021)
use the Fisher information matrix to scale each
model weight by importance. We use the same
importance weighting for the FisherBCWI method.
To the best of our knowledge, we are the first to
explore weight interpolation for mitigating data
update regression.

Continual Learning Continual learning studies
the problem of incrementally adding new knowl-
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edge to a model while avoiding catastrophic for-
getting (Ratcliff, 1990; McCloskey and Cohen,
1989). Knowledge arrives in the form of new
tasks, additional classes or data with shifted distri-
bution (Lange et al., 2022). Catastrophic forgetting
is measured by accuracy drop on previous data and
tasks. It arises from the imposed constraint that one
has none or limited access to previous data when
new knowledge is incorporated. The constraint is
motivated by analogy of how humans learn over
time (McCloskey and Cohen, 1989) or storage fea-
sibility (Sodhani et al., 2022). We instead allow
access to the old data because the amount is man-
ageable and we do not focus on simulating lifelong
learning. This setting reinforces the need to mea-
sure catastrophic forgetting and interference not
only in terms of overall accuracy, but also in terms
of reducing negative flip rate.

Weight regularization is a common way to
prevent catastrophic forgetting by preventing the
model weights to deviate too far from the old model.
Prior Weight Decay (Wiese et al., 2017; Lee et al.,
2020) moves the current model weights in the di-
rection of the weights of the old model during each
training step. Mixout (Lee et al., 2020) randomly
replaces a subset of the current weights with the
weights of the old model at each training step. Kirk-
patrick et al. (2017) introduce Elastic Weight Con-
solidation (EWC) which uses the diagonal Fisher
information matrix to weigh the importance of each
model parameter in L2 regularization. We show
in our experiments that the weight regularization
techniques also reduce the number of negative flips.

3 Problem Formulation: Regression in
Data Updates

In order to measure regression in classification
models, Yan et al. (2021) introduced negative flip
rate (NFR):

NFR = 1
N

∑N
i 1[fθold(xi) = yi ∧ fθnew(xi) ̸= yi], (1)

where fθold is the old model and fθnew the new, up-
dated model. NFR is measured on a given regres-
sion set with N input and label pairs (x, y). Nega-
tive flips are instances that are predicted correctly
by the old model and are incorrectly predicted by
the new model. Consequently, NFR is the ratio
of negative flips to the total number of instances
in the regression set, i.e., the development or test
set. We formulate the problem of minimizing re-
gression during data updates in the following way.

A deployed model with weights θold was trained
by finetuning a pretrained model θpre on currently
available data Dold:

θold = argmin
θ

L(θ|θpre,Dold), (2)

where L is the classification loss. We now obtain
additional data and update the available data to get
Dupd = Dold ∪ Dnew. This larger dataset allows
us to train a new model that achieves better classifi-
cation performance than the old model. A straight
forward way to do so is to finetune the initial pre-
trained model on the updated data (old and new
data):

θnew_target = argmin
θ

L(θ|θpre,Dupd). (3)

This is the process depicted in Figure 1 and, un-
fortunately, leads to high negative flip rate which
in turn limits the compatibility between the old
and new model. The goal of this work is to find
a method that emits a new model which produces
minimal negative flips while achieving the same
classification performance as the target model:

θ∗ = argmin
θ

R(θ, θold)

s.t. M(θ∗) ≈ M(θnew_target),
(4)

where R is the regression metric and M measures
the classification performance. In our work these
are negative flip rate and accuracy, respectively. To
account for variance, the equality of classification
metrics can be defined as e.g. overlapping confi-
dence intervals.

4 Proposed Method: Backward
Compatible Weight Interpolation

We start with the intuitive observation that negative
flips are reduced when using the old model as the
starting point for finetuning the new model:

θnew = argmin
θ

L(θ|θold,Dupd). (5)

Next we interpolate between the weights of the old
and new model:

θBCWI = αθold + (1− α)θnew, (6)

where α ∈ [0.0, 1.0] is the interpolation parameter
and regulates the trade-off between classification
performance and negative flip rate. A larger α
moves the model closer to the old model, reducing
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negative flip rate but ultimately sacrifices the im-
proved classification performance. We empirically
show that in all but one of the conducted experi-
ments there exists an α > 0 that results in a model
that achieves the same classification performance
as the target model while significantly reducing
negative flips. We call this method Backward Com-
patible Weight Interpolation (BCWI).

4.1 FisherBCWI

The interpolation with a single parameter might
not be optimal because not every model weight is
equally contributing to a model’s predictions. The
importance of each weight can be quantified by
the diagonal of the empirical Fisher information
matrix (Kirkpatrick et al., 2017; Matena and Raffel,
2021):

Fold =
1

c

N∑

i

(∇θold log p(yi|xi))2, (7)

where c is a normalization constant and ∇θold is
the gradient in respect to the weights of the old
model. By using Fold ∈ R|θold| as the importance
factor for each parameter in the old model we get:

θFisherBCWI =
αFoldθold + (1− α)θnew

αFold + (1− α)
, (8)

where all operations are elementwise. The inter-
polation is focused on weights that are important
for the old model and thus minimizes interference
with the weights of the new model.

4.2 SoupBCWI

Ensembling the logits of multiple new models re-
duces negative flips (Yan et al., 2021; Xie et al.,
2021). The inference cost increases linearly with
each new model in the ensemble and makes it
impracticable for many applications. To allevi-
ate this, we employ a soup ensemble (Wortsman
et al., 2022a) of new models. A soup ensemble is
formed by averaging the weights of multiple mod-
els that were individually finetuned from the same
pretrained model. We find that the soup ensemble
of new models is reducing negative flips. This is
complementary to BCWI as we show by interpolat-
ing the ensemble weights towards the weights of
the old model:

θSoupBCWI = αθold + (1− α)
1

M

M∑

j

θnewj , (9)

Add_Data Scenario Add_Classes Scenario

Train Dev Test Train Dev Test #C

MASSIVE
old 1,000 333 4,000 1,222 409 3,258 47
+ new 500 167 - 278 91 742 13
= updated 1,500 500 4,000 1,500 500 4,000 60

Banking77
old 700 233 4,000 927 310 3,713 70
+ new 300 100 - 73 23 287 7
= updated 1,000 333 4,000 1,000 333 4,000 77

AG News
old 120 60 4,000 225 113 3,000 3
+ new 180 90 - 75 37 1,000 1
= updated 300 150 4,000 300 150 4,000 4

Table 1: The dataset splits for the Add_Data and
Add_Classes update scenarios constructed for the re-
spective datasets. The updated data is the old data in
addition to the new data. The test set is only updated
when new classes are added. The #C-column lists the
number of classes in the respective data portion of the
AC scenario. The AD scenario includes all classes.

where M is the number of new models. Each new
model is finetuned according to Equation 5 and
each with a different random seed. In the next sec-
tion, we motivate the data update scenarios that
we use to demonstrate the effectiveness of the pro-
posed methods.

5 Data Update Scenarios

The data that is available to train a given classifi-
cation model changes over time. This can be due
to several reasons. More labeled data for the ex-
isting classes is obtained by annotating instances
from the initial source or from observed queries.
Data for new classes is added to support additional
downstream features or classes are split up to allow
for more fine-grained classification. The retrain-
ing of an existing model on the evolved data basis
is called data update. In this work, we focus on
two isolated data update scenarios that cover two
common use cases, namely adding i.i.d. data and
adding new classes. We simulate the two scenarios
in order to study the prevalence and mitigation of
regression during data updates.

Add_Data Scenario In the Add_Data (AD) sce-
nario, the amount of available data is increased by
adding new instances for the current set of classes.
This is the most basic type of data update and aims
at improving the classification performance of the
derived model. The additional data is usually ob-
tained by annotating more instances from the initial
data source or from the observed model queries.
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Figure 2: Results for the AD and AC scenario evaluated on our test sets of MASSIVE (FitzGerald et al., 2022),
Banking77 (Casanueva et al., 2020) and AG News (Zhang et al., 2015). The gray horizontal bar is spanned by the
95% confidence interval of the target model and indicates the level of accuracy a model should reach. Baselines are
Prior Weight Decay (Lee et al., 2020), Mixout (Lee et al., 2020), EWC (Kirkpatrick et al., 2017), Distillation (Xie
et al., 2021), BitFit (Ben Zaken et al., 2022) and IA3 (Liu et al., 2022a). Identical markers belong to the same
method evaluated with different trade-off parameters. Markers to the right of the target model are cut off. For BCWI
this is α in 0.1 steps where 0.0 is equivalent to the new model and 1.0 is equivalent to the old model. The trade-off
parameters for the baselines are listed in Appendix A. The ideal case for a new model is to have zero negative flips
while maintaining the target accuracy. BCWI consistently produces a model that is closer to the ideal case than any
of the baseline methods and is more stable across different trade-off parameters.

While in the latter case the distribution can shift
over time, we assume i.i.d. data for this scenario.

Add_Classes Scenario In the Add_Classes (AC)
scenario, we study data updates that consists of
adding new classes and corresponding instances
to the existing data. This is necessary when the
text classification based system supports new fea-
tures. For example, a virtual assistant is extended
with a food delivery feature, a news classification
model covers emerging topics or medical reports
are classified according to new diseases codes.

5.1 Datasets and Splits

We simulate the two described data update scenar-
ios for three datasets each. MASSIVE (FitzGerald
et al., 2022) is a natural language understanding
dataset with 60 intents covering basic domains of a
virtual assistant. We use the English portion of the
data. Banking77 (Casanueva et al., 2020) includes
utterances with 77 intents for a virtual assistant lim-
ited to the banking domain. AG News (Zhang et al.,
2015) is a document classification dataset that cate-
gorizes news articles into four topics. Table 1 lists
the number of instances in the data splits for both
scenarios across all three datasets. We only use a

subset of the original data and randomly sample all
splits from the training set of the respective dataset.
The size of the splits was chosen such that the data
update leads to a significant improvement of classi-
fication accuracy. In order to simulate the addition
of new classes for the AC scenario, we limit its old
data splits to a subset of the available classes.

6 Experiments

We evaluate our proposed BCWI method on
the above described data update scenarios, each
constructed for three different datasets.1 We
choose RoBERTa (Liu et al., 2019) as a pretrained
model because it is widely used and a represen-
tative encoder-only transformer model. The old
model and target model are trained by finetun-
ing RoBERTaBASE on the old and updated data
respectively (see Equation 2 and 3). The new
model is trained by finetuning the old model on
the updated data (see Equation 5). The empirical
Fisher information matrix used by FisherBCWI
and EWC is calculated on the training and devel-
opment instances. The classification performance

1https://github.com/amazon-science/
regression-constraint-model-upgrade/tree/main/
nlp
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MASSIVE Banking77 AG News

Model ACC↑ NFR↓ ACC↑ NFR↓ ACC↑ NFR↓

Old Model 81.8 ±0.2 0.0 ±0.0 82.8 ±0.4 0.0 ±0.0 85.0 ±0.8 0.0 ±0.0

Target Model 83.4 ±0.4 3.3 ±0.4 86.2 ±0.4 3.0 ±0.3 88.0 ±0.1 3.4 ±0.3

New Model 83.2 ±0.2 2.8 ±0.2 86.3 ±0.1 1.6 ±0.1 88.3 ±0.3 2.4 ±0.3

BitFit 82.8 ±0.3 2.5 ±0.2 85.0* ±0.4 2.2 ±0.2 87.9 ±0.3 2.1 ±0.1

IA3 83.0 ±0.2 2.3 ±0.1 85.2* ±0.4 2.4 ±0.2 88.2 ±0.5 1.6 ±0.2

Distillation 83.5 ±0.2 1.5 ±0.2 85.8 ±0.2 1.5 ±0.2 87.9 ±0.5 1.7 ±0.3

PriorWD 83.4 ±0.3 2.0 ±0.2 85.8 ±0.3 1.3 ±0.1 88.1 ±0.4 1.7 ±0.2

Mixout 83.0 ±0.2 1.8 ±0.2 85.8 ±0.3 1.4 ±0.1 88.4 ±0.4 1.6 ±0.2

EWC 83.3 ±0.1 1.6 ±0.1 86.1 ±0.2 1.2 ±0.1 87.9 ±0.4 1.6 ±0.3

BCWI 83.4 ±0.1 1.4 ±0.1 85.5 ±0.3 0.8 ±0.1 88.0 ±0.4 1.5 ±0.2

Table 2: Add_Data scenario results for BCWI and base-
lines. Hyperparameters are tuned on the dev set. ’*’ in-
dicates that there is no overlap with the target accuracy.
Bold NFR values have overlapping 95% confidence in-
tervals with the best value (except old model).

of each model is reported as accuracy on the up-
dated test set. Regression is measured as negative
flip rate (see Equation 1) in respect to the classi-
fications of the old model on the updated test set.
Experiments are repeated ten times with different
random seeds and we report the mean and 95%
confidence interval. Detailed setup and tuning of
hyperparameters can be found in Appendix A. The
α-values in our experiments are tuned to reach the
accuracy threshold on the development set.

Baselines We compare BCWI to distillation train-
ing where the old model is used as the teacher (Yan
et al., 2021; Xie et al., 2021). Besides distillation,
the method additionally applies higher weight to
negative flip instances in the training set. This
is a strong baseline and produces state-of-the-art
results for reducing regression in architecture up-
dates. We also compare our proposed approach to
methods that are used to avoid catastrophic for-
getting in continual learning. Prior weight de-
cay (Wiese et al., 2017; Lee et al., 2020) moves
the current weights towards the old model at each
training step. Mixout (Lee et al., 2020) randomly
replaces a subset of the weights at each training
step with the weights of the old model. Kirkpatrick
et al. (2017) introduce elastic weight consolida-
tion (EWC) that uses the diagonal Fisher informa-
tion matrix to weigh the importance of each model
parameter in L2 regularization. BitFit (Ben Za-
ken et al., 2022) is a parameter efficient finetuning
method that only touches the bias terms of a model.
IA3 (Liu et al., 2022a) introduces additional param-
eters to scale the outputs of the key and value layer
in multi-head attention as well as the position-wise

MASSIVE Banking77 AG News

Model ACC↑ NFR↓ ACC↑ NFR↓ ACC↑ NFR↓

Old Model 68.8 ±0.1 0.0 ±0.0 80.0 ±0.3 0.0 ±0.0 70.4 ±0.1 0.0 ±0.0

Target Model 83.9 ±0.2 3.2 ±0.2 86.5 ±0.3 2.8 ±0.3 87.9 ±0.5 3.5 ±0.6

New Model 83.8 ±0.2 2.4 ±0.1 86.3 ±0.3 1.8 ±0.2 87.9 ±0.3 4.2 ±0.5

BitFit 81.6* ±0.2 3.3 ±0.2 85.3* ±0.4 1.5 ±0.2 86.8* ±0.3 4.9 ±0.7

IA3 82.2* ±0.4 2.9 ±0.2 85.8 ±0.4 1.8 ±0.2 87.1 ±0.3 4.9 ±0.3

Distillation 83.8 ±0.2 2.0 ±0.2 86.2 ±0.3 1.1 ±0.1 87.6 ±0.2 3.6 ±0.5

PriorWD 83.3* ±0.3 2.1 ±0.2 86.3 ±0.3 1.1 ±0.1 87.4 ±0.4 4.3 ±0.4

Mixout 83.0* ±0.2 2.4 ±0.1 86.2 ±0.3 1.2 ±0.1 87.6 ±0.4 5.0 ±0.5

EWC 83.6 ±0.3 2.0 ±0.1 86.4 ±0.3 0.9 ±0.1 87.9 ±0.4 4.3 ±0.4

BCWI 83.2* ±0.2 1.4 ±0.1 86.0 ±0.4 1.0 ±0.1 87.6 ±0.3 3.6 ±0.4

Table 3: Add_Classes scenario results for BCWI and
baselines. Hyperparameters are tuned on the dev set. ’*’
indicates that there is no overlap with the target accuracy.
Bold NFR values have overlapping 95% confidence
intervals with the best value (except old model).

feed-forward networks. The proper model weights
are frozen. All baselines are trained by finetuning
the old model according to Equation 5.

6.1 Results

We first discuss the results for the AD scenario
shown in the top row of Figure 2. Looking at the
MASSIVE plot, we see that the new model (see
Equation 5) yields lower NFR than the target
model (see Equation 3) while achieving similar
accuracy. The horizontal gray bar is spanned by
the 95% confidence interval around the accuracy of
the target model and indicates the area of accuracy
that fulfills the constraint in Equation 4. The dots
along the green line are BCWI models evaluated
at decreasing α-values with step size 0.1, starting
from α=1.0 which is equivalent to the old model
on the bottom left to α=0.0 which is equivalent to
the new model. For all three datasets there is a
BCWI model that lies within the gray area and has
lower negative flip rate than the new model. The
weight regularization baselines are evaluated with
different regularization strength and the individual
markers for Prior Weight Decay, Mixout and EWC
are connected. The plots reveal that the baselines
are competitive at accuracy levels close to the new
model but drop faster than BCWI when approach-
ing low negative flip rate. The numerical results in
Table 2 show that BCWI can reduce negative flips
by up to three times over the target model while
maintaining the accuracy.

The second row in Figure 2 features the BCWI
and baseline plots for the AC scenario. The green
line which connects individual BCWI models fol-
lows an S-shaped curve with an inflection point
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MASSIVE Banking77 AG News

Model ACC NFR↓ ACC NFR↓ ACC NFR↓

Add_Data Scenario

BCWI 83.4 ±0.1 1.4 ±0.1 85.5 ±0.3 0.8 ±0.1 88.0 ±0.4 1.5 ±0.2

FisherBCWI 83.5 ±0.2 2.0 ±0.2 85.5 ±0.3 0.6 ±0.1 88.1 ±0.4 1.9 ±0.3

SoupBCWI-2 83.5 ±0.1 1.1 ±0.1 85.6 ±0.4 0.7 ±0.1 88.0 ±0.4 1.2 ±0.2

SoupBCWI-4 83.6 ±0.1 0.9 ±0.1 85.4 ±0.4 0.6 ±0.1 88.0 ±0.3 1.1 ±0.1

SoupBCWI-8 83.6 ±0.2 0.8 ±0.1 85.4 ±0.3 0.6 ±0.1 88.0 ±0.3 1.1 ±0.1

SoupBCWI-16 83.5 ±0.2 0.7 ±0.1 85.4 ±0.4 0.6 ±0.1 87.9 ±0.4 0.9 ±0.1

Add_Classes Scenario

BCWI 83.2 ±0.2 1.4 ±0.1 86.0 ±0.4 1.0 ±0.1 87.6 ±0.3 3.6 ±0.4

FisherBCWI 82.9 ±0.2 1.2 ±0.1 85.7 ±0.5 0.7 ±0.1 87.5 ±0.2 3.3 ±0.4

SoupBCWI-2 83.0 ±0.3 1.2 ±0.1 85.8 ±0.4 0.8 ±0.1 87.9 ±0.3 3.8 ±0.3

SoupBCWI-4 82.9 ±0.2 1.1 ±0.1 85.8 ±0.3 0.6 ±0.1 87.9 ±0.3 3.8 ±0.4

SoupBCWI-8 82.9 ±0.3 1.0 ±0.1 85.8 ±0.3 0.5 ±0.1 87.7 ±0.3 3.5 ±0.3

SoupBCWI-16 82.9 ±0.2 1.0 ±0.1 85.8 ±0.3 0.5 ±0.1 87.9 ±0.3 3.8 ±0.3

Table 4: Results for FisherBCWI and SoupBCWI in
comparison with BCWI. Bold NFR values are lower
than those of BCWI and without overlapping 95% con-
fidence intervals.

near α ≥ 0.5 (on AG News the lower end of the S
is compressed along the x-axis). This is because
the old model is not trained on the new classes and
their accuracy drops rapidly to zero once the old
model weights dominate. For each dataset in the
AC scenario there is a BCWI model that lies within
the target accuracy and yield lower NFR than the
new model. On AG News none of the α-values
within the gray area result in lower NFR than the
target model. The numerical values in Table 3 show
that BCWI is as good as or better than the baselines
in reducing regression at the same accuracy level.

BCWI Variants We discuss the results for the
BCWI variants proposed in Section 4.1 and 4.2
in this paragraph. FisherBCWI uses the diagonal
Fisher information matrix as importance weighting
when interpolating between old and new model.
In Table 4 we can see that it produces less neg-
ative flips than vanilla BCWI in the majority of
experiments. This shows that studying interpola-
tion schemes beyond linear is a promising research
direction to further reduce negative flips. The re-
sults for SoupBCWI, also presented in Table 4,
reveal that interpolating the weights of a soup en-
semble (Wortsman et al., 2022a) with the weights
of the old model significantly reduces negative flips.
The effect slows down after more than four new
models in the soup ensemble. We present the full
trade-off trajectories for FisherBCWI and Soup-
BCWI in Appendix B.

Additional Training Tune Inference
Memory Time Trade-Off Cost

EWC |F | + |θold| t(F ) + 1.9x retrain 1x
Prior WD |θold| 1.1x retrain 1x
Mixout |θold| 1.6x retrain 1x

BCWI - 1x post training 1x
FisherBCWI - t(F ) + 1x post training 1x
SoupBCWI - Mx post training 1x

Ensemble - Mx post training Mx

Table 5: Properties of the proposed methods in compari-
son to considered baselines. Additional Memory: Num-
ber of additional values that need to be held in GPU
memory during training. Training Time: Factor by
which the training time of the new model is increased.
Tune Trade-Off : Weather it is necessary to retrain the
model in order to tune the accuracy-NFR trade-off.
Inference Cost: Factor by which inference cost is in-
creased. F is the diagonal Fisher information matrix
with size |θ| and with compute time t(F ) roughly equal
to one epoch. M is the number of new models in the
(soup) ensemble.

7 Analysis

Method Properties In this section we discuss the
training and inference resources required by BCWI
and the utilized baselines listed in Table 5. The
weight regularization baselines have higher GPU
memory requirements because they need to access
the weights of the old model at each training step.
The calculations necessary to evaluate the regular-
ization terms amount to 1.1− 1.9× longer training
time. EWC additionally keeps the Fisher infor-
mation matrix in memory, which is pre-calculated
before training. The pre-calculation takes the time
of roughly one epoch of training. This is also nec-
essary for the FisherBCWI method. In order to
tune the regularization strength of EWC, Prior WD
and Mixout, the model needs to be retrained en-
tirely. On the other hand, the α-value of BCWI is
tuned after the training is completed, by interpolat-
ing the converged model weights. This property of
BCWI is a big advantage because it saves training
resources and allows to quickly adjust to e.g. user
complaints about too many regression errors in an
updated model.

Output Ensemble of Old and New Model The
weight interpolation between old and new model
can be seen as an ensemble in weight space. But in
contrast to output ensembles, it does not increase
inference cost. In an output ensemble, the input
needs to be passed through both models and the
final prediction is a combination of the two output
probability distributions. This renders output en-
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Old Model New Model Target Model Weight Interpolation α=0.5

Figure 3: Visualization of training loss, test accuracy and negative flip rate for the AD scenario on MASSIVE.
Visualization technique from Izmailov et al. (2018). The x and y axes denote euclidean distance. On the bottom left
of each plot is the old model and dotted lines represent points along the linear interpolation towards the new model
and target model.
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Figure 4: BCWI in comparison with output ensemble
of old and new model on MASSIV. The ensemble is cal-
culated as the weighted average of output probabilities.
AD scenario is on the left and AC scenario on the right.

sembles impracticable in many applications, espe-
cially real-time systems. Figure 4 shows the graphs
for weight interpolation and weighted average of
output probabilities. The trajectories in the AD sce-
nario are similar and in the AC scenario the output
ensemble performs slightly better. This highlights
that BCWI conveys most of the improvements in
regression mitigation, but without the downside of
increased inference cost from running the old and
new model.

Loss Landscape To better understand BCWI, we
visualize the loss and error landscapes for the old,
new and target model in Figure 3. The left plot
shows the cross-entropy loss on the updated train-
ing data. The new model and target model, both
trained on the updated data, achieve equally low
loss. Because the new model is initialized by the
old model (see Equation 5), it stays within the same
loss basin. The target model, initialized by the pre-
trained model (see Equation 3), diverges more from
the old model and ends up in a different local min-
imum. Thus interpolation between the old model
and target model faces a high loss barrier and in
turn low test accuracy. The distance between old
model and target model is three times larger than

the distance between old model and new model.
According to Rame et al. (2022) this leads to a
large locality term and makes the models less "av-
eragable". A potential way to alleviate this is per-
mutating the weights (Ainsworth et al., 2022) of the
target model such that it lies within the same basin
as the old model. The plot in the middle shows the
accuracy along the interpolation from old to new
model and that small α-values maintain high accu-
racy. The interpolation towards the target model
traverses low accuracy regions and only achieves
high accuracy very close to the target model. The
plot on the right shows that the area of low negative
flip rate is centered around the old model. This
explains the lower NFR for the new model opposed
to the target model because the distance between
the old and new model is smaller than between the
old and target model. Interpolating the weights of
the new model and the weights of the old model fol-
lows a monotonic decrease of negative flips. This
allows to find a point in weight space that has low
negative flips while maintaining high accuracy.

8 Conclusion

We studied the problem of regression during data
updates in text classification. Retraining a model
with a larger amount of training data increases accu-
racy but also introduces negative flips. We propose
BCWI which describes the interpolation between
the weights of the old model and the weight of the
new model. We empirically show on three datasets
and two update scenarios that BCWI models signif-
icantly reduce negative flips while not sacrificing
accuracy. We compare BCWI to strong continual
learning methods and achieve similar or better re-
sults, while not increasing training or inference
cost. Another big advantage of BCWI is that the
trade-off parameter α can be tuned without retrain-
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ing the model. This saves additional training cost
and only requires to store the weights of the old
and new model. We extend BCWI by using the
Fisher information matrix as importance factor in
weight interpolation and show that it further re-
duces negative flips. Using multiple new models
as in proposed SoupBCWI also reduces regression
without increasing the inference cost. In principle
BCWI is architecture and task agnostic with the
possibility to explore effectiveness in applications
such as image classification or natural language
generation left for future work.

Limitations

We show the effectiveness of our method on three
datasets, two of which are focused on intent detec-
tion. While in principle the method is task-agnostic,
we didn’t present results for more tasks or domains.
Another limitation is that we did not show results
for BCWI when the training data is updated multi-
ple times and the new model is interpolated succes-
sively.

Ethics Statement

The proposed method relies on pretrained models
and inherits their possible harmful biases. Given
that the objective of BCWI is to change correct
predictions as little as possible, it solidifies possi-
ble harmful predictions and biases of a finetuned
model. Consequently, practitioners must scrutinize
the annotated class labels of datasets that are used
in combination with the BCWI method.

References
Samuel K. Ainsworth, Jonathan Hayase, and Sid-

dhartha S. Srinivasa. 2022. Git re-basin: Merg-
ing models modulo permutation symmetries. ArXiv,
abs/2209.04836.

Gagan Bansal, Besmira Nushi, Ece Kamar, Dan Weld,
Walter Lasecki, and Eric Horvitz. 2019. Updates in
human-ai teams: Understanding and addressing the
performance/compatibility tradeoff. In AAAI Confer-
ence on Artificial Intelligence. AAAI.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.
2022. BitFit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 1–9, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Deng Cai, Elman Mansimov, Yi-An Lai, Yixuan Su, Lei
Shu, and Yi Zhang. 2022. Measuring and reducing

model update regression in structured prediction for
nlp. ArXiv, abs/2202.02976.

Iñigo Casanueva, Tadas Temčinas, Daniela Gerz,
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A Experiment Details

(Range of) Hyperparameters

Prior WD 0.01, 0.1, 1.0, 10.0, 100, 200,
1e3, 2e3, 4e3, 1e4, 1e5

Mixout 0.05, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9,
0.95, 0.98, 0.99, 0.999

EWC 1e-5, 1e-4, 1e-3, 0.01,
0.1, 1.0, 2.0, 5.0, 10.0, 50.0

100, 1e3, 1e4
BitFit & IA3 E: 8, 12, 16; LR: 1e-4, 1e-3, 1e-2

LR Schedule linear
Warmup Ratio 0.1
Batch Size 16
Adam ϵ 1e-6
Adam β1 0.9
Adam β2 0.98
Adam Bias Corr. True
Dropout 0.1
Weight Decay 0.01
Clip grad. norm 5.0

MASSIVE Banking77 AG News

Old Model:
Epochs 16 16 8
Learning Rate 6e-5 6e-5 6e-5
Target Model:
Epochs 16 16 8
Learning Rate 6e-5 6e-5 6e-5
New Model:
Epochs 3, 6, 10 3, 6, 10 2, 3, 6
Learning Rate 3e-5, 6e-5 3e-5, 6e-5 3e-5, 6e-5

Table 6: Hyperparameter for the different datasets and
methods.

We list the hyperparameters used for training
the different models in Table 6. The selection of
hyperparameter largely follows (Mosbach et al.,
2021). We use the RoBERTaBASE model from
HuggingFace2. The best learning rate and num-
ber of epochs is selected on the development set
based on accuracy and NFR. Although there are
no extensive experiments, we noticed that BCWI
is largely insensitive to hyperparameter selection.
The focus can remain on optimizing accuracy and
BCWI handles regression after the successful train-
ing. The interpolation parameter α is tuned on the
development set by choosing the largest α-value
that does not cause the accuracy to drop below a
chosen threshold (see Table Table 9 and 10). The
regularization strength of the baselines is tuned in
the same way by selecting the strongest regular-
ization parameter that does not sacrifice accuracy
below that threshold on the dev set. We use a V100
GPU and finetuning takes around 20 minutes.
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Model ACC↑ NFR↓ ACC↑ NFR↓ ACC↑ NFR↓

Old Model 81.8 ±0.2 0.0 ±0.0 82.8 ±0.4 0.0 ±0.0 85.0 ±0.8 0.0 ±0.0

Target Model 83.4 ±0.4 3.3 ±0.4 86.2 ±0.4 3.0 ±0.3 88.0 ±0.1 3.4 ±0.3

New Model 83.2 ±0.2 2.8 ±0.2 86.3 ±0.1 1.6 ±0.1 88.3 ±0.3 2.4 ±0.3

Ensemble-2 83.8 ±0.3 2.2 ±0.2 86.4 ±0.2 1.4 ±0.2 88.4 ±0.2 2.4 ±0.4

Ensemble-4 84.0 ±0.2 2.0 ±0.1 86.5 ±0.2 1.4 ±0.2 88.6 ±0.2 2.3 ±0.3

Ensemble-8 84.2 ±0.2 1.8 ±0.1 86.5 ±0.2 1.3 ±0.2 88.7 ±0.2 2.2 ±0.3

Ensemble-16 84.3 ±0.2 1.7 ±0.1 86.4 ±0.2 1.3 ±0.2 88.8 ±0.2 2.1 ±0.2

Soup-2 83.7 ±0.3 2.2 ±0.2 86.3 ±0.2 1.4 ±0.2 88.5 ±0.2 2.3 ±0.4

Soup-4 83.9 ±0.3 1.9 ±0.1 86.4 ±0.2 1.4 ±0.1 88.6 ±0.3 2.2 ±0.3

Soup-8 84.0 ±0.2 1.8 ±0.1 86.4 ±0.2 1.3 ±0.2 88.8 ±0.2 2.2 ±0.3

Soup-16 84.1 ±0.2 1.7 ±0.1 86.3 ±0.2 1.3 ±0.1 88.9 ±0.2 2.1 ±0.2

Table 7: Results for the Add_Data scenario on the test
set. Ensemble-M is the output ensemble of M new
models formed by averaging the probabilities. Soup-
M is the soup ensemble of M new models formed by
averaging the model weights.
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Model ACC↑ NFR↓ ACC↑ NFR↓ ACC↑ NFR↓

Old Model 68.8 ±0.1 0.0 ±0.0 80.0 ±0.3 0.0 ±0.0 70.4 ±0.1 0.0 ±0.0

Target Model 83.9 ±0.2 3.2 ±0.2 86.5 ±0.3 2.8 ±0.3 87.9 ±0.5 3.5 ±0.6

New Model 83.8 ±0.2 2.4 ±0.1 86.3 ±0.3 1.8 ±0.2 87.9 ±0.3 4.2 ±0.5

Ensemble-2 83.9 ±0.2 2.2 ±0.1 86.8 ±0.3 1.4 ±0.2 88.0 ±0.3 4.2 ±0.4

Ensemble-4 84.2 ±0.2 2.0 ±0.1 86.9 ±0.2 1.2 ±0.1 88.0 ±0.3 4.3 ±0.4

Ensemble-8 84.2 ±0.2 1.9 ±0.2 87.0 ±0.3 1.1 ±0.1 88.0 ±0.3 4.2 ±0.3

Ensemble-16 84.3 ±0.2 1.9 ±0.2 87.1 ±0.3 1.0 ±0.1 88.1 ±0.3 4.2 ±0.3

Soup-2 83.9 ±0.3 2.1 ±0.1 86.7 ±0.3 1.4 ±0.2 88.0 ±0.3 4.2 ±0.3

Soup-4 84.0 ±0.2 1.9 ±0.1 86.8 ±0.3 1.1 ±0.1 88.0 ±0.3 4.2 ±0.4

Soup-8 84.1 ±0.2 1.8 ±0.2 86.9 ±0.2 1.0 ±0.1 88.1 ±0.3 4.2 ±0.4

Soup-16 84.1 ±0.2 1.8 ±0.2 86.9 ±0.2 1.0 ±0.1 88.1 ±0.3 4.1 ±0.4

Table 8: Results for the Add_Classes scenario on the
test set of the three datasets. Ensemble-M is the output
ensemble of M new models formed by averaging the
probabilities. Soup-M is the soup ensemble of M new
models formed by averaging the model weights.

B Additional Results

In Table 9 and 10 we show the dev set results for Ta-
ble 2 and 3. The hyperparameter for the respective
method was tuned to reach the accuracy threshold
on the dev set.

We present the plots for FisherBCWI results in
Figure 6. Results for Soup ensembles and probabil-
ity ensembles of new models are listed in Table 7
and 8. They achieve the same accuracy and NFR
which means that soup ensembles are as good as
probability ensembles in reducing regression with-
out increasing inference cost.

In the analysis in Section 7, we show that tra-
jectory of BCWI closely follows the probability
ensemble of old and new model. In Figure 5. In

2https://huggingface.co/roberta-base

2857

https://huggingface.co/roberta-base


0 1 2

82.0

82.5

83.0

83.5

A
cc

ur
ac

y
Add Data Scenario

0 1 2

70

75

80

85
Add Classes Scenario

0.0 0.5 1.0 1.5

83

84

85

86

A
cc

ur
ac

y

0.0 0.5 1.0 1.5

80

82

84

86

0 1 2
Negative Flip Rate

84

85

86

87

88

A
cc

ur
ac

y

0 1 2 3 4
Negative Flip Rate

70

75

80

85

M
A

SS
IV

E
B

an
ki

ng
77

A
G

N
ew

s

Old Model
New Model

BCWI
Ensemble

Figure 5: Plots comparing BCWI with the probability
ensemble of old and new model.

the AC scenario the probabilities for new classes
predicted by the old model are set to zero, because
it was only trained on the old classes.

C Access to Old Data

For our main experiments we assume full access
to the old data. This allows us to train the new
model without catastrophic forgetting. To comple-
ment these results, we also show the behavior of
BCWI when the new model is trained only on the
new data (i.e. no access to the old data). The re-
sults are presented in Figure 8 and show that for
the AD scenario the more restrictive setting has
negative impact on Banking77 but achieves similar
results for MASSIVE and AG News. In the AC
scenario, the new model has significantly lower
accuracy which can be attributed to catastrophic
forgetting, because the new model is finetuned on
new classes only. The interpolation towards the old
model improves accuracy but does not reach the
same accuracy as finetuning the new model on old
and new data.

D Datasets and Scenarios

Detailed label distribution and number of instances
for the AD and AC scenarios for all three datasets
are visualized in Figure 9. The plots also show
which classes are added for each dataset in the AC
scenario.
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Figure 6: Plots for FisherBCWI in comparison with
vanilla BCWI. The gray area indicates the target accu-
racy level.
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MASSIVE Banking77 AG News

λ dev test λ dev test λ dev test

Model ACC↑ NFR↓ ACC↑ NFR↓ ACC↑ NFR↓ ACC↑ NFR↓ ACC↑ NFR↓ ACC↑ NFR↓

Old Model - 80.4 ±0.8 0.0 ±0.0 81.8 ±0.2 0.0 ±0.0 - 83.2 ±0.9 0.0 ±0.0 82.8 ±0.4 0.0 ±0.0 - 84.1 ±1.5 0.0 ±0.0 85.0 ±0.8 0.0 ±0.0

Target Model - 82.2 ±0.4 3.0 ±0.6 83.4 ±0.4 3.3 ±0.4 - 86.4 ±0.7 2.8 ±0.8 86.2 ±0.4 3.0 ±0.3 - 88.5 ±1.1 3.1 ±0.9 88.0 ±0.1 3.4 ±0.3

New Model - 82.0 ±1.0 2.4 ±0.5 83.2 ±0.2 2.8 ±0.2 - 86.1 ±0.8 1.1 ±0.3 86.3 ±0.1 1.6 ±0.1 - 89.5 ±0.8 1.3 ±0.3 88.3 ±0.3 2.4 ±0.3

ACC Threshold ≥ 81.8 ≥ 85.8 ≥ 89.0

PriorWD 100 81.8 ±0.7 1.7 ±0.3 83.4 ±0.3 2.0 ±0.2 200 86.1 ±0.7 0.8 ±0.3 85.9 ±0.3 1.3 ±0.1 1e3 89.5 ±0.8 0.8 ±0.5 88.1 ±0.4 1.7 ±0.2

Mixout 0.2 81.8 ±0.5 2.2 ±0.4 83.0 ±0.2 2.6 ±0.2 0.9 86.1 ±0.7 0.9 ±0.2 85.8 ±0.3 1.4 ±0.1 0.95 89.7 ±0.9 0.9 ±0.6 88.4 ±0.4 1.6 ±0.2

EWC 0.01 82.0 ±0.8 1.8 ±0.4 83.3 ±0.3 2.1 ±0.2 0.01 86.4 ±1.0 0.8 ±0.2 86.1 ±0.2 1.4 ±0.1 1.0 88.9 ±1.0 0.9 ±0.6 87.9 ±0.4 1.6 ±0.3

BCWI 0.45 81.8 ±0.7 1.2 ±0.3 83.4 ±0.1 1.4 ±0.1 0.4 85.8 ±0.8 0.6 ±0.2 85.5 ±0.3 0.8 ±0.1 0.35 89.0 ±0.8 0.8 ±0.4 88.0 ±0.4 1.5 ±0.2

FisherBCWI 0.2 81.9 ±0.8 1.8 ±0.3 83.5 ±0.2 2.0 ±0.2 0.6 85.8 ±0.9 0.6 ±0.3 85.5 ±0.3 0.6 ±0.1 0.2 89.2 ±0.8 1.0 ±0.4 88.1 ±0.4 1.9 ±0.3

SoupBCWI-2 0.45 81.8 ±0.7 1.0 ±0.4 83.5 ±0.1 1.1 ±0.1 0.4 85.8 ±1.0 0.6 ±0.3 85.6 ±0.4 0.7 ±0.1 0.45 89.1 ±0.6 0.7 ±0.4 88.0 ±0.4 1.2 ±0.2

SoupBCWI-4 0.5 81.9 ±0.4 0.8 ±0.2 83.6 ±0.1 0.9 ±0.1 0.45 85.8 ±0.9 0.5 ±0.2 85.4 ±0.4 0.6 ±0.1 0.45 89.1 ±0.8 0.6 ±0.4 88.0 ±0.3 1.1 ±0.1

SoupBCWI-8 0.5 81.9 ±0.4 0.8 ±0.3 83.6 ±0.2 0.8 ±0.1 0.45 85.8 ±1.0 0.5 ±0.2 85.4* ±0.3 0.6 ±0.1 0.45 89.1 ±0.7 0.7 ±0.4 88.0 ±0.3 1.1 ±0.1

SoupBCWI-16 0.55 81.8 ±0.5 0.6 ±0.2 83.5 ±0.2 0.7 ±0.1 0.45 85.9 ±0.9 0.5 ±0.2 85.4 ±0.4 0.6 ±0.1 0.5 89.1 ±0.8 0.6 ±0.4 87.9 ±0.4 0.9 ±0.1

Table 9: Results for the Add_Data scenario. The trade-off parameter λ (or α for BCWI) is tuned on the dev set to be
above the accuracy threshold. The threshold is set as 90% of dev accuracy from old to new model. "*" indicates
that the accuracy does not overlap with accuracy of the target model. Bold NFR values have overlapping 95%
confidence intervals with the best value. The old model and SoupBCWI is not under consideration when selecting
the best NFR value.

MASSIVE Banking77 AG News

λ dev test λ dev test λ dev test

Model ACC↑ NFR↓ ACC↑ NFR↓ ACC↑ NFR↓ ACC↑ NFR↓ ACC↑ NFR↓ ACC↑ NFR↓

Old Model - 67.1 ±0.5 0.0 ±0.0 68.8 ±0.1 0.0 ±0.0 - 82.9 ±0.7 0.0 ±0.0 80.0 ±0.3 0.0 ±0.0 - 67.9 ±0.5 0.0 ±0.0 70.4 ±0.1 0.0 ±0.0

Target Model - 81.6 ±0.6 3.9 ±0.5 83.9 ±0.2 3.2 ±0.2 - 89.0 ±0.6 2.2 ±0.4 86.5 ±0.3 2.8 ±0.2 - 86.8 ±1.5 1.5 ±0.7 87.9 ±0.5 3.5 ±0.6

New Model - 81.5 ±0.6 3.0 ±0.3 83.8 ±0.2 2.4 ±0.1 - 88.6 ±0.5 1.7 ±0.6 86.3 ±0.3 1.8 ±0.2 - 87.9 ±0.6 1.3 ±0.8 87.9 ±0.3 4.2 ±0.5

ACC Threshold ≥ 80.8 ≥ 88.3 ≥ 86.9

PriorWD 200 81.3 ±0.7 2.1 ±0.3 83.3 ±0.3 2.1 ±0.2 200 89.4 ±0.7 0.6 ±0.2 86.3 ±0.3 1.1 ±0.1 1e4 87.5 ±1.4 1.2 ±0.6 87.4 ±0.4 4.3 ±0.4

Mixout 0.7 81.0 ±0.5 2.6 ±0.3 83.0 ±0.2 2.4 ±0.1 0.95 89.0 ±0.8 0.9 ±0.4 86.2 ±0.3 1.2 ±0.1 0.8 88.0 ±1.1 1.9 ±0.9 87.6 ±0.4 5.0 ±0.5

EWC 0.01 81.6 ±0.5 2.2 ±0.3 83.6 ±0.3 2.0 ±0.1 0.01 89.3 ±0.7 0.6 ±0.2 86.4 ±0.3 0.9 ±0.1 1e-5 88.0 ±0.6 1.3 ±0.8 87.9 ±0.4 4.3 ±0.4

BCWI 0.25 81.2 ±0.5 1.7 ±0.3 83.2 ±0.2 1.4 ±0.1 0.35 88.8 ±0.5 0.8 ±0.3 86.0 ±0.4 1.0 ±0.1 0.1 86.9 ±0.6 1.1 ±0.6 87.6 ±0.3 3.6 ±0.4

FisherBCWI 0.5 81.3 ±0.5 1.2 ±0.2 82.9 ±0.2 1.2 ±0.1 0.7 88.5 ±0.5 0.6 ±0.2 85.7 ±0.5 0.7 ±0.1 0.05 86.9 ±0.7 1.0 ±0.6 87.5 ±0.2 3.3 ±0.4

SoupBCWI-2 0.25 81.3 ±0.6 1.3 ±0.2 83.0 ±0.3 1.2 ±0.1 0.35 88.6 ±0.8 0.8 ±0.4 85.8 ±0.4 0.8 ±0.1 0.05 87.3 ±0.8 1.3 ±0.9 87.9 ±0.3 3.8 ±0.3

SoupBCWI-4 0.25 81.3 ±0.5 1.2 ±0.1 82.9 ±0.2 1.1 ±0.1 0.35 88.3 ±0.9 0.8 ±0.4 85.8 ±0.3 0.6 ±0.1 0.05 87.4 ±0.9 1.5 ±0.9 87.9 ±0.3 3.8 ±0.4

SoupBCWI-8 0.25 81.3 ±0.5 1.2 ±0.2 82.9 ±0.3 1.0 ±0.1 0.35 88.6 ±0.7 0.7 ±0.3 85.8 ±0.3 0.5 ±0.1 0.1 86.9 ±0.8 1.3 ±0.7 87.7 ±0.3 3.5 ±0.3

SoupBCWI-16 0.25 81.3 ±0.5 1.1 ±0.2 82.9 ±0.2 1.0 ±0.1 0.35 88.5 ±0.9 0.5 ±0.3 85.8 ±0.3 0.5 ±0.1 0.05 87.7 ±0.8 1.3 ±0.7 87.9 ±0.3 3.8 ±0.3

Table 10: Results for the Add_Classes scenario. The trade-off parameter λ (or α for BCWI) is tuned on the dev
set to be above the accuracy threshold. The threshold is set as 95% of dev accuracy from old to new model. "*"
indicates that the target accuracy on the test set is not reached. Bold NFR values have overlapping 95% confidence
intervals with the best value. The old model and SoupBCWI is not under consideration when selecting the best NFR
value.
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Figure 9: Add_Data scenario and Add_Classes scenario for MASSIVE (FitzGerald et al., 2022), Bank-
ing77 (Casanueva et al., 2020) and AG News (Zhang et al., 2015). Striped bars indicate added instances. Added
class names are printed in green.
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