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Abstract

Few-shot named entity recognition (NER) de-
tects named entities within text using only a
few annotated examples. One promising line
of research is to leverage natural language de-
scriptions of each entity type: the common la-
bel PER might, for example, be verbalized as
“person entity.” In an initial label interpretation
learning phase, the model learns to interpret
such verbalized descriptions of entity types. In
a subsequent few-shot tagset extension phase,
this model is then given a description of a pre-
viously unseen entity type (such as “music al-
bum”) and optionally a few training examples
to perform few-shot NER for this type. In this
paper, we systematically explore the impact of
a strong semantic prior to interpret verbaliza-
tions of new entity types by massively scaling
up the number and granularity of entity types
used for label interpretation learning. To this
end, we leverage an entity linking benchmark
to create a dataset with orders of magnitude
of more distinct entity types and descriptions
as currently used datasets. We find that this
increased signal yields strong results in zero-
and few-shot NER in in-domain, cross-domain,
and even cross-lingual settings. Our findings
indicate significant potential for improving few-
shot NER through heuristical data-based opti-
mization.

1 Introduction

Few-shot named entity recognition (NER) refers to
identifying and classifying named entities within
text by learning from a few annotated examples. A
widely adopted strategy in few-shot NER employs
transfer learning with pre-trained language models
(PLMs) to interpret labels based on their semantic
meaning (Yang and Katiyar, 2020; de Lichy et al.,
2021; Das et al., 2022; Ma et al., 2022a,b,c; Chen
et al., 2023). The main idea is that such models
learn to interpret a natural language description of
an entity type for use in a word-level decoder. They
learn in two phases:

Figure 1: Given existing datasets, few-shot NER meth-
ods requiring an initial label interpretation learning are
limited regarding entity types and label verbalizations.
We propose learning from orders of magnitude more
distinct types and more expressive label semantics than
current datasets by utilizing ZELDA annotated with
WikiData information.

1. a label interpretation learning phase on a
NER-annotated dataset with a set of entity
types and their verbalizations. For instance,
the common label PER might be verbalized
as "person entity." In this phase, the model
learns to associate entity type verbalizations
with matching NER annotations.

2. a few-shot tagset extension phase in which
the model is expanded to previously unseen
domains or entity types using only a new ver-
balization and optionally a few example an-
notations. For instance, to extend the model
to recognize the names of music albums, one
would only need to provide a verbalization
("music album") and a few examples.

Limitations. However, as Figure 1 indicates, prior
studies used only very limited numbers of dis-
tinct entity types for label interpretation learning.
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This is an artifact of relying on common NER
datasets such as CoNLL-03 (Tjong Kim Sang and
De Meulder, 2003), OntoNotes (Pradhan et al.,
2012), WNUT-17 (Derczynski et al., 2017), or
FewNERD (Ding et al., 2021), which only con-
tain a small number of distinct entity types (be-
tween 4 and 66 types). Furthermore, the majority
of their entity types have a simple semantic defini-
tion, such as “person,” “location,” or “organization,”
and occur across several datasets. We hypothesize
that these limitations overly constrain the semantic
signal that is observed during label interpretation
learning, thus constituting a main limiting factor to
few-shot NER.
Contributions. With this paper, we introduce a
novel approach named LITSET (label interpretation
learning by scaling entity types) and systematically
investigate the intuition that increasing the number
of distinct entity types and their semantic exactness
in label interpretation learning introduces a strong
semantic prior to understand unseen entities in few-
shot settings. To this end, we heuristically create a
dataset with orders of magnitude more distinct en-
tity types than commonly employed (cf. Figure 1)
and use it for extensive experimentation. In more
detail, our contributions are:

• We present experiments to validate our hy-
pothesis on the largest existing NER dataset
(FewNERD). We find that few-shot perfor-
mance increases with label interpretation
learning on more distinct entity types and
more expressive descriptions (cf. Section 2).

• We derive a dataset with orders of magnitude
more granular entity type annotations to mas-
sively scale up label interpretation learning.
Our approach leverages the recently released
entity linking benchmark ZELDA (Milich and
Akbik, 2023) and enriches it with type descrip-
tions from WikiData (Vrandečić and Krötzsch,
2014) (cf. Section 3).

• We comprehensively evaluate label interpre-
tation learning on our derived corpus against
classical setups for zero- and few-shot NER
in in-domain, cross-domain, and cross-lingual
settings and transfer it to different model ar-
chitectures (cf. Section 4).

We find that label interpretation learning on
our heuristically derived corpus matches and, in

many cases, significantly outperforms strong base-
lines. Our findings indicate significant potential
for improving few-shot NER through heuristical
data-based optimization. We release the generated
dataset and source code under the Apache 2 license
on Github1.

2 Validation Experiment for Impact of
Entity Types and Label Descriptions

We first conduct an experiment to validate the intu-
ition that a richer training signal for label interpre-
tation learning positively impacts few-shot NER.
To this end, we create a set of training datasets for
label interpretation learning that each contain the
same number of entities but vary in the number
of distinct entity types and their label verbaliza-
tion. We then compare the few-shot NER ability of
models trained on each of these datasets.

2.1 Experimental Setup
Definitions. To evaluate few-shot NER, an existing
dataset D is split based on its labels L: the label
interpretation training split DLIT and a few-shot
fine-tuning split DFS . The corresponding labels of
each split LLIT and LFS are set such that LLIT ∪
LFS = L and LLIT ∩ LFS = ∅.

For few-shot tagset extension, we sample a sup-
port set S by k-shot down-sampling DFS . The
support set S contains each label from LFS ex-
actly k times. We sample three different support
sets using different seeds and report the averaged
micro-F1 scores over these iterations.
Dataset. We use FewNERD in our experiment
since it is the largest existing dataset w.r.t. the num-
ber of distinct entity types (66 types). We set the
labels of DLIT to be the 50 most occurring en-
tity types and the labels of DFS to be the 16 least
occurring. We perform an analysis along two di-
mensions:

• To measure the impact of more distinct entity
types in label interpretation learning, we cre-
ate 5 versions of the training data containing
3, 5, 10, 30, and all 50 labels, respectively. Im-
portantly, all versions contain the same num-
ber of annotations (10k) to ensure an equal
entity detection ability.

• To measure the impact of richer verbalizations,
we define 3 different labels semantics: (1) a

1https://github.com/flairNLP/label-interpretation-
learning
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Figure 2: F1 scores for few-shot NER tagset extension on FewNERD depending on how many distinct entity types
were seen in label interpretation learning (columns) and how label types were verbalized (rows). We report F1
scores averaged over five seeds. We observe that (1) more distinct labels during label interpretation training and (2)
more semantically expressive labels improve the few-shot ability on unseen labels.

"cryptic" unique, random 2-character label,
(2) a "short" description as regularly used ac-
cording to research and (3) a "long" descrip-
tion with examples (cf. Appendix A).

To exclude the respective labels from each split,
we follow prior work and mask labels LLIT in DFS

and LFS in DLIT with the O-token (meaning no
named entity).
Few-shot model. We employ the frequently
used bi-encoder architecture (Blevins and Zettle-
moyer, 2020; Ma et al., 2022a) with two
bert-base-uncased transformers (Vaswani et al.,
2017) as our backbone architecture.

We argue that this architecture has an essential
advantage over approaches using cross-attention
such as Li et al. (2020); Halder et al. (2020); Chen
et al. (2023). Previously mentioned methods are
limited by the input size of the model (e.g., 512 for
BERT) because they prepend label verbalizations
to the processed sentence. One could overcome this
limitation with one forward pass per label-sentence
pair. However, both options become computation-
ally expensive with extensive type descriptions or
many distinct entity types. The bi-encoder can be
easily adapted to handle an arbitrary number of

distinct labels (see Section 3.2).

2.2 Results

Figure 2 shows the results of tagset extension
when performing label interpretation learning on
FewNERD subsets with different numbers of la-
bels (columns) and different verbalization methods
(rows). For each label interpretation learning, we
report the average F1-score for tagset extension for
1-shot, 5-shot, and 10-shot learning, respectively.
Improved generalization with more types. We
observe that the number of distinct labels seen dur-
ing label interpretation training increases the gen-
eralization in few-shot settings independent of the
label semantics used. We find improvements from
+3.0 F1 (cf. L = 3 vs. L = 50, label semantic: cryp-
tic) up to +8.7 F1 (cf. L = 3 vs. L = 50, label
semantic: short) on average in pp.
More expressive descriptions helpful. We also
find that increasing the expressiveness of label ver-
balizations strongly improves the few-shot perfor-
mance. This observation is independent of the dis-
tinct number of labels seen in label interpretation
learning, such that we find improvements ranging
from +16.8 F1 (cf. label semantics: simple vs. long,
with L = 3) up to +22.0 F1 (cf. label semantics:
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Figure 3: An example annotation of a sentence in ZELDA. WikiData provides precise descriptions and labels about
an entity. Annotation types in existing datasets (CoNLL-03, FewNERD) are be less informative if not misleading.

simple vs. long, with L = 50) on average in pp.
These observations on FewNERD confirm our

intuition that a richer training signal in label inter-
pretation learning improves few-shot NER perfor-
mance. To verify this observation for other mod-
els, we repeat this experiment with a pre-trained
transformer on sparse latent typing, an objective
to sparsely extract sentence-level keywords with
diverse latent types, where we make the same obser-
vation. These experiments are illustrated in detail
in Appendix B.

3 Large-Scale Label Interpretation
Learning

As our validation experiment shows a positive im-
pact of increasing the number and expressivity of
entity types, we now aim to scale the signal for
label interpretation learning to orders of magnitude
more entity types. To this end, we heuristically
derive a NER-annotated dataset using the recently
released entity linking benchmark ZELDA and an-
notate it with WikiData information (Section 3.1).
We also introduce a modified training procedure for
the bi-encoder to handle a very large space of en-
tity types that applies to all architectures of its kind
(Section 3.2). We call this approach LITSET (label
interpretation learning by scaling entity types).

3.1 LITSET Dataset

The task of entity disambiguation is closely related
to NER. Here, an already detected entity is disam-
biguated by linking it to an existing knowledge base
such as Wikipedia or WikiData. Existing training
and evaluation datasets for entity disambiguation

Dataset Label length # Distinct types

CoNLL-03 9.8± 2.9 4
WNUT17 8.3± 2.8 6
OntoNotes 9.8± 8.5 18
FewNERD 17.3± 7.6 66

LITSET 99.8± 45.4 ~817k

Table 1: Average label description length (in characters)
and distinct entity types of NER datasets. Label length
and distinct entity types for LITSET refers to all annota-
tions as indicated in Figure 3.

thus contain named entities marked with links to
entries in the WikiData knowledge base.

One advantage of WikiData is that it contains
fine-grained labels and free-form text descriptions
of entities in the knowledge base. For instance, the
entity "John Hopkins Hospital" (cf. Figure 3) has
the free-form description "hospital in Baltimore,
Maryland" and belongs to the classes "teaching
hospital", "university hospital", and many others.
As the Figure shows, these labels are significantly
more fine-grained than CoNLL-03 and even FewN-
ERD entity types which simply classify it as an
"organization" or a "hospital" respectively.
Deriving the dataset. We leverage the classes and
descriptions from WikiData as type annotations in
our approach. For each linked entity in the dataset,
we retrieve the types and descriptions from Wiki-
Data and use them as NER annotations. We refer
to Appendix C for a detailed explanation of the
fields used.

To best prepare our model for arbitrary labels
in a few-shot setting, we sample the annotations
to learn to interpret annotations on different hier-
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archies. We assume labels to represent high-level
types, whereas descriptions are very specific to
that entity. Specifically, for each entity xi, we
uniformly sample whether we annotate it with ei-
ther the description attribute or the labels attribute
(cf. Figure 3). When utilizing the labels attribute,
we randomly select the number of tags following a
geometric distribution with p = .5. Subsequently,
we uniformly sample tags from the label attribute
until the number of tags is reached. Lastly, we
concatenate the selected tags for final annotation.

3.2 Backbone Architecture
Due to its simplicity, we conduct our experiments
using the widely adopted bi-encoder model. It
utilizes two separate transformers to encode to-
kens and labels, respectively. The first transformer
generates embeddings et ∈ RN×H for all tokens,
where N represents the number of tokens and H
denotes the hidden size of the model. The second
obtains the [CLS]-token embeddings el for the la-
bels converted into natural language. We employ
cross-entropy loss and derive final predictions with

ŷ = argmax softmax(et · el)
However, training a model, including the bi-

encoder, with a wide array of distinct classes is non-
trivial. With L denoting the set of labels, the shape
of label representations is el ∈ R|L|×H . Given that
|L| ≈ 106 (cf. Figure 1), we aim to circumvent
the resulting matrix multiplication for two reasons:
(1) computational limitations and (2) optimization
difficulty. To alleviate these issues, we restrict our
consideration to labels present in the current batch
Lb with |Lb| ≪ |L| for loss calculation.

4 Experiments

We evaluate the impact of label interpretation train-
ing in various tagset extension settings. Through-
out all experiments, we compare label interpreta-
tion learning on LITSET with training on different
baseline datasets. We present all hyperparameters
used for our experiments in Appendix D. Specifi-
cally, we conduct the following experiments:

1. In-domain transfer: Identical domain in la-
bel interpretation learning and few-shot fine-
tuning (cf. Section 4.1).

2. Cross-domain transfer: Different domain in
label interpretation learning and few-shot fine-
tuning (cf. Section 4.2).

Figure 4: Exemplary illustration on the INTRA and
INTER settings of FewNERD experiments.

3. Transfer to advanced bi-encoders: Identical
to in-domain setting, but we transfer our ap-
proach to advanced bi-encoder architectures
(cf. Section 4.3).

4. Cross-lingual transfer: Identical domain in
label interpretation learning and few-shot fine-
tuning, but languages differ between both
phases (cf. Section 4.4).

Further, we support our experiments by analyz-
ing the impact of different label semantics used
between label interpretation learning and few-shot
fine-tuning (cf. Section 4.1). At last, we refer to our
ablation experiments using (1) different transform-
ers as label encoders and (2) negative sampling (cf.
Appendices E and F).

4.1 Experiment 1: In-Domain Transfer

This experiment replicates the most common eval-
uation setup for few-shot tagset extension, where
both DLIT and DFS are sourced from the same
NER dataset. Our baseline is the default approach
of label interpretation learning on DLIT , which is
"in-domain" since it shares the same textual domain
and entity annotations are aligned on identical se-
mantic levels as the evaluation data, whereas label
interpretation learning on LITSET does not have
these advantages.

4.1.1 Experimental Setup
We use OntoNotes and FewNERD in our ex-
periments as they have important properties:
OntoNotes covers multiple domains and languages
such that we can measure the transferability of our
approach. FewNERD comes with two annotation
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Evaluation data DFS for
tagset extension from:

Label interpretation learning
data DLIT from:

0-shot 1-shot 5-shot 10-shot Avg.

OntoNotes

LITSET 8.7± 1.7 21.9± 8.4 40.1± 7.2 48.4± 6.2 29.5

w/ all labels 3.5± 1.3 20.0± 9.5 38.4± 8.3 46.5± 6.3 27.1

w/ labels only 0.1± 0.1 14.3± 8.3 29.6± 6.9 37.5± 6.1 20.4

w/ description only 4.2± 1.3 19.8± 8.8 37.5± 7.9 46.2± 5.9 26.9

OntoNotes (Baseline) 0.2± 0.1 11.2± 9.3 38.3± 12.0 54.9± 7.6 26.2

FewNERDINTRA

LITSET 3.2± 1.0 30.7± 5.3 51.9± 5.2 57.9± 6.2 35.9

w/ all labels 0.9± 0.4 20.1± 5.0 47.7± 6.0 54.1± 5.9 30.7

w/ labels only 3.7± 0.5 14.3± 8.3 29.6± 7.0 37.5± 6.1 21.3

w/ description only 1.0± 0.3 19.8± 8.8 37.5± 7.9 46.2± 5.9 26.1

FewNERDINTRA (Baseline) 5.8± 0.4 8.9± 4.3 31.4± 9.2 38.4± 7.5 21.1

FewNERDINTER

LITSET 24.3± 0.6 39.8± 2.9 49.1± 1.9 52.1± 1.9 41.3

w/ all labels 17.6± 2.5 36.1± 4.7 47.2± 3.0 50.4± 2.4 37.8

w/ labels only 2.9± 0.6 24.7± 1.8 37.9± 1.7 42.4± 2.0 27.2

w/ description only 16.2± 2.0 37.4± 2.9 47.8± 2.2 50.9± 1.9 38.1

FewNERDINTER (Baseline) 10.6± 0.8 38.4± 3.1 50.4± 3.1 53.3± 2.6 38.2

Table 2: Evaluation of zero- and few-shot tagset extension for in-domain settings. We compare the baseline approach
of using in-domain data for label interpretation learning against using LITSET. Despite lacking the in-domain
advantage of the baselines, training on LITSET matches or significantly outperforms the in-domain baseline in
nearly all settings. Best scores are in bold, and 2nd best is underlined.

layers: coarse labels Lc (8 classes) and fine labels
Lf (66 classes). Lf are subclasses of the Lc such
that the entity mentions of both annotations are
identical, only their surface form differs. Thus, we
can evaluate our dataset against FewNERD in two
ways: (1) in the INTRA setting in which we split
the labels based on coarse annotations, and (2) in
the INTER setting in which we split based on the
fine annotations (cf. Figure 4).

We split each dataset into two equally sized label
sets for both settings. The random split of labels
is repeated three times to reduce the impact of ran-
domness. We then perform few-shot fine-tuning
runs with three different seeds for each random
split.

Comparison with LITSET. To focus solely on
understanding the impact of scaling entity types
without the influence of increased entity detection,
we downsample LITSET to match the number of
entity mentions in each baseline dataset. Further,
to make a fair comparison, we remove labels from
our approach that match those in the baseline labels
LFS and mask them with the O-token. However,
due to our sampling method, LITSET annotations
may not always be consistent. Thus, we can only
ensure excluding exact overlaps with the few-shot
domain.

4.1.2 Results

The experimental results are shown in Table 2, and
we find that LITSET substantially improves the
few-shot performance in in-domain settings.
Detecting coarse entity types. When perform-
ing label interpretation learning on OntoNotes and
FewNERDINTRA, we evaluate the model’s ability to
identify entirely new concepts (see INTRA in Fig-
ure 4). The results in Table 2 show that our ap-
proach can effectively leverage its general label
interpretation ability to outperform baselines by
large margins. We report +14.8 F1 on average in
.pp on FewNERDINTRA and +3.3 F1 on OntoNotes.
While LITSET consistently outperforms in-domain
label interpretation learning on FewNERD (IN-
TRA), this advantage levels off when k = 10 on
OntoNotes.
Differentiating fine entity types. In this setting,
the model is exposed to sub-classes of a coarse
category during label interpretation learning (e.g.,
“actor” is a subclass of “person”, cf. INTER in Fig-
ure 4). We observe that all approaches yield im-
proved few-shot generalization in this setting. This
finding suggests that transfer to unseen labels is
particularly effective when the training includes
annotations of high-level categories. With LITSET,
we outperform FewNERDINTER in 0- and 1-shot
settings (+13.7 F1 and +1.4 F1 on average in pp.)
and remain competitive at higher k-shots.
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Evaluation data DFS for
tagset extension from:

Label interpretation learning
data DLIT from:

0-shot 1-shot 5-shot 10-shot Avg.

JNLPBA
LITSET 41.3± 2.0 25.4± 5.3 51.3± 3.4 57.7± 3.0 43.9

w/ all labels 42.2± 1.8 22.5± 8.1 49.9± 3.8 55.8± 2.7 42.6

FewNERDINTER 8.2± 1.5 29.5± 15.0 46.0± 7.6 49.7± 6.6 33.4

CLUB
LITSET 6.1± 0.9 19.4± 3.3 25.9± 3.7 33.0± 2.1 21.1

w/ all labels 7.3± 0.1 19.9± 2.0 27.6± 4.6 35.1± 3.1 22.5

FewNERDINTER 1.7± 0.2 16.9± 1.8 25.5± 4.9 32.2± 3.7 19.1

Table 3: LITSET outperforms FewNERD in out-of-domain settings on JNLPBA (bio-medical domain) and CLUB
(chemical domain).

Impact of LITSET sampling. We measure the
impact of different heuristics for creating LITSET

types. To test this, we conduct various experiments
using LITSET with (1) only labels, (2) only de-
scriptions, and (3) all label information available
(cf. Figure 3). We first find that using only label an-
notations decreases performance compared to the
baselines (cf. FewNERDINTER and OntoNotes), un-
derlining the need for precise label semantics dur-
ing label interpretation training to obtain a strong
few-shot generalization.

When using only the descriptions or all avail-
able annotations, we notice that LITSET yields
similar performance to their respective baselines,
whereas in the FewNERDINTRA setting, substantial
improvements are observed compared to the base-
lines. Again, this emphasizes that learning from
detailed label semantics before the few-shot trans-
fer improves the final performance.

At last, we observe that LITSET substantially
outperforms all baselines using our sampling tech-
nique, which indicates that alternating shorter la-
bels and expressive short descriptions achieves the
best generalization.

4.2 Experiment 2: Cross-Domain Transfer

This experiment assesses the performance of LIT-
SET and its corresponding baselines when not only
tagsets but also domains of label interpretation
learning and few-shot fine-tuning differ. We re-
use LITSET and FewNERDINTER models after label
interpretation learning from previous experiment
and evaluate on out-of-domain datasets JNLPBA
(Collier et al., 2004) (bio-medical domain) and
the Chemical Language Understanding Benchmark
(CLUB) (Kim et al., 2023) (chemical domain)
which labels do represent entirely new, domain-
specific concepts.

4.2.1 Results

Table 3 shows the results for cross-domain set-
tings. While this setting is identical for LITSET,
the baseline now has no advantage of exposure to
"in-domain" data during label interpretation train-
ing. Further, no additional masking is required
since label spaces between JNLPBA and the base-
line model are disjoint. Consequently, we do not
mask any labels in LITSET to maintain a fair com-
parison. However, we emphasize that our model
may have been exposed to close domain-specific
labels during label interpretation training.

LITSET better transfers to new domains. We
find that LITSET significantly outperforms FewN-
ERD with average improvements of +10.5 F1
on JNLPBA and +3.4 F1 on CLUB. Further, on
JNLPBA, we observe that our sampling approach
performs slightly better than using all label infor-
mation, whereas we observe the opposite when
evaluating CLUB. Our approach consistently out-
performs FewNERD on CLUB and JNLPBA with
higher shots (k >= 5) and achieves an average in-
crease of +34.0 F1 pp. in zero-shot settings on
JNLPBA.

Impact of inconsistent annotations. Furthermore,
we observe that LITSET underperforms by -4.1 F1
pp. compared to the baseline in 1-shot settings on
JNLPBA. Additionally, its performance is inferior
even compared to the 0-shot scenario. This indi-
cates the instability of few-shot fine-tuning with
LITSET at very low k. Upon further qualitative
analysis of the generated dataset, we discovered
that annotations from entity linking benchmarks
like ZELDA may not be consistently annotated (cf.
Appendix G). This inconsistency could be one pos-
sible reason for the observed performance drops.
However, as k increases, our approach demon-
strates the ability to adapt to the target domain.
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Model Tagset extension
on DFS

Label interpretation
learning on DLIT

1-shot 5-shot 10-shot Avg.

LEAR
FewNERDINTRA

LITSET 16.6± 4.2 33.2± 9.2 43.4± 10.8 31.1

FewNERDINTRA 13.5± 9.2 23.7± 11.7 37.0± 14.6 24.7

FewNERDINTER
LITSET 14.1± 2.2 38.3± 3.3 44.1± 2.6 32.2

FewNERDINTER 27.6± 4.6 50.8± 3.5 54.8± 2.6 44.4

BINDER
FewNERDINTRA

LITSET 18.8± 6.2 31.0± 4.2 33.8± 3.7 27.9

FewNERDINTRA 2.6± 1.3 11.5± 5.6 20.7± 7.0 11.6

FewNERDINTER
LITSET 18.6± 1.5 27.3± 1.8 30.4± 2.0 25.4

FewNERDINTER 6.1± 0.9 20.2± 3.2 26.6± 3.4 17.6

Table 4: Transfer of LITSET to advanced bi-encoder architectures. We outperform baselines when coarse entity
types are not learned during label interpretation training. On BINDER, we also improve over in-domain label
interpretation learning.

4.3 Experiment 3: Transfer to Advanced
Bi-Encoders

This experiment extends our approach to advanced
bi-encoder architectures LEAR (Yang et al., 2021)
and BINDER (Zhang et al., 2023). Instead of
matrix multiplication, LEAR implements a self-
attention layer between the token and label encoder,
whereas BINDER uses a contrastive loss. The
experimental setup is equal to the one from Sec-
tion 4.1.

4.3.1 Results
The results are shown in Table 4. We find that
LITSET with LEAR improves over the correspond-
ing baseline in INTRA settings up to +9.5 F1 on
average in pp. at k = 5. Notably, both the base-
line and our approach exhibit relatively diminished
performance compared to results in Section 4.1.
However, our approach falls short in INTER set-
tings, confirming our earlier experimental findings.
A noteworthy enhancement is discerned at k=10 for
the baseline in the INTER-setting, suggesting that
existing architectures excel in in-domain transfer,
particularly when labels closely align. However,
in more practical settings (cross-domain and en-
tirely new type concepts), LITSET works well with
LEAR.

Further, we surpass baselines in INTRA and IN-
TER settings across all k-shots for BINDER, indi-
cating LITSET also applies to metric-based meth-
ods using contrastive objectives. However, to the
best of our knowledge, we are the first to evaluate
BINDER in such transfer settings. Our evaluation
reveals that the overall performance lags behind
simpler architectures. We note that BINDER’s
contrastive loss is tailored for learning from ex-
tensively annotated corpora. Thus, BINDER may

require modifications or extensions for good gener-
alization performance in these transfer scenarios.

4.4 Experiment 4: Cross-Lingual Transfer

In this experiment, we utilize the multilingual
xlm-roberta-base model (Conneau et al., 2020)
to assess the transferability of LITSET across lan-
guages. We use the English version of OntoNotes
as the baseline for label interpretation training.
ZELDA is also an English corpus. The transfer
is done on the Arabic and Chinese versions of
OntoNotes. The results are shown in Table 5.

4.4.1 Results
We find strong improvements across all k-shots on
the Arabic and Chinese segments of OntoNotes,
namely +3.9 F1 and +9.0 F1 on average in pp.,
respectively. Despite the overlapping domains be-
tween label interpretation learning and few-shot
fine-tuning on OntoNotes, our model can dis-
cern subtle annotation differences across languages.
This emphasizes our model’s robust understanding
of labels in multilingual scenarios.

Furthermore, we observe that utilizing
xlm-roberta-base also improves LITSET’s per-
formance in monolingual settings (cf. Section 4.1).
We reduce the previous performance gap at k = 10
from -6.5 F1 to -0.5 F1 on average in pp., thereby
increasing the overall performance from +3.3 F1
to +6.5 F1.

5 Related Work

Despite advancements achieved through pre-
trained word embeddings (Peters et al., 2018; Ak-
bik et al., 2018; Devlin et al., 2019; Liu et al., 2019;
Yamada et al., 2020; Raffel et al., 2020), few-shot
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Evaluation data DFS for
tagset extension from:

Label interpretation learning
data DLIT from:

0-shot 1-shot 5-shot 10-shot Avg.

OntoNotes (EN)
LITSET (EN) 9.9± 3.2 27.4± 8.5 46.4± 6.7 55.5± 6.4 34.8

OntoNotes (EN) 0.3± 0.1 15.9± 8.4 41.1± 15.0 56.0± 12.7 28.3

Ontonotes (AR)
LITSET (EN) 0.0± 0.0 7.2± 6.1 14.8± 6.3 22.0± 5.8 14.7

Ontonotes (EN) 0.0± 0.0 4.7± 4.7 12.8± 4.8 14.9± 7.9 10.8

Ontonotes (ZH)
LITSET (EN) 3.0± 0.9 22.7± 8.6 37.6± 5.0 42.8± 5.0 26.5

Ontonotes (EN) 1.6± 0.3 10.8± 5.9 26.2± 6.9 31.2± 7.9 17.5

Table 5: Tag set extension with baseline pre-finetuning and few-shot fine-tuning in the same domain. LITSET
outperforms models that are pre-finetuning on in-domain data when pre-finetuning is done on a small number of
labels.

NER focuses explicitly on generalizing to previ-
ously unseen label categories by leveraging a small
number of labeled examples.

Metric learning (Vinyals et al., 2016; Snell et al.,
2017) is a common approach for few-shot NER
(Fritzler et al., 2019; Wiseman and Stratos, 2019;
Ziyadi et al., 2020) and employs a distance metric
to learn a shared representation space and assign
labels based on class prototypes (Yang and Katiyar,
2020; Hou et al., 2020; Ma et al., 2022a; Han et al.,
2023). Additional components like contrastive loss
(Das et al., 2022; Layegh et al., 2023) or meta-
learning (de Lichy et al., 2021; Ma et al., 2022c;
Wang et al., 2022a) often further improve the per-
formance. Our approach aligns with this research
by employing the bi-encoder architecture proposed
in Ma et al. (2022a) with an adapted loss calcu-
lation. However, prior work did not investigate
the impact of the dataset used for label interpreta-
tion learning. We do so by increasing the training
signal with expressive label verbalizations. Thus,
our approach may be applied to all prior work that
relies on label verbalizations but may require ar-
chitectural adaptations to accommodate arbitrary
labels.

Template-filling and prompting methods with
(large) language models (Lewis et al., 2020; Brown
et al., 2020; Raffel et al., 2020; Scao et al., 2023;
Touvron et al., 2023) have been widely used for
few-shot NER (Cui et al., 2021; Ma et al., 2022b;
Lee et al., 2022; Kondragunta et al., 2023; Ma
et al., 2023). However, these approaches, rely-
ing on masked language model (MLM) objectives,
may not be directly comparable to our method due
to the scale of our labels. In its basic form, the
template-based approach requires one forward pass
per label or is limited by the model’s maximum
sequence length. Additionally, our approach does

not depend on large language models, which are
often unavailable or impractical for few-shot NER.

While specific efforts have been made to adapt
to tags in few-shot domains (Hu et al., 2022; Ji
et al., 2022), these studies evaluated only a limited
number of labels. Our approach shares similari-
ties with (Ren et al., 2022) and Chen et al. (2022),
where models were pre-trained using event men-
tions and entity links, respectively. However, our
approach differs significantly. In Ren et al. (2022),
the pre-training objective targets the latent typing
of entities, whereas our approach focuses on ex-
plicitly scaling up entity typing of few-shot NER
models. Our distinction from Chen et al. (2022)
lies in exploring the effectiveness of distantly su-
pervised training in a genuine few-shot context,
wherein classes are not observed during label inter-
pretation training.

6 Conclusion

This paper introduces LITSET, a novel approach
for label interpretation training with a large-scale
set of entity types. We utilize an entity linking
dataset annotated with WikiData information, re-
sulting in a dataset with significantly more distinct
labels. We conducted a thorough heuristical, data-
based optimization of few-shot NER models using
LITSET. Our experiments demonstrate that LIT-
SET consistently outperforms various in-domain,
cross-domain, and cross-lingual baselines and is
transferable to other architectures and transformer
models. For example, we surpass FewNERD by
+14.7 F1 on average in pp. and Chinese OntoNotes
by +9.0 F1 on average in pp. in low-resource set-
tings. Our method and experiments provide valu-
able insights into the factors influencing the per-
formance of few-shot NER models utilizing label
semantics.
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Limitations

Our heuristic data-based optimization is an initial
exploration of the impact of scaling the number
of distinct entity types during label interpretation
learning on few-shot capability. Given our focus on
this optimization, we select a commonly used back-
bone architecture and one entity linking dataset.
While we achieved substantial improvements in
many settings, it is noteworthy that we did not
explore all entity linking benchmarks. Thus, apply-
ing our approach with different model architectures
and entity disambiguation datasets may yield sig-
nificantly varied results. Further investigation is
necessary to understand how these factors interact
comprehensively and to develop more generalized
few-shot NER models and comparable evaluation
settings.

Additionally, achieving 0-shot capability on
completely unseen tags remains challenging, es-
pecially in languages different from the one used
for label interpretation training. This limitation
highlights the need for future research and explor-
ing innovative techniques to enhance the adaptabil-
ity of few-shot NER models in 0-shot scenarios,
enabling them to handle diverse domains and situa-
tions effectively.

Lastly, concerning LITSET, our best results were
obtained by learning solely from in-batch instances.
Although this strategy is commonly employed in
machine learning, there is substantial related work
on learning from negatives, such as contrastive
learning. We believe exploring other architectures
and loss functions in more detail, including those
from contrastive learning, could further improve
our method.

Ethics Statement

In our opinion, this work does not raise many eth-
ical problems. One primary concern is that the
texts of entity linking datasets serving our approach
show signs of bias. If not checked correctly in ad-
vance, the model may learn these biases as exem-
plarily shown in Haller et al. (2023).
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Appendix

A FewNERD Label Semantics in
Validation Experiment

Tables 6 to 8 show an overview of the label seman-
tics used in our validation experiment.

Original Label Adapted Label

O XO
location-GPE PH
person-politician EX
organization-education CE

Table 6: Extract of random two letter labels for FewN-
ERD.

Original Label Adapted Label

O XO
location-GPE geographical social-

political entity
person-politician politician
organization-education education

Table 7: Extract of short labels for FewNERD.

Original Label Adapted Label

O XO
location-GPE geographical entity such

as cities, states, coun-
tries, and political enti-
ties

person-politician politicians such as pres-
idents, senators, and
other government offi-
cials

organization-education education institutions
such as schools, col-
leges, and universities

Table 8: Extract of long labels for FewNERD.

B Validation Experiment with Sparse
Latent Typing

We perform our validation experiment on the re-
cently released transformer using the sparse latent
typing pre-training objective (Ren et al., 2022). The
experimental setup, including few-shot splits, is
identical to the one in Section 2. The results are
depicted in Figure 5.

Similar to the results in Section 2, we observe a
better few-shot generalization with more distinct
types and increased expressiveness of label ver-
balizations. However, the overall performance is

higher using the encoder with sparse latent typing
pre-training, a dedicated pre-training objective for
keyword extraction from sentences. Further, we
observe a slight decrease in performance as soon
as L>30. This finding indicates that LitSet is trans-
ferable to entity-specific pre-trained models.

C WikiData labels

Given all entity mentions from the entity linking
dataset, we source various information from Wiki-
Data in natural language and annotate those entities
with it. In the following, we present the selected
attributes along with their respective definitions,
which will serve as our labels:

1. x instance-of y: Entity x is a particular
example and instance of class y. For example,
entity K2 is an instance of a mountain.

2. y subclass-of z: Instance y is a subclass
(subset) of class z. For example, instance class
volcano is a subclass of a mountain.

3. description: A short phrase designed to dis-
ambiguate items with the same or similar la-
bels.

We note that the instance-of and
subclass-of categories commonly encom-
pass multiple tags rather than being limited to
a single tag, as demonstrated in the example in
Figure 3. We filter out WikiData-related entities
such as information or distribution pages because
they do not contain any entity-related information.

D Hyperparameters

This section gives a detailed overview of the hyper-
parameters used throughout all experiments. For
our baselines in experiments Sections 2, 4.1, 4.2
and 4.4 and Appendix B we take the same hyperpa-
rameters as in (Ma et al., 2022a) for label interpre-
tation learning. An overview is listed in Table 9.

For LITSET in the respective sections, we use
a lower learning rate of 1e−6, which achieved the
lowest validation loss on a 5% hold-out split of
LITSET.

For few-shot fine-tuning, we use a slightly higher
learning rate of 5e−6 for LITSET while the learn-
ing rate for the baselines remains at 1e−5. We use
a maximum of 100 training epochs with early stop-
ping after 5 iterations with no improvements on the
training loss. We do not use any validation splits in
few-shot fine-tuning for model selection.
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Figure 5: K-shot tagset extension on the 16 least occurring labels of FewNERD using the sparse-latent-typing
encoder. We sweep over different numbers of distinct entity types and different semantic descriptions observed
during label interpretation learning. We find that increasing both dimensions (more distinct types, extensive label
verbalizations) contributes to an improved few-shot generalization.

Argument Value

Learning rate 1e−5

Optimizer AdamW
Scheduler Linear warm-up (10%)
Training epochs 3
Training batch size 16
Evaluation batch size 16

Table 9: We use S-BERT (all-mpnet-base-v2) and SLT
(sparse latent typing) as the label encoder. LITSET trans-
fers to other transformers and outperforms baselines in
INTRA settings while remaining competitive in INTER
settings with in-domain trained models.

All previous hyperparameters are identical for
LEAR and BINDER (cf. Section 4.3), except that
we use the recommended learning rate of 3e−5 for
BINDER and early stopping for label interpretation
learning (after one epoch with no improvements on
the training loss).

E Using Different Transformers as Label
Encoder

In this experiment, we investigate whether
the all-mpnet-base-v2 sentence trans-

former (Reimers and Gurevych, 2019) and
the sparse-latent-typing transformer (Ren
et al., 2022) can effectively help to understand
label semantics better. Sentence transformers have
been trained on a similarity objective, making them
intriguing for our model to act as an enhanced
label encoder. Sparse latent typing is a pre-training
objective designed for extracting keywords from
sentences. We present results in Table 10.

We observe that using all-mpnet-base-v2
performs generally worse than plain
bert-base-uncased. However, we also ob-
serve that using LITSET yields better few-shot
generalization in both INTRA and INTER settings
and thus confirms that our main findings are
transferable to other label encoders. When using
SLT encoder, we outperform the baseline by large
margins in the INTRA settings but fall slightly
short in INTER settings.

F The Impact of Negative Examples

In this experiment, we investigate the impact of
integrating negative labels L− in each batch. To
do so, we additionally sample negative labels from
L\Lb until the desired number of labels is reached
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Transformer Tagset extension on
DFS

Label interpretation
learning on DLIT

1-shot 5-shot 10-shot Average

S-BERT

FewNERDINTRA
LITSET 27.6± 4.1 49.2± 3.4 54.7± 4.8 43.8

FewNERDINTRA 10.7± 7.4 37.8± 9.8 49.1± 8.4 32.5

FewNERDINTER
LITSET 36.6± 2.0 44.3± 2.0 47.7± 2.1 42.9

FewNERDINTER 23.4± 2.4 42.3± 3.8 48.5± 3.1 38.1

SLT

FewNERDINTRA
LITSET 27.2± 5.8 51.8± 4.9 57.2± 5.4 45.4

FewNERDINTRA 6.2± 4.9 15.6± 4.7 21.9± 4.9 14.6

FewNERDINTER
LITSET 38.6± 3.6 49.4± 2.5 52.4± 2.3 46.8

FewNERDINTER 40.3± 4.1 52.0± 3.0 54.9± 2.24 49.1

Table 10: We use S-BERT (all-mpnet-base-v2) and SLT (sparse latent typing) as the label encoder. LITSET transfers
to other transformers and outperforms baselines in INTRA settings while remaining competitive in INTER settings
with in-domain trained models.

Evaluation data DFS for
tagset extension from:

Label interpretation learning data
DLIT from:

1-shot 5-shot 10-shot Average

(/w # max. negative labels per batch)

FewNERDINTRA

LITSET (0) 20.1± 5.0 47.7± 6.0 54.1± 5.9 40.6

LITSET (64) 20.1± 4.8 47.5± 5.0 53.2± 6.6 40.3

LITSET (128) 18.9± 4.9 46.4± 3.9 52.7± 5.9 39.3

FewNERDINTER

LITSET (0) 36.1± 4.7 47.2± 3.0 50.4± 2.4 44.6

LITSET (64) 35.2± 4.1 47.4± 2.6 50.5± 2.4 44.4

LITSET (128) 34.7± 3.3 47.3± 2.7 50.4± 2.3 44.1

Table 11: The few-shot generalization of LITSET does not improve with a fixed number of labels per batch (we
sample additional labels for loss calculation until, e.g., 64 labels are present). We find that the best training setup
only uses the labels in the current batch.

and include them for loss calculation. Including
negative types could potentially lead to a better gen-
eralization in few-shot settings due to the increased
signal during loss calculation. We show results in
Table 11. We observe that including more labels
in each batch harms the performance. While prior
work (Epure and Hennequin, 2022; Wang et al.,
2022b) has shown that this idea is beneficial in few-
shot settings, we find that LITSET works best when
only using the labels present in the batch for loss
calculation. Since we randomly sample additional
labels, it is possible, if not likely, to sample simi-
lar labels that are not true negatives and thus not
advantageous when using cross-entropy loss.

G Annotation Noise in ZELDA

In some cases, ZELDA is not consistently anno-
tated, which may affect the few-shot fine-tuning
performance for settings with very low k. Table 12
shows such an example. We find unique entities,
such as proteins, that are not consistently annotated
to verify this assumption qualitatively. These in-

consistencies may cause a worse entity detection
ability with LITSET than training on consistently
annotated datasets. While we show that entity link-
ing benchmarks can be used to obtain a strong label
understanding prior, improving the annotation qual-
ity or generating a designated label interpretation
training dataset remains for future work.

Annotation noise in ZELDA

annotated [. . . ] which in turn creates the compound
oxyhemoglobin | protein .

missing
annotation

[. . . ] whereas in oxyhemoglobin | O it is
a high spin complex.

annotated GSTK1 promotes adiponectin | protein
multimerization

missing
annotation

[. . . ] ER stress induced adiponectin | O
downregulation [. . . ]

Table 12: Annotations in the entity linking bench-
mark may be inconsistent, causing the 1-shot drops
on JNLPBA. Since JNLPBA is annotated by humans, it
is expected that all sentences are annotated consistently.
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