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Abstract

Recent advances in training multilingual lan-
guage models on large datasets seem to have
shown promising results in knowledge transfer
across languages and achieve high performance
on downstream tasks. However, we question to
what extent the current evaluation benchmarks
and setups accurately measure zero-shot cross-
lingual knowledge transfer. In this work, we
challenge the assumption that high zero-shot
performance on target tasks reflects high cross-
lingual ability by introducing more challenging
setups involving instances with multiple lan-
guages. Through extensive experiments and
analysis, we show that the observed high per-
formance of multilingual models can be largely
attributed to factors not requiring the transfer of
actual linguistic knowledge, such as task- and
surface-level knowledge. More specifically, we
observe what has been transferred across lan-
guages is mostly data artifacts and biases, espe-
cially for low-resource languages. Our findings
highlight the overlooked drawbacks of existing
cross-lingual test data and evaluation setups,
calling for a more nuanced understanding of
the cross-lingual capabilities of multilingual
models.1

1 Introduction

Massively Multilingual Transformers (MMTs) ex-
hibit remarkable abilities in comprehending texts
in multiple languages (Devlin et al., 2019; Conneau
et al., 2020; Chi et al., 2022; Lin et al., 2022). Their
performance on extensive multilingual benchmarks
(Hu et al., 2020b; Ruder et al., 2021) including natu-
ral language inference (Conneau et al., 2018), para-
phrase identification (Yang et al., 2019), question
answering (Artetxe et al., 2020), and commonsense
reasoning (Ponti et al., 2020), clearly indicates their
usefulness for downstream tasks across different
languages.

1The source code is available at: https://github.com/
Sara-Rajaee/crosslingual-evaluation

Since collecting labeled data for multiple lan-
guages is expensive, fine-tuning an MMT on only
one language (usually English) and applying it
to other languages is a common practice to ex-
pand multilingual models’ applications to more
languages. The success of employing this approach
is primarily attributed to the cross-lingual ability
of MMTs and knowledge transfer across languages
(K et al., 2019; Keung et al., 2020; Fujinuma et al.,
2022; Ebrahimi et al., 2022). However, in this work,
we question this attribution and take a closer look at
the cross-lingual evaluation pipelines used to assess
MMTs’ performance. Our study aims to broaden
our horizons about the existing performance-based
evaluation setups of MMTs and highlight their sig-
nificant shortcomings.

To this end, we first provide insights into the def-
inition of the cross-lingual ability in language mod-
els and the essential criteria for its evaluation. We
challenge the assumption of high cross-lingual abil-
ity, i.e., requiring actual linguistic knowledge, in
MMTs using three downstream tasks: Natural Lan-
guage Inference (NLI), Paraphrase Identification
(PI), and Question Answering (QA). Our experi-
mental results demonstrate that multilingual mod-
els struggle with transferring linguistic knowledge
across languages when the inputs involve multiple
languages, such as in the NLI task with a premise
in Arabic and a hypothesis in Spanish. Employing
this setup, we show that, unlike previous assump-
tions, MMTs are not able to effectively connect
the underlying semantics between languages in a
zero-shot manner. It is worth mentioning that the
evaluation of MMTs using multiple languages in
the input offers both theoretical advantages and
reflects real-world scenarios in NLP systems.

We extend our study to investigate if the failures
come from the lack of across-language fine-tuning
data. We find that even by fine-tuning MMTs on
across-language data that involves two languages
in an instance, they still can not successfully trans-
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fer knowledge between languages in a zero-shot
setting.

Looking for the reasons behind the ineffective-
ness of MMTs on the across setup, we examine the
impact of individual samples on the cross-lingual
performance and identify a specific subset where
MMTs struggle. Our findings demonstrate that
models achieve exaggerated high performance by
strongly relying on spurious features and data arti-
facts. We notice that cross-lingual transfer primar-
ily involves learned biases and shallow knowledge
rather than linguistic knowledge. Notably, this phe-
nomenon disproportionately affects low-resource
languages, exacerbating the challenges faced by
MMTs in achieving true cross-lingual competence.

As part of our methodology, we design control
tasks (Hewitt and Liang, 2019) in which, during
fine-tuning, the words within the instances have
been randomly shuffled, and then, the model is
evaluated on the original, i.e., not shuffled, test
data. Surprisingly, our experiments show that al-
though these new tasks do not provide the model
with meaningful linguistic knowledge related to
the target task, there is only a slight drop in their
cross-lingual performance in both single and two-
language evaluation settings. These results demon-
strate that MMTs’ understanding tends to be more
reliant on surface-level patterns rather than linguis-
tic comprehension.

Our experiments show from several angles that
current MMTs’ cross-lingual evaluation setups do
not give us a clear and faithful picture of their
cross-lingual ability. Our findings question the ex-
tent of high crosslinguality in language models and
prompt us to pay more attention to the interpreta-
tion of knowledge transfer and cross-lingual ability
in multilingual models solely based on their perfor-
mance on downstream tasks.

2 Related Work

Massively Multilingual Transformers. Multi-
lingual models have achieved success in under-
standing multiple languages without requiring
language-specific supervision, thanks to only re-
quiring unlabelled training data in multiple lan-
guages. Prominent examples include Multilingual
BERT (mBERT) and XLM-R, which have been
pre-trained on a diverse set of languages using the
masked language modeling objective (Devlin et al.,
2019; Conneau et al., 2020). Other models, such as
XLM with Translation Language Modeling (TLM),

XLM-E with multilingual replaced token detection
(MRTD) and translation replaced token detection
(TRTD), and ALM with code-switched inputs, have
employed similar strategies with different objec-
tives (CONNEAU and Lample, 2019; Chi et al.,
2022; Yang et al., 2020).

Analyzing MMT. The rise of multilingual mod-
els has sparked significant interest to understand
their linguistic capabilities across different lan-
guages. Chi et al. (2020) have discovered sub-
spaces within mBERT representations that can
capture syntactic tree distances across different
languages. Aligned with their finding, numer-
ous studies have further explored the potential of
multilingual models to capture both syntactic (Pa-
padimitriou et al., 2021; Xu et al., 2022; Mueller
et al., 2022; Ravishankar et al., 2021) and seman-
tic knowledge (Foroutan et al., 2022; Vulić et al.,
2020) for a wide range of languages.

Several studies have delved into understanding
the factors influencing the cross-lingual ability of
multilingual models. Pires et al. (2019) explored
the effectiveness of multilingual BERT in transfer-
ring knowledge across languages using NER and
POS tagging tasks, noting the impact of language
similarity on performance. Chai et al. (2022) ex-
amined cross-linguality from a language structure
perspective, emphasizing the significance of the
composition property in facilitating cross-lingual
transfer. Muller et al. (2021) analyzed representa-
tion similarities and discovered a strong connection
between hidden cross-lingual similarity and the
model’s performance on downstream tasks. Build-
ing upon this finding, Deshpande et al. (2022) iden-
tified a correlation between token embedding align-
ment and zero-shot transfer across diverse tasks.

In the realm of multilingual models, both the
design of new models and the examination of ex-
isting ones rely heavily on evaluating their perfor-
mance in zero-shot cross-lingual scenarios. How-
ever, there remains the question of how accurately
we can interpret their performance and its impli-
cations for the models’ cross-lingual abilities. To
shed light on this issue, our work focuses on in-
vestigating the faithfulness of the prevailing meth-
ods used to evaluate zero-shot cross-lingual per-
formance in the literature. By doing so, we aim
to provide deeper insights into the interpretation
of model performance and its relationship to the
cross-lingual capabilities of multilingual models.
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3 Cross-lingual Evaluation

The ability of a multilingual model to effectively
generalize across languages on downstream tasks
is the key factor in determining its cross-linguality
(Pires et al., 2019; Wu and Dredze, 2019; Artetxe
et al., 2020). More specifically, a multilingual
model is considered cross-lingual if it can success-
fully perform tasks in languages not seen during
task fine-tuning.

However, relying solely on the ultimate perfor-
mance of multilingual models on a specific tar-
get task has significant drawbacks, as it can poten-
tially create misconceptions about their true cross-
lingual abilities. This evaluation approach lacks
clarity in distinguishing between the extent of cross-
lingual knowledge transfer and surface-level and
non-linguistic features. It is possible for a multilin-
gual model to achieve high performance on a task
without possessing a deep semantic understanding
of a language, instead mostly relying on language-
independent and shallow knowledge, as previously
reported for monolingual language models (Bhar-
gava et al., 2021; Stacey et al., 2020; Gururangan
et al., 2018; McCoy et al., 2019).

It is worth mentioning that fully disentangling
linguistic and shallow (task-specific) knowledge
is almost impossible for most NLP tasks. How-
ever, trying to separate these types of knowledge as
much as possible gives us a clearer and more accu-
rate perspective regarding the linguistic knowledge
captured by models across languages.

In the following parts, we employ three different
target tasks, namely multilingual Natural Language
Inference, Paraphrase Identification, and Question
Answering, to study the cross-lingual ability of
multilingual models. We utilize multilingual BERT
(Devlin et al., 2019, mBERT) and the base version
of XLM-r (Conneau et al., 2020) for our exper-
iments as they are among the most widely used
multilingual models. We also employ INFOXLM
(Chi et al., 2021) trained on a cross-lingual ob-
jective and parallel data to investigate the role of
explicit pre-trained cross-lingual objective on the
cross-lingual ability.2

3.1 Natural Language Inference

Natural language inference serves as a prominent
task in the field of NLP for assessing the com-
prehension capabilities of language models (Bow-

2The experimental setups of fine-tuning are provided in
the Appendix.

man et al., 2015; Condoravdi et al., 2003). This
task requires the prediction of the relationship be-
tween a given premise and hypothesis, where the
model determines whether the premise entails the
hypothesis, contradicts it, or remains undetermined
(Williams et al., 2018, MNLI).

To study the cross-lingual ability of MMTs in the
NLI task, we employ the multilingual NLI dataset
(Conneau et al., 2018, XNLI), where the training
set has 397k samples in English (adopted from the
MNLI training set), and the test sets include 5k
instances in fifteen different languages manually
translated from the English data (Hu et al., 2020a).

We investigate the cross-linguality of MMTs in
the context of NLI using two distinct evaluation
settings. In the first setting, which we refer to as
the within language setup, we fine-tune the model
on English training data and assess its performance
on NLI tasks across other languages, following pre-
vious studies (Artetxe and Schwenk, 2019; Lample
and Conneau, 2019; Wu and Dredze, 2019; Qi et al.,
2022; Chai et al., 2022; Huang et al., 2021). In
the second setting, the across language evaluation,
we assess cross-linguality by providing premise
and hypothesis pairs in two different languages.
To the best of our knowledge, none of the previ-
ous research has evaluated the cross-linguality of
MMTs by employing instances involving multiple
languages in downstream tasks. Since the XNLI
test data is a fully parallel dataset, we can easily
combine premises and hypotheses from different
languages. We assert that this evaluation approach
provides a more precise and reliable assessment of
the models’ cross-linguality. It asks the model to
comprehend the underlying meaning of the input
in two languages simultaneously, minimizing po-
tential spurious correlations between examples and
labels. It is worth mentioning that both evaluation
approaches are conducted in a zero-shot manner.

The results are presented in Table 1. For a com-
prehensive breakdown of performance for each lan-
guage pair, please refer to the Appendix. Aligned
with previous research (Hu et al., 2020a), the re-
sults of the within language setting show the abil-
ity of MMTs to effectively generalize knowledge
learned during fine-tuning from English to other
languages when the premise and hypothesis are
in the same language. Nevertheless, the extent of
their success varies across languages, with lower
accuracy observed for low-resource languages like
Swahili compared to high-resource ones.

The results of the across language experiment,
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en de fr ru es zh vi ar tr bg el ur hi th sw avg

mBERT

within 81.5 70.6 73.5 68.6 68.2 68.6 69.9 64.2 62.0 68.7 67.5 58.7 60.5 52.3 50.3 65.7
across 61.3 57.7 59.5 57.2 59.2 55.2 56.0 54.3 51.1 55.9 54.3 50.7 52.3 47.2 45.6 54.5

XLM-r

within 84.9 76.3 78.3 75.7 79.2 73.5 74.8 71.5 73.0 78.6 75.4 65.5 69.3 71.8 65.2 74.2
across 71.9 67.1 68.8 68.0 69.2 64.6 65.1 62.8 62.8 68.3 66.2 60.0 63.6 64.2 53.7 64.8

INFOXLM

within 85.8 78.2 79.2 76.9 80.0 75.5 75.9 73.2 74.4 78.4 77.0 66.0 71.0 73.0 65.9 75.4
across 77.1 72.0 72.9 71.9 73.2 70.0 69.9 69.0 69.0 72.5 71.1 64.8 68.8 69.8 61.8 70.3

Table 1: The accuracy scores of mBERT, XLM-r, and INFOXLM for two evaluation settings on the NLI task:
the within language setting, where both the hypothesis and premise are in the same language, and the across
language evaluation, which involves two different languages. In the across evaluation, numbers represent the
average performance when either the premise or the hypothesis (but not both) is in the given language. As the
numbers show, MMTs have considerably lower performance in the across setting.

en de fr es zh ko ja avg

mBERT

within 93.5 84.6 86.6 86.7 77.0 72.8 73.6 81.4
across 75.1 72.1 72.5 72.6 64.8 64.1 63.7 69.2

XLM-r

within 94.4 87.8 89.5 89.1 81.9 76.3 77.3 85.7
across 76.4 72.1 72.2 72.2 63.6 65.2 62.9 69.2

INFOXLM
within 94.0 88.4 90.0 90.2 83.0 78.7 78.9 86.2
across 84.6 79.9 80.3 80.4 75.2 72.4 73.3 78.0

Table 2: The accuracy of fine-tuned models on PAWS-X
evaluated under the within and across language settings.
For mBERT and XLM-r, there is, on average, a 17%
drop in performance when the sentences are provided
in two different languages. While the trend is similar
for INFOXLM, the drop is less significant in this model,
which can be attributed to its cross-lingual pretraining
objective.

where the premise and hypothesis are in two differ-
ent languages, show a comparatively lower level of
cross-linguality in MMTs compared to the within
setup. It raises concerns about the true extent of
cross-lingual ability in language models. Even
for high-resource languages within the same lan-
guage family (e.g., English and German), the
average performance declines by approximately
17% for mBERT and XLM-r. This drop is even
more pronounced for low-resource languages such
as Swahili, see Figures 2–4. As we expected,
INFOXLM exhibits less of a performance drop in
the across setup attributed to its cross-lingual pre-
training objective. However, since English has been
used as a pivot language in the pre-training data,

the cross-lingual objective has mostly helped the
performance of pairs including English, and the
trend of the other pairs is similar to mBERT and
XLM-r, see Figure 4.

3.2 Paraphrase Identification
The Paraphrase Identification task evaluates a
model’s understanding of the semantic similarity
between two sentences (Wang et al., 2018). Para-
phrase Adversaries from Word Scrambling (PAWS)
is a challenging dataset for this task, where both
sentences in each example have high word over-
lap (Zhang et al., 2019). PAWS-X is a multilin-
gual benchmark and extends this dataset to six lan-
guages beyond English using professionally trans-
lated validation and test sets (Yang et al., 2019).

We employ a similar evaluation setup as de-
scribed for NLI to assess the cross-lingual capabil-
ity of multilingual models on the semantic similar-
ity task. Since not all instances are translated into
all six other languages in the dataset, we only con-
sider parallel sentences for the evaluation, resulting
in the exclusion of a small number of examples
(less than 0.5% on average) from the test sets.

The performance of the fine-tuned models on
PAWS-X is presented in Table 2, and the detailed re-
sults can be found in Figures 5–7. In the within lan-
guage setup, where the sentences in every instance
are from the same language, the models demon-
strate the successful knowledge transfer across lan-
guages, as indicated by their relatively high per-
formance compared to English. However, in the
across language setting, which tests the models’
cross-lingual ability in a more challenging sce-
nario, similar to the findings in XNLI, there is
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en de ru es zh vi ar tr el hi th avg

mBERT

within 84.5 72.7 71.4 75.5 58.2 69.2 61.2 55.1 62.4 58.0 40.0 64.4
across 57.0 50.6 50.2 52.7 42.6 46.3 42.2 36.9 42.4 38.7 26.1 44.2

XLM-r

within 84.2 75.2 74.5 77.1 63.7 74.3 66.3 68.1 73.8 68.3 66.5 72.0
across 58.1 44.1 42.9 43.4 28.1 33.9 25.8 31.3 34.7 32.3 29.6 36.8

INFOXLM
within 85.1 76.0 75.0 77.8 66.4 75.6 70.3 69.9 74.8 71.6 69.9 73.8
across 73.8 66.6 66.7 68.1 61.4 64.3 61.0 61.4 64.2 61.9 60.1 64.5

Table 3: Zero-shot F1 scores of fine-tuned models for the QA task using the within and across language evaluation
approaches. All the models struggle with the across setup, especially for mBERT and XLM-r, where we observe
more than 50% drop in their performance, challenging the extent of their cross-linguality.

a significant drop in performance for the mod-
els. These results show that comprehending infor-
mation from two different languages and making
semantic-based decisions pose challenges for mul-
tilingual models, particularly for non-Latin script
languages, where their performance is noticeably
affected.

3.3 Question Answering

The question answering (QA) task challenges the
reading comprehension ability in language models
in which the model is asked to find the answer span
to a question within the given context (Choi et al.,
2018; Rajpurkar et al., 2016). While NLI and PI
are similarity-based and classification tasks, QA of-
fers an alternative perspective to evaluate the cross-
lingual capacity of MMTs in a different type of tar-
get task. For this task, we employ XQuAD (Artetxe
et al., 2020), a multilingual question-answering
benchmark comprising 240 paragraphs and 1,190
question-answer pairs from the development set of
SQuAD v1.1 (Rajpurkar et al., 2016). It includes
professional translations into ten languages, mak-
ing it a fully parallel dataset.

The results of the cross-lingual evaluation of the
QA models are presented in Table 3 for the within
and across language setups.3 We report the exact
match (EM) and F1 scores, which are commonly
used metrics to evaluate question-answering sys-
tems. The reported results for the across setting are
the average over cases that the context or question
(not both of them) are in the listed language.

For the QA task, we observe a similar trend to
the NLI and PI tasks. The numerical results indi-

3The language-pair results can be found in the appendix
and see Table 8 for EM performance.

cate that multilingual models excel in generaliz-
ing across unseen languages when the context and
question are in the same language, i.e., the within
setting. However, when the context is in a different
language than the question, the empirical results
show a substantial decline in performance. This
suggests that multilingual models face challenges
in retrieving knowledge from several languages
at the same time and bridging information across
different language representation spaces.

Another interesting observation is that in the
across language scenario, the models’ performance
is lower compared to both languages in the within
language setup. Nonetheless, there is an excep-
tion when the question is in English in the across
language setting. Regardless of whether the con-
text language is low or high-resource language, the
performance remains close to the within setup of
the context language in mBERT and XLM-r (Fig-
ures 8 and 9). We speculate that this pattern may
be linked to the utilization of Wikipedia articles in
the pre-training data for both models, which were
used in constructing the SQuAD dataset as well.
However, we observe an opposite pattern for the
INFOXLM model in that the model relies more on
the context than the question that can be attributed
to the English-centric pretraining data.

3.4 Discussion

The previous experimental results demonstrate that
MMTs face difficulties in understanding and con-
necting multiple languages simultaneously. Al-
though the cross-lingual pre-training objective of
INFOXLM has enhanced the cross-lingual ability
of this model compared to mBERT and XLM-r,
the performance gap between within and across
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en-de ar-en tr-el es-de

l1− l2 67.8 64.1 75.9 64.1 63.4 52.9 76.4 61.8

l2− l1 58.7 71.3 39.2 56.5 41.7 50.8 43.1 65.3

∗ − l2 63.0 59.4 59.6 55.0 61.7 52.7 63.2 58.7

l1− ∗ 57.6 58.7 41.6 59.4 55.2 55.0 43.8 58.7

∗ − ∗ 52.8 55.3 54.9 55.3 56.5 55.3 56.4 55.3

Table 4: mBERT’s performance on the XNLI test set.
The columns show the fine-tuning language pairs, and
the rows show the evaluation pairs in which l1 and l2
represent the premise and hypothesis’s languages, re-
spectively, as given in the corresponding columns. The
rows that include ∗ show the average performance over
all languages. The smaller numbers present the baseline
performance (fine-tuning on en-en) for the correspond-
ing evaluation pairs.

setting is still considerable. A question raised here
is whether the low performance comes from the
lack of across language style fine-tuning data or
a deeper incapability of cross-lingual knowledge
transfer in MMTs. To answer this question, we
fine-tune mBERT using across language setups on
multiple language pairs on the NLI task. Table 9
breaks down the performance for the zero-shot and
semi-zero-shot setups.4 As can be observed, fine-
tuning using across language style data does not
help the model to generalize to other languages.
Interestingly, the model cannot even achieve bet-
ter performance on the same language pair when
the premise and hypothesis languages have been
swapped. Considering the results, we conclude
that the lower performance on the across evalu-
ation setup can not be attributed to the distinct
fine-tuning and evaluation setups.

4 Breakdown Analysis

In this section, we delve into the reasons behind the
lack of success exhibited by multilingual models
in the across language setup. Our analysis begins
by exploring the individual contributions of each
class to the overall tasks’ performance. By doing
so, we aim to uncover the specific instances that
present difficulties for multilingual models and sub-
sequently lead to a decline in their performance.

NLI. In Table 5, we present the numerical results
for the NLI task per label.5 Following previous
work (Yaghoobzadeh et al., 2021; Sanh et al., 2021),

4The results of other language pairs can be found in the
appendix.

5Please refer to Table 10 and 11 for the XLM-r and IN-
FOXLM results.

and for simplicity, we combine the neutral and not-
entailment classes, considering them as the not-
entailment class. Surprisingly, the contribution of
the entailment and not-entailment classes to the
overall performance in the across language setup
is not equal, and this trend is consistent across
all models. Notably, the drop in performance is
primarily affected by the entailment class and is
more pronounced for low-resource languages.

In relation to this behavior, we suspect that the
observed patterns can be attributed to dataset ar-
tifacts, particularly the word overlap bias in the
training set of XNLI (McCoy et al., 2019), and this
bias is transferred to other languages. The word
overlap bias refers to the tendency of NLI models
trained on the MNLI dataset to favor the entailment
label when there is a high word overlap between the
premise and hypothesis. Moreover, previous stud-
ies have shown a strong correlation between low
word overlap and the not-entailment label, which is
referred to as reverse (word overlap) bias (Rajaee
et al., 2022). Therefore, since in the across setting,
the word overlap is minimized, the model is biased
toward predicting the not-entailment label. An-
other possible explanation is that the multilingual
models prioritize language similarity over semantic
meaning, leading to a considerable drop in perfor-
mance.

In the multilingual context, our findings show
that, in the case of the NLI task, the transfer across
languages primarily involves dataset artifacts and
biases rather than linguistic knowledge. Especially
in low-resource scenarios, where sufficient pre-
training data is lacking, the model heavily relies on
these shortcuts.

PI. The performance of mBERT on the PAWS-X
test sets, broken down by labels, is presented in
Table 6 (see the other models’ results in Table 12
and 13). Despite the adversarial construction of the
PAWS dataset to prevent word overlap bias, with all
instances having high word overlap between sen-
tences, we observe a similar drop in performance
in the cross-language setting, primarily originating
from the paraphrase class. This suggests the pos-
sible presence of biases that have been transferred
across languages rather than linguistic knowledge
transfer.

To understand this behavior, we consider two po-
tential reasons for the drop in paraphrase class per-
formance. Firstly, the overlap bias may arise from
the pre-training procedure of multilingual models.
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en de fr ru es zh vi ar tr bg el ur hi th sw avg

Entailment
within 76.9 61.2 66.8 60.4 66.6 54.8 61.7 56.6 62.7 63.0 62.0 46.3 51.9 60.1 68.1 61.3
across 32.2 28.1 31.3 28.4 30.5 21.0 24.0 22.2 16.2 26.0 22.1 15.2 19.5 10.3 8.3 22.3

NotEntailment
within 83.9 75.3 76.9 72.8 77.7 75.0 73.5 68.0 61.6 71.6 70.2 64.9 64.8 48.5 41.4 67.3
across 75.9 72.5 73.7 71.6 73.5 72.2 71.6 70.3 68.5 70.7 70.4 68.4 68.6 65.7 64.2 70.5

Table 5: mBERT’s accuracy scores on the XNLI test set separated based on the labels. While both classes have
an almost equal contribution to the performance in the within setup, the performance on the entailment class
significantly drops in the across setup.

en de fr es zh ko ja avg

Paraphrase
within 94.9 89.0 90.1 88.8 76.5 55.7 67.4 81.4
across 57.6 54.7 54.9 53.3 35.5 33.0 31.2 45.7

NonParaphrase
within 92.4 81.0 83.8 85.0 77.5 86.6 78.6 82.9
across 89.3 86.1 86.8 88.3 88.6 89.3 89.8 88.3

Table 6: The performance of mBERT for the within
and across setting per label on the PI task. Most of the
performance drop of the across setting occurs for the
paraphrase class.

Additionally, there might be fine-grained biases re-
lated to bigram or trigram overlap in the PAWS
training data. Investigating these intriguing pat-
terns and biases in the dataset is an avenue for
future research.

QA. For the question-answering task, which dif-
fers from a classification task, we adopt a distinct
approach to uncover the obstacles impeding knowl-
edge transfer across languages in the across setup.

Based on the nature of our across language setup
that minimizes the overlap between the context and
question and the results of the NLI analysis, we
suspect that a similar bias exists for the QA task,
which is easily transferable across languages. Pre-
vious studies have reported different biases in the
SQuAD dataset, including answer-position, word
overlap between the question and context, and type-
matching (Ko et al., 2020; Sugawara et al., 2018;
Weissenborn et al., 2017).

To capture the degree of overlap between the con-
text and question, we introduce a new measurement
technique. Instead of simple word count, we com-
pute the average distance of each question word’s
occurrence in the context to the center of the an-
swer span. Here, the difference between the shared
word position index in the context and the center
of the answer span is considered as the distance. If

there is no word overlap between the question and
context, we assign the distance as the maximum
length of context (which is a hyperparameter). We
contend that the model’s reliance on high word
overlap cannot be simply regarded as a shortcut,
and we advocate for the use of the distance metric
as a more accurate measure of the possible bias
evaluation.

To investigate a possible spurious correlation
between the question and context overlap and the
answer span, we calculate the average distance for
the top and bottom 20% of samples, representing
instances where the model achieves the highest and
lowest F1 scores, respectively, across all individual
languages.

The findings are presented in Figure 1.6 It is
evident that the average distance for the most chal-
lenging instances is twice that of the easiest ones,
indicating a significant correlation between the con-
centration of shared words around the answer span
and the model’s performance. Furthermore, re-
liance on the concentration of shared words around
the answer as a shortcut is consistently observed
across different languages, as indicated by their
corresponding performances.

Summary. Our analysis across different tasks
highlights the predominant influence of dataset ar-
tifacts and reliance on shortcuts rather than robust
cross-lingual knowledge transfer. The observed
disability in performing tasks involving multiple
languages shows that the models prioritize shallow
knowledge over linguistic understanding.

5 Control Tasks

The idea of control tasks, proposed by Hewitt and
Liang (2019), is aimed at enabling a meaningful
and faithful interpretation of the linguistic knowl-
edge encoded in language models’ representations

6Please refer to Figures 11 and 12 for more results.
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Figure 1: The average distance of the questions’ words occurred in the context to the center of the answer span in
the top 20% easiest and hardest instances for the mBERT fine-tuned on SQuAD evaluated on every language. As
the average distance increases, the model’s performance drops.

en de fr ru es zh vi ar tr bg el ur hi th sw ko ja avg original

XNLI

within 77.9 68.7 71.3 66.2 71.0 66.3 67.0 62.4 61.3 65.9 64.1 56.0 59.0 51.8 48.8 - - 63.8 65.7
across 57.8 55.1 56.4 55.0 56.6 52.5 53.4 52.4 49.8 53.4 52.0 49.1 50.6 46.9 44.8 - - 52.4 54.5

PI

within 57.1 55.5 55.2 - 56.1 54.9 - - - - - - - - - 54.0 54.8 55.4 81.4
across 56.8 56.1 56.0 - 56.3 55.8 - - - - - - - - - 55.6 56.1 56.1 69.2

QA

within 82.5 68.6 - 70.0 72.9 58.0 67.6 56.8 55.1 - 60.0 - 56.0 43.3 - - - 62.8 64.4
across 54.0 46.4 - 46.5 48.8 38.4 41.6 37.7 34.9 - 37.3 - 35.5 25.7 - - - 40.6 44.2

Table 7: The performance of mBERT fine-tuned on the control tasks. We report accuracy for the NLI and PI
tasks and the F1 score for QA. Although the fine-tuning data does not provide the model with any meaningful and
task-related knowledge, the drop in performance is negligible for the NLI and QA tasks. The original column refers
to the results in Tables 1–3.

during probing procedures. In the interpretability
area, these tasks serve as baselines to measure the
model’s language understanding capabilities and
ensure that the probe’s high performance is not at-
tributed to the linguistic knowledge learned by the
probe itself and coming from the encoded linguistic
knowledge in the representations.

In this section, we borrow the idea of control
tasks in probing and employ them to assess the
cross-lingual abilities of MMTs. These tasks are
indeed (partially) random sequences, allowing us
to evaluate the models’ performance when it does
not receive linguistic cues. This unconventional
approach provides valuable insights into the ex-
tent of the meaningful numerical performance of
multilingual models on the current multilingual
benchmarks.

To this aim, we randomly shuffle the inputs and
fine-tune the models on these shuffled instances.

More specifically, for the NLI and PI tasks, we
shuffle the words within every sentence, and for the
QA task, we shuffle the question words and keep
the original context.

It is evident that the designed tasks are only
marginally related to human language comprehen-
sion. However, surprisingly, the performance of
the models on these tasks, as shown in Table 7,
indicates only a marginal decrease for both within
and cross-language settings.

In the case of the NLI task, we observe a slight
4% drop in accuracy on the test sets when the model
is fine-tuned on a nonsensical task. Similarly, the
QA model exhibits a drop of approximately 3%.
These findings suggest that the current test sets
may not provide sufficient quality for effectively
evaluating the cross-lingual capabilities of multi-
lingual models. Out of all the tasks, the PI task
stands out with its random performance, indicating
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that the fine-tuned model with shuffled data lacks
the necessary knowledge to complete the task suc-
cessfully. This aligns with our expectations from a
high-quality dataset.

6 Future Directions

In this work, we have demonstrated that current
performance-based methods for evaluating cross-
lingual abilities are insufficient. The main concern
now is how to assess the cross-lingual capabilities
of multilingual models.

Firstly, we should be aware of the shortcomings
of existing multilingual benchmarks commonly
used for evaluating cross-lingual knowledge trans-
fer. As we described in our study, current tasks
and datasets are prone to artifacts leading to ex-
aggerated high performance. In addition to the
random baseline, which is defined based on the
number of labels for classification tasks, we sug-
gest having a secondary baseline for every task.
The secondary baseline could be considered the
performance of a simple neural network on the task
or the performance on the control tasks. We leave
the exploration of this avenue to future work.

Another alternative could be our suggested setup,
the across language approach, which involves mul-
tiple languages. The proposed evaluation setup
is not only valuable for theoretical analysis but
also reflects real-world scenarios where NLP sys-
tems need to integrate knowledge from different
language sources.

7 Conclusion

In this paper, we take a fresh perspective on
the cross-lingual ability of multilingual models.
Through comprehensive experiments, we explored
their capacity to simultaneously leverage knowl-
edge from multiple languages. Our findings show
that multilingual models struggle to establish con-
nections between knowledge spaces across lan-
guages, resulting in subpar performance on cross-
language task setups, i.e., when there are multiple
languages in the input. Our results show that the
previously reported high performance in the zero-
shot setting predominantly stems from the transfer
of shallow, language-independent knowledge. Sur-
prisingly, we observed that dataset artifacts, rather
than intrinsic linguistic features, are predominantly
transferred across languages. This challenges the
notion of relying solely on multilingual models’
performance for assessing their true cross-lingual

capabilities. To assess the quality of existing multi-
lingual benchmarks, we conducted fine-tuning ex-
periments on control tasks with nonsensical input.
Surprisingly, even when fine-tuned on meaning-
less tasks, the models demonstrated exceptionally
high performance, prompting concerns regarding
the quality of current multilingual datasets. In light
of these insights, in the future, we plan to explore
novel task and data-independent approaches to gain
a more accurate understanding of multilingual mod-
els’ true cross-lingual abilities.

Limitations

In our experiments, we primarily examined three
widely used MMTs, namely mBERT, XLM-r, and
INFOXLM. However, there is room for further ex-
pansion by incorporating a broader range of MMTs
with diverse objectives and architectures to evalu-
ate their cross-lingual ability. Additionally, while
we assessed the cross-linguality of MMTs on three
downstream tasks, there is potential for exploring
additional target tasks and datasets.
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A Experimental Setups

We have used the HuggingFace library for fine-
tuning multilingual models. For the NLI task, we
have fine-tuned the models for 3 epochs with a
batch size of 32, maximum length of 128, and
learning rate of 2e− 5, using the last [CLS] token
representation. For the PI task, we have considered
the same hyperparameters but a batch size of 16.
For the QA task, we have used the following setups:
a maximum length of 384, batch size of 16, and
learning rate of 2e− 5. All the reported numerical
results are the average over three different random
seeds. All models have been fine-tuned using one
NVIDIA A6000 GPU.
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Figure 2: Language-pairs accuracy scores for mBERT on the multilingual NLI task.

Figure 3: Language-pairs accuracy scores for XLM-r on the multilingual NLI task.
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Figure 4: Language-pairs accuracy scores for INFOXLM on the multilingual NLI task.

en de ru es zh vi ar tr el hi th avg

mBERT

within 73.0 56.6 54.5 57.0 48.1 50.1 44.6 40.1 45.2 43.9 31.3 49.5
across 43.0 36.5 36.0 37.1 30.0 31.2 28.9 24.8 28.9 26.2 17.3 30.9

XLM-r

within 73.4 59.9 58.0 59.4 53.8 54.7 50.4 52.1 56.4 52.0 54.3 56.8
across 44.0 30.7 29.4 29.2 17.2 20.4 14.8 19.1 22.1 20.1 17.9 28.1

INFOXLM

within 74.1 60.4 58.9 59.4 57.5 55.9 53.4 53.8 56.5 52.0 54.7 58.5
across 60.3 51.6 51.4 51.8 48.7 47.7 45.4 46.6 47.9 47.0 46.4 49.5

Table 8: Zero-shot EM scores of fine-tuned models for teh QA task using the within and across language evaluation
approaches. There is a more than 50% drop in performance under the across evaluation method challenging the
extent of cross-linguality of mBERT and XLM-r.
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Figure 5: Language-pairs accuracy scores for mBERT
on the multilingual PI task.

Figure 6: Language-pairs accuracy scores for XLM-r
on the multilingual PI task.

Figure 7: Language-pairs accuracy scores for
INFOXLM on the multilingual PI task.

l1− l2 l2− l1 ∗ − l2 l1− ∗ ∗ − ∗
en-de 67.8 64.1 58.7 71.3 63.0 59.4 57.6 58.7 52.8 55.3

en-tr 58.7 52.0 40.0 60.3 64.2 59.4 51.6 52.7 50.4 55.3

en-el 62.0 56.7 49.8 62.3 62.8 59.4 50.8 55.0 53.1 55.3

en-es 71.1 68.9 41.7 72.9 63.6 59.4 56.3 58.7 47.2 55.3

en-ar 46.5 56.5 68.5 64.1 47.0 59.4 57.5 55.0 56.6 55.3

de-en 78.3 71.3 46.3 64.1 62.0 58.7 47.0 59.4 56.6 55.3

de-tr 56.5 52.3 48.7 53.7 62.7 58.7 55.8 52.7 54.3 55.3

de-el 62.6 57.3 55.6 57.2 62.5 58.7 56.1 55.0 55.8 55.3

de-es 69.0 65.3 41.9 61.8 61.8 58.7 56.6 58.7 50.0 55.3

de-ar 58.9 57.1 62.5 57.5 57.3 58.7 57.1 55.0 56.9 55.3

tr-en 76.1 60.3 38.7 52.0 61.1 52.7 51.9 59.4 56.9 55.3

tr-de 72.3 53.7 37.3 52.3 62.0 52.7 45.4 58.7 57.4 55.3

tr-el 63.4 52.9 41.7 50.8 61.7 52.7 55.2 55.0 56.5 55.3

tr-es 64.4 55.1 39.7 51.4 59.9 52.7 57.6 58.7 53.5 55.3

tr-ar 54.8 52.5 53.1 50.5 53.8 52.7 55.9 55.0 54.9 55.3

el-en 76.0 62.3 40.8 56.7 60.1 55.0 46.2 59.4 54.9 55.3

el-de 72.8 57.2 39.8 57.3 61.9 55.0 45.5 58.7 56.3 55.3

el-tr 69.6 50.8 40.1 52.9 59.7 55.0 40.9 52.7 54.3 55.3

el-es 67.1 60.9 43.6 58.3 60.4 55.0 57.4 58.7 54.1 55.3

el-ar 57.1 54.6 56.4 54.5 57.6 55.0 57.3 55.0 56.0 55.3

es-en 79.3 72.9 48.4 68.9 61.4 58.7 46.3 59.4 56.0 55.3

es-de 76.4 61.8 43.1 65.3 63.2 58.7 43.8 58.7 56.4 55.3

es-tr 71.9 51.4 39.1 55.1 62.4 58.7 40.6 52.7 55.4 55.3

es-el 74.7 58.3 38.1 60.9 62.8 58.7 38.1 55.0 55.3 55.3

es-ar 42.4 57.3 70.1 61.0 54.6 58.7 59.6 55.0 54.9 55.3

ar-en 75.9 64.1 39.2 56.5 59.6 55.0 41.6 59.4 54.9 55.3

ar-de 72.1 57.5 38.2 57.1 61.1 55.0 41.5 58.7 55.8 55.3

ar-tr 69.3 50.5 38.0 52.5 58.9 55.0 37.7 52.7 54.2 55.3

ar-el 71.2 54.5 36.2 54.6 61.0 55.0 37.9 55.0 55.5 55.3

ar-es 73.6 61.0 39.8 57.3 60.8 55.0 43.3 58.7 54.6 55.3

Table 9: mBERT’s performance on the XNLI test set.
The columns show the fine-tuning language pairs, and
the rows show the evaluation pairs in which l1 and l2
represent the premise and hypothesis’s languages, re-
spectively, as given in the corresponding columns. The
rows including ∗ show the average performance over all
languages. The smaller numbers present the baseline
performance (fine-tuning on en-en) for the correspond-
ing evaluation pairs.
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Figure 8: Language-pairs F1 score for mBERT on the multilingual QA task.

Figure 9: Language-pairs F1 score for XLM-r on the multilingual QA task.
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Figure 10: Language-pairs F1 score for INFOXLM on the multilingual QA task.

Figure 11: The average distance of the questions’ words occurred in the context to the center of the answer span in
the top 20% easiest and hardest instances for XLM-r fine-tuned on SQuAD based on the test set of every language.

Figure 12: The average distance of the questions’ words occurred in the context to the center of the answer span
in the top 20% easiest and hardest instances for INFOXLM fine-tuned on SQuAD based on the test set of every
language.
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en de fr ru es zh vi ar tr bg el ur hi th sw avg

Entailment
within 81.6 66.9 70.1 65.5 70.5 59.1 62.7 60.4 61.9 69.3 65.9 47.0 53.9 55.7 60.1 63.4
across 54.5 49.4 53.0 50.9 53.6 42.5 43.9 41.3 42.5 52.4 47.5 36.5 42.0 41.9 27.1 45.3

NotEntailment
within 86.5 81.8 82.2 80.9 83.5 80.8 80.6 77.2 78.7 82.7 80.8 75.1 77.1 80.0 67.9 79.7
across 80.6 76.5 77.1 76.8 77.2 75.6 76.1 74.1 73.4 76.5 76.3 72.1 74.7 75.9 67.5 75.4

Table 10: Performance of XLM-r setting per label on the NLI task. Most of the performance drop in the across
setting occurs for the entailment class.

en de fr ru es zh vi ar tr bg el ur hi th sw avg

Entailment
within 82.4 68.0 70.8 66.1 72.0 61.7 63.5 60.5 62.0 68.9 66.4 45.9 55.2 56.5 53.0 63.5
across 64.8 54.6 56.4 54.8 57.0 49.2 49.5 48.2 49.3 55.8 51.8 39.4 48.4 48.7 34.4 50.8

NotEntailment
within 87.7 83.1 83.6 82.3 84.0 82.7 82.2 79.7 80.7 83.2 82.0 76.1 78.9 81.3 72.5 81.3
across 83.2 80.7 81.1 80.4 81.3 80.4 80.1 79.2 78.9 80.8 80.3 77.3 78.9 80.2 75.2 79.9

Table 11: The performance of INFOXLM setting per label on the NLI task. Most of the performance drop in the
across setting occurs for the entailment class.

en de fr es zh ko ja avg

Paraphrase
within 95.8 87.7 89.6 88.8 80.9 63.5 71.8 82.6
across 58.4 47.3 47.8 47.9 26.5 32.3 25.2 40.8

NonParaphrase
within 93.2 87.8 89.4 89.4 82.7 86.7 81.7 87.3
across 91.1 92.2 92.0 91.9 93.6 91.8 93.2 92.3

Table 12: Performance of XLM-r for the within and
across setting per label on the PAWS-X test set. Most
of the performance drop of the across setup setting
originates from the drop in the Paraphrase class.

en de fr es zh ko ja avg

Paraphrase
within 96.0 92.4 92.7 91.2 86.8 74.8 81.3 87.9
across 84.5 77.4 77.4 76.8 70.3 65.0 67.8 74.2

NonParaphrase
within 92.9 85.1 88.3 90.0 79.8 82.2 77.3 85.1
across 85.5 81.6 82.8 83.2 78.8 78.4 77.5 81.1

Table 13: Performance of INFOXLM for the within
and across setting per label on the PAWS-X test set.
Most of the performance drop of the across setup setting
originates from the drop in the Paraphrase class.
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en de fr ru es zh vi ar tr bg el ur hi th sw ko ja avg

XNLI

within 81.3 74.1 75.8 72.9 76.0 71.0 71.0 69.5 71.3 75.2 72.9 63.8 66.7 68.8 62.6 - - 71.3
across 68.1 63.7 65.2 65.1 65.2 61.6 60.4 59.9 60.1 64.9 63.4 57.1 60.2 61.8 51.7 - - 61.9

PI

within 54.6 55.2 54.8 - 54.6 55.3 - - - - - - - - - 55.2 55.8 55.1
across 55.0 55.2 55.1 - 55.0 55.2 - - - - - - - - - 55.2 55.5 55.2

QA

within 82.8 73.6 - 72.8 76.1 62.7 72.7 63.9 66.1 - 71.4 - 66.6 66.7 - - - 70.5
across 56.6 44.1 - 43.5 42.9 30.2 34.7 27.8 34.7 - 37.5 - 34.7 34.1 - - - 38.3

Table 14: Performance of XLM-r fine-tuned on the control tasks. We report the accuracy score for the NLI and
PI tasks and the F1 score for QA. Although the fine-tuning data does not train the model with any task-related
knowledge, the drop in the performance is negligible.
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